Causality and experiments	
1	

Clicker Question

Which of Mill's methods is illustrated in this example: You have three flashlights. One shines brightly, one shines weakly, and the third is barely visible. You take out the batteries from the three flashlights and test them. The first registers a full charge, the second a medium charge, and the third has nearly no charge. Method of agreement Method of difference Method of residues Method of concomitant variation

Clicker Question

Which causal fallacy does this example illustrate?

Whenever the power goes out, your Dad starts beating on the wall. The power comes back on and he takes credit for getting it on again.

Ignoring a common cause

Post hoc, ergo propter hoc

Confusing cause and effect None of the above

Clicker Question What causal fallacy is illustrated in this example: Mindy has a car accident. When the police arrive, they	
find a lot of empty beer cans in the passenger seat. They conclude that the empty beers cans caused the accident. Ignoring a common cause	
Treating coincidence as a cause Post hoc, ergo propter hoc Confusing cause and effect	

The basic idea of an experiment

- If the independent variable is the cause of the dependent variable, then a manipulation of the independent variable should produce a change in the value of the dependent variable
- And if it were not the cause, we would not expect such a result from manipulation

Manipulation

	2	
Independent variable [values]	→	Dependent variable [values]

Clicker Question

To avoid affirming the consequent, which premise should one use to confirm a hypothesis?

If X is the cause of Y, then Y will change as X changes

If X is the cause of Y, then Y will not change as X changes

If X is not the cause of Y, then Y will change as X

changes If X is not the cause of Y, then Y will not change as X

changes

Contributory Causes
 If we are dealing with a sufficient or a necessary cause, then we can make predictions about individual events
But most causal relations involve contributory causes
 Whether the effect will occur depends on factors other than the putative effect itself
Whether a given smoker develops lung cancer
depends on a variety of other causal factors
other things she did
- The same individual may respond differently on different
occasions
 Reaction time will differ depend on other causal factors: time of day, how much a person had to drink
etc.
7

Experiments on Contributory Causes

• Challenge: how to detect causal relations in the face of multiple causal factors?

• With contributory causes

- Researchers cannot simply do an experiment on one instance and draw a conclusion about the whole population
- Rather they must work with samples and draw conclusions based on statistical analysis
 - Are the differences in the values of the dependent variable greater than expected by chance?

8

9

Confounding Variables

Other causal factors (variables) that are related to the effect of interest are referred to as **extraneous variables**

 If not appropriately controlled for, these variables may result in misleading tests of causal claims

 When such variables are correlated with the putative cause and may actually be responsible for the effect produced in the study, they are called **confounds**

• Two kinds that are particularly important:

Subject variable confounds:
 Differences between subjects or items investigated in the study

- Procedural variable confounds:

• Differences in the way different subjects or items are treated • If a confounding variable is not controlled for, the experiment is

confounded

- one cannot tells which variable is responsible for the effect

Clicker Question

A confound is

The dependent variable in an experiment An extraneous variable that may produce the effect on the independent variable An extraneous variable that may produce the

effect on the dependent variable

The independent variable in an experiment

Strategies for controlling confounding variables

Locking

 Most commonly used to control confounding procedural variables

Randomization

 Most commonly used to control confounding subject variables

Matching subjects

 A less preferred strategy for controlling confounding subject variables

Only works for known confounds

Making confounding variables into studied variables

Procedural variable confounds

• When you conduct a manipulation, generally more than one thing will be changed

- These variables will then be correlated with the independent variable but with respect to the independent variable being tested are extraneous
- If one of the other variables is causally related to the effect of interest, it rather than the variable you are considering may be the cause
 - it is then a **confound** and the experiment is confounded

12

	1
Confounding Procedural	
Variables	
The president of the AGL corporation wanted to get his workers to be more productive - She found that when each employee	
 was presented with a jar of jellybeans, productivity increased 	
Was it the jellybeans that caused the increased productivity? Or was it: - Novelty of the situation	
 Attention from the president 	
13	
Controlling confounding	
procedural variables	
Correlation or causation	
Manipulation	
Independent variable [values] Dependent variable [values]	
Strategy: break the correlation—thereby breaking the effect of the confounding variable	

Commonly achieved via **locking**

Experimenter Bias	Can Create
Procedural C	ontound
 Danger that experimenters will s see (a former of observer bias) 	see what they want to
 Mendel's data is too perfect 	-there should be
Most likely explanation is best cases and subjectiv	s that he reported the ely biased his counting
of plants	
Keep the data-tabulator blind as different subjects are in	to which group
	16

Subject Variable Confounds

• Subjects in an experiment may have different values on other variables than the independent variable

People of different ages sleep different amounts
Women might be affected differently than men

• If these aren't the independent or dependent variable, these variables are extraneous

• If there is a correlation between these variables and the independent variable,

 they, rather than the variable you are focusing on, may be what produce the change in the dependent variable

17

- Such variables are confounds

Controlling confounding subject variables

Manipulation

Strategy: break the correlation—thereby breaking the effect of the confounding variable Random assignment of subjects is a strategy for breaking the correlation

Between-subject design

·GOOD NEWS:

 Participants are not "contaminated" in one condition as a result of having participated in the other

·BAD NEWS:

- Requires a larger number of participants
- Runs the risk of non-equivalence of subject groups

Within-subjects designs

GOOD NEWS:

- Requires a smaller number of participants
- Rules out any differences between subjects

BAD NEWS:

- Potential "contamination" of participants' behavior from previous trial: *carryover effect*
- Subjects might learn from one condition and that could alter their behavior in the second condition
 - Practice effect
 - Fatigue effect

These are additional confounds that must be controlled for.

Clicker Question A within-subjects design Uses participants as their own controls Requires fewer participants than a between subjects design Runs the risk of a carryover effect All of the above	
Counterbalancing • Goal: eliminate confounds in within-subjects design • Within subject counterbalancing – Reversing order: ABBA • Across subject counterbalancing – Complete: every possible sequence of conditions—requires n!	

each condition appears once and only once in a given ordinal

• no two conditions are juxtaposed in the same order more than

С

в

26

D B A

D

С

Α

в

С

D

А

•	There is always a danger in an experiment that the members of
	the two (or more) groups being studied already differ on the
	dependent variable

- Best control is to focus on change, not raw value of the dependent variable
 - Pretest: measure the dependent variable before the intervention
 - Posttest: measure the dependent variable after the intervention
 - Change = Posttest Pretest
- Manipulation

- Partial Random Latin Square:

position

once

Order 1: A

Order 2: B

Order 3: C

Order 4: D

? Independent variable Dependent variable [values] [change]

Limitations of pretest-positest	
design	
 Just measuring change in one group using a pretest and a posttest allows for confounds Time has elapsed and subjects have gotten older 	
(maturation) – Events occurring between the pretest and posttest could affect the dependent variable (history) – Experience with previous test may change	
performance – Pretest and posttest may vary in difficulty	
Use of pretest-posttest does not obviate the need for a control group 28	
Example: Exercise and sleep	
 Is there a causal relation between exercise and sleep? 	
Manipulation (instruct subjects to	
Evercise Interior Indenii	
[little, much]	
Correlation Job stress	

Co	unterha	lance
00	unicipa	
Alcohol condition	rest	No-alcohol condition
Jim		Jim
Angela		Angela
No-alcohol condition	rest	Alcohol condition
Megan		Megan
Peter		Peter

Internal validity

- An experiment is internally valid if it was in fact the manipulation of the independent variable that produced the change in the dependent variable
 - Are the effects on the dependent variable due solely to the manipulation of the independent variable?
 - Was there a confounding subject variable that did not get controlled?
 - Was there a confounding procedural variable that did not get controlled?

Clicker Question

Which of the following is not a threat to internal validity The independent variable is only a contributory cause

The existence of a confounding procedural variable

The existence of a confounding subject variable All of the above

Planning	Planning an experiment	
Say the color the following words are written in		
Blue	Pink	
Brown	Yellow	
White	Orange	
Red	Green	
Does it seem harder to name the colors when the words name a different color?		

	BLUE	GREEN	YELLOW
Controlling subject	PINK	RED	ORANGE
variable confounds		BLACK	PURPLE
valiable controlling	TAN	WHITE	BROWN
 What subject variables might you have to worry about as confounds? 			
• How to control for these confounds			
The control of these control has			
 If between subject 			
– Randominze			
• If within subject			
– Counterbalance			
counterbaldiloc		30	
		35	

	BLUE	GREEN	YELLOW
Controlling for	PINK	RED	ORANGE
procedural variables	GREY	BLACK	PURPLE
	TAN	WHITE	BROWN
 What procedural variables should be avoid confounds? 	e contro	olled to	
- Context of presentation			
– Illumination of the stimuli			
 Length of words Familiarity and frequency of words 			
Need to lock these variables so that	they do	o not var	у
across conditions			
		40	