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I . I N T R O D U C T I O N 

The thrust of this essay is that the theory of organisms, and of what we shall 
call complex systems in general, requires a circle of ideas and methods that, 
from the very outset, depart radically from those taken as axiomatic for the 
past 300 years. 

What we shall conclude can be stated succinctly here at the outset, as 
follows. 

1. Our current systems theory, including all that presently constitutes 
physics or physical science, deals exclusively with a very special class of 
systems that I shall call simple systems or mechanisms. 
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166 ROBERT ROSEN 

I I . B I O L O G Y A N D O T H E R SCIENCES 

Biology is the linchpin of the sciences. Insofar as organisms are material 
systems, their remarkable properties stand as a challenge, a reproach, and an 
inspiration to the sciences of matter (physics and chemistry). Insofar as 
organisms adapt, perceive, and behave, their properties impinge on our 
technologies to an ever-increasing extent. And insofar as organisms evolve, 
develop, constitute communities, and form societies, biology also provides 
both the material substratum and the metaphorical inspiration for all the 
social, political, and economic sciences. Thus nothing that happens in any 
other science can be immaterial to biology; conversely, anything that happens 
in biology ultimately radiates into every corner of scientific thought. 

At root, theoretical biology is concerned with only one great question: What 
is it about certain material systems that confers upon them the characteristics 
of life, which makes them living beings? All other problems of biology, both 
theoretical and "practical," are collateral or subordinate to this central 
question. 

It is a significant fact that, despite generations of trying, there is as yet no list 
of tests, characteristics, or criteria we can apply to a given material system that 

2. Organisms, and many other kinds of material systems, are not mecha­
nisms in this sense. Rather, they belong to a different (and much larger) class 
of systems, which we shall call complex. 

3. Thus the relation between contemporary physics and biology is not, as 
everyone routinely supposes, that of general to particular. 

4. T o describe complex systems in general, and organisms a fortiori, an 
entirely novel kind of mathematical language is necessary. 

5. A simple system can only approximate to a complex one, locally and 
temporarily, just as, e.g., a tangent plane can only approximate to a nonplanar 
surface locally and temporarily. Thus in a certain sense, a complex system can 
be regarded as a kind of global limit of its approximating simple subsystems. 

6. Complex systems, unlike simple ones, admit a category of final 
causation, or anticipation, in a perfectly rigorous and nonmystical way. 

We shall find many other novel consequences of complexity as we proceed; 
especially to be mentioned are deeper insights into the nature of "information" 
and the relation of theory to "experiment." 

We thus argue, in effect, that any attempt to deal effectively with the material 
basis of biological organization forces a revamping of our entire traditional 
scientific epistemology. As we shall see, this revamping entails a number of 
dramatic consequences, not only for biology, but also for physics, and 
indirectly, even mathematics. 
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can decide whether that system is an organism or not. Stated another way, the 
decision as to whether a given system is an organism is entirely a subjective, 
intuitive one, based on criteria that have so far resisted formalization, or even 
articulation. Thus from a strictly rigorous point of view, the subject matter of 
the science of biology is undefined; it is based entirely on an informal consensus 
essentially akin to pattern recognition, but that consensus is one we all share to 
a startling degree. 

The problem of "What is life?", to use Schrödinger's phrase, first became 
acute with the triumph of the Newtonian revolution (about which we shall 
have much more to say subsequently), for one of the major consequences of 
the Newtonian world view was the obliteration of any distinction between the 
organic and inorganic. In this view, every material system could be analyzed 
down to a population of structureless particles moving in fields of force; in 
principle, the dynamical equations governing any such population could be 
written down and solved. Among other things, this picture has become the 
canonical one for scientific explanation; therefore the revolutionary develop­
ments in physics that created the problem of "what is life," by obliterating any 
distinction between Hving and nonliving, also proclaim themselves the only 
place to look in trying to solve the problem. 

Indeed, insofar as contemporary physics claims to deal with material reality 
in all its manifestations and insofar as organisms are material systems, it is 
most natural to seek insight into organic phenomena via biophysics. Therefore 
we shall briefly review the present status of this endeavor. 

First, we must remark that, historically, the relation between theoretical 
physics and biology has never been close. None of the great names of physical 
science, from Newton to the present, have known or cared much about the 
properties of organisms, and therefore organic phenomena played no essential 
part in their science (leaving aside such diversions as Maxwell's Demon, 
Schrödinger's informal essays, and the like). For the past 300 years, the 
theoretical physicist has exclusively concerned himself with the formulation of 
universal laws. From his perspective biology is concerned with a small class of 
very special (indeed, inordinately special) systems, clearly not the place to look 
when seeking universal laws. In this light, what makes organisms so special 
is not their immunity from universal laws of physics, but the apparent 
multitude of initial and boundary conditions that must be determined in order 
to bring the laws to bear upon them. The specification of these conditions is 
regarded by the physicist as an empirical job, and someone else's job at that. In 
a word, the physicist has always believed that there is no new physics to be 
learned from organisms; he has never doubted that he deals in the general and 
that biology concerns only the particular. 

The modern biologist has all too avidly embraced this perspective. In a 
historical sense, the past 50 years have seen biology finally catch up with the 
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Newtonian revolution that swept over the rest of the scientific world in the 
eighteenth century. The three-century lag arose because biology had no 
analogue of the solar system; no way to make immediate contact with the 
Newtonian ideas. Not until physics and chemistry had elaborated the 
technical means to isolate and manipulate minute quantities of matter 
(including organic matter) in the 1930s could one think of a particulate, 
mechanical basis for biology, i.e., of a molecular biology. 

The preceding considerations do not represent solely my own subjective 
assessment. It is worth digressing for a moment to address this further, because 
the current state of biological science is not generally seen as the culmination 
of historical trends going back to Newtonian mechanics, or even further back 
to Descartes. Rather, it is regarded as objective and axiomatic, even though, as 
we shall see, its diverse historical roots imbue it with obvious paradoxical 
properties. 

In 1970 there appeared a volume entitled "Biology and the Future of Man," 
edited by Philip Handler, then president of the National Academy of Sciences 
of the U.S.A. The book went to extraordinary lengths to assure the reader that 
it spoke for biology as a science, that in it biologists spoke with essentially one 
voice. For instance, it was emphasized that the volume was prepared not as a 
mere academic exercise, but for serious pragmatic purposes: 

Some years ago, the Committee on Science and PubHc Policy of the National Academy 
of Sciences embarked on a series of "surveys" of the scientific disciplines. Each survey was to 
commence with an appraisal of the "state of the art".... In addition, the survey was to assess the 
nature and strength of our national apparatus for continuing attack on those major problems, e.g., 
the numbers and types of laboratories, the number of scientists in the field, the number of 
students, the funds available and their sources, and the major equipment being utilized. Finally, 
each survey was to undertake a projection of future needs for the national support of the discipline 
in question to assure that our national effort in this regard is optimally productive.... [p. v.] 

T o address such serious matters, we are then told that the academy 
proceeded as follows: 

Panels of distinguished scientists were assigned subjects.... Each panel was given a general 
charge...as follows: 

The prime task of each Panel is to provide a pithy summary of the status of the specific sub-field 
of science which has been assigned. This should be a clear statement of the prime scientific 
problems and the major questions currently confronting investigators in the field. Included should 
be an indication of the manner in which these problems are being attacked and how these 
approaches may change within the foreseeable future. What trends can be visualized for 
tomorrow? What lines of investigation are likely to subside? Which may be expected to advance 
and assume greater importance?... Are the questions themselves... likely to change 
significantly?... Having stated the major questions and problems, how close are we to the 
answers? The sum of these discussions, panel by panel, should constitute the equivalent of a 
complete overview of the highlights of current understanding of the Life Sciences, [p. vi.] 
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There were 21 such panels established, spanning the complete gamut of 
biological sciences and the biotechnologies. The recruitment for these panels 
consisted of well over 100 eminent and influential biologists, mostly members 
of the academy. How the panelists themselves were chosen is not indicated, 
but there is no doubt that they constituted an authoritative group. 

In due course, the panels presented their reports. How they were dealt with 
is described in vivid terms: 

In a gruelling one week session of the Survey Committee... each report was mercilessly exposed to 
the criticism of all the other members.... Each report was then rewritten and subjected to the 
searching, sometimes scathing, criticisms of the members of the parent Committee on Science and 
Public Policy. The reports were again revised in the light of this exercise. Finally, the Chairman of 
the Survey Committee... devoted the summer of 1968 to the final editing and revising of the final 
work. [p. vii.] 

Thus we have good grounds for regarding the contents of this volume as 
constituting a true authoritative consensus, at least as of 1970. There are no 
minority reports; no demurrals; biology does indeed seem guaranteed here to 
speak with one voice. 

What does that voice say? Here are a few characteristic excerpts: 

The theme of this presentation is that life can be understood in terms of the laws that govern 
and the phenomena that characterize the inanimate, physical universe and, indeed, that at its 
essence life can be understood only [emphasis added] in the language of chemistry, [p. 3.] 

A little further along, we find this: 

Until the laws of physics and chemistry had been elucidated, it was not possible even to formulate 
[emphasis added] the important, penetrating questions concerning the nature of life.... The 
endeavors of thousands of life scientists... have gone far to document the thesis... [that] living 
phenomena are indeed intelligible in physical terms. And although much remains to be learned 
and understood, and the details of many processes remain elusive, those engaged in such studies 
hold no doubt [emphasis added] that answers will be forthcoming in the reasonably near future. 
Indeed, only two major questions [emphasis added] remain enshrouded in a cloak of not quite 
[emphasis added] fathomable mystery: (1) the origin of life...and (2) the mind-body 
problem... yet (the extent to which biology is understood) even now constitutes a satisfying and 
exciting tale. [p. 3.] 

Still further along, we find things like this: 

While glorying [emphasis added] in how far we have come, these chapters also reveal how 
large is the task that lies ahead.... If [molecular biology] is exploited with vigor and 
understanding...a shining, hopeful future lies ahead, [p. 6.] 

And this: 

Molecular biology provides the closest insight man has yet obtained of the nature of life—and 
therefore, of himself, [p. 64.] 
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And this: 

It will be evident that the huge intellectual triumph of the past decade will, in all likelihood, be 
surpassed tomorrow—and to the everlasting benefit of mankind, [p. 130.] 

It is clear from such rhapsodies that the consensus reported in this volume is 
not only or even mainly a scientific one; it is an emotional and aesthetic 
one. Indeed, anyone familiar with the writings of Newton's contemporaries 
and successors will recognize them. 

The volume to which we have alluded was published in 1970. But it is most 
significant that nothing fundamental has changed since then. 

Despite this overwhelming commitment to the mechanical, there is at the 
same time another thread running through contemporary biology, one quite 
incompatible with mechanics. A good statement of this was given by Jacques 
Monod(1971): 

We can assert today that a universal theory, however completely successful in other domains, 
could never encompass the biosphere, its structure and its evolution as phenomena deducible 
from first principles.... The thesis I shall present... is that the biosphere does not contain a 
predictable class of objects or events but constitutes a particular occurrence, compatible with first 
principles but not deducible from these principles, and therefore essentially unpredictable 
[emphasis added], [p. 42.] 

In other words, the important features of organisms are the result of accidents, 
and hence governed by no laws at all. Biology thereby becomes a branch of 
history, not of science. All that can be said for this peculiar combination of 
mechanism and historical accident is that it allows the modern biologist the 
luxury of enjoying the fruits of both mechanism and vitalism with an unsullied 
conscience. 

As a matter of fact, there is not a shred of evidence supporting any of this 
received picture. Quite the contrary; as we proceed, we shall see much that is 
totally incompatible with it. The reader may take my word for it that a great 
deal of additional contrary evidence could be adduced with ease. Such 
incompatibilities are simply ignored by most biologists, and by most physicists 
as well, on the grounds that merely the acquisition of more information, more 
data, will somehow resolve them. In their view, what fault there is is not a 
fault of principle but of practice. 

Indeed, it is certainly true that if the fault is one of principle, then the fault is 
something inherent in the mechanical paradigm itself, something present from 
the outset. T o find it, we need to go back to the very beginnings, to the basic 
epistemological presuppositions that have become so familiar and axiomatic 
that to challenge them seems today tantamount to challenging science itself. 
However, this is exactly what we shall do. T o make it clear that we are not 
operating in a vacuum, we shall preface the more specific analysis with a 
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I IL R E L A T I O N A L B I O L O G Y 

As noted earlier, the term relational biology was coined by Nicolas 
Rashevsky in 1954 to distinguish it from more familiar approaches, which he 
characterized as metric biology; Rashevsky, who had himself been trained as a 
theoretical physicist, was the great pioneer in the application of quantitative 
physical ideas to the elucidation of the material basis of organic behavior. He 
almost singlehandedly created the field he called "mathematical biophysics," 
which, in his words, would stand in the same relation to experimental biology 
as mathematical physics stands to experimental physics. 

In modern terms, Rashevsky's initial approach was mechanist and reduc­
tionist. His earliest work involved those areas in which physical processes 
and biological behavior naturally seemed to intersect—the physical basis of 
cell division (cytokinesis) and reaction-diñ*usion processes generally (this 
was in 1930); nerve conduction and nerve excitation, leading to the first net­
work theories of the central nervous system and the brain; the control, form, 
and dynamics of the cardiovascular system, and many others. 

By 1950 the feasibility and fecundity of mathematical modelling as a probe 
of biological phenomena was well established, owing largely to Rashevsky's 
own work and that of his school. But Rashevsky himself was beginning to feel 
dissatisfied. The source of this dissatisfaction lay in the fact that, in the process 
of modelling its individual features, the organisms qua organism seemed to 
have disappeared. He began to wonder where and why it had disappeared, and 
how it could be retrieved. Thus in a spontaneous way he began to struggle with 
his own reductionism. 

The answer he came up with, in his pioneering paper of 1954 ("Topology 
and Life"), was roughly as follows. Heretofore, we have supposed that we can 
resolve an organism into physical subsystems, understand each of these in 
detail through traditional modes of physical and mathematical investigation, 
and when we are done, the original biological organization to which these 
material subsystems belonged will reemerge of itself as a consequence of the 

concrete example of an approach that takes us immediately out of the 
Newtonian, mechanical context. This is the approach to organisms first 
systematically developed by Nicolas Rashevsky in 1954 and termed by him 
relational biology. 

The upshot of these developments, to be reported later, is thus very much 
in the spirit of a pregnant remark that Einstein is supposed to have made to 
Leo Szilard: "One can best appreciate, from a study of living things, how 
primitive physics still is." 

bill



172 ROBERT ROSEN 

nature of these subsystems separately. This is still, of course, the reductionistic 
credo, most firmly ensconced in the field of molecular biology, which hardly 
existed in Rashevsky's time. It is a modern version of the idea that any mixture 
(i.e., a system of many phases) must be resolved into its constituent pure phases 
and that the properties of the original mixture may then be inferred from those 
of its constituent pure phases, as logical consequences thereof. 

However, as Rashevsky realized better than anyone else, this did not seem to 
be happening; quite the contrary. Moreover, so many utterly diverse kinds of 
physical systems could be organisms that it became a really serious problem to 
try to understand, on a physical level, how all of them in their physical 
diversity could manifest those commonalities of behavior and organization 
that make us recognize them as being alive. That is, Rashevsky grasped that 
what he called the "perceived unity of the organic world" could not, either 
conceptually or technically, be approached directly through the "metric" 
approaches he (and everyone else) was then using. 

He thus proposed something extremely radical. In effect, he said something 
Hke this: We are really interested in the organizational features common to all 
living systems; and in their material structures only insofar as they support or 
manifest those features. Therefore, we have heretofore approached organisms 
in precisely the wrong way; we have abstracted out, or thrown away, all those 
global organizational features in which we are really interested, leaving 
ourselves with a purely material system that we have studied by purely 
material methods, hoping ultimately to recapture the organization from our 
material studies. This has not happened. Why do we not then start with the 
organization? Why do we not, in effect, abstract away the physics and the 
chemistry, leaving us with a pure organization, which we can formalize and 
study in completely general abstract terms; and recapture the physics later 
through a process of realization! It was basically this endeavor that he called 
relational biology. 

His initial approach was a simple one; he represented biological or­
ganization through directed graphs, whose nodes were "biological functions" 
and whose directed edges were relations of temporal or logical precedence. His 
notion of an "abstract biology" was a class of such graphs, all canonically 
generated from an initial "primordial graph," and hence all canonically related 
through graph morphisms of special types. These "abstract biologies" had 
many striking properties; e.g., from suitable knowledge of any graph in such 
an abstract biology, one could reconstruct the primordial and hence the whole 
biology. 

In his relational biology, then, Rashevsky anticipated many more recent 
mathematical ideas. However, the time was quite wrong for his new relational 
ideas to find any acceptance anywhere. In biology, the "golden age" of 
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I V . T H E ( M , R ) - S Y S T E M S 

The ( M , R)-systems comprise a class of relational cell models, first proposed 
by me in 1958. As with any relational approach, the problem is to try to 
characterize at least some fundamental organizational feature common to all 
cells, independent of their specific physicochemical structures. In the ( M , R) -
systems, the organizational feature taken as central is the distinction between 
"cytoplasm" and "nucleus." In traditional cytology, the cytoplasm is regarded 
as the seat of metabolic activity, the province of enzymes that process 
environmentally derived materials and convert them into metabolically 
important new forms. The nucleus, on the other hand, is the seat of the genome 
and in particular plays the guiding role in the synthesis of the metabolic 
machinery that sits in the cytoplasm. The ( M , R)-systems were invented as the 
simplest and most general class of mathematical systems that embodies this 
kind of organization. And whatever else a real cell may be, it must also be (or 
better, must also realize) an ( M , R)-system. 

This organization may be seen in the simplest imaginable ( M , R)-system, 
which can be expressed as 

A-^B-^H{A,B) (1) 

Here / is simply a mapping from a set A of environmental inputs to a new 
set Β of environment outputs. As noted earlier, this is the abstract equivalent of 
"cytoplasm." The mapping 

Φ:Β^Η(Α,Β) 

is the abstract counterpart of "nucleus"; in effect, it takes the outputs of 

molecular biology was just beginning; experimentalists had no time or use for 
anything of this kind. Those who considered themselves theorists either were 
preoccupied with the reductionistic modelling that Rashevsky had earlier 
taught them or were bemused by seductive ideas of "information theory," 
games theory, cybernetics, and the like, regarded Rashevsky and his ideas as 
generally archaic because he did not take direct cognizance of their 
enthusiasms. 

Thus his ideas about relational biology ended in Limbo, unread or 
forgotten. However, what he had done was, in effect, to propose a whole new 
way of representing material reality; a way that, when pursued, pointed to 
glaring defects and omissions in the older, received ways. W e shall now see 
how this comes about, in a rather different and simpler relational context than 
Rashevsky's original one. 
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metabolic activity in the cytoplasm and converts it into more metabolic 
machinery. The range of Φ is thus a set of mappings, as indicated. 

Mathematically, then, an ( M , R)-system is simply a collection of mappings, 
together with their domains and codomains. The theory of such systems is a 
part of category theory, and I believe that the ( M , R)-systems provided the first 
indication of the deep role that category theory could play in theoretical 
science. Indeed, the ( M , R)-systems themselves form a category whenever the 
category from which their sets and mappings are drawn is specified. 

The ( M , R)-systems, though simple in concept, possess a remarkably rich 
theory. Let us indicate one important property. As matters stand, we have 
embodied in the ( M , R)-system only one of the characteristics traditionally 
associated with the cell nucleus; namely, its role in synthesis of the cellular 
metabolic machinery. But any nucleus worthy of the name has one other 
decisive property; it replicates. In all other cell models known to me, 
repHcation must be superimposed as an additional ad hoc property. But in ( M , 
R)-systems, there are replication mechanisms inherent in the organizational 
features already represented; requiring only a further mathematical condition 
to be satisfied and no further ad hoc hypotheses. 

Let us consider the simplest situation. Quite generally, let X, Ybe any sets 
and let H{X, Y) be a set of mappings from X to Y. It is well known that every 
element xe χ induces a mapping 

x:H(X, Y)^Y 

by writing 

xif) = / W . 

This map χ is often called an evaluation map; such maps are familiar, for 
instance, in linear algebra, where they identify a vector space with its second 
dual space. In particular, let us put 

X = B, Y=H(A,B). 

Then we can regard each be BSLS inducing a map 

b:H(B,H{A,B))^H{A,B). 

If this map b is invertible, then its inverse is a map 

b-':H(A,B)^H{B,H{A,B)). 

N o w look at the original ( M , R)-system. The repair map Φ is obviously an 
element in H{B, H{A, B)). Thus if ae A,b =f (a), and b~ ^ exists, we can extend 
the original ( M , R)-system as follows: 

A - ^ B - ^ H{A, B) H{B, H{A, B)). (2) 
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The new map added to the right-hand side is a replication map, and by its very 
definition, it clearly replicates the "nuclear" mapping Φ. 

However, there is a condition to be satisfied, namely, that the evaluation 
map b be invertible. This means 

ft(Oi) = 6(Φ2) implies = Φ2 

or 

Φι(6) = Φ2(ί)) implies φ^ = Φ2. 

This latter is a condition on the original category; it is reminiscent of a unique-
trajectory property, or biologically, of a one-gene, one-enzyme hypothesis. 

It should also be noted that the final two mappings in Eq. (2) themselves 
consititute an ( M , R)-system, in which Φ, the "nuclear" map for the original 
system, is now a "cytoplasmic" map, and b~\ the replication map for the 
original system, is now the "nuclear" map for the new one. Thus mathemati­
cally there is no intrinsic difference between these processes; any map in 
our category could be realized either as a metabolic map, a repair map, or 
a replication map, depending entirely upon the context. 

Thus from just this quick overview we can see that the ( M , R)-systems 
possess novel characteristics, bearing on biology in a unique way. But as 
always when one attempts to do theory, one confronts a banal but 
unavoidable question: Is it testable, and if so, howl We have been brought up 
to believe that a theory that is not testable (i.e., falsifiable) is worthless. And 
indeed, it is also considered part of the theorisfs}oh to make theory testable in 
this sense, in effect to construct some kind of experimental protocol for this 
purpose, even if only in principle. 

It was this exigency that first forced me into epistemology, for I was 
convinced that a relational description of an organism is as valid, as physical, a 
description as any conventional physicochemical one. But, like the wave 
functions of quantum mechanics, it is a description pertaining to a class of 
physically diverse (though functionally equivalent) systems; and as long as 
experimental test exclusively means verifying some kind of specific physi­
cochemical operation on individual systems in such a class, there was in 
principle no way that the relational descriptions could in fact be tested in the 
conventional sense. For as we have noted, it is precisely such physicochemical 
particulars that are abstracted away in the process of generating the relational 
model. 

It should be noted that relational approaches such as the one we are 
discussing do allow us, even as they stand, to make assertions about the 
physicochemical nature of biological organizations, but these assertions 
are all negative ones (i.e., about what cannot happen) and thus are con­
sidered empirically unacceptable. For instance, I was able to show that any 
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V. A FIRST A T T E M P T A T R E A L I Z A T I O N 
OF ( M , R ) - S Y S T E M S 

Let us begin by reviewing an early attempt of mine (1964) to solve the 
realization problem. It seemed to me that a first step would be to transform 
mathematically the ( M , R)-systems to a form in which the various sets and 

attempt to add a new component (either metaboHc or repair) to a given 
( M , R)-system would generally destroy the overall pattern of cellular orga­
nization, that is, would not result in a new ( M , R)-system. In fact, to construct 
a new ( M , R)-system that contains a given one and a new component is not 
an easy matter. The situation is somewhat analogous to attempting to add 
a new instruction to a computer program; this generally requires a whole 
subroutine, which may be much larger than the original program was. Such 
considerations turn out to have obvious implications for genetic engineering, 
whose practitioners are presently finding out about such limitations the 
hard way. 

In any case, the most obvious way of making contact with the conventional 
universe of physicochemical descriptions and hence of generating predictions 
testable by conventional physicochemical experimental techniques (which, as 
we have noted, is what testable means) is through the process of realization 
referred to earlier. For such a realization must, on the one hand, have the 
relational features of an ( M , R)-system and, on the other hand, be a 
conventional description of a specific physicochemical system and thus be 
amenable to traditional notions of testability. In particular, we would seek 
realizations for which replication maps are also realizable, for it is in connection 
with these that the most novel and interesting predictions can be made. In fact, 
the successful realization of such an ( M , R)-system is tantamount to the 
synthesis of a novel, autonomous life form. 

The strategy to be followed in physically realizing an abstract or­
ganizational structure like an (M,R)-system seemed at first to me not too 
different from that followed by an engineer in designing a real physical 
structure to meet some given initial set of functional specifications. For here, 
too, we must reach into a class of physically diverse but functionally similar 
systems and pick one out. The usual criterion for this selection purpose is one 
of optimality (e.g., least cost). Indeed, I might assert that optimality is the 
canonical way of selecting individual elements from equivalence classes; one 
may think even of such things as the Jordan canonical form of ordinary 
matrices (in which the number of 0 entries is maximized). 

But the problem did not turn out to be that straightforward after all. The 
process of determining why it was not is in fact the main purpose of this 
discussion, and it is this to which we now turn. 



3. ORGANISMS AS CAUSAL SYSTEMS WHICH ARE NOT MECHANISMS 177 

mappings of the ( M , R)-system could be interpreted in terms of the states of 
some system and a set of dynamical laws could be superimposed thereon. This 
was at least the conventional language in which physical systems were 
universally described; hence realizing this kind of mathematical object would 
be much easier than realizing an ( M , R)-system directly. 

The first idea that came to mind was the language of sequential machines, or 
finite automata. This is in effect the language of classical dynamical system 
theory (or better, of control theory) paraphrased to the constraints of discrete 
time and discrete states. Furthermore, it is closely associated with certain 
kinds of material systems that are important in biology and elsewhere; in 
biology, in the representation of neural nets (brains) and genetic control in 
cells (operon networks); in the general theory of digital computing devices; 
and elsewhere, including the basic theory of mathematics itself. 

In its most general formal terms, a sequential machine is a 5-tuple 
(A, B, 5, δ, λ) consisting of three (finite) sets and two mappings: 

1. an input set or input alphabet A; 
2. an output set or output alphabet B\ 
3. a set of (internal) states S; 
4. a next-state map, ö:S χ A S ; 
5. an output map, λ:8 χ A Β. 

The "sequential" aspect comes from iterations of the next-state map and out­
put map, through which we allow the machine to operate on strings ω = 

, . , , a,̂  of elements of A (i.e., elements of the free monoid A * generated by A) 
instead of on A itself; the /cth element a,̂  of a word we A* is then thought 
of as the one presented to the machine at the /cth instant; and the indices 
themselves thus pertain to the instants of a discrete time. It is well known that 
such devices can themselves always be realized by neural nets in many ways. 

N o w an abstract ( M , R)-system can itself be realized by something like a 
sequential machine. In fact, if we consider the ( M , R)-system of Eq. (1), we can 
define 

1. input set = A; 
2. output set = B; 
3. state set S = H{A, B); 
4. next-state map δ:Α χ S^S; defined by ö{a,f) = Φ{/{α)); 
5. output map Á:AxS-^B; defined by λ{α,/) = f{a). 

At first, this looked extremely promising. Biologically, there were a host of 
network realizations now available (e.g., operon networks). Mathematically, 
there were a number of possibilities for passing from discrete to continuous 
time, i.e., to true dynamical and control systems, and thence to explicit 
"hardware" realizations, which would comprise "cells" of perhaps utterly 
novel kinds. In these various realizations, one could explicitly seek those 
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situations in which repHcation mappings were reahzable, for these were of the 
greatest interest. 

There were indeed many interesting conclusions that could be drawn from 
just these possibilities. But the really fundamental problems remained 
refractory to this whole approach. In a nutshell, the reason lay in the 
mathematical dichotomy between set (object) and mapping in the ( M , R ) -
system. In a network realization, a "state" of the network is a pattern of 
activation in the elements that constitute the network, while the "next-state 
mapping" is embodied in the wiring diagram of the network. But intuitively, in 
the ( M , R)-system, both the metabolic map(s) / and the nuclear or repair maps 
Φ should themselves be embodied in (or realized by) physical structures, and 
their mapping properties should be a consequence of these structures. When 
we realize Φ ( / ( α ) ) , for example, this is abstractly a mapping {f: A B) in the 
( M , R)-system; it is a pattern of excitation (i.e., a single state) in a network; but 
it should be a material structure in the kind of realization we are actually 
seeking. Even more, the map Φ itself in the ( M , R)-system is a wiring diagram 
in a network realization, a pattern of specificities in an operon network, but, in 
fact, it should be realized itself as a material structure, from which all these 
mapping properties should follow. 

These considerations led to a fundamental rethinking of the whole idea of 
how to go about realizing any kind of abstract relational description of a 
material system, and thence to the whole problem of trying to invert the 
process by which any kind of mathematical description, or model, of a 
material system is obtained in the first place. In particular, the very fact that 
the same mathematical formalism (e.g., a network) could be interpreted in so 
many disparate physical ways ultimately led me to suspect that something 
crucial might be missing from the mathematics itself In other words, I began 
to entertain the possibility that our conventional mathematical descriptions of 
physical reality, which have essentially gone unquestioned for three centuries, 
might themselves be fundamentally deficient, that it was this deficiency that 
was responsible for the problems posed by an attempt to realize physically an 
abstract functional organization. 

Let us then briefly review what is involved in the way we conventionally 
build mathematical or theoretical pictures of the material world. As we shall 
soon see, the procedure involves several tacit hypotheses about the material 
world, which show up most clearly when we attempt to invert the procedure 
and realize a description. These hypotheses may not be true; I would now 
argue that they are not true in general. Removing them leads us, in fact, to a 
whole new epistemology, with all the attendant implications of that fact. W e 
will describe all this in the subsequent sections, beginning with a brief 
description of the nature of our current ideas regarding the imaging of 
material reality and some of their basic historical roots. 

bill
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V I . T H E M O D E L L I N G R E L A T I O N 

All of our thought processes, from the most mundane aspects of daily life to 
the deepest reflections of theoretical science, are based on two parallel 
postulates. 

First is the belief that the sequence of events that we perceive in the external 
world is not entirely whimsical, chaotic, and arbitrary but obeys definite laws 
or relations. The relations that exist between events in the external world, and 
that govern their succession, collectively constitute what we call causality. 
Without a belief in causal order, there could be no science and, very probably, 
no sanity. 

But a belief in a causal order relating events in the external world is only one 
part of the story. The other part is an independent belief that this causal order 
relating events can be, at least in part, grasped and articulated by the mind. It is 
a belief that, in some deep sense, the causal order relating events can be 
mirrored in a corresponding relation between propositions that describe these 
events. N o w such propositions belong to an internal, symbolic, linguistic 
world and hence cannot themselves be related by any kind of "causality." But 
there is another kind of order through which propositions can be related, and 
that is a logical order or implication. 

Thus we must also believe that the causal order, relating events in the 
external world, can be brought into congruence with a logical or implicative 
order in some appropriate logical, symbolic world of propositions describing 
these events. When such a congruence is established, implications in the logical 
system become predictions about the causal order. 

These two beliefs together constitute the idea of natural law. It is the entire 
task of theoretical science to establish the congruence between causal order in 
the external world and implicative order in the formal world, which embodies 
the very idea of natural law. 

The preceding remarks can be summed up succinctly in a diagram: 

Decoding 

© Natural 
system 

® 

® 

Formal 
system ® 

Encoding 

FIG. 1 
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(cf. Chapter 2). In this diagram the left-hand box represents the external world 
or some fraction thereof. The sequence of events it exhibits is governed by 
causal relations, as represented by arrow 1. On the right-hand side sits some 
formal system, whose elements are governed by relations of implication or 
logic (arrow 3). We may establish relations between these two diverse worlds 
by means of "encodings" (arrow 2), whereby attributes of the external world 
are identified with, or named by, corresponding elements in the formal system; 
and by "decodings" (arrow 4), whereby elements of the formal system are 
treated as names of, or symbols for, attributes of events. 

We shall say that a modelling relation has been established between the 
natural system and the formal system when the preceding diagram of arrows 
commutes; i.e., when 

arrow 1 = arrows 2 + 3 + 4. 

In this case, one always obtains the same answer; whether one simply sits as an 
observer and watches the causal order unfold in the natural system (arrow 1) 
or whether one encodes attributes of that system as propositions (i.e., initial 
conditions or hypotheses) in the formal system (arrow 2), generates new 
propositions from these through the inferential structure (arrow 3), and then 
decodes these back into assertions or predictions (arrow 4). 

If a modelling relation exists between a natural system Ν and a formal 
system F, we may call F a model of iV, or iV a realization of F. 

Since mathematics, in the broadest sense, is the study of implication 
relations in formal systems, or the art of extracting conclusions from premises, 
it follows that mathematics is integrally involved in the study of natural law. 
Indeed, many of the deepest questions of theoretical science are concerned 
with specifying the kinds of formal or mathematical systems that can sit on the 
right-hand side of the preceding diagram and the kinds of mathematical 
relations that can exist between them. For instance, the whole problem of 
reductionism involves nothing else. 

The equally important inverse or dual problem [i.e. given a formal system 
on the right-hand side of such a diagram, to determine the class of natural 
systems that can realize it, and the relations that exist between them (variously 
called analogy, similarity, or scaling relations)] has received no study 
commensurate with its importance. 

We shall be concerned with both the class of formal systems that can be put 
into a modelling relation with a given natural system and with the class of 
natural systems that can realize a formal system (model). Clearly, these two 
classes are closely related and should be considered together. For the 
remainder of this work,, then, we shall consider some general aspects of the 
modelling relation and its ramifications, with a particular eye on the problem 
with which we started; namely, the construction of realizations of relational 
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models like the ( M , R)-systems. Indeed, in the light of the discussion we have 
just given, encapsulated in the diagram of Fig. 1, we can see clearly how the 
very idea of a relational model requires both (1) a new look at the 
mathematical structures that can model a natural system (in our case, a "cell") 
and the mathematical relations between these models and (2) the class of 
natural systems that realize one (or more) formal structures. 

In the process, we will see what radical profundities Rashevsky really 
unleashed with his apparently innocent ideas about a "relational biology." 

V I I . T H E N E W T O N I A N P A R A D I G M 

In this section we shall briefly review the salient features of the class of 
mathematical or formal systems that are now accepted as models of material 
reality (what we have called "natural systems"). That is, these are the formal 
systems that can sit on the right-hand side of a commutative diagram such as 
Fig. 1. As we shall see, our basic ideas on this subject go back, in one way or 
another, essentially unchanged, to the mechanics of Newton's Principia. 
Despite enormous technical variations in mathematical language (e.g., from 
classical to relativistic or quantum; from continuous time to discrete time; 
from continuous state to discrete state; from deterministic to stochastic; from 
autonomous to forced; from finite-dimensional to infinite-dimensional; etc.), 
the basic epistemological presupposition remains the same, untouched and all 
but unnoticed. 

This basic presupposition, as we shall see, is that systems have states and 
that upon these states some kinds of dynamical laws, or equations of motion, 
are superimposed. The states represent in a sense what is intrinsic, while the 
dynamical laws reflect the nature of the impinging environment in acting on 
what is intrinsic. Thus the dichotomy between states and dynamical laws 
embodies a distinction between system and environment. Also, in a formal way, 
the dualism of states and dynamical laws exactly parallels the purely 
mathematical dichotomy between propositions and inferential laws, or 
production rules, which is nowadays considered as the anatomical foundation 
of any mathematical formalism whatsoever. 

But this basic presupposition, so familiar and axiomatic to us all, involves 
tacit hypotheses, not just one but several, about the natural world and its 
mathematical images. We will examine these in detail in the following sections. 
For the moment, simply review some of the salient formal and historical roots 
of what we shall call the Newtonian paradigm. 

First, it must be recognized that Newton's Principia was certainly one of the 
most influential works of human history. In its own time, it was regarded as 
the capstone of the Renaissance; the culmination of the rational mind and its 
power to grasp natural law, a fountainhead of optimism and enlightenment. 
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In subsequent times, it unleashed successive waves of scientific advance that 
are still going on. It has set the standards for scientific investigation and for 
scientific explanation to such a degree that alternatives have become 
essentially unthinkable. This is equally true for modern developments, like 
quantum theory, which have transcended some aspects of Newton's original 
formalism, but still, as we shall see, subscribe to exactly the same epistemolog-
ical presuppositions. 

The influence of the Principia has radiated in two distinct directions: a 
reductionistic direction and a paradigmatic direction. We will consider them 
in turn. 

From a reductionistic point of view, we consider the thrust of the Principia 
as the dynamics of systems of mass points. The Newtonian particles are 
devoid of internal structure; their only attributes are constitutive parameters 
like mass, which are time independent, and position, which is time dependent. 
Indeed, the only temporally variable attributes of a Newtonian particle are its 
position and the temporal derivatives of position. Thus the basic problem of 
Newtonian mechanics (and indeed the only problem associated with systems 
of Newtonian particles) is to tell where the constituent particles are located at 
any given instant, i.e., to specify configuration as a function of time. 

Newton recognized that the arbitrary specification of configuration at an 
instant placed no restriction on the velocities of the constituent particles; i.e., 
both configuration and the first temporal derivative of configuration could be 
chosen completely arbitrarily. One might think that the same would be true for 
second time derivatives of configuration (i.e., acceleration) and for all higher 
time derivatives. But here Newton interposed his deep insight. He said, in 
effect, that the rest of the world (i.e., the environment of our system of mass 
points) exerts forces on the particles. What these forces are, intrinsically, 
cannot be (and need not be) specified, but the effect of these forces is to 
determine the acceleration of the particles of our system. That is, insofar as the 
"force" experienced by a particle is determined by where it is and how fast it is 
going, the acceleration of the particle, and hence all higher temporal 
derivatives of configuration, are then completely determined by configuration, 
rate of change of configuration, and the "forces" then imposed by the rest of 
the world. Mathematically, this amounts to expressing acceleration recursively 
as a function of the lower temporal derivatives. This expression is the 
dynamical law governing the system; by a mathematical process of integration 
we can convert this dynamical law into a relation giving configuration as a 
function of time. 

This beautiful conception has a number of sweeping implications: 

(1) Insofar as any material system can be resolved into a system of 
structureless particles, Newtonian mechanics seems to provide a recipe, or 
algorithm, for the study, modelling, and representation of any system. That is, 
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it in principle enables us to construct the diagram of Fig. 1, for any material 
system on the left-hand side. It establishes simultaneously the nature of the 
formal, mathematical image and the encoding and decoding arrows that 
convert the formal system into a model. 

(2) Once the Newtonian picture is accepted, it becomes a purely empirical 
problem to determine, for a given system of interest, what are its constituent 
particles and what are the forces imposed on them. Thus in the light of the 
Newtonian approach, there followed historically an enormous empirical shift. 
We can in fact directly see this shift, in our own time; molecular biology is 
essentially the result of the belated percolation of Newtonian concepts 
directly into biology, something that only became technically feasible within 
the past 30 or 40 years. 

(3) The encoding and decoding arrows in Fig. 1 that Newton posited have 
become axiomatic, and thus in effect invisible. They are no longer recognized 
as the pivots on which the whole picture turns, but have become as necessary a 
part of scientific thought as Euclidean geometry was prior to 1800. 

In summary, the mathematical image that Newtonian mechanics gives us of 
a family of structureless particles acted upon by forces is as follows. Such a 
system is represented by a manifold of possible phases (configurations plus 
velocities) on which a set of equations of motion, representing forces, is 
superimposed. It must be emphasized that this mathematical image is not an 
abstraction; every shred of physical reality of such a system has a correspond­
ing mathematical image somewhere in this picture and requires only a 
technical mathematical exercise to make it visible. All this, by the way, is 
completely preserved in the transition to quantum physics; the only novelty 
(though it is a major one) resides in the replacement of the Newtonian phases 
by a more general space of states, related in a much more complicated way to 
what we actually measure. 

With this as background, we turn now to a brief consideration of the 
paradigmatic aspect of the Newtonian conception. This involves the use of the 
language in which Newtonian mechanics is couched, to describe systems that 
have not been, or perhaps cannot be, described as systems of mass points— 
ecosystems, economic systems, chemical reactors, and so on. The states of 
such a system are the analogs of the Newtonian phases; the dynamical laws the 
analogs of Newtonian forces. In this light, as we have noted earlier, every mode 
of system description known to me is nothing more than a paraphrase or an 
adaptation of the Newtonian language, interpreted by Newton initially in 
terms of particulate mechanical systems, but now interpreted in a wider 
context. 

These two aspects of Newtonian ideas, the reductionist and paradigmatic, 
come together in the fundamental reductionist assumption that, among all 
possible encodings of a natural system, there is a biggest one, which maps 
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V I I I . M A P P I N G S A N D " S Y S T E M L A W S " I N 
T H E N E W T O N I A N P A R A D I G M 

In the previous sections we posed the problem of realizing relational models 
like the ( M , R)-systems. The basic ingredients of such relational models are 
abstract sets and mappings between them. We take up that discussion again 
now, in the context of what we have said about the Newtonian paradigm. In 
particular, we will look more closely at the ways in which mathematical 
mappings, or functional relations, appear as images of physical reality in 
Newtonian modelling relations described by Fig. 1. By seeing explicitly what 
attributes of material reality in natural systems are actually encoded by 
mappings via the Newtonian paradigm, we will be in a stronger position to 
talk about realizations of mappings in the ( M , R)-systems. But as we shall see, 
there are several surprises in store. 

T o see what is involved in the dual activities of encoding events into 
mappings, and realizing mappings as events, we will consider a few typical 
examples. 

Our first example will be one that I have analyzed in detail elsewhere, a 
rather simple and degenerate (i.e., nondynamical) thermodynamic situation 
but one that illustrates clearly some of the basic issues. This is the van der 
Waals equation, a typical thermodynamic equation of state describing the 
equilibrium points of a class of nonideal gases. As originally formulated, this 
equation of state could be written in the form 

(p + a/v')(v -b) = rT. (3) 

Here p, v, Τ are interpreted as the thermodynamic variables of state (pressure, 
volume, and temperature, respectively), and a, 6, and r are parameters. 

We shall not pause to discuss here the rather lengthy arguments required 
actually to allow us to consider Eq. (3) as an encoding of material reality; this 

effectively on all the others. If every material system is indeed a system of 
material particles, this would be the original Newtonian one. Mathematically, 
this biggest description is like a free object in the set of all encodings of a given 
system. Traditional reductionist ideas, especially in biology, rest entirely on 
the posited existence of such a biggest encoding and on the assumption that it 
indeed maps effectively on every other encoding. 

We now remark that the relational models described earlier are not of this 
Newtonian character; they fall outside the paradigm from the very beginning. 
We will now turn to a study of what this means, and in the process we will find 
that the Newtonian encodings, far from being universal, are very special 
indeed. 
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requires, among other things, characterizing the manner in which events are 
converted to numbers through specific transducers (meters). Rather, we shall 
consider Eq. (3) as (1) a mathematical expression and (2) as an encoding, a 
symbolization, or a description of some material situation. 

In purely mathematical terms, Eq. (3) is a functional relation involving six 
arguments: 

Φ(ρ, ι ; ,Τ ,α ,&,Γ) = 0. (4) 

Mathematically, all the arguments of this relation are equivalent; they are 
simply arguments. But as encodings, there is the most profound distinction in 
the interpretation of these arguments. This distinction is lost if we only look at 
the encoded mathematical version Eq. (3); it has been abstracted away. It is 
precisely what is being lost in the encoding process that we shall examine here. 

Intuitively, the arguments in Eq. (3) fall into three classes: 

(1) The parameters (a, b, r). These have to do with the particular kind 
(species) of gas under consideration (e.g., O 2 , C O 2 , N O , a i r . . . ) . At this point, 
it is immaterial whether we say that the parameters (a, b, r) determine or are 
determined by this species. For this reason we shall call these parameters the 
genome of Eq. (3). 

(2) A pair of the remaining arguments [say, (p, T ) ] , whose values are 
determined by the character of the environment with which our gas is inter­
acting. Normally, these variables are interpreted as those under the experi­
menter's control. The point is that the specific values or numbers assumed 
by these quantities are determined by processes that do not obey Eq. (3). W e 
will therefore call these arguments (p, T) environments of Eq. (3). 

(3) The remaining arguments of Eq. (3); in this case the volume v. At 
equilibrium, the value of ν is completely determined by Eq. (3) when the 
genome (α, b, r) and the environment (p, T) are specified. For this reason we 
shall call this value the phenotype of Eq. (3). 

Thus by looking informally at the nature of the encoding Eq. (3), we see the 
greatest possible distinctions among its arguments, distinctions that are 
entirely missing from the mathematical structure of Eq. (3) itself. 

Let us see if we can get them back. We will rewrite Eq. (4) in two steps. 
First, instead of regarding Eq. (4) as a single function of six arguments, let us 
rather regard it as a three-parameter family of functions of three arguments: 

{ Φ , ^ ρ , ι ; , Τ ) = 0} . (5) 

Here we are using the parameters we identified as genomic as coordinates in a 
function space, and not as arguments. This introduces a purely mathematical 
distinction into our encoding, destroying the misleading symmetry among the 
arguments of the van der Waals equation with which we started. Of course, 
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which arguments we use in this fashion must be made part of the initial 
encoding. 

Next, we shall rewrite the three-parameter family of (5) of relations as a 
three-parameter family of mappings, from environment to phenotypes: 

Oabr : (p,7^)^(4 (6) 

In this form, the distinction between environment and phenotype is manifested 
mathematically, as an integral part of the encoding itself. But, of course, which 
arguments are chosen as environment and which are chosen as phenotype 
must also be an integral part of the initial encoding process itself. 

We have already noted that the van der Waals equation is a degenerate 
situation, pertaining to equilibrium values (i.e., limiting values for long times). 
We can inch toward dynamical encodings if we make one further reinterpre-
tation of (6). Namely, we recall that the situation described by the van der 
Waals equation is: whatever the initial volume Vq, once genome and environ­
ment are specified, the ultimate phenotype is that value ν given by (3). Thus we 
can finally rewrite (6) as a three-parameter family of operators, mapping 
"initial phenotypes" Vq into phenotypes v: 

υ , ^ ^ ^ ^ υ . (7) 

If we do this carefully enough, we can actually use the map Φ^^, to generate a 
vector field on the space of phenotypes (i.e., a true dynamics). However, this 
dynamics is extremely degenerate in the present situation, a consequence of 
the fact that thermodynamics from which an equation of state like the van der 
Waals equation is taken is dynamically as singular as it can get (e.g., the 
manifold of equilibria, or critical points, where nothing can happen, is of the 
highest possible dimension). This extreme nongenericity is in fact typical of 
the situations with which conventional physics deals and is one of the reasons 
(we shall see others) that biology (among many other things) falls outside it 
and that it is most ironic for the physicist to fancy himself as a purveyor 
of "universal laws." 

By these rewritings, we have embodied explicitly, in the mathematics into 
which our physics is encoded, at least some of the basic distinctions that were 
originally lost. In the process, we have gone from a single manifold with a 
relation on it to something like a fiber space, with genomes as base space and 
state spaces, or operators on phenotypes, as fiber. We shall not pause here to 
discuss the rather far-reaching ramifications of this picture, particularly those 
associated with the stability of the parameterized families O b̂r, with evolution 
and development. W e shall, however, touch on these matters, in another 
guise, in subsequent sections. 

For the moment, we merely wish to mention that the forms (5)-(7) allow 
us to define a variety of partial maps. For instance, if we keep genome fixed. 
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IX . C A U S A L I T Y 

Since the distinctions that are our major interest become obliterated as a 
consequence of the abstractions inherent in the Newtonian encoding, we need 
another language to make them manifest. The only language that I have found 
appropriate for this purpose came from a most unexpected quarter, from the 
old Aristotelian doctrine of the categories of causation. It is a language that 
everyone believes has been made utterly obsolete by the advent of the 
Newtonian paradigm. However, we have already implicitly used this language 
heavily; as we shall see, it in fact permeates the discussion of the preceding 
section. Let us pause then to review briefly some of its essential features. 

T o Aristotle, all science is animated by a single question: Why? Science must 
answer this question "Why?"; it must say, "Because." In so doing, depending on 
the context, science becomes the vehicle for both explanation and prediction. 
Aristotle's basic contribution was to recognize that there are different and 
inequivalent, but equally valid, ways of saying "because." If we single out some 
event or thing in the external world and ask why it is what it is, then what we 
have singled out is the effect of its causes, and these causes are embodied in the 
different ways that Aristotle distinguished, in which we can answer the 
question we have asked. 

Aristotle's explicit discussion of the categories of causation is, by modern 
standards, superficial and incomplete and, oddly, is couched primarily in 
terms of material artifacts. Following this discussion, let us suppose we are 
interested in "understanding" something like a house. The four Aristotelian 
categories of causation for the house are then: 

(1) Material cause: The house is what it is because of the wood, bricks, 
glass, metal, and so on, of which it is composed. These constitute the material 
cause of the house and comprise one way of saying why the house is what it is. 

we get a mathematical relation between phenotype and environment. If we 
keep environment fixed, we get a mathematical relation between genome 
and phenotype. Each of these is mathematically also a mapping. But the 
interpretations or realizations of these partial mappings are completely 
different from one another, even in this utterly simple context. We begin to 
glimpse, then, some of the subtleties involved in the problem of realizing an 
abstract mathematical mapping. T o do so, we need to know the whole 
encoding from which it comes. 

This is, in fact, only the tip of one of the icebergs implicit in the Newtonian 
encoding. W e shall look at this particular iceberg in more detail, from a new 
angle, in the next section. We shall then turn our attention to another, even 
bigger one. 
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(2) Formal cause: The house is what it is because of the blueprint or plan 
that it realizes. This blueprint or plan constitutes the formal cause of the house, 
and provides another way of saying why the house is what it is; a way different 
from, and inequivalent to, but equally valid as, the material cause. 

(3) Efficient cause: The house is what it is because of the labor of its 
builders, who manipulated the constituent materials in accord with the 
blueprint or plan. We now have a third way of saying why the house is what it 
is; again different from, inequivalent to, but equally valid as the other ways. 

(4) Final cause: The house is what it is because someone required shelter. 
This way of saying why was for Aristotle the most important because it 
involved telos; volition, goal, end. The study of the final causes of things is 
accordingly called teleology. Largely as a result of the Newtonian paradigm, 
the whole concept of teleology has become anathema; the corresponding 
adjective is as close to a defamation as there is in science. 

What Aristotle was essentially doing in his discussion of the categories of 
causation was giving names to, and thereby distinguishing between, certain 
kinds of relations between events. As we noted in Section V, this is precisely the 
province of causality, one of the twin pillars supporting our belief in natural 
law. Nevertheless, it is widely believed that causality is not a scientific concept; 
that true science only began when Aristotelian ideas about causality were 
discarded and replaced by the Newtonian paradigm. Indeed, Bertrand Russell 
wrote an influential article pointing out precisely that the word cause never 
appears, as a technical term, in any "advanced science" such as "gravitational 
astronomy." For Russell, such "advanced sciences" consist entirely of 
mathematical relations (of the kind we have seen in the preceding section), 
which are deterministic without being causal. What Russell had done, in effect, 
was to forget about the whole left-hand side of the diagram in Fig. 1, including 
the encoding and decoding arrows. He tacitly took it as axiomatic that the 
Newtonian encoding was the only one; thus, we need never look again at the 
events themselves, and can content ourselves with looking exclusively at 
the mathematical images provided by that encoding. And of course it is 
perfectly true that, in this formal world of mathematical images, the word 
cause never appears; it has been lost in the encoding process, along with 
many other important things. 

Nevertheless, we can restore the Aristotelian ideas by, as we did before, 
superimposing upon the Newtonian paradigm an additional informal layer of 
interpretation to compensate for the missing or unencoded properties we need. 
As we have seen, the essence of the Newtonian paradigm involves a genome-
parameterized family of environmentally determined operators, acting on a 
space of phenotypes. If we now identify the space of phenotypes with the space 
of "internal states," or mechanical phases, it is not hard to show that the 
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z{t) = φ^(zJ{τ))dτ^φ{z{to)) (9) 

Although (8) and (9) are mathematically equivalent, they are epistemologically 
very different. The relation (8) is a local relation, relating the values of 
observable quantities at any given instant. The relation (9), on the other hand, 
relates the values of observable quantities at different instants. However, we 
shall not pursue the implications of this fact here. 

N o w let us look at the relation (9), which is one way of expressing the 
Newtonian paradigm, in terms of the Aristotelian ideas regarding categories 
of causation. Specifically, if we regard z(i), the phenotype or state of a system 
at some instant of time, as the effect, then we have: 

Material cause = initial state z(io); 

Formal cause = genome g. 

Efficient cause = operator 
to 

We note explicitly that there is no final cause visible in this picture. In 
retrospect, it is this fact more than any other that has led to the profound belief 
that finality is incompatible with science. Indeed, any attempt to impose a 
category of final causation onto the Newtonian encoding destroys it 
completely. Insofar as finality involves the effect of future inputs, or future 
state, upon present change of state, the idea of anticipation has been expunged 
from serious science without further thought. The only exceptions I know 
involve some interesting discussions of, for example, advanced potentials as 
physically meaningful solutions of classical wave equations, and the interpre­
tation of variational principles, which specify paths between prior and 
subsequent configurations, in anticipatory terms. But these are never taken 
seriously, for the reasons we have sketched already. 

Newtonian paradigm can be expressed in conventional mathematical lan­
guage as a system of equations of motion for the phenotypes or states: 

^ = φ^{ζ,β{ή) (8) 

Here ζ is a state vector or phenotype vector; g is a genome vector, and β = ß{t) 
is a vector of environments, variously called inputs or forcings or controls. 
Relations such as this are precisely what Bertrand Russell identified with 
"advanced sciences." 

Dynamical relations such as (8) can be converted into a mathematically 
equivalent form through a process of integration: 
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From what we have already said, innocent as it may appear, we can now 
reformulate the whole Newtonian paradigm in a way that manifests more 
clearly than any other how very special it in fact is. In brief, the essential fact is 
that the Newtonian paradigm pertains to only those systems for which the 
categories of causation can be segregated into mathematically independent 
structures. For instance, under the interpretation we have given, the very idea 
of a state space tacitly means that the category of material causation can be 
split off from the other causal categories as a completely independent unit; 
the same is true for all the other causal categories. Stated another way: Any 
observable quantity pertaining to a system, or to its environment, can be 
assigned exclusively to one or another of the causal categories, once assigned, 
it stays in that category, and can play no other causal role. 

When cast in this light, we can see in a most vivid way that the whole 
Newtonian paradigm, which as noted earlier has persisted essentially 
unchanged from its inception as the only and universal mode of system 
description, is not that at all. Indeed, the class of special systems that it 
describes should be given a corresponding special name; we shall call such 
systems simple systems or mechanisms. The Newtonian paradigm tacitly says 
that every system is a mechanism; from the discussion we have given earlier, it is 
manifest that this need not be so. It will be the task of the following section to 
consider the question of whether there are natural systems that are not 
mechanisms and if so, how they are to be described. 

For the remainder of the present section, however, we shall stay within the 
confines of the Newtonian paradigm (i.e., within the class of simple systems) 
and consider briefly a few of the implications of the fact that the categories of 
causation, in that paradigm, while segregated into independent mathematical 
structures, are nevertheless inequivalent. As far as I know, these implications 
have never been addressed, or even explicitly recognized, largely because of 
the intrinsic and historical peculiarities of the Newtonian paradigm itself. 

A first conclusion that we can draw pertains to the idea of simulation. For 
instance, suppose we wish to simulate some dynamical system of the form (8), 
on an analog or a digital computer. This involves the construction of a 
diagram like that of Fig. 1 that encodes the sequence of state transitions in our 
original system (call it the prototype) into corresponding elements of the 
simulator. In terms of our preceding discussion, the sequence of state 
transitions in the prototype involves material causation in that system. 
However, in the simulator, state information about the prototype is always 
encoded as data or inputs to the simulator. Thus in the simulator the data are 
related to efficient causation. In fact, the whole idea of computation pertains 
essentially to the manipulation of efficient causation, with formal cause as 
program and material cause as "hardware."" Thus although a modelling 
relation can thereby be established between prototype and simulator in a 
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formal way, the causal structures in the two are entirely different (and so too, 
incidentally, are the corresponding inferential structures). 

It is generally believed that any dynamics can be simulated in this sense, i.e., 
that a modelling relation can always be established between material 
causation in some prototype and efficient causation in an appropriate 
simulator. Whether this is true or not I do not know. However, I do know that 
the reverse is false, that we cannot in general realize efficient causality in terms 
of material causality (hence their inequivalence). One well-known instance of 
this fact may be mentioned briefly here. Long ago (cf. Burks, 1966) John von 
Neumann gave a discussion of a putative "self-reproducing automaton." This 
discussion was based on the idea of a "universal constructor," which was in 
turn derived from Turing's earlier (1936) idea of a universal digital computer, 
or universal Turing machine. Basically, von Neumann's argument was that 
following a blueprint to construct something was just as much of an 
algorithmic process as following a program to compute something, and 
therefore that anything true of computation was necessarily equally true of 
construction. But of course a constructor must manipulate material causa­
tion, while a computer manipulates efficient causation; it does not follow, and 
is in fact false, that a universal simulator implies anything about a universal 
constructor. Indeed, for the same reason, one must be very careful in 
extrapolating from the properties of formal systems such as neural networks 
or automata back to the material properties of such processes as biological 
development or cellular control; for these too are exercises in the realization of 
efficient causation by material causation in some prototype. It was also for this 
reason that my first attempt to realize dynamically the ( M , R)-systems (cf. 
Section V ) did not work. 

The same inequivalence between causal categories is manifested in the 
genotype-phenotype duahsm, which animates the entire theory of evolution 
in biology and which in its essential features underlies any equation of state 
generated by a Newtonian encoding of a material system. That indeed is why 
we chose the terminology (genome, environment, phenotype) we used in 
classifying the arguments of such equations, and which as we have seen 
eventually manifests itself directly in causal terms. For instance, the D'Arcy 
Thompson "Theory of Transformations" (Thompson, 1917) asserts funda­
mentally that all closely related phenotypes are also similar; here "'closely 
related"' pertains to genotypes and similar pertains to phenotypes (or better, to 
environment-phenotype relations). Here the relation is between formal cause 
(the genomes) and efficient cause. The inequivalence of these two categories of 
causation means precisely, in modern mathematical language, that there exist 
bifurcating genomes, in any neighborhood of which there will be dissimilar 
phenotypes. This simple fact goes a long way to help us to understand the basis 
for what evolutionists call macroevolution, but that again is another story. 

bill

bill

bill

bill



192 ROBERT ROSEN 

X. C O M P L E X S Y S T E M S 

We now turn our attention to the question of what a mathematical image of 
a complex system should be like. That is, we suppose that there is a complex 
system sitting on the left-hand side of the diagram of Fig. 1 and ask what kind 
of mathematical object can go into the right-hand side so that the diagram will 
commute. 

Before considering some explicit possibilities, we can already draw some 
general conclusions regarding these new mathematical images. Some of these 

The inequivalence of causal categories manifests itself in many other ways. 
It is intimately involved, for instance, in the inability to infer anything much 
about, for example, the material structure of an enzyme from a knowledge of 
its substrates and products, and of a knowledge even of its kinetic parameters 
in the substrate-product conversion. The latter involves again efficient 
causation; the structure is material causation. More generally, it manifests 
itself in what is usually called the system identification problem, which can be 
translated precisely into an attempt to predict material cause from knowledge 
about efficient or formal cause. Going the other way, we cannot predict, for 
example, that a given material structure will play any particular kind of 
functional role (e.g., that a particular protein structure is an enzyme, let alone 
what its substrates are). 

And even in pure mathematics itself, results like Gödel's incompleteness 
theorems are manifestations of this same inequivalence, now expressed in 
completely formal terms. 

Thus we can now appreciate better some of the real difficulties involved in 
attempting to realize physically a relational structure such as an ( M , R ) -
system. Indeed, if we look again at the ( M , R)-system (1) in the light of the 
discussion of the past few sections, we can see just how complicated a little 
structure it is, in terms of its causal correlates. More precisely, the sets and 
mappings that comprise it, though all mathematically of a common character, 
have completely different causal interpretations; sometimes the same thing 
(e.g., the metabolic map / ) is involved in several of these categories 
simultaneously. Indeed, it may well be (although I cannot prove it) that even 
such an elementary relational structure as this ( M , R)-system in fact cannot be 
realized within the confines of the Newtonian paradigm at all. 

We shall now turn to a consideration of the following question: If indeed the 
Newtonian paradigm is so special, what alternative is there? If the Newtonian 
paradigm describes only the limited class of systems that we have called 
mechanisms, or simple systems, how are we to describe those systems (if any) 
that fall outside that class? This will be the subject of the next section. 

bill
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are: 

(1) There can be no such thing as a "state space" in such an image, which 
can be fixed once and for all. More generally, the causal categories (which 
become much more subtle in this context) cannot be segregated into disjoint 
classes; at least some elements of our image play several causal roles 
simultaneously. Moreover, these causal roles can shift in the course of time as 
a consequence of system dynamics. 

(2) A complex system will have a multitude of partial images of the 
Newtonian type, which can in some sense "approximate" to the behavior of 
the system. But this approximation of complexity by simplicity is only local 
and temporary. This means that, as the complex system develops in time, any 
such simple approximation ceases to describe the system in the sense of Fig. 1; 
the discrepancy between what the complex system is actually doing (arrow 1 in 
the diagram) and the behavior of the simple approximation (arrows 2 + 
3 + 4) grows in time. When the discrepancy becomes intolerable, we must 
replace our initial simple approximation by another. The discrepancy between 
the behavior of a complex system and any such simple approximation is, 
depending on the context, called error or emergence. 

(3) Even though a complex system has a multitude of partial simple 
descriptions, we cannot construct from them a single "largest" description that 
is also simple. In this sense, the reductionistic paradigm fails for complex 
systems. 

Just from these few properties, which follow essentially only from the non-
Newtonian character of complexity, we can see that this kind of world of 
mathematical images must have very different properties from the one we are 
used to. 

There are now two questions to answer: (1) Is there a world of mathematical 
structures with these characteristics, that can be put into a modelling relation 
with a complex system, and (2) are there complex systems in nature, which 
realize such mathematical structures? W e shall turn to the first of these 
questions now, leaving the second for our final comments. 

T o motivate this discussion, let us return to a consideration of conventional 
Newtonian images of the form (8). More specifically, let us look at a dynamical 
system 

dx,/di = / ; ( x i , . . . , x j (10) 

leaving out of consideration for the moment the genomic and environmental 
aspects. Originally motivated by an attempt to establish some relation 
between dynamical and informational ways of treating such a system, and 
following an earlier treatment of Higgins (1967), I considered the (observable) 
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ω 'ί = Σ ^ijdXj' (11) 
i = 1 

If Wi is exact, there is an observable / j such that df = ω,. Put this observable 
equal to dxi/dt and we are done. However, if these forms are not exact, we have 
an activation-inhibition network that cannot be realized by a set of rate 
equations. 

For a differential form to be exact, if η > 2, is a most nongeneric situation. 
There are some standard necessary conditions for exactness, which may be 
written as 

{d/dXk)Uij = (d/dxj)Uii,-

N o w these quantities 

also have an informational connotation. In brief, it is easy to see that, if Uij,, is 
positive in a state, it means that x^ enhances or potentiates the effect of x^ on x,. 
Under these circumstances, we can call x^ an agonist of Xj. Likewise, if Uijt, is 
negative, x̂^ attenuates the effect of χ̂ · on x¿, and we can call x^ an antagonist of 
Xj. We see then that the conditions for exactness of (11) become u^^ = Un^j for 
all indices /, j , k; the activator-inhibitor relation and the agonist-antagonist 

quantities 

Wíj(xi , . . . ,xJ = d/dXi{dXi/dt). 

A great deal about the stability of (10) can be inferred from these quantities; in 
fact, most of the significance of the Uij lies in their signs, and not so much in 
their specific values. 

These quantities, as Higgins noted, have informational correlates. For 
instance, if u^j is positive in a state, it means, for example, that an increase in Xj 
increases the rate of production of x, (or that a decrease in decreases the rate 
of production of x,) . It thus makes sense to call x^ an activator of χ,· under these 
circumstances. Likewise, if Uij is negative in a state, it is reasonable to call x^ an 
inhibitor of Xj. In fact, on this basis, we can convert the dynamical system (10) 
into an informational network, quite analogous to a neural net (cf. Rosen, 
1979). 

There are many situations in biochemical, morphogenetic, ecological, and 
neural theory in which the activation-inhibition language seems more natural 
than the dynamic one. Thus the obvious question was whether, given such an 
activation-inhibition network, we could in effect invert the preceding 
discussion and recover a set of rate equations (10). What we must do is 
straightforward; construct the diff'erential forms 
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relation are completely symmetrical. This too is a highly nongeneric situation. 
Thus we can conclude that the informational description is more general than 
that given by dynamical laws like (10). 

In a nutshell, we can continue iterating the process whose first two steps we 
have described, constructing successive networks Μ^,Μ^^^,Μ^^^^,. . . , each of 
which modulates the properties of its predecessors. If we start from a set of 
rate equations (10) all of these layers of networks are derivable from the rate 
equations; from any one we can reconstruct all the others in the obvious 
fashion. On the other hand, if any of the differential forms in these networks 
are inexact, the networks become independent of each other, and there is no 
set of rate equations from which all the layers follow. 

Networks of this kind provide the first concrete examples of a class of 
mathematical images satisfying the requirements we have indicated earlier, for 
representing systems that are not simple. W e cannot go into technical details 
in this short space, but we can set forth certain conclusions about these systems 
of layers of informational interactions: 

(1) The class of all such images can be converted into a general 
mathematical structure called a category. In this category, the category of 
Newtonian images (i.e., of dynamical systems or state-determined systems, 
which are the images of simple systems or mechanisms sits as a very small 
subcategory, just as the rational numbers sit as a subset of measure zero in the 
set of real numbers. Moreover, just as in the case of the rational numbers, 
every object in the big category can be regarded as the limit of a sequence of 
elements in the small one. Thus we have the notion of the "approximation" of 
a complex system by a simple one; but as noted previously, this "approxi­
mation" is only local and temporary. 

(2) The causal structure of the objects in the big category turns out to be 
much more complicated than is true in the subcategory of dynamical systems. 
The infinitely greater richness of the causal structures possible in complex 
systems provides one way to understand the growth of the deviation between 
what a complex system will do and what a simple approximation does. 
Moreover, this greater richness of causal structure makes the problem of 
interpretation or explanation of experimental observation very different from 
what we are used to. 

(3) In complex systems, an ideal of final causation or anticipation can be 
introduced in a perfectly rigorous, nonmystical way. Briefly, a complex system 
may contain predictive models of itself and/or its environment, which it can 
utilize to modify its own present activities. 

(4) Because complex systems ultimately depart from the behavior predic­
ted on the basis of any simple approximation, their behavior appears to us to 
be surprising and counterintuitive. 

bill
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X I . A N A L T E R N A T E A P P R O A C H : " I N F O R M A T I O N " 

Because it is interesting and important in its own right and because it leads 
to an alternate mode of entry into the universe of complex systems that is of 
some independent interest, we shall turn in the present section to yet another 
analysis of the idea of "information." Ever since Shannon began to talk about 
"information theory" (by which he meant a probabilistic analysis of the 
deleterious eff'ects of propagating signals through "channels"; cf. Shannon, 
1949) this concept has been relentlessly analyzed and reanalyzed. The time and 
effOrt expended on these analyses must surely rank as one of the most 
unprofitable investments in modern scientific history; not only has there been 
no profit, but the currency itself has been debased to worthlessness. Yet in 
biology, for example, the terminology of information intrudes itself insistently 
at every level—code, signal, program, computation, recognition. It may be 
that these informational terms are simply not scientific at all, that they are an 
anthropomorphic stopgap, a faqon de parier that merely reflects the immatur­
ity of biology as a science, to be replaced at the earliest opportunity by the 
more rigorous terminology of force, energy, and potential that are the 
province of more mature sciences (i.e., physics) in which "information" is never 
mentioned. Or it may be that the informational terminology that seems to 

There are many other conclusions to be drawn from the class of 
mathematical images that we have briefly described and their relation to the 
Newtonian ones that approximate to them. This relation, on the one hand, 
explains why we have been able to go as far as we have with the Newtonian 
paradigm and why, on the other hand, we can in many areas get no further. 
The relation between complex systems and their simple approximations may 
be likened to the situation faced by the early cartographers, who were 
attempting to map the surface of a sphere while armed only with pieces of 
planes. Here the sphere plays the role of a complex system, while a piece of 
(tangent) plane is like a simple approximation. As long as we only map local 
regions, the planar approximation suflñces, but as we try to map larger and 
larger regions, the discrepancy between the map and the surface grows as well. 
As noted earlier, this discrepancy can be called either error (which can be 
located either in the sphere or in the planar map) or emergence (of a new 
property of the surface; namely, its curvature). Thus if we want to make 
accurate maps of large regions of the sphere, we have to keep shifting our 
tangent planes. The surface of the sphere is in some sense a limit of its planar 
approximations, but to specify it in this way requires a new global concept (the 
topology of the sphere; i.e., its curvature) that cannot be inferred from local 
planar maps alone. 
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force itself upon us bespeaks something fundamental, something that is 
missing from physics as we now understand it. 

In human terms, information is easy to define; it is anything that is or can be 
the answer to a question. Therefore we shall preface our more formal 
considerations with a brief discussion of the status of interrogatives, in logic 
and in science. 

The amazing fact is that interrogation is never a part of formal logic, 
including mathematics. The s y m b o l i s not a logical symbol, as, for instance, 
are " V " Λ " 3 , " or "V," nor is it a mathematical symbol. It belongs entirely 
to informal discourse, and as far as I know, the purely logical or formal 
character of interrogation has never been investigated. Thus if "information" 
is indeed connected in an intimate fashion with interrogation, it is not 
surprising that it has not been formally characterized in any real sense. There is 
simply no existing basis on which to do so. 

I do not intend to go deeply here into the problem of extending formal logic 
(always including mathematics in this domain) so as to include interrogatories. 
What I want to suggest here is a relation between our informal notions of 
interrogation and the familiar logical operation "=>"—the conditional, or the 
implication operation. Colloquially, this operation can be rendered in the 
form "If A, then R " My argument will involve two steps. First, I will argue that 
every interrogative can be put into a kind of conditional form: 

If A, then ΒΊ 

(where Β can be an indefinite pronoun such as who, what, etc., as well as a 
definite proposition). Second, and most important, I will argue that every 
interrogative can be expressed in a more special conditional form, which can 
be described as follows. Suppose I know that some proposition of the form 

If A, then Β 

is true. Suppose I now change or vary A, that is replace /4 by a new expression 
which I will call δ A. The result will be an interrogative, which I can express as 

If δ A, then δΒΊ 

Roughly, I am treating the true proposition "If A, then ß" as a reference, and I 
am asking what happens to this proposition if I replace the reference 
expression A by the new expression δ A. I could of course do the same thing 
which Β in the reference proposition, replace it by a new proposition δΒ and 
ask what happens to A. I assert that every interrogative can be expressed this 
way, in what I shall call a variational form. 

The importance of these notions for us will lie in their relation to the 
external world, most particularly in their relation to the concept of measure­
ment and to the notions of causality to which they become connected when a 
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formal or logical system is employed to represent what is happening in the 
external world (i.e., to describe some physical or biological system or situation) 
(cf. Section V I ) . 

Before doing this, I want to motivate the two assertions made earlier 
regarding the expression of arbitrary interrogatives in a kind of conditional 
form. I will do this by considering a few typical examples and leaving the rest to 
the reader for the moment. 

Suppose I consider the question 

"Did it rain yesterday?" 

First, I will write it in the form 

"If (yesterday), then (rain)?" 

which is the first kind of conditional form described earlier. T o find the 
variational form, I presume I know that some proposition such as 

"If (today), then (sunny)" 

is true. The general variational form of this proposition is 

"If ¿(today), then ¿(sunny)?" 

In particular, then, if I put 

á(today) = (yesterday) 

(5(sunny) = (rain) 

I have indeed expressed my original question in the variational form. A little 
experimentation with interrogatives of various kinds taken from informal 
discourse (of great interest are questions of classification, including existence 
and universality) should serve to make manifest the generality of the relation 
between interrogation and the implicative forms described earlier. Of course 
this cannot be proved in any logical sense, since as noted earlier, interrogation 
sits outside logic. 

It is clear that the notions of observation and experiment are closely related 
to the concept of interrogation. That is why the results of observation and 
experiment (i.e., data) are so generally regarded as being information. In a 
formal sense, simple observation can be regarded as a special case of 
experimentation; intuitively, an observer simply determines what is, while an 
experimenter systematically perturbs what is and then observes the effects of 
his perturbation. In the conditional form, then, an observer is asking a 
question that can generally be expressed as: 

"If (initial conditions), then (meter reading)?" 

In the variational form, this question may be formulated as follows: Assuming 
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the proposition 

"If (initial conditions = 0), then (meter readings = 0)" 

is true (this establishes the reference and corresponds to calibrating the 
meters), our question becomes 

"If ^(initial conditions = 0), then ¿(meter readings = 0)?" 

where simply 

^(initial conditions = 0) = (initial conditions) 

and 

¿(meter readings = 0) = (meter readings). 

The experimentalist essentially takes the results of observation as his reference 
and thus basically asks the question that in variational form is just 

"If ¿(initial conditions), then ¿(meter readings)?" 

The theoretical scientist, on the other hand, deals with a different class of 
question, namely, the questions that arise from assuming a SB (which may be Β 
itself) and asking for the corresponding δΑ. This is a question that an 
experimentalist cannot approach directly, not even in principle. It is mainly 
the difference between the two kinds of questions that marks the difference 
between experiment and theory, as well as the difference between the 
explanatory and predictive roles of theory itself; clearly, if we give δ A and ask 
for the consequent δΒ, we are predicting, whereas if we assume a δΒ and ask for 
the antecedent δΑ, we are explaining. 

It should be noted that exactly the same duality arises in mathematics and 
logic themselves; i.e., in purely formal systems. Thus a mathematician can ask 
(informally): If ( I make certain assumptions), then (what follows)? Or he can 
start with a conjecture and ask: If (Fermat's last theorem is true), then (what 
initial conditions must I assume to construct explicitly a proof)? The former is 
analogous to prediction, the latter to explanation. 

When formal systems (i.e., logic and mathematics) are used to construct 
images of what is going on in the world, then interrogations and implications 
become associated with ideas of causality. Indeed, we have seen that the whole 
concept of natural law depends precisely on the idea that causal processes in 
natural systems can be made to correspond with implication in some 
appropriate descriptive inferential system. 

But the concept of causality is itself a complicated one; this fact has been 
largely overlooked in modern scientific discourse, to its cost. That causality is 
complicated was already noted by Aristotle, when he pointed out that there 
were four distinct categories of causation, four ways of answering the question 
why. These categories called material cause, formal cause, efficient cause. 
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and final cause. We have already seen that these categories of causation are 
inequivalent; hence there are correspondingly different kinds of information, 
associated with different causal categories. These different kinds of in­
formation have been confused, mainly because we are in the habit of using the 
same mathematical language to describe all of them; it is from these inherent 
confusions that much of the ambiguity and murkiness of the concept of 
information ultimately arises. Indeed, we can repeat in the present context 
what we have already noted: The very fact that the same mathematical 
language does not (in fact, cannot) distinguish between essentially distinct 
categories of causation means that the mathematical language we have been 
using is in itself somehow fundamentally deficient and that it must be extended 
by means of supplementary structures to eliminate those deficiencies. 

However, there is yet a deeper relation between information, interrogation, 
causality, and mathematics implicit in the preceding discussion. This relation 
has important consequences for the structure of mathematics itself. Let us 
introduce it by noting that there is an exact parallel between the Newtonian 
paradigm, with its partition of system description into states plus dynamical 
laws, and the structure of mathematical formalisms, with their corresponding 
partition into propositions and production rules, or rules of inference. W e 
have already noted that the Newtonian paradigm cannot accommodate the 
Aristotelian category of final causation (cf. Section IX) . It is for precisely the 
same reason that logical or mathematical systems cannot accommodate 
interrogation, on which we have based the idea of "information"; namely, an 
interrogation or question always involves a telic aspect. It is precisely this telic 
aspect that eludes capture in a simple system, whether that system be a real 
material system or a mathematical image of such a system. W e can now see 
intuitively that any attempt to construct a logical or mathematical formalism 
big enough to accommodate interrogation will lead us again directly into the 
category of complex systems, this time by a purely formal route. Indeed, seen 
in this light, the famous Gödel theorems, to which we have already referred, are 
about the approximation of a complex formalism by simple ones; here a 
"complex" formalism is, roughly speaking, one big enough to encode within 
itself a question of the form, "if (p), then (provable)?" 

It may not be out of place here to mention parenthetically that (1) the telic 
nature of interrogation and (2) the close relation between observation 
(experiment) and interrogation are at the root of the conundrums associated 
with many analyses of the measurement problem in quantum mechanics. 
Quantum mechanics is entirely a classical theory in its partition of the world 
into states plus dynamical laws. Thus from our point of view, it is entirely 
subject to the analysis we have provided. Its only novel feature (and it is, of 
course, a central one) is in its postulation of what constitutes a state and how 
such a state is related to what is actually measured. 
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X I I . C O N C L U S I O N 

We now turn to our final question: Are there any complex systems in 
nature? I would argue that biology is filled with them, that the most 
elementary relational considerations bring us instantly face to face with this 
fact. Like early man, who could see the rotation of the earth every evening just 
by watching the sky but could not understand what he was seeing, we have 
been unable to understand what every organism is telling us. It cannot be 

To conclude this section, let us return briefly to the role of interrogation in 
the theory of complex natural systems. W e recall again that information, for 
us, is the answer to a question and that questions can be put into what we 
called the variational form: If δ A, then δΒΊ The connecting bridge between 
these considerations and physics lies in the interpretation of a question in 
variational form and the general concept of virtual displacement. In this guise 
the abstract considerations we have developed have already played a central 
role in classical physics—in mechanics, ñeld theory, and thermodynamics. 

In mechanics, a virtual displacement is a small, imaginary change imposed 
on the configuration of a mechanical system, with the forces kept ñxed. The 
animating question is: If such a virtual displacement is made, then what 
happens? The answer, in mechanics, is: If the mechanical system is at 
equilibrium, then the (virtual) work done by the impressed forces as a result of 
the virtual displacement must vanish. This principle of virtual work is a static 
principle (i.e., pertains only to equilibrium), but it can be extended from statics 
to dynamics, where it is known as D'Alemberfs principle and leads directly to 
the equations of motion. 

The reader will observe now that the informational networks of Section X 
are defined by functions that answer questions of the form posed by virtual 
displacements. For instance, a function such as 

Uij = dldxj(dxjdt) 

answers a question such as 

If dXj, then d{dxjdt) ? 

In fact, pursuing these considerations leads precisely back to the same 
informational nets as the ones we have seen before. But this time we do not 
have to detour through dynamical systems (i.e., simple systems) at all; we can 
proceed entirely through informational considerations, in the guise of 
questions about how a (virtual) displacement of an observable affects another. 
The interesting thing is that several quite independent approaches lead us 
back to precisely the same circle of ideas. 
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Physics 

What we have argued, however, is that it is physics that is a specialized 
branch of a more general science of complex systems. Biology represents 
another branch, different from any science of mechanisms: 

Physics 

(simple systems) · · ^ 'o^QV 

C o m p l e x systems 

Stressed strongly enough that the transition from simplicity to complexity is 
not merely a technical matter to be handled within the Newtonian paradigm; 
complexity is not just complication, to be described by another number (e.g., 
the dimension of a state space or the length of a program), but a whole new 
theoretical world, with a whole new physics associated with it. 

If organisms are indeed complex in our sense and if contemporary physics 
deals exclusively with simple systems, it follows that we cannot in principle do 
biology within the confines of contemporary physics. This is simply a more 
precise statement of what we asserted earlier; that the relation of biology to 
our present physics is not that of particular to general. It is not biology but 
physics that deals with too limited, too restricted a class of systems. Far from 
biology being reduced to, and hence disappearing into, contemporary physics, 
as the reductionists believe, it is physics that will be transformed out of present 
recognition by being forced to confront, head on, the problems posed by 
complexity. The shambles that the concept of the "open system" has made of 
classical thermodynamics (where after 50 years or more there is still no real 
physics capable of properly coping with even the most elementary open 
system dynamics) is as nothing compared to the impact of complexity; and 
thermodynamics has long been regarded with complacency as the repository 
of the most universal truths of physics. 

Let us express the situation outlined earlier in the form of a diagram. The 
Newtonian paradigm and its corollaries have told us that every science is a 
logical consequence of physics, i.e., of the science of mechanisms. The science 
of mechanisms is thus the root of a tree, with biology as one of the specialized 
branches, as follows: 

• B io logy 
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There are indeed relations between these two collateral branches; some of 
these we have tried to sketch earlier. But the relations are not reductionistic 
ones; they are more complicated, and more interesting, than that. 

The power of the Newtonian paradigm, from this perspective, rests not in 
the fact that everything is a machine, but in the fact that complex systems, 
which by definition are not machines, can often act as if they were. We have 
much to learn about how this comes about, and even more about how it fails. 
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