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1. Localizationist Dangers in the Study of Language
Many studies of language, whether in philosophy, linguistics, or psychology, have

focused on highly developed human languages.  In their highly developed forms, such as are
employed in scientific discourse, languages have a unique set of properties that have been
the focus of much attention.  For example, descriptive sentences in a language have the
property of being "true" or "false," and words of a language have senses and referents.
Sentences in a language are structured in accord with complex syntactic rules.  Theorists
focusing on language are naturally led to ask questions such as what constitutes the meanings
of words and sentences and how are the principles of syntax encoded in the heads of
language users.  While there is an important function for inquiries into the highly developed
forms of these cultural products (Abrahamsen, 1987), such a focus can be quite misleading
when we want to explain how these products have arisen or the human capacity to use
language.  The problem is that focusing on its most developed forms makes linguistic ability
seem to be a sui generis phenomenon, not related to, and hence not explicable in terms of
other cognitive capacities.  Chomsky's (1980) postulation of a specific language module
equipped with specialized resources needed to process language and possessed only by
humans is not a surprising result. 

The strategy of identifying a specific component within a system and assigning
responsibility for one aspect of the system's behavior to that component is a common one in
science.  Richardson and I (Bechtel and Richardson, 1992) refer to this as direct localization.
To see that direct localization is not a strategy unique to language studies or to explaining
cognitive functions, we need only to consider the earliest attempts to explain fermentation.
In the wake of Pasteur, many researchers doubted whether any chemical explanation of
fermentation was possible.  They thought that it was a unique capacity of yeast cells.
However, in 1897 Eduard Buchner demonstrated that fermentation continued in extracts in
which the whole cells had been destroyed.  He then posited that there was a single enzyme,
zymase that was responsible for the chemical process.  Buchner's explanation soon proved
to be inadequate as chemists recognized that fermentation was a many step process.  

Since I am stressing the limitations of direct localization, I should also stress that it
is often a fruitful first step in developing a more adequate understanding of how a complex
system operates.  Moreover, in fact, direct localizations are correct:  there is a component in
the system that performs the task that is assigned to it.  The point to recognize then is that one
still has not explained the ability until a decomposition is effected, for we do not understand
how something is able to perform that activity.  If the direct localization is correct, at least
to a first approximation, then research typically proceeds at a lower level, where researchers
try to take that component apart.

As research on fermentation continued, researchers developed a complex localization
in which many different enzymes as well as coenzymes were identified as responsible for
different components of the overall chemical transformation.  The result, by the 1930s, was
a complex model of interacting components that achieved the overall reaction of
fermentation.  Richardson and I have identified two heuristics that figured in this and other
cases of developing complex localizations:  the decomposition of a complex activity into
simpler activities and the localization of responsibility for these activities in different
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components.  It would seem that the goals in trying to explain human linguistic abilities are
similar:  we want to know the various sorts of processes involved in language processing
(task decomposition) and to identify the cognitive/neural components responsible for each
(function localization).

In fact, such a program is in place in the study of language.  A person's understanding
of language is frequently decomposed into different kinds of knowledge:  knowledge of
syntax, semantics, pragmatics, etc.  Psycholinguists attempt to identify component processes
in human comprehension and production of language.  A similar enterprise is pursued in
artificial intelligence, where researchers are trying to develop parsers that can enable
programs to extract useful representations of information from natural language inputs.
Much of this work is very sophisticated and very impressive.  But in this paper I want to raise
a worry about the conceptualization of these projects and advance a different perspective
from which to think about human linguistic ability.  The worry can be focused by noticing
that there is a step that must be performed even before one attempts a direct or a complex
localization:  one must identify a system that is responsible for the phenomenon.  Richardson
and I refer to this as identifying the locus of control for the phenomenon.  In the case of
language, it seems to many that this system is the mind/brain.  The case for this seems to be
overwhelming:  humans comprehend and produce language, and the activities involved in
doing this surely must be occurring inside their heads.  But to recognize that this could be
controversial, we only have to consider the approach against which Chomsky (1959) was
reacting:  Skinner's (1957) proposal to explain language using the tools of operant
conditioning.  Skinner's program was to minimize the contribution of the mind and to explain
linguistic behavior in terms of environmental processes conditioning particular forms of
behavior.  The alternative to Chomsky that I will urge is, however, not Skinner's.  My goal
is not to discount the mind as playing a significant role in explaining linguistic capacities, but
to suggest that linguistic ability be understood in terms of interactions between the mind and
features of the environment.

Before beginning to develop my alternative proposal, let me note one of the
consequences of localization of linguistic capacity in the mind.  This is that the mind itself
is construed as working on linguistic principles.  Chomsky's transformational grammar
employed procedures for manipulating strings of symbols that are composed in particular
ways (often a tree structure is used to provide a more perspicuous representation).
Psychologists such as George Miller were attracted to the idea that the mind might process
language by performing such transformations, and more generally by the idea that the mind
might operate by performing formal operations on strings of symbols.  The availability of the
computer, a device which can be interpreted as operating by performing formal operations
on symbol strings, combined with Chomskyan linguistics in inspiring the development of the
information processing tradition in psychology.  The key to the information processing
tradition is that the mind/brain is a representational device, and that it operates by performing
operations upon the symbols that serve as its representations.  These symbolic representations
have much the character of linguistic representations, and Fodor (1975) in fact referred to the
internal representational system of the mind as a language of thought.

For Fodor, the importance of the language of thought hypothesis is not just that the
mind uses representations, but that these representations are structured in much the way that
natural language representations are structured by principles of grammar.  In fact, for him
this is part of what marks the difference between modern cognitivist theories and
associationism.  He contends that the mind must employ a compositional syntax and
semantics (that is, there must be syntactic principles for composing mental representations
such that the semantic interpretation of a composed string is governed by the syntactic rules
by which it is composed); otherwise crucial features of cognition such as productivity and
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systematicity could not be explained (Fodor, 1987; Fodor & Pylyshyn, 1988).  It should be
noted that Fodor characterizes productivity and systematicity first as features of natural
languages, and then applies them to the mind.  Productivity refers to the fact that it is always
possible to create new sentences in a language.  Fodor argues that it is similarly always
possible for a mind to think a new thought.  Systematicity refers to the fact that for any
expression that is part of a language there are others that are related to it in systematic ways
that are necessarily also part of the language.  Thus, if The florist loved Mary is a sentence
of English, so necessarily is Mary loved the florist.  Fodor contends that the same principle
applies to thought:  any mind that could think the florist loved Mary could also think Mary
loved the florist.  

What is noteworthy is that rather than using principles of the mind to explain human
capacity in language, Fodor's approach has used language to explain thought.  Unfortunately,
this has the effect of making language even more mysterious for we cannot hope to explain
it by decomposing it in terms of other simpler mental capacities.  Since for Fodor this
language-like representational system underlies language learning, linguistic capacity cannot
be explained by learning; rather, it must be part of the person's native cognitive endowment.
In itself this is not an insuperable problem.  It might, for example, be possible to give an
evolutionary explanation of how the language module came to be.  Unfortunately, Fodor
blocks this move as well by arguing that animals that demonstrate cognitive capacities must
already have a language of thought.  Moreover, Fodor does not offer a proposal as to how
a process of variation and selective retention would have generated an internal language of
thought.  Finally, such a proposal seems seriously at odds with current theories of how the
brains of other animals operate.  Formal symbol manipulation is profoundly unlike the kinds
of processes we observe elsewhere in the biological domain and its emergence in us appears
mysterious (Churchland, 1986).

Given the problematic aspects of this approach, it is worth at least considering some
alternatives.  One way to open up alternatives is to consider again the path that led to this
approach.  I have stressed two elements:  first, one starts with the most complicated form of
the language use and makes that the basis for study; second, one localizes the capacity to use
language in a particular system or subsystem.  By focusing on the most highly developed
form of language, we are led to the properties of languages that seem hardest to explain in
terms of anything simpler.  By attributing language use to a particular system (the mind) or
subsystem (the language module), we are led to attribute to that system the very
characteristics that distinguish the phenomenon itself.  This makes the mind or the language
module incredibly powerful and renders its operation mysterious.  The suggested alternative,
then, is to focus on simpler forms of language use and to consider how control of the use of
language might be distributed, not localized.  I have discussed the first strategy elsewhere
(Bechtel, 1993a,b) and approaches to studying how less complex forms of language can be
acquired by other species is explored by Rumbaugh (this volume).  In this paper I will
explore the second strategy by investigating whether it is possible to distribute the control of
language in such a manner that one can more readily explain its development.  I will then
show that this can have the beneficial effect of reducing the resources we must attribute to
the cognitive system in order to process language.
2. Distributing Control of Language

The motivation for localizing control of language use in the mind/brain is that it is
human cognizers who comprehend and produce linguistic structures.  How could they
accomplish this if the control of language use were not internal to them?  The alternative is
to construe linguistic ability as an emergent product of the mind/brain and a certain kind of
environment.  Complex products often emerge from the interaction of two or more entities,
none of which itself exhibits the requisite complexity to account fully for the phenomenon.
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A clear example of how interaction can produce an emergent product out of simpler
components is found in the work of Herbert Simon.  Simon (1980) invites us to consider the
path of an ant as it traverses an uneven terrain on its way to its goal.  The path might appear
very complex.  But the ant does not have to represent this complexity.  All the ant must do
is embody relatively simple procedures for detecting and following the most flat course that
is roughly in the direction of its goal.  The complex trajectory is the product of the ant's
relatively simple procedure for deciding on a course of motion, and a structured environment.

In the case of language, there are two environments external to the cognitive system
that are pertinent.  One is provided by the physical symbols (sound patterns, manual signs,
written characters) used in language.  These physical symbols afford certain sorts of use (e.g.,
referring to objects) and composition (e.g., linear concatenation either in time or space) and
so make composed structures available to language users.  The second is provided by other
users of the language.  The communal use of language serves to maintain a system of using
particular symbols to refer to specific objects and of employing particular ways of putting
linguistic symbols together to achieve certain ends.

I am not going to develop a comprehensive account of the manner in which both the
physical symbols and the social context of the cognitive system interact in the development
of language, since I want rather to explore the implications of this perspective for
assumptions about what must go on in the head of the language user.  But as preparation for
my primary endeavor I will offer a speculative sketch of how external symbols and social
contexts interact with the cognitive system.  To see the importance of external symbols,
consider first some rather high-level cognitive skills and how the use of written symbols
supports those activities.  Rumelhart, Smolensky, McClelland, & Hinton (1986) provide an
example from arithmetic.  For most people, multiplying two three-digit numbers is too
complex a task to carry out in one's heads.  To simplify the task, we make use of conventions
for writing numbers on a page, as such:

343
822

This permits us to decompose the multiplication task into component tasks, each of which
we are able to perform simply by knowing the multiplication tables.  The procedure we were
taught in school enables us to proceed in a stepwise manner.  We begin with the problem 2
x 3, whose answer we have already memorized.  As a result we write 6 directly beneath these
two numbers:

343
822
   6

The external representation of the problem then points us to the next step, multiplying 2 x 4.
What we have learned is a routine for dealing with the problem in a step-by-step manner,
where each step requires limited cognitive effort (remembering an already learned result).
A problem that would be quite difficult if external symbols were not available is rendered
much simpler with external symbols.

The main challenge in learning a task such as this is to learn to write the symbols in
the canonical format and to proceed in the designated step-by-step manner.  There are, of
course, other ways in which the problem could be represented, and other procedures through
which it could be solved.  For example, we could encode the problem and the steps in the
solution in the following manner:

343 x 822
686 + 6860 + 274400
281946
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Using this representation, however, requires using the appropriate procedures for it, and this
requires some relearning of basic skills.

I have spoken here of the performance of each step as involving remembering of an
already learned result.  But it could equally be described as a process of pattern recognition
and completion.  This characterization seems highly suited for other cognitive tasks such as
evaluating formal arguments and developing proofs in formal logic.  In Connectionism and
the Mind, Abrahamsen and I discuss the problems of teaching students to use the argument
forms of formal logic (e.g., modus ponens), and we argue that what students must learn is to
recognize patterns in external symbols.  Here the patterns are a bit more difficult for the
patterns have slots for variables, and what is required to instantiate the pattern is that the
symbols that fill the slots stand in the right relation to each other.  Students who have
difficulty distinguishing valid from invalid forms often have not determined what property
a pattern must have to be an instance of a pattern type.  For example, they fail to appreciate
that the same filler must fill both the slots for A in the following argument in order to have
an instance of modus ponens:

If A, then B
A
�B

Once they recognize this and thus have mastered the patterns of various valid and invalid
arguments, they are able both to evaluate arguments and to construct arguments of their own.
Constructing proofs, we contend, is an extension of this ability.  Now, in addition to
recognizing and completing valid argument forms, students must learn the patterns that
specify when steps of particular kinds are fruitful in order to derive the desired conclusion.

What I want to emphasize here is the crucial role external symbols seem to play in
both arithmetic and logic.  As we are learning skills such as those of logic we seem to need
to have the symbolic structures externally represented.  Students often require much practice
to learn to distinguish basic valid and invalid logical forms.  To teach these to students I have
relied on computer aided instruction in which students confront large numbers of simple
arguments in English prose and have to determine their form and validity.  Observing
students performing exercises on the computer, I observe that they find it helpful to write out
templates of each argument form and to compare explicitly the prose argument to each of
their templates.  The cognitive demands of comparing two external symbolic structures seems
to be much less than internally representing the symbols and performing the comparison.
Even advanced symbol users often rely on external representations when the forms get
complex.  For example, it is much easier to apply the de Morgan laws to determine that It is
not the case that both the legislation will pass and the courts will not block it is equivalent
to The legislation will not pass or the courts will block it when the sentences are written on
paper than when we have merely heard them and must perform the operation internally.
When the comparison is yet more complex, we often find it useful to write the intermediates
forms on paper.  Pattern recognition, completion, and comparison seems to place relatively
low demands upon our cognitive system in contrast with high level computations.  

The challenge is to see whether, in fact, by use of external symbols we can perform
the high level computations of logic and arithmetic using only pattern recognition,
completion, and comparison abilities.  In Bechtel & Abrahamsen (1991) I reported on the
ability of a connectionist network to recognize and complete simple argument forms of
sentential logic.  Recently I have been demonstrated the ability of a connectionist network
to construct simple derivations in sentential logic by successively writing new steps onto
units of the input layer (Bechtel, in press).  In the following sections I will describe
connectionist simulations by others that suggest a similar approach might work in the case
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of language.  But first I need to sketch in a more theoretical manner how the framework
advanced here might apply in the case of language.

As mature language users, we often think to ourselves linguistically.  This reinforces
the idea that our mental representations are language-like and that the rules for using
language are natively encoded in our cognitive system.  How could it be that we rely on
external symbols in the case of language?  One clue is found in the comparison of spoken and
written language.  Not only does our spoken language often deviate from syntactical norms,
but generally we fail to notice these deviations when we listen to speech.  However, when
the same speech is transcribed, the deviations stand out clearly.  Thus, precise conformity to
principles of grammar seems much easier when we use external written symbols.  Written
words are, however, only one form of external symbol.  Spoken words also constitute
external symbols, albeit more transient ones.  Spoken words persist momentarily as sounds,
and with the aid of echoic memory humans are able to maintain a trace of those symbols over
a period of a bit longer duration.  These external symbols are available to us not only when
we listen to others, but as we speak.  As mature language users we may not rely greatly on
feedback of the sounds we have uttered, but this feedback may be far more important to
language learners.  The child learning a first language must not only learn to utter the sounds
of a language, but also to order the sounds to fit the established patterns used in that
language.  At first the child's insertion into the ongoing use of language may be a single
sound or what to us is a single word.  Even without the child having a specific intention in
mind, the community may interpret this utterance, and so it may have consequences (Lock,
1980).  Having learned that individual sounds can be used in communication, the child
gradually learns the conventions or patterns for putting them together.  What the child is
learning is to generate and respond to patterns in external symbols.

Having suggested that linguistic symbols may be construed as symbols external to the
language users, I want to stress two things.  First, language use is first embodied in a social
context.  Eventually humans learn to use language privately as a tool for thought, but this is
derivative of the public use of language.  Much of the process of learning to use a language
depends upon interacting in this social context in which the particular principles of language
use of the community are exhibited.  Moreover, there is incentive for the language learner
to master the patterns of a particular language for only then can the individual learn from the
sentences uttered by others and use language to gain his or her own objectives.  Second, the
external symbols of language (sounds, manual signs, lexigrams, written words) themselves
permit a certain kind of composition.  Sounds, for example, can be strung together
sequentially and uttered with different intonations and modulations.  Grammatical principles
of word order and case endings are natural devices to apply to these kinds of entities.
Manual signs provide additional dimensions for variation (e.g., place the sign is made), and
these dimensions are employed for grammatical purposes in various sign language.  The
grammatical devices that are "chosen" by the linguistic community are exemplified in the
linguistic strings that are employed in that community.  What the language learner must do
is learn to conform to these structures:  to extract the meaning that is encoded in these
structures and to produce strings of his or her own.

What are the implications of such an approach for the psychological explanation of
language processing?  What I would argue is that with a distributed conception of language
we do not need to posit nearly as rich a structure of internal representations as has often been
thought.  In particular, we might not need to posit a syntactically structured representation
of language in the head and to view language processing as the performance of computations
upon this structure.  Part of the strategy for reducing what needs to be posited within the
language user is to envision the linguistic community, and not the cognitive system, as being
the primary enforcer of principles of compositionality in the language and the external
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medium in which language is encoded (sound patterns, hand movements, ink blots on a page)
as being the locus in which composition is achieved.  The cognitive system exists in a
linguistically structured environment, and must conform to the demands of that environment.
At least at the outset, the symbols it uses are the symbols of natural language, typically
physical sounds.  What the cognitive system must learn how to do is to use these symbols and
put them together in appropriate ways.  This requires recognizing and using patterns.  I
should emphasize that the task that remains for the cognitive system is not trivial.  But it is
a different task than is projected when the cognitive system is construed as have a native
language-like representation system on which formal operations are performed.
3. Lowering the Requirements on a Mind that Can Process Language

Fodor and Pylyshyn's arguments for a syntactically structured internal representational
system are directed against recent connectionist models of cognition.  Connectionist networks
consist of units or nodes which have activation values and are connected to each other by
weighted connections.  They operate by having units excite or inhibit each other as they pass
their activations along the connections, thereby causing changes in the activations of other
units (Figure 1).  (For an introduction to connectionism, see Bechtel & Abrahamsen, 1991.)
Fodor and Pylyshyn's chief complaint against connectionism is that it represents a return to
associationism, and they contend that associationism has already been demonstrated to be
inadequate to model cognition.  

---------------------------------------------
Insert Figure 1 about here

---------------------------------------------
The reason to see connectionism as associationist is that the connections between units

in networks constitute associative links between what is represented by these units.  The
central arguments against associationism stemmed from Chomsky, who evaluated the
potential of various levels of automata to instantiate grammars and argued that automata
operating on merely associationist principles lacked the computational power required for
the grammars of natural languages.  My reference to grammatical principles as patterns and
to pattern recognition as the basic skill required to learn a language may seem to have been
an attempt to reduce grammars to associative principles and thus to run folly of Chomsky's
arguments.  But connectionism and the program for accounting for language I am proposing
here are not so easily undermined.  First, I have been emphasizing external symbols and
suggesting that what the cognitive system must do is to learn to use these external symbols.
The external symbols provide the cognitive system with increased computational power.
Using the model of a Turing machine, we might see the cognitive system as comparable to
the read head of the turning machine.  The read head is a finite state device, but obtains its
much greater power by reading and writing symbols on a tape.  For the cognitive system, the
role of the tape is performed by the medium in the external world from which it can read
symbols and to which it can write them.  Thus, supplemented by a medium for external
symbols, a connectionist system has capacities equivalent to a Turing machine.  Second, a
connectionist system with hidden units (Figure 2) is more than a simple association device.
Hidden units are typically used to transform the input pattern into a different pattern from
which the target output pattern can be generated.  With sufficient hidden units, a multi-layer
network can be trained to generate any designated output for any given input pattern, and is
thus a powerful computational device.  

---------------------------------------------
Insert Figure 2 about here

---------------------------------------------
However, while a network is of the same computational power as a Turing machine,

connectionist models do not operate in the same way as Turing machines or symbolic
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computers.  It is the differences between connectionist systems and computers running
traditional programs that has attracted many researchers to connectionism.  For example,
connectionist systems exhibit content-addressable memory and graceful degradation, and
lend themselves to tasks requiring satisfaction of multiple soft constraints.  Moreover, insofar
as connectionist networks are neural-like in structure, they constitute an architecture that can
more reasonably be thought to have evolved through evolution.  My interest in using
connectionism in this project, however, is not to defend connectionism per se.  Rather, I
invoke connectionist systems as exemplars of a class of dynamical systems in which we
might model cognition.  What is important for my purposes is that these systems differ from
those that have classically been used to model cognitive performance in that they do not
employ language-like internal representations and formal operations upon them.  If such
systems could, nonetheless, learn to use external linguistic symbols, they can help us lower
the requirements on a mind that can process language.

While they do not use internal language-like representations, connectionist systems
do employ representations.  The patterns on input and output units are construed as
representing information.  Moreover, the patterns on hidden units serve representational roles
(Hinton, 1986).  Critics of connectionism such as Fodor and Pylyshyn have focused on these
representations, and have argued that the reason connectionism must fail is that these
representations are inadequate.  The reason is that they are not built up according to
compositional rules and so are not themselves syntactically structured in a manner that
permits structure sensitive processing rules to be applied to them.  The reason is that
activation patterns in networks can only represent the presence or absence of features of
objects or events, not relations between those features.  Multiple units being on, for example,
can indicate that multiple features are present, but cannot indicate whether the features are
instantiated in one object, or in many.  For example, units representing red, blue, circle and
square are active in Figure 3, but from this one cannot tell whether the circle is being
represented as red or blue, and similarly for the square.  The consequence, according to
Fodor and Pylyshyn, is that connectionist models will fail to exhibit productivity and
systematicity, the two features that they had claimed all cognitive systems exhibit.  By way
of contrast, linguistic representations are structured.  In particular, they employ compositional
syntactic rules for composing strings of symbols, and the semantic interpretation of a string
adheres to these principles.

---------------------------------------------
Insert Figure 3 about here

---------------------------------------------
Many connectionists have struggled with the question of how they should answer

Fodor and Pylyshyn.  In what follows I will examine two strategies connectionists are
exploring, the first of which accepts the demand that mental representations employ a system
of compositional structure, albeit not a system such as classical syntax, while the second
departs more radically from that framework.  My goal in reviewing these programs is to
explore the potential for developing connectionist networks which, while not employing
linguistically structured internal representations, nonetheless are able to learn to extract
information from and encode information in external linguistic symbols.
4. Networks that Employ Functional Representations of Syntactical Structure

What distinguishes a classical linguistic representational system is that each of the
components is explicitly designated by words in a sentence, and the relationship between the
different entities mentioned is specified by the grammatical principles by which the sentence
is structured.   One alternative strategy connectionists have pursued has been to build
connectionist systems in which compositional structure is preserved functionally, but not
structurally (van Gelder, 1990).  As with syntactic structures, the goal is to build up complex
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structures, but not ones in which representations of the components entities can be identified
in the compound representation.  The goal is that one can recover the components and their
relations from the compound pattern that is created.  This will make it possible to keep
straight, for example, whether it is the circle that is blue, or the square, and to perform
computational operations upon these representations roughly comparable to those that can
be performed on syntactically structured sentences.

One exemplar of this approach is Jordan Pollack's (1990) recursive auto-associative
memory (RAAM).  (Another exemplar is the use of the tensor product operation to build
compound representations.  These bind components of a representation into a compound
from which they can later be extracted.  See Smolensky, 1990; Dolan, 1991.)  In addition to
developing connectionist representations which would respect the order found in a symbolic
representation, Pollack sought to develop representations of complex structure that could be
of fixed length.  The reason this is important is that the input layer of any given network is
of fixed size, unlike a sentential representation which can grow in size as additional clauses
are embedded or as propositions are linked by logical operators.  A standard way to depict
structured symbolic representations such as sentences, for which Pollack wants to construct
compressed representations, is as a tree structure (Figure 4).  For each word in a string or tree
Pollack assigned a 16 bit activation pattern.  The task for the RAAM is to develop a 16 bit
activation pattern that represents the whole tree.  

---------------------------------------------
Insert Figure 4 about here

---------------------------------------------
To accomplish this Pollack used the encoder network shown on the left in Figure 5.

It has 48 units (3 sets of 16) on the input layer and 16 units on the output layer.  The bit
patterns for the words on the terminal nodes on the lowest branches of the tree (Mary, loved,
and John) are supplied to the three sets of input units, and the pattern created on the output
units representations the compressed representation of that branch.  The process is repeated
at the next higher branch.  (The tree used in this discussion branches only to the right.
However, if the tree also branched to the left or from the center, then the compressed
representations for all the nodes with branches extending from them at a given level would
first be formed, and these, plus any terminal nodes at the level, would then be supplied to
form the compressed representation at the next higher level.)  In this case, the patterns for
John, knew and the compressed representation for Mary loved John are supplied to the input
nodes for the second cycle.  This is a recursive procedure, so it can be applied for as many
branches as are found in a particular tree.  The decoder network on the right in Figure 5 is
then used to uncompress the representation.  This involves supplying the compressed
representation for the whole sentence to the input units; the uncompressed representations
is then constructed on the output units.  If the representation on the output units is not itself
a terminal representation, it is again supplied to the input units and another uncompressed
representation is constructed on the output units.

---------------------------------------------
Insert Figure 5 about here

---------------------------------------------
In order to obtain from the decoder network what was supplied to the encoder

network, appropriate weights must be found for all of the connections.  To train these
weights, the two networks shown in Figure 5 are joined as in Figure 6, creating an
autoassociative network.  An autoassociative network is one that is trained to construct on
its output units the very same pattern as is presented on its input units.  As long as the hidden
layer has fewer units than the input and output layers, but still enough to recreate the patterns
employed on the input and output layers, then an autoassociative network can be used to
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create compressed representations from which the whole can be recreated.  The procedure
for training the network is parallel to the one described above.  One starts with the terminal
nodes on the lowest branch, and supplies each of them to the input units.  The network
generates a pattern of activation on the output units.  This is compared to the target output
values (which are the same as the input values) and the difference (known as the error) is
used to change weights through the network according to a procedure known as
backpropagation (Rumelhart, Hinton, & Williams, 1986).  This procedure uses a derivative
of the error with respect to the activation values of the output units so as to change weights
in such a way that the network is more likely to produce the target output when given the
same input in the future.  After applying this procedure at the lowest branches, one proceeds
to the higher branches, using the compressed representation that was generated on the hidden
units as the input for the appropriate node at the higher level.  This actually is a rather
complex procedure, since when the same tree is processed again in the future, the weights
will have been changed, and the pattern created on the hidden units for the terminal nodes
will be different.  Hence, at the higher nodes a different pattern will be used as input and
target output.  Thus, during training the network is chasing a moving target.  However,
through repeated applications of this procedure the network is able to acquire weights that
permit near perfect auto-association.  The two parts of the network can then be detached and
used in the manner indicated in the previous paragraph.

---------------------------------------------
Insert Figure 6 about here

---------------------------------------------
Pollack trained his RAAM on 14 sentences similar to the one shown in the tree in

Figure 4.  After training, the encoder network was able to develop compressed
representations from which the decoder network could reconstruct all 14 sentences.  The
network's abilities were not limited to the sentences in its training set.  Pollack tested the
ability of the network to encode and decode correctly variations of sentences in the training
set.  For example, in the training set, four of the sentences of the form "X loved Y" were
employed.  Since four names were available in the lexicon the network used, sixteen such
sentences were possible.  When the network was tested on these, it was able to develop
compressed representations from which it could regenerate the original sentence for all of
them.  Thus, the network's ability is not punctate, but seems to exhibit systematicity.  On
somewhat more complex sentences, the network made some errors.  For example, when
given the new input sentence John thought Pat knew Mary loved John the network returned
Pat thought John knew Mary loved John, which had been one of the sentences in the training
set.  One might argue, however, that this sort of error is precisely the sort we expect from
humans as well (for example, you might have had to go back to reread the sentence to notice
the difference).

The first significant feature of the compressed representations formed by the RAAM
is that they do not employ explicit compositional syntax and semantics.  There is no obvious
representation of Mary in the compressed presentation of Mary loved John.  Yet, the
network's capacity seems to be systematic to a significant degree.  However, there is a second
aspect to these compressed representations.  It turns out that they can be used for other
computational processes.  Chalmers (1990), for example, used a similar RAAM to construct
active and passive sentences and then trained an additional Transformation network to
construct the compressed representation of the active sentence from a compressed
representation of the passive sentence.  Even when the Transformation network was trained
on only a subset of the sentences on which the RAAM had been trained, it was able to
generalize perfectly and create a compressed encoding of the passive sentence from which
the RAAM decoder network could create the correct uncompressed representation.  (The
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performance was less impressive, achieving only 60% correct, on those sentences on which
neither the RAAM nor the Transformation network had been trained.)  

Blank, Meeden, and Marshall (1992) performed a variety of additional tests to exhibit
the usefulness of compressed representations developed by RAAM networks.  They
employed a variation on the strategy used by Pollack and Chalmers.  Their RAAM formed
a compressed representation from two input patterns at a time and they encoded sentences
by proceeding through them word by word.  When the first word of the sentence was
encoded, it was supplied to the left hand set of input units, and the right hand units were left
blank.  Subsequently, the compressed pattern created on the hidden units was supplied to the
right hand input units, and the next word to the left hand input units.   In one simulation they
trained the network to encode 20 sentences each of the form X chase Y and Y flee X as well
as 110 miscellaneous sentences.  Then they trained a feedforward network to generate the
compressed form of Y flee X from the compressed form of X chase Y using 16 of the
compressed patterns. The network generalized perfectly to the four remaining cases, and
handled correctly 3 out of 4 additional sentences of the form X chase Y that were not in the
training set of the RAAM.  (The one error consisted of the substitution of one word for
another.)  Blank et al. also demonstrated other operations that could be performed on
compressed representations.  For example, they used the compressed representations as
inputs to networks that were trained to determine whether a particular feature was present in
the encoded sentence (a noun of the noun-aggressive category or a combination of a noun
of the  noun-aggressive category and a noun of the human category).  The network was 88%
correct in detecting nouns of the noun-aggressive category on sentences on which the RAAM
(but not the detector network) had been trained, and 85% on sentences on which neither
network had been trained.  The scores were nearly identical in the combination feature test.

While these demonstrations are limited and the degree of generalization is modest,
they do suggest that one might be able to use functional representations of the grammatical
structure of the sentence to perform operations that otherwise would seemingly require an
explicit representation of the grammar.  While Fodor and Pylyshyn contended that one
required an explicit compositional syntax and semantics to model cognition, RAAM
networks indicate that connectionists can develop and employ representations in which the
compositional structure is only functionally present.  The RAAM architecture offers a
potentially important advance beyond classical modes of representation since the
connectionist functional representations may have very useful properties.  For example, the
RAAM network may develop similar compressed representations of similar sentences.  This
is important since connectionist systems generally handle new cases by treating them in the
same manner as similarly represented cases.  This accounts for their ability to generalize.
One result of this is that networks do not crash on new cases.  A second is that when
networks make errors, these errors generally are intelligible errors.  For example, all but one
of the errors Chalmer's network made when tested on sentences on which neither the RAAM
nor the Transformation network had been trained involved substitution of one word for
another in the same grammatical category.  

In a sense, however, research with RAAM networks is still in the spirit of classical
cognitive modeling that employed linguistic-like representations.  The RAAM builds up a
complete representation of the linguistic input on which operations can then be performed.
While the representations do not exhibit explicit compositional structure and the operations
performed on them are performed by connectionist networks, the representations nonetheless
appear to play the same role as linguistically structured internal representations and the
operations performed on them are comparable to ones performed by applying formal rules
in classical systems.  In the following section I will consider a far more radical approach, one
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that does not involve an attempt to build up a complete representation of the syntactic
structure of a sentence.
6. Doing Away with Internal Representations of Syntactical Structure.

The perspective I suggested in section 4 was that the cognitive system might be
viewed as extracting information from externally encoded sentences and encoding
information in them, but without developing an internal representation of the sentence.  One
way to pursue this is to train a network to perform a task that is not one of encoding the
structure of the sentence but one of using the information presented in the sentence to
perform another task.  Both of the simulations that I discuss here employ what are known as
recurrent networks (Elman, 1990).  Recurrent networks are designed to take advantage of
the fact that linguistic input, either from speech or writing, is usually sequential in nature.
Yet, there are dependencies between different elements in the sequential input, with both the
meanings and grammatical function of given words being affected by preceding and
succeeding words.  Standard feedforward networks are not able to accommodate this since,
after the network processes a given input, it starts fresh with the next input.  Thus, the whole
input linguistic structure must be presented at once if the network is to utilize the
dependencies between items.  This has the disadvantage of letting the number of input units
determine a maximum length of an input sentence.  The solution employed in a recurrent
network is to copy the activations on the hidden unit on a given cycle of processing back onto
a special set of input units, designated context units (Figure 7).  The activations on the
context units thus provide a trace of processing on the previous cycle.  Since the activation
of hidden units on the previous cycle was itself partly determined by the context units whose
activation values were copies of hidden unit activations on yet a previous cycle, the recurrent
network can provide a trace of processing several cycles back.

---------------------------------------------
Insert Figure 7 about here

---------------------------------------------
The potential of recurrent networks to process sequential inputs such as occur in

language is illustrated in a simulations by Elman in which a recurrent network was trained
to predict as output the next item in a sequence.  In one simulation the input was a corpus of
10,000 two- and three-word sentences employing a vocabulary of 29 words.  The sentences
were constructed to fit 15 different sentences templates, of which the following are two
examples:  NOUN-HUMAN VERB-INTRANSITIVE (e.g., Woman thinks) and (NOUN-
HUMAN VERB-EAT NOUN FOOD (e.g., Girl eats bread).  These sentences were
concatenated, with no indication of the beginning or end of individual sentences, to form a
corpus of 27,524 words, which were presented to the network one at a time.   The network
was trained to produce on its output units the next word in the sequence and after only six
passes through the training sequence its outputs closely approximated the actual probabilities
of the next words in the training corpus.  Note that in the actual corpus used in training a
given word could be followed by several different words, and so its predictions should reflect
the frequency of successive words.  This is what was found.  Moreover, it is not enough for
the network to attend simply to the current word.  What follows a given word may depend
on what proceeds it.  For example, woman eats will be followed by either sandwich, cookie,
or bread, whereas dragon eats can be followed by man, woman, cat, mouse, dog, monster,
lion, dragon, as well as sandwich, cookie, or bread.  

How did the network obtain this level of performance?  The recurrent connections
provided the hidden units with relevant information about what had preceded the current
input.  The statistical technique of cluster analysis provides a useful way of analyzing the
information contained on the hidden units.  This technique determines the similarities of the
various patterns across the hidden units are determined and permits the generation of a
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hierarchical tree structure displaying the similarity structure of the patterns.  Elman found
that the patterns on the hidden units were grouped into categories according to their
grammatical function.  Thus, nouns employed patterns on the hidden units that were more
similar to other nouns than to verbs.  Amongst nouns, those referring to animate objects
formed one subclass, those referring to inanimate objects another.  Amongst animates, non-
human animals were distinct from humans, and aggressive animals were distinct from non-
aggressive ones.  Verbs were also categorized into groups, with intransitive verbs
distinguished from transitive verbs for which a direct object is optional and from those where
it is mandatory.  What is interesting is that these are categories that the network learned to
distinguish while performing a quite different task:  predicting the next word in a sequence.
Identifying grammatical categories was not a task that was explicitly taught to the network.
Knowing how the sentences in the corpus were constructed, of course, we can see why these
are distinctions it was useful for the network to make.  It is also interesting to note that there
is this much regularity in word sequences that a simple network could pick up on it.  This
network had no access to the meanings of any of the words.  Elman cites Jay McClelland's
characterization of this task as comparable to trying to learn a language by listening to a
radio.  Chomsky appealed to the poverty of the stimulus in linguistic input to argue that
language learning was only possible with a native understanding of grammar, but the network
has induced grammatical distinctions from a limited input (albeit generated from a quite
simple grammar).

Elman's goal was simply to show that a recurrent network could become sensitive to
temporal dependencies and used linguistic input to illustrate this.  He was not trying to model
a realistic language-processing task.  In a more realistic language task, what the network
should be trying to do is extract appropriate information from a structured sequence.  The
challenge is to see whether a network which does not develop an explicit representation of
the sequence can accomplish this.  A recent simulation by St. John and McClelland (1990)
illustrates how this goal might be pursued.  One way to interpret the processing of sentences
is to construe it as a task of developing a conceptual representation of an event.  From such
a conceptual representation one can determine what thematic role the entities mentioned in
the sentence are playing.  Thematic roles are different than grammatical roles.  The
grammatical subject of a sentence might be the agent (e.g., the cat chased the mouse), patient
(the mouse was chased by the cat), or instrument (the rock broke the window) of an activity.
In their simulation, the available case roles are:  agent, action, patient, instrument, co-agent,
co-patient, location, adverb, and recipient.  Sentences were input to the network one word
at a time and the task for the network was to answer questions about what entity or activity
filled a particular thematic role or what thematic role an entity or activity filled.  Thus, the
input to the network might be the sentence "The schoolgirl spread something with a knife."
In response to queries, the network should output schoolgirl when queried as to agent, and
knife when queried as to instrument.  If queried with spread it should respond with action.
In addition to specifying the actual filler, the network was also trained to respond with a
number of features of the filler, such as person, adult, child, male or female for agents.  Thus,
when queried as to agent with the previous sentence the network should not only indicate
schoolgirl, but also person, child, and female.

In their simulation, St. John and McClelland employed a rather complex network
(Figure 8), which can be analyzed into two parts.  The top part responds to the queries put
to it on the probe units.  The probe input will specify either a given thematic role or a given
filler.  This probe and units designated as the sentence gestalt feed into a layer of hidden
units, which in turn generate a pattern on the output units which should specify both the
thematic role and its filler.  The key to the operation of the network is clearly the construction
of the sentence gestalt by the lower part of the network.  The inputs to this part of the
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network are the current word of the sentence and the previous sentence gestalt, which
represents a copy of the pattern constructed on the sentence gestalt units when the previous
word was input.  These are fed through a layer of hidden units to create a new sentence
gestalt.  

---------------------------------------------
Insert Figure 8 about here

---------------------------------------------
The whole network is trained by back-propagation so as to generate the correct answer

to the probes.  The training procedure required the network to generate responses to all the
case role and filler probes for the whole sentence after each word was input.  Thus, from the
very first word of the sentence the network is required to guess all the role/filler
combinations for the whole sentence.  The psychological interpretation St. John and
McClelland offer for this procedure is that the network is to be thought of as experiencing
real world scenes which the sentences describe, and its task is to interpret the sentences in
accord with the scenes.  The functional significance of the training procedure, though, was
to force the network to attend to the dependencies between words in its corpus so that it
could predict what was likely to follow given words of a sentence.  It is this training
procedure which accounts for a significant part of the network's ability to develop semantic
sensitivity.

St. John and McClelland trained the network on a corpus of over 22,000 sentences
describing 120 different events.  Multiple sentences can be constructed for each event since
there are different words that can be used for the same entity or action (e.g.,  someone, adult,
and bus driver can all be used to designate the bus driver), and not all components of the
event must be mentioned in each sentence (e.g., if the bus driver is eating, the instrument may
be included or omitted).  The events are constructed from frames associated with the 14 verbs
in the vocabulary (four of which could also be used in the passive).  The procedures used to
construct the events made some events far more likely than others, exposing the network to
a number of rather sexist stereotypes.  For example, the bus driver (always a male) is
described as eating steak more frequently than soup, and is generally portrayed as eating with
gusto, while the teacher (always a female) more commonly eats soup and does so daintily.
330,000 random sentence trials were presented to the network during training.  The network
learned to make correct thematic role/filler assignments to the active sentences more quickly,
but at this point also began to make assignments for the passive sentences.

The network was able to process a wide variety of sentences.  In some cases, such as
"The schoolgirl stirred the kool-aid with a spoon," the semantics was sufficient to determine
the thematic role/filler assignments.  But in a passive sentences such as "The bus driver was
given the rose by the teacher" the syntax is crucial.  (To insure that the network was relying
on syntactic information, it was trained with equal numbers of instances of the bus driver
giving a rose to the teacher, and the teacher giving a rose to the bus driver.)  The network
also made correct thematic role/filler assignments in ambiguous sentences such as "The
pitcher hit the bat with the bat", with sentences in which concepts were not explicitly
instantiated such as "The schoolgirl spread something with a knife", and with sentences in
which role fillers were not explicitly mentioned such as "The teacher ate the soup"
(instrument not specified).  One of the more interesting abilities the network exhibited was
its ability to revise earlier assignments when information later in the sentence required it.  In
the sentence "The adult ate the steak with daintiness" the network must supply the individual
for the general category adult.  When only "The adult ate" has been input, the network
assigns equal response values to bus driver and teacher as agents and to steak and soup as
patients.  But after the word "steak" is input, it judges bus driver and steak to be the two most
likely fillers, since the bus driver is described far more often as eating steak.  The network
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at this point also supplies the filler gusto for the adverb role.  Supplying "daintiness" as input,
however, brings a reversal.  Now not only does daintiness surpass gusto in activation
strength, but teacher receives more activation than bus driver.  While steak receives more
activation that soup, steak declines in activation and soup increases. The network is thus able
to update its interpretation of previous information as new information becomes available to
it.

Because of limitations in the manner in which the output to queries was encoded, it
was not possible to test this network's abilities to process complex grammatical constructions
such as embedded clauses.  However, in a further simulation St. John and McClelland
demonstrated the ability of such networks to handle complex syntactical structures.  In this
case the network was trained on 56 different sentences using "give."  The following are some
examples:

The bus driver gave the rose to the teacher.
The bus driver gave the teacher the rose.
The teacher was given the rose by the bus driver.
The rose was given to the teacher by the bus driver.
The rose was given by the bus driver to the teacher.

The network was able to extract proper thematic roles and fillers from this corpus.  Thus, the
model seems to be well on the way to extracting information from the syntactical structure
of English sentences.  

What St. John and McClelland's network must do is extract a representation of an
event from sentences whose words are presented sequentially.  The classical way of
approaching this task is to build a structured representation of the input and perform
computations upon that to answer the queries.  This is not, however, what this network does.
It does construct an internal representation (the Current Sentence Gestalt) in the course of
processing the sentence and it uses this representation to construct its output.  But this
representation is not a classical representation with combinatorial syntax and semantics.
Moreover, it is not even a representation that is designed to be functionally equivalent to the
whole.  It is a representation that captures that information in the input that is relevant to the
task on which it was trained.  

This simulation demonstrates that, at least in limited cases, a network can extract
information from syntactically structured representations without employing internal
syntactically structured representations.  This raises the prospect that humans too can
comprehend sentences without representing the sentences in a syntactically structured
internal code and performing formal operations upon it.  Of course, this prospect may turn
out to be illusory.  St. John and McClelland's network can only process a small fragment of
English and it remains a question whether networks of this kind could eventually handle the
full range of complexity found in human natural languages.  The answer to the question will
only come from further empirical investigation.  In conducting such investigations, however,
we should be careful not to exaggerate human ability.  In written prose we can retrace our
steps as necessary when dealing with extremely complex sentences.  In oral communication,
however, we often make mistakes in comprehending complex sentences.  Reviewing the
pattern of external symbols is not something that a network of this design could perform and
we should not expect the network to do better than people can with oral input.

Another limitation of this network is that it is only potentially capable of
comprehending sentences.  Can a design such as this work for production as well as
comprehension?  I can only speculate as to how linguistic production might be modeled by
a network which does not employ an internal representation of the syntactic structure of the
sentences it is producing. What one might do in a simulation is develop a network which uses
for its input a sentence gestalt of the form used in St. John and McClelland's simulation and
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train it to produce proper sentential outputs.  The speech output network again might be a
recurrent network with activations on a layer between the input and output units being
recycled as input.  However, the sentence gestalt, or some other semantic representation,
might remain as a constant input during all the cycles of processing until a sentence is
complete.  On the output units the network would be trained to issue the words of a sentence
in sequential order.  In such a simulation, the connection weights would need to acquire the
knowledge of how to produce grammatically correct speech, but there would be no internal
grammatically structured representation.

It is not clear how good a performance a connectionist network could achieve on such
a task.  But we must again bear in mind what standards we should use in judging such a
network.  We should not expect it to produce the full range of sentences that linguists judge
to be correct sentences of a language.  Rather, we should only expect it to obtain levels found
in actual human speech.  Even this is a quite unrealistic expectation for a relatively simple,
totally interconnected network.  It is already apparent that more structured networks, in
which, for example, modules perform different parts of an overall task, achieve better
performances than vanilla feedforward networks (Jacobs, Jordan, Nowlan, & Hinton, 1991).
Realistic performance on such language tasks will likely await new developments in network
design.  But the goal is clear:  to teach a network to produce proper linguistically structured
sentences without employing an internal representation of the linguistic product that is itself
syntactically structured.
6. Final Reflections on Modeling the Internal Competencies Needed for Language

The goal of my discussion is to argue that the requirements on the cognitive system
responsible for language might be significantly less than they have often been portrayed to
be.  Humans languages do have complex structures, such as those linguists have identified
in the course of developing grammars for natural languages.  But responsibility for
comprehending and producing grammatical speech may not lie exclusively with the internal
cognitive system.  The system can utilize the resources of external symbols and can be
constrained by social processes supporting and governing language use.  As a result, fluent
use of a language may not require internal representations of the grammatical structures upon
which formal operations can be performed but only the ability to extract and encode
meanings in such structures.  That does not mean that the internal processes used by the
cognitive system might not be quite complex.  But they need not be of the same sort as
linguists have developed for describing language.  The cognitive system may only be part of
the system responsible for language, and its internal organization may be quite different from
that of the emergent product.

Abrahamsen (1987) argues that the tasks of linguistics and psycholinguistics are quite
different.  Linguists are analyzing language as a cultural product.  Grammars such as
Chomsky's provide representations of that product.  But these grammars need not
characterize the processing occurring when people comprehend or produce sentences of a
language.  Abrahamsen argued that psycholinguists should expect to have to reformat the
grammars developed by linguists when they try to account for the psychological processes
involved in language use.  My proposal here is that psycholinguists may need to go a step
further.  The systems involved in processing languages may be dynamical systems that do not
employ grammatically structured representations internally but which generate and
comprehend external symbols.  It is these external symbols that afford syntactic structuring
and the communities of language users who must develop and regulate the use of these
structures.  Cognitive systems can interact with syntactically structured symbols by producing
and comprehending them, but language is an emergent product of cognitive systems, external
symbols, and communities of language users.
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The simulations I have described here are only meant as demonstrations of how
abilities to utilize grammatically structured linguistic items might be accounted for without
internal syntactic representations.  They are not meant to be serious models of language
processing ready to be evaluated by human data.   I am not even convinced that they
represent the most fruitful way of exploring linguistic ability within a connectionist, or non-
symbolic framework.  They approach the task of language processing in isolation from other
cognitive activities, and the needs of the organism to control its body in its environment.
Thus, there is no real semantics for such models.  A far more realistic approach might be to
begin with a model of a system functioning in an environment, that is, a system with sensory
capacities to absorb information from its environment and motor capacities to change its
environment.  Given such a system, the challenge would be to extend this capacity by making
it possible for the system to extract information from linguistic symbols present as part of the
environment or to produce linguistic symbols as a means to manipulating its environment.
Such a system would presumably develop the capacity to use symbols semantically before
it began to attend to the syntax of linguistic structures.  Once the system had developed the
processing ability to recognize the semantic import of linguistic structures, though, it might
notice that the grammatical structure provided additional information and it might learn to
respect the grammatical structure as it sought to extract information.

I will close with two qualifying comments.  First, by arguing for reducing the demands
on the internal processing system responsible for language I may seem to be also endorsing
an empiricist view of language according to which linguistic ability is simply acquired using
more generally applicable cognitive abilities.  But my position is also compatible with a form
of nativism (Bates & Elman, 1992, Bechtel & Abrahamsen, 1991).  While I have been
arguing for an approach which does not posit internal syntactically structured representations,
I have not denied that the cognitive system that learns to comprehend and produce language
may be highly structured and have processing capacities quite different than those involved
in other cognitive abilities.  Presumably the neural hardware underlying language processing
had to evolve first in a context in which it was not used for language, and has only in recent
evolution become specifically used for language processing (see Deacon, this volume).
Nonetheless, the system might well have been preadapted to the demands of language
processing to such a degree that language learning seems almost inevitable amongst humans.
We know that even children who lack linguistic models begin to develop language systems
as long as they have an appropriate medium for symbol development (Golden-Meadow &
Feldman, 1977).  This argues for a system predisposed to develop language, but not for a
specific analysis of the internal nature of this system.  

Second, I have emphasized the external symbols such as sounds and inscriptions that
figure in language use.  We have, however, learned to use language internally.  It is salient
for my purposes, however, that the use of external symbols comes first in children's linguistic
development and that using language privately in our thinking is a later development
(Vygotsky, 1962).  My expectation is that private linguistic thought will utilize many of the
same computational resources as overt speech in much the way that visual imaging utilizes
the same neural substrates as visual perception (Farah, 1988).  Having learned to produce
speech, we may have learned to go through all but the steps of overtly pronouncing words,
and to have used this aborted production in much the same way as we learned to use external
symbols.  We might, for example, use this production capacity to create echoic memories of
symbols.  If this speculation is correct, then even in private thinking we are using symbols
as if they were external, and are manipulating them in the same manner as we might
manipulate truly external symbols such as inscriptions on a page.  That is, we might try
producing a symbol string, and then determine appropriate modifications of it.  The symbols
remain external to the cognitive system that is producing and recognizing them, and that
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production and comprehension system might not need a syntactical representation of the
syntactically structured output it produces and comprehends.
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Figure Legends

Figure 1.  An illustration of processing in a connectionist network.  The activation levels
of the four units are shown beneath their labels.  The weights on the three connections
leading to Unit 4 are also shown.  The Netinput to Unit 4 is determined by multiplying the
activation of each feeding unit by the weight on the connection and summing across the
three feeding units.  The activation of Unit 4 is then determined according to the logistic
activation function shown in the upper right.

Figure 2.  A simple three-layer feedforward network.  Each unit in the input layer is
connected to every unit in the hidden layer, and each unit in the hidden layer is connected
to every unit in the output layer.  The hidden units serve to transform the input pattern
into a new pattern from which the output pattern can be constructed.  

Figure 3.  An illustration of a problem facing connectionist representations.  The units for
red, blue, square, and circle are all active, but there is no way to indicate whether it is the
circle or square that is red.

Figure 4.  A tree representation of the sentence "Pat thought John knew Mary loved
John."

Figure 5.  Encoder and Decoder networks.  The network on the left is an Encoder
network; a representation of three components is supplied on the input units, and a
compressed representation is generated on the output units.  If the component compressed
is only part of a larger structure, the compressed representation can be used as an input to
the network on a subsequent cycle.  The Decoder network is on the right.  A compressed
representation is supplied as input to this network and a decompressed representation is
produced on the output units.  If the output representation is still a compressed
representation, it can again be used as an input.

Figure 6.  Pollack's (1990) full RAAM network, consisting of the combination of the two
networks shown in Figure 5.  In this case the network is trained to reproduce on its output
units the same pattern as is presented on the input units.  The pattern on the hidden units
is the compressed representation.  If the pattern being compressed is itself part of a larger
pattern, the compressed representation can then be used as part of the input and output
pattern for the larger pattern.

Figure 7.  Elman's (1990) recurrent network.  Patterns generated on hidden units during
one cycle of processing are copied onto the context units, and thus provide part of the
input on the next cycle.

Figure 8.  St. John and McClelland's (1990) network for determining thematic roles and
fillers from sentences.  The two square boxes indicate input units.  The input on the Probe
units specifies either the thematic role or the filler to be generated.  The final output units
are then to designate the combination of thematic role or filler.  The sentence is input one
word at a time on the Current Word input units.  This pattern is processed through a set of
hidden units to create a Current Sentence Gestalt.  When a subsequent word is presented,
the Current Sentence Gestalt is copied onto the Previous Sentence Gestalt and provides
part of the input.  This recurrent connection serves to provide the network a
representation of the part of the sentence that has already been input.
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