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Abstract 

 
Although noting the importance of organization in mechanisms, the new mechanistic 
philosophers of science have followed most biologists in focusing primarily on only the 
simplest mode of organization in which operations are envisaged as occurring 
sequentially. Increasingly, though, biologists are recognizing that the mechanisms they 
confront are non-sequential and the operations nonlinear. To understand how such 
mechanisms function through time, they are turning to computational models and tools of 
dynamical systems theory. Recent research on circadian rhythms addressing both 
intracellular mechanisms and the intercellular networks in which these mechanisms are 
synchronized illuminates this point. This and other recent research in biology shows that 
the new mechanistic philosophers of science must expand their account of mechanistic 
explanation to incorporate computational modeling, yielding dynamical mechanistic 
explanations. Developing such explanations, however, is a challenge for both the 
scientists and the philosophers as there are serious tensions between mechanistic and 
dynamical approaches to science, and there are important opportunities for philosophers 
of science to contribute to surmounting these tensions. 

 
 
The new mechanistic philosophers of science have abandoned the attempt to shoehorn biological 
explanations into nomological models and have focused instead on articulating the practices of 
biologists who appeal to mechanisms to explain biological phenomena. Most of these accounts 
have followed the practice, characteristic of biology through much of the 20th century, of treating 
mechanisms as sequentially organized reactive systems (Machamer, Darden, & Craver, 2000, for 
example, characterize mechanisms as “productive of regular changes from start or set-up to 
finish or termination conditions”). The result is what I characterize as a basic account of 
mechanistic explanation. But philosophers of science must remain attuned to ongoing 
developments in these sciences. In a host of fields biologists are recognizing that the mechanisms 
they confront are neither sequential nor reactive but employ non-sequential organization of non-
linear interactions in open systems to generate endogenous activity. Understanding how 
biological organisms are endogenously active and how that affects their responses to stimulation 
is a challenge not just for biologists but also for philosophers of science, especially the new 
mechanists, as it requires integration of new tools, those of computational modeling, with the 
more traditional strategies for decomposing mechanisms. In this paper I present examples of 
recent biological research addressing endogenously active mechanisms and explore how relating 
the tools of mechanistic science with approaches for modeling dynamical systems provides a 
framework of dynamic mechanistic explanations that addresses the scientific and philosophical 
challenge. 
 
1. The New Mechanistic Philosophy of Science Needs Dynamics 
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While the idea of explaining a phenomenon by identifying the responsible mechanism was 
championed by Descartes, and widely invoked in biology as well as many other sciences in the 
centuries since, it was eclipsed in 20th century philosophy of science by a account that viewed 
explanation as involving deduction of a linguistic characterization of the phenomenon to be 
explained from laws of nature and initial conditions (Hempel, 1965). Biologists, however, only 
infrequently appeal to laws and those are typically laws of physics or chemistry (Weber, 2005). 
Moreover, the primary effort in developing explanations in biology is not identifying the laws, 
but discovering and describing the constitution of the specific mechanism responsible for the 
phenomenon. This involves identifying its parts and the operations they perform and determining 
how these are organized to produce the phenomenon of interest. In the past couple decades 
several philosophers focused on biology have developed accounts of mechanistic explanation 
that attempt to reflect these explanatory endeavors of biologists (Bechtel & Richardson, 
1993/2010; Glennan, 1996, 2002; Machamer et al., 2000; Bechtel & Abrahamsen, 2005; Darden, 
2006; Craver, 2007). Their efforts have been characterized as constituting a new mechanistic 
philosophy of science.1 
 
Central to mechanistic explanation as it has been pursued in biology is the assumption that the 
behavior of mechanisms is to be understood in terms of the operations performed by their parts 
and that therefore it is essential to decompose mechanisms into their parts and operations. The 
ability of parts to perform operations is determined by their internal properties; whether they 
perform these operations is determined by the inputs they receive. Mechanistically oriented 
scientists have identified an extremely powerful set of tools for decomposing mechanisms, for 
example, by inhibiting or stimulating proposed operations in a mechanism and analyzing their 
effects on the overall mechanism to determine their specific contribution. Identifying how these 
parts are organized, however, has proven a good deal more challenging. Mechanistic research 
often begins by associating a whole phenomenon with a single part of the responsible system 
(e.g., Broca’s identification of the capacity for articulate speech with a region of left prefrontal 
cortex or Buchner’s identification of fermentation with an enzyme he designated zymase). In 
Bechtel and Richardson (1993/2010) we characterized this as the strategy of simple or direct 
localization, but noted that in practice it typically fosters research that leads to its own 
supplanting as researchers either identify other components that play fundamental roles in 
generating the phenomenon or discover that the single component actually contains multiple 
parts that carry out different operations (e.g., enzymes that catalyze a variety of reactions that all 
figure in fermentation). Although Richardson and I characterized the step of identifying multiple 
components of a mechanism as complex localization, in fact research usually begins by positing 
the simplest arrangement in which multiple parts are organized to generate the phenomenon—a 
sequential arrangement in which the product of one operation is provided as an input to the next 
operation, which transforms it and passes it to yet another operation, as in an assembly line. This 
is the sort of organization that is assumed in Machamer, Darden, and Craver’s characterization of 
a mechanism as “productive of regular changes from start or set-up to finish or termination 

                                                
1 Important predecessors of the new mechanistic philosophy of science are Wimsatt (1976, p. 
671), who argued that “at least in biology, most scientists see their work as explaining types of 
phenomena by discovering mechanisms . . .” and Salmon (1984), who defended a “causal-
mechanical view” that drew out the importance of causal relations but said little about what 
renders a set of causal processes into a mechanism.  
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conditions.” When mechanisms are organized in this way, basic mechanistic explanations, in 
which one characterizes the functioning of the overall mechanism qualitatively in terms of the 
contribution of each of its parts and mentally rehearses (simulates) how it produces the 
phenomenon, suffice.  
 
Historically evolving systems, however, are not limited to such sequential arrangements of parts; 
connections are spontaneously or opportunistically added between components, resulting in 
integrated networks of components. Often this involves connections through which operations 
later in what might be envisaged as a sequence send products (signals) back to operations 
envisaged as earlier in the sequence. When individual operations are affected by what is 
happening in multiple other parts of the system, some of which they affect through their own 
operation, and these processes occur on different timescales, the ability of qualitative mental 
simulation to determine the behavior of the overall system is severely compromised. This is 
especially true when, in addition to non-sequential organization, the operations within the 
mechanism are nonlinear when described mathematically and there is a flux of free energy 
through the mechanism. In such circumstances, mechanisms can exhibit complex behavior, 
including oscillations and even chaos. 
 
Scientists in a variety of fields of biology are increasingly coming to recognize that mechanisms 
organized in the manner just described are endogenously active—they generate activity even 
when they are not being supplied with what are generally taken to be their inputs or start-up 
conditions. Among the biological phenomena that can result from endogenous activity in the 
responsible mechanisms are action potentials in neurons, contractions of heart muscles, 
locomotion of animals, and mind wandering (for examples and discussion, see Abrahamsen & 
Bechtel, in press). Endogenous activity, however, is often rendered invisible by the investigatory 
strategies researchers pursue. In many fields in which there is variability in the recorded 
behavior, researchers focus on the mean change in response to a stimulus and employ the 
variability in the response primarily in tests for the statistical significance of differences between 
means produced under different circumstances (e.g., the absence of a stimulus or presence of an 
alternative one). While variability in the signal recorded is noted, it is generally treated as noise 
that renders it difficult to extract what is regarded as the signal that reflects the response to the 
stimulus. In fact, such noise often reflects the endogenous activity of the system. Far from being 
in a constant state, the mechanism varies over time and this has consequences for the activity that 
might be evoked by what are usually taken as the inputs to the mechanism. To identify and study 
this endogenous activity requires a different approach than that which reveals the parts and 
operations of a mechanism—researchers must examine the behavior of the mechanism across 
time, employing time-series analysis, and then analyze the patterns of change using tools of 
mathematical modeling and dynamical systems theory. 
 
Explaining the behavior of endogenously active mechanisms requires what Abrahamsen and I 
(Bechtel & Abrahamsen, 2010) refer to as dynamic mechanistic explanations, explanations that 
take into account the parts and operations of the mechanism, their spatial organization, and the 
“patterns of change over time in properties of its parts and operations” that result in the 
orchestrated behavior of the mechanism. Mathematical models that employ differential equations 
to describe the individual operations are employed to simulate the behavior of the mechanism 
through time. Determining appropriate parameter values is often a major part of the modeling 
enterprise. In many cases, the models show that some parameter values result in an initial 
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transient before the mechanism settles into a stable state. But with other parameter values, more 
complex patterns of change are generated in the models and researchers must then investigate 
whether these parameter values correctly describe the actual mechanism.  
 
Endogenously active mechanisms often exhibit the simplest of these more complex patterns, 
oscillatory behavior. In the following section, I discuss the types of mechanisms that can explain 
endogenous oscillatory phenomena that are ubiquitous in biology. In a subsequent section I 
consider strategies for understanding complex phase relations that can be established between 
oscillatory mechanisms before returning in the final section to the challenges both developments 
present for both scientists themselves and philosophers of science.  
 
Biological Oscillations and the Responsible Mechanisms 
 
Some oscillatory processes in biology are widely recognized—heart rhythms and ovulation in 
mammals, fluorescent flashing of fireflies, annual cycles of flowering in plants and hibernation 
in some animals, etc. But in fact oscillatory processes are ubiquitous in biological organisms. 
Cells exhibit cycles of division and growth. Oxidative metabolism and sleep exhibit cycles of 
approximately 90 minutes. Brain processes exhibit oscillations at a number of frequencies, from 
relatively slow oscillations with periods greater than 10 seconds, detected with fMRI, to much 
faster oscillations (1-80 Herz), detected by EEG or implanted electrodes. Conventionally, 
biological oscillations are differentiated into ultradian (those with a period well less than 24 
hours), circadian (those with an approximately 24 hour period), and infradian (those with a 
period of greater than 24 hours).   
 
In this paper I will focus on circadian rhythms as extensive research has resulted in quite rich 
understanding of them. These oscillations are entrainable to the daily cycle on the planet by cues 
such as light and temperature. But they are maintained in the absence of such cues, a condition 
known as free-running, during which they exhibit periods deviating only slightly from 24 hours 
(hence, the name circa [about] + dies [day]). They are found in all orders of life, from bacteria to 
fungi, plants, and animals. And they regulate a vast range of physiological and behavioral 
phenomena, including, in humans, sleep and attention, physiological strength and mental 
reaction times, heart rate and basic metabolism, and hunger, thirst, and waste excretion.  
 
Oscillatory mechanisms such as pendulums are well known in physics, where the opposition of 
driving and resisting forces with time delays can generate oscillations. Often oscillations arise 
where they are not desired, as when negative feedback is employed with the objective of 
maintaining constant values for regulated variables but ends up producing oscillations instead. 
For example, a common household thermostat is designed to keep a room at a specified 
temperature, but results in an oscillation between a slightly lower and a slightly higher 
temperature. Considerable engineering work has gone into developing procedures to minimize 
the oscillatory range. But in biology such oscillations are sometimes useful, and research has 
been devoted to how oscillations may be maintained. For example, when the lac operon was 
identified as a feedback mechanism at the genetic level in bacteria (wherein a gene product 
figures in regulating gene expression), Goodwin (1965) undertook an investigation of when such 
mechanisms might produce sustained oscillations. He determined that in addition to feedback 
and a continual supply of energy, at least one of the reactions had to be non-linear when 
described mathematically. Goodwin’s account of the conditions under which oscillation occurred 
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influenced modeling of mechanisms for creating circadian rhythms once empirical research 
began to provide clues to the basic mechanism.  
 
Konopka and Benzer (1971) provided the first clue to the underlying mechanism when they 
identified a Drosophila gene, which they named period (per), whose various mutants exhibited 
shortened or lengthened periods or became arrhythmic. In the 1980s it became possible to 
measure the changing concentrations of per mRNA and the resulting protein (PER) and both 
were found to oscillate, with per mRNA reaching peak concentrations several hours in advance 
of the protein. This led Hardin, Hall, and Rosbash (1990) to propose a feedback mechanism in 
which per was transcribed into mRNA in the nucleus, the mRNA was transported to the 
cytoplasm to synthesize the protein PER, and the protein was in turn transported back into the 
nucleus where, in some at the time unspecified manner, it inhibited further transcription (see 
Figure 1).  
 

 
Figure 1. Hardin, Hall, and Rosbash’s (1990) proposed feedback mechanism for generating 
circadian oscillations in Drosophila. 

 
Since molecules of PER degrade over time it seemed plausible that the proposed mechanism 
would generate oscillations, but it was possible that it would instead settle into an equilibrium 
state. While further mechanistic research (decomposing the system into components and 
discovering how they were organized in the cell) was needed to resolve questions such as how 
PER could inhibit per transcription, it could not reveal the temporal dynamics of the mechanism. 
Pursuing that goal required a different approach, one that focused on how the proposed 
mechanism would behave in real time. That is, the mechanistic explanation provided only the 
starting point for a dynamic mechanistic explanation. Goldbeter (1995) took the next step by 
offering a mathematical model of the behavior of Hardin et al.’s circadian mechanism, 
comprising five differential equations. Figure 2 shows the first of these equations and illustrates 
how its terms and variables correspond to properties of certain parts and operations in the 
mechanistic account.   
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Figure 2. A dynamic mechanistic explanation. Equation (1) in Goldbeter’s (1995) model shown 
in relation to the relevant portion of Hardin et al.’s proposed circadian mechanism (Figure 1). A 
property of certain parts of that mechanism (the concentration of per mRNA and of its protein, 
PER) directly correspond to the variables M and PN. The salient property of two operations—their 
rate—corresponds to the two terms of the equation. These terms include several parameters: vS 
represents the maximum rate for the accumulation of M, KI is a threshold constant for inhibition, 
n is the Hill coefficient indicating the minimum number of cooperating molecules required to 
achieve inhibition, vm is the maximum rate for the degradation of M, and Km is the Michaelis 
constant for the degradation reaction. 

 
Using biologically plausible parameter values in the mathematical model of its dynamics, 
Goldbetter succeeded in demonstrating that such a mechanism could indeed maintain oscillation. 
In fact, the system of equations generated what is known as a limit cycle. By plotting the 
successive states of the system in phase space (with mRNA and protein concentrations as the two 
axes), the system is seen to approach the cycle (dark oval in Figure 3) as a limit and, if ever 
perturbed from this cycle, to return to it. The oval represents the continued oscillations such a 
system would exhibit were the limit ever reached. 

 
Figure 3. Limit cycle generated by Goldbeter’s (1995) mathematical model. 
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Even at the time this mechanism was proposed and being modeled, researchers suspected there 
were more components (one indicator was that PER lacks a DNA binding region and so 
something else must mediate its inhibition of its own transcription). In short order researchers 
identified numerous other Drosophila clock genes comprising positive and negative feedback 
loops (several of these additional components are shown in Figure 4). Although one can try, 
especially by appealing to such a figure, to rehearse mentally the behavior of such a mechanism, 
it becomes very difficult to anticipate how the positive feedback loop generating CLOCK 
interacts with the negative feedback loop through which PER interacts with CLOCK, and how 
that interacts with CRY when light is present. Will the mechanism sustain oscillations, or settle 
into a stable state? Again, this was a question that required mathematical modeling to answer: a 
variety of models (Leloup & Goldbeter, 2000; Smolen, Hardin, Lo, Baxter, & Byrne, 2004) 
indicate that under biologically plausible parameters stable oscillations will result. 
 

 
Figure 4. A more complete account of the Drosophila oscillator. The large open 
arrows indicate whether the promoter turns gene expression on or off. The smaller 
open arrows represent the combined processes of gene transcription in the nucleus, 
transport to the cytoplasm, and translation in the cytoplasm. 

 
The primary function of these models is to determine how a mechanism involving interaction of 
multiple parts will behave. But they also can be used to address other questions. For example, is 
the mechanism robust to changes in parameter values, or are there parameter values that radically 
alter the behavior of the mechanism? Such questions are typically addressed by running the 
computational model under various parameter settings and analyzing the results (often by 
portraying them graphically). Smolen et al., for example, manipulated the parameters affecting 
CLOCK to determine whether the positive feedback loop was essential to generating sustained 
oscillations (in their models it did not appear to be so). Leloup and Goldbeter investigated 
parameters affecting the breakdown of PER and TIM, and found values that produced behavior 
corresponding to known sleep pathologies, thereby suggesting how the mechanism could explain 
these pathologies. The point to be emphasized is that such modeling provides understanding 
beyond that which available from identifying the parts, operations, and organization of the 
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mechanism and mentally rehearsing its functioning. With mechanisms exhibiting complex 
behavior, modeling has a crucial role to play. 
 
This brief exposition of the mechanism generating circadian rhythms in Drosophila has 
considered only research on the core mechanism for generating rhythms, and has not discussed 
either the processes by which these rhythms are entrained by light or those through which they 
serve to regulate physiological processes and behaviors of the fly. Although much has been 
learned in the past decade, there is still far less known about these processes than about the core 
mechanism. What is becoming apparent, though, both from research on flies and on mammals, is 
that these processes are themselves not sequential but involve complex feedback processes 
whereby the core mechanism regulates its own inputs, and what appear to be output systems 
affect the clock’s own behavior (see Bechtel & Abrahamsen, 2009, pp., for details). This means 
that ultimately neither the core mechanism nor its input or output system can be fully understood 
independently of the others as the operation of components within the core mechanism both 
affect the operations performed elsewhere in the organism and are affected by those. This further 
undermines the prospect of understanding the mechanism in terms of a sequence of operations 
from start to termination condition. Fortunately, once they have developed a mathematical model 
for the core mechanism, modelers can add additional terms to the appropriate equations to 
characterize how operations occurring elsewhere affect, even in a nonlinear fashion, the 
components of the core mechanism itself. Thus, dynamic accounts of mechanism can succeed in 
understanding the oscillatory behavior produced in mechanisms for which simple sequential 
accounts fail. 
 
Populations of Synchronized Oscillators in Complex Phase Relations 
 
In this section I consider a further example in which synchronization of oscillators illustrates the 
need to develop dynamic mechanistic explanations. For this example I shift from Drosophilia, in 
which a small number of ventral and lateral neurons constitute the core circadian mechanism, to 
mammals, in which a part of the hypothalamus, known as the suprachiasmatic nucleus (SCN), a 
structure consisting for 8,000-10,000 neurons on each side of the brain in mice, serves as the 
core mechanism.2 Lesions to the SCN result in loss of circadian behaviors, and transplanting a 
donor SCN into the ventricles restores some of these circadian behaviors (Silver, LeSauter, 
Tresco, & Lehman, 1996). Initially it seemed plausible that individual SCN neurons all behaved 
the same, so that the behavior of the SCN was simply a collective effect of its individual 
neurons, but Welsh, Logothetis, Meister, and Reppert (1995) showed that when SCN neurons 
were dissociated in culture on a microelectrode array (which allowed for retention of  “abundant 
functional synapses”), some neurons oscillated in antiphase with others and the periods of 
oscillation varied substantially between neurons (ranging from 21.25 to 26.25 hours, with a 
standard deviation of 1.25 hours). In contrast, the circadian behavior in organisms is much more 
regular, and indeed Welsh himself had previously shown that the overall circadian signal shows 
virtually no variability (Welsh, Engle, Richardson, & Dement, 1986). Subsequent research 
demonstrated that the variability was largely eliminated in non-dispersed explants in which 

                                                
2 There are some important differences between the basic circadian mechanism in Drosophila 
and mammals, but it is largely conserved. This conservation facilitated the identification of parts 
of the mammalian mechanism, and the discovery of new components in the mammalian 
mechanism also supported comparable discoveries in Drosophila (see Bechtel, 2009).  
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nearly complete connectivity is maintained (Herzog, Aton, Numano, Sakaki, & Tei, 2004). This 
reveals that regular time keeping emerges at the population level from coupling processes that 
synchronize highly variable component timekeepers. 
 
Coupling of oscillators requires the transmission of a signal between oscillators, and research on 
possible coupling agents in the SCN identified vasoactive intestinal polypeptide (VIP) as the 
primary synchronizing agent, although GABA and gap-junctions may also be involved (Aton & 
Herzog, 2005). The process of coupling is complicated by the fact that there are at least two 
distinct regions of the SCN, a core and a shell (van den Pol, 1980). Differences between these 
regions include: (1) patterns of connectivity by which they receive inputs from other parts of the 
brain and send outputs to other brain areas and other organs, (2) only neurons in the core release 
VIP (those in the shell produce arginine vasopressin instead), (3) neurons in the shell oscillate in 
advance of those in the core, but (4) only those in the core maintain sustained endogenous 
oscillations. 
 
The ability of oscillators to synchronize when a signal is transmitted between them has been 
known since the observations of Huygens, but over the 20th century it was also recognized that, 
depending on the character of the oscillators themselves and the timing of the signal between 
them, the resulting behavior can be extremely complex, sometimes involving toroidal 
oscillations, deterministic chaos, or coexistence of multiple attractors (Grebogi, Ott, & Yorke, 
1987). Computational modeling is thus essential for understanding the effects of the release of 
VIP in synchronizing the oscillations of individual neurons in the SCN.  
 
The first effort to model the coupling process, by Gonze, Bernard, Waltermann, Kramer, and 
Herzel (2005), did not take into account the anatomical details about the SCN, but simply 
explored whether generation of a compound such as VIP could synchronize independent 
mechanisms of the sort thought to be responsible for circadian rhythms. The modelers adapted a 
version of the Goodwin oscillator (mentioned above) to represent the generation and degradation 
of a single clock protein in each of 1000 modeled neurons and added equations describing the 
change in concentration of VIP as it was created by each oscillator and then degraded and 
calculating the mean of VIP concentration across the population. They then added a term to the 
equation describing the change in concentration of the clock protein that increased the rate of 
change proportional to the mean concentration of VIP. When the parameter in this term was set 
to 0, Gonze et al. obtained results much like those of Welsh et al. (the periods of different 
oscillators were highly variable), but when it was set to 0.5, the oscillators synchronized.  
 
In this initial model, Gonze et al. assumed that VIP was produced by all SCN neurons and 
instantly and equally distributed to all others. This is one of the modes of network organization 
whose properties were investigated by mathematicians in the field of graph theory in the mid-
20th century (for discussion and references, see Strogatz, 2001). Mathematicians also explored 
the properties of two other network structures, regular lattices and randomly connected networks 
were also explored, and deployed two useful measures for characterizing information flow, 
characteristic path length and the clustering coefficient. The characteristic path length is the 
mean of the shortest path between pairs of nodes and reflects how quickly information can be 
transmitted through the network. The clustering coefficient is the proportion of possible links in 
local neighborhoods that are actually realized and reflects how much specialized processing can 
be accomplished by cooperating nodes. Short characteristic path lengths and higher clustering 



Understanding Endogenously Active Mechanisms p. 10 
 

are desirable for information processing and are realized in fully connected networks. However, 
maintaining complete connectivity between all neurons in a network is metabolically very 
expensive. However, the other modes of organization initially explored each only exhibit one of 
the desirable features: regular lattices only allow high clustering whereas random networks only 
facilitate short characteristic path lengths. 
 
The tradeoff between path length and clustering, however, is not inevitable. Watts and Strogatz 
(1998) investigated a new class of networks in which most connections are between local units 
but a few are long-distance. They found that these networks, which they termed small-worlds, 
exhibited both short characteristic path lengths and high clustering. They also demonstrated that 
a host of real-world networks, including networks of movie actors linked by co-appearances, the 
electrical power-grid of the Western U. S., and the neural network of the nematode worm 
Caenorhabditis elegans, exhibit small-world properties. In addition, they examined the 
functional properties of small-world networks, showing how they allow for rapid spread of 
infectious diseases, enable efficient problem solving in cellular automata, and reduce the 
likelihood of cooperation in iterated prisoner dilemma games. Of particular interest, they 
examined coupled phase oscillators and demonstrated that synchronization occurred almost as 
fast in small-world networks as in fully-connected networks. They speculated that the brain has a 
small-world architecture and that this could explain the synchronization of widely separated 
neurons in visual cortex. This speculation has been supported by connectivity matrices Sporns 
and Zwi (2004) developed based on published neuroanatomical data, including Felleman and van 
Essen’s (1991) study of the macaque’s visual cortex. Moreover, Sporns and Zwi showed that the 
brain networks exhibit characteristic properties of small-worlds: short characteristic path lengths 
and high clustering. (See Bullmore & Sporns, 2009, for additional analyses of structural and 
functional connectivity in brain networks.) 
 
Might the SCN exhibit a small-world architecture? Vasalou, Herzog, and Henson (2009) 
investigated this question in a modeling study. They began with a previous effort of their own 
(To, Henson, Herzog, & Doyle, 2007) in which they adapted the model of mammalian circadian 
oscillations developed by Leloup and Goldbeter (2004) so that only some neurons maintained 
oscillations without synchronization and VIP diffused from each neuron in which it was 
generated. They modified the connections in the network to reflect small-world connectivity and 
demonstrated synchronization that approximated what was achieved in a totally connected 
network. They were also able to capture three other phenomena observed in experimental 
studies: with VIP (1) the percentage of oscillating neurons in the SCN rises from about 30% to 
nearly all, (2) the period is extended from approximately 22 to approximately 24 hours, and (3) 
the variability in periods is largely eliminated. Vasalou et al. emphasize the cost virtues of small-
world networks over totally connected networks—they can achieve the same synchronization 
with fewer neural connections, which are very energetically expensive to develop and maintain. 
The researchers do not, however, pursue the possibility that the high clustering in small-worlds 
may generate other useful features, including the ability of localized clusters to maintain 
oscillations offset from others that may serve to regulate different functions that must be 
performed at different times of day (e.g., those linked to the onset of daylight and those linked to 
the end of daylight). Demonstrating that the SCN actually exhibits small-world organization and 
what virtues that offers requires further research. 
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What is noteworthy is that all of the research on how synchronization between oscillators might 
arise in the normally functioning SCN has been conducted in mathematical simulations. This 
reflects the fact that the knowledge sought about the dynamic behavior in a complexly organized 
mechanism goes beyond what basic mechanistic research alone could provide. Mechanistic 
research provided needed information about the component parts of the SCN and their individual 
behaviors and about the basic neural architecture found in the SCN, but was not itself able to 
determine the temporal behavior such a mechanism would produce. This is what mathematical 
modeling provides. The modeling efforts, though, do not eclipse mechanistic research. Rather, 
they built upon its results, and posed new questions about the realism of the models (e.g., about 
the plausibility of the parameters employed in the models and their robustness under various 
parameter changes) which themselves can only be answered by further mechanistic research. 
 
Dynamics and the Future of Mechanistic Philosophy of Science 
 
In the two previous sections I developed examples in which research on circadian rhythms has 
identified the non-sequential organization of non-linear operations that generate the rhythms and 
the processes by which oscillators with variable periods are synchronized through networks of 
connections to produce regular oscillations. I offer these not as eccentric examples but as 
exemplary of recent developments in biology. My point in presenting these examples is to show 
how biological understanding of these mechanisms requires supplementing the traditional basic 
approach of mechanistic explanation exemplified in biological practice and described in the 
philosophical accounts of the new mechanists. Traditional mechanistic modes of inquiry have 
been highly successful in identifying the components of the individual oscillatory mechanisms 
and the agents through which they couple. Such research, however, is not able to show how a 
mechanism with the proposed parts, performing the specified operations, and organized in a 
specified manner, will actually behave. This requires bringing to bear additional tools, those of 
mathematical modeling and dynamical systems analysis, to offer dynamic mechanistic 
explanations. 
 
In arguing for the need for philosophy of science to attend to dynamic mechanistic explanation I 
am embracing the same naturalistic approach that initially gave rise to the new mechanistic 
philosophy of science. The new mechanism emerged as philosophers of biology noted the poor 
fit of traditional philosophical approaches to explanation to prominent instances of explanation in 
biology. But biology is a moving target. While mechanistic research directed at decomposing 
mechanisms into their parts and operations is still fundamental, biologists are increasingly 
recognizing and confronting the challenges of recomposing mechanisms and understanding the 
complex behavior that results when the organization is non-sequential. The recognition of the 
need to employ mathematical models and dynamical systems analysis to understand biological 
mechanisms is one of the factors contributing to the recent rise of systems biology (Noble, 2006; 
Boogerd, Bruggeman, Hofmeyr, & Westerhoff, 2007). Investigators are increasingly discovering 
that mechanisms that were once envisaged as operating sequentially involve feedback loops that 
support complex dynamical behavior. If philosophy of science is to characterize actual science, 
its models of explanation must accommodate the integration of dynamics into mechanistic 
explanations. 
 
So far I have presented mathematical modeling as an approach that complements and extends 
basic mechanistic research. But integration of mechanistic and dynamical approaches is not easy 
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and can be challenging to bring about. Mechanistic research strategies require researchers to 
decompose mechanisms into their parts and characterize the properties of these parts 
independently of their role in the mechanism. A variety of experimental manipulations are 
employed to reveal the operations performed by the parts of the mechanism and it is assumed 
that the parts operate the same under these experimental manipulations as they do in the 
mechanism as found in nature. However, as a result of non-sequential organization, the 
operations of the parts are modulated by operations occurring elsewhere in the mechanism and 
these effects are typically altered in the experimental context. Far from being intrinsic to the 
parts, these operations are context sensitive. Such variability is expected in dynamical models, in 
which the parts are characterized in terms of variables—things that vary. So there is inherent 
tension in construing the parts both as having fixed properties, as envisaged in mechanistic 
research emphasizing decomposition, and being variable, as characterized in dynamical models. 
Yet, both approaches are needed in order to understand the endogenously active mechanisms 
found in biology—researchers need to identify parts in terms of their properties and recognize 
how these change over time, partly as a result of other changes in the mechanism and external 
factors impinging on the mechanism. In practice, biologists often proceed by first assuming that 
the parts and operations are stable across contexts and so describe them. These, however, serve 
as “first approximations” (Bechtel & Richardson, 1993/2010) which then must be revised in light 
of further research that reveals ways they are sensitive to context.3 Were the effects of context to 
swamp any attempt to track parts and operations, mechanistic explanation would fail (a point 
clearly articulated by Simon, 1969, in his discussion of near-decomposability). In much of 
biology, fortunately, it remains possible to identify parts and operations even as mathematical 
equations are employed to characterize how they are affected in various ways by being 
incorporated into complex systems. 
 
The tension that arises between mechanistic decomposition and mathematical modeling is also 
reflected in philosophical positions. Some of the new mechanists (e.g., Craver, 2007) reject the 
proposal that mathematical models are explanatory. But in order to determine that a mechanism 
could explain a phenomenon, investigators must be able to show that it could generate the 
phenomenon. For relatively simple mechanisms, they can proceed sequentially, mentally 
representing each process of change, but I have stressed that this is not possible when the 
organization of the mechanism is non-sequential, the operations are non-linear, and there is a 
flux of free energy through the mechanism. Then the only tools for determining that the 
mechanism will generate particular behaviors are those of mathematical modeling and dynamical 
systems theory. Without them, mechanistic explanation is blind.  
 
One of the factors that motivates Craver to deny that models, including computational models, 
are explanatory, is that models can be proposed that are not grounded in experimental research 
identifying the parts and operations incorporated in the model. He denies, for example, that 
Hodgkin and Huxley’s model of the action potential is explanatory since the key components of 
the mechanism, the ion channels, and the operations by which they opened and closed, had not 

                                                
3 One might view the context-sensitive behavior of parts and operations as a reason to repudiate 
the project of decomposition. For reasons indicated below, I contend that the project of 
decomposition remains crucial to mechanistic biology. The context sensitivity of components 
can be accommodated by articulating the interaction between intrinsic features of components 
with processes external to them. 
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been discovered and the key parameters in the model resulted from fitting data on the voltage 
sensitive conductance of ions. They were not grounded in details of the mechanism. Likewise, 
many advocates of dynamical approaches are critical of mechanistic research, maintaining that 
developing mathematical characterizations of how variables change over time is sufficient for 
explanation (Chemero, 2000). Left ungrounded, the variables in dynamical equations cannot be 
related to the actual processes bringing about the phenomenon. The proffered explanation 
reflects only a possible way the phenomena might have been generated, and accordingly is 
empty.  
 
Computational models, however, need not be so detached from the details of the mechanism. 
Modelers structured the equations in the models of circadian oscillations in Drosophila discussed 
above in light of what was known of the parts and operations of the responsible mechanism. 
Their exploration of parameters was less directly constrained, but they were still concerned to 
show that the parameter values that produced appropriate circadian behavior were biologically 
plausible. In modeling the network structure that would produce synchronization, researchers are 
constructing models that exceeded what is known of the connectivity of the SCN. But part of 
their objective is to provide guidance for further experimental investigations. The models are not 
floating free of the mechanism, and an important part of the evaluation of the adequacy of such 
models is whether they accurately describe the mechanism (see also Kaplan & Craver, in press). 
In these cases, dynamical accounts do not supersede mechanistic research, but provide 
understanding of how a mechanism with a given constitution actually behaves.  
 
Conclusion 
 
Both in science and in the philosophy of science, there is a challenge in integrating mechanistic 
research emphasizing decomposition and dynamical modeling in dynamic mechanistic 
explanations. But such integration is essential if science is to understand the endogenously active 
mechanisms that are found in living systems. Scientists in fields such as circadian rhythm 
research are increasingly discovering the need to integrate the two approaches and are attempting 
to do so, and philosophers can both learn from and potentially contribute to the ongoing efforts at 
integration in this and other domains of biology that confront endogenously active mechanisms. 
In doing so, philosophy of science can maintain the sort of productive engagement with science 
that has been one of its signature virtues in recent decades. 
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