Correlational Studies of Differences between

Means

Clicker Question

Correlation claims can be used to
show that one variable caused the other
to predict the value of one variable based on the value of another variable to determine the slope of a regression line
to establish true definitions

Clicker Question

Which of the following is not true of an operational definition
it relates a variable to something that can be measured
there may be multiple operational definitions of the same term
it provides necessary and suffient
conditions for the applicability of a term
it provides necessary but not sufficient conditions for the applicability of a term

Clicker Question

Which of the following is true if the regression line relating math ability and happiness score is defined by
happiness $=32-.8$ math ability
$r=-0.8$
$r=0.64$
$r=32$
r is less than 0

Correlations in samples and populations

The interest in correlations typically goes beyond the sample studied-investigators want to know about the broader population

Two approaches

Estimating correlation in population (ρ) from correlation in sample (r)

Confidence interval
Determining whether there is a correlation in a
given direction in the real population from
correlation in sample
Statistical significance

Statistical significance and p-values

Fundamental question: How likely is it that the result

 (correlation in the sample) is due to chance rather than a real correlation in the population?Formally: How statistically significant is the correlation? How unlikely is a given correlation in the sample if there were no correlation (or a correlation in the other direction) in the population?
This is specified by the \mathbf{p}-value
A p-value < . 05 means there is less than a 1 chance in 20 of a correlation in the sample without a correlation in the real population
That is, more than 19 times out of 20 the correlation found in the sample is due to a correlation in the real population`

Statistical significance and

 p-valuesp-values typically reported as less than some value
$<.05$ is the most commonly used significance level If a study reports that the results are statistically significant with no p value, usually $p<.05$ is the intended meaning
$<.01$ is a more demanding significance level Less than 1 chance in 100 of getting the result by chance
For some purposes, correlations that don't meet the standard of $p<.05$ are useful to know
correlation with reliably of only . 10 or .25 could be important to know if it involves chemical exposure, cancer, etc.

Clicker Question

A study reports a negative correlation between cell phone use and age at death with $\mathrm{p}<.15$. From this you should conclude

There is no correlation between cell phone use and age at death since p is not less than .05 There is less than a 15% chance that the correlation is due to chance
There is less than a 15% chance of a correlation in the actual population
There is at least a 15% chance that the correlation is due to chance

Statistic Significance vs.

Importance
A statistically significant finding may or may not be important.

All statistical significance means is that
the finding is statistically reliable-not
likely to have occurred by chance
where the p-value specifies what we count as likely
Whether it is important-worth knowingdepends on the finding

Fallacies of Prediction

Seeing correlations that don't exist
Failing to recognize regression to the mean
Explaining streaks that are to be expected
Failing to consider base rates

Fallacy of Prediction 1: Seeing correlations that don't exist
"When I'm waiting for the bus, the one going in the other direction always comes first!"
Evelyn Marie Adams won the New Jersey lottery twice, a 1 in 17 trillion likelihood-seem unlikely?

Given the millions of people who buy state lottery tickets, it was practically a sure thing that someone, someday,
somewhere would win twice.

Fallacy of Prediction 2: Failing to recognize regression to the mean
Last month you took the SAT/GRE and scored 750 out of a possible 800 on the quantitative part

For kicks, you decide to take the test again
different questions, but of the same difficulty
assume that there was no learning or practice effect from the first test
What score should you/we predict for you on the second test?
The surprising answer is that you are more likely to score below 750 than above 750
the best guess is that you would score about 725

Regression to the Mean

Phenomenon discovered by Francis Galton, half cousin of Charles Darwin Developed a regression analysis of height between human children and their parents
Found that "It appeared from these experiments that the offspring did not tend to resemble their parents in size, but always to be more mediocre than they - to be smaller than the parents, if the parents were large; to be larger than the parents, if the parents were small."

In fact, this applies only to extreme values

A way to understand regression to the mean

A given test is really a sample from a distribution. Assume that there is a large number, say 1,000 forms of a test and that
you take all 1,000 tests
there are no learning, practice, or fatigue effects.
Scores will be distributed:
Identify the mean of thi
distribution as the "true
score"

A way to understand regression to the mean - 2

Differences in the scores on these tests are due to chance factors:
guessing
knowing more of the answers on some tests than on others.

A way to understand regression to the mean-3

How could a first score of 750 have arisen
It reflected the true score (all chance factors balanced out)
Your true score was <750 and you scored above it due to chance factors pushing you up
Your true score was >750 and you only scored 750 due to chance factors dragging you down

Which is more likely?
There are very few people with "true" scores above 750 (roughly 6 in 1,000)
There are many more people with true scores between 700 and 750 (roughly 17 in 1,000).
Thus, it is more likely that you are from the latter group

Clicker Question

Why is it that most players who win "rookie of the year" honors perform less well their second year? By chance, the player performed above his/her natural level in the first year
By chance, the player performed below his/her natural level in the second year
Opposing players try harder against them The award winners don't try as hard the next year
Fallacy of Prediction 3: Explaining expected streaks
3.1415926535
THTTTHHTTT
3.1415926535897932384626433832795028841971 THTTTHHTTT HTTTTHTHHH HHHTTHTHTT THHHHHTTTT 6939937510582097494459230781640628620899 HTTTTTTTTH THHHTTHTHH TTHTHTHTHH ннннннннTT 86280348253421170679
HHHHHTHHHT THHTTTHHTT

Hot hand?

If someone just hit three shots in a row, is it a good idea to pass to them? What if they had missed three in a row?
Philadelphia 76ers' game data from the 1980-81 season (using all shots from the field)-success on next shot

Three Straight Hits	.46
Two Straight Hits	.50
One Hit	.51
One Miss	.54
Two Straight Misses	.53
Three Straight Misses	.56

Source: Gilovich, Vallone, and Tversky (1985, Cognitive Psychology, imable 1)

Fallacy of Prediction 4: Neglecting

 base ratesIn trying to make predictions, we very often ignore the most important variable for making a prediction

Frank was drawn at random from a group of thirty lawyers and seventy engineers. He spends most of his free time hanging around his country club. At the bar he often talks about his regrets at having tried to follow in his esteemed father's footsteps The long hours he spent slaving in school could have been better spent learning to be less quarrelsome in his relationships with other people.

Is Frank a lawyer or an engineer?

What to base predictions on?

Would you answer this one any differently?

Frank was drawn at random from a group of thirty
engineers and seventy lawyers. He spends mos
of his tree tinu hanging countiry club.
At the bar he often talks about his regrets a having tried to follow in his esteemed father's footsteps. The long hours he spent slaving in school could have been better spent learning to be less quarrelsome in his relationships with other people.

Is Frank a lawyer or an engineer?

Discussion Question

In a city in which two cab companies, Blue and Green, operate a taxicab was involved in a nighttime hit and run accident
85% of the cabs in the city are Green, 15% Blue
A eyewitness identified the cab as Blue
The Court tested the ability of the witness to identify cab colors under appropriate visibility conditions, and he/she made the correct identification 80% of the time
What is the probability that the cab involved was Blue?
$\approx 80 \%$
$\approx 60 \%$
$\approx 40 \%$
$\approx 15 \%$

What to base legal decisions on?

	Said Blue	Said Green	Totals
Blue	12	3	15
Green	17	68	85
Totals	29	71	100

Of the times he/she said it was Blue, it was blue 12/29 or 41\%
Is <50\% accuracy good enough to convict?

Base Rates

Base rates are often the best predictor
It matters greatly whether the population was $70 / 30$ lawyers or $70 / 30$ engineers
It matters greatly that 85% of the cabs were Green
This trumps the witness's 80% accuracy!

But humans almost universally ignore base rates if there is anything else on which to base the decision

Police, lawyers, scientists, doctors . .
Even philosophy professors

Comparing two populations

Populations defined in terms of nominal variables Born in the Northern/Southern Hemisphere Likes classical music/doesn't like classical music Taking Phil $12 /$ not taking Phil 12

Compare the two populations on another variable. If this variable is a score variable, ask:

Do the distributions differ?
Do the means differ?
Do the variances differ? (asked much less often)

Diagramming differences
 between means

Use bar graph
Difference between heights of columns reflects differences in means

When the whole population is tabulated-very straightforward

Using samples to assess

differences between means
You take a sample and there is a difference in means
Where did this difference come from?
A difference in the real population?

Using samples to assess differences between means - 2

But it could also arise from a real population in which there was no difference

In this case, the result in the sample is due to who happened to get chosen for the sample

How to tell whether a sample difference is real?

What is the probability that the difference in the sample could have resulted by chance had there been no difference in the population? The hypothesis that there is no difference between the means of the two groups is known as the null hypothesis.

Strategy: try to reject the null hypothesis Conclude that there is a difference in the real population when the sample you get would be very unlikely were the null hypothesis true
${ }^{29}$

Clicker Question

A null hypothesis
Is the claim that there is a difference in the means in the two actual population
Is the claim that there is no difference in the means in the two actual populations
Is the claim that there is no difference in the means in the two samples
Is the claim that the difference in means in the samples is the same as that between the actual populations

Testing ESP

Your friend claims to have extrasensory perception-ESP

Being a good skeptic, you want to put him to the test
You use a set of five cards, each randomly presented twice
You look at and think about the symbol on the card Your friend tries to figure out the symbol on the card you are looking at
You do this ten times, and your friend gets
2 right
3 right
4 right
4 right
How many does your friend have to get right before you are impressed?

Testing ESP - 2

Two correct out of 10 trials is the most likely result if the null hypothesis were true
But results of $0,1,2,3,4$ are all quite likely even if the null hypothesis were true
How unlikely a result should we demand?

How important is it to be right about ESP?

Number of correct answers	Probabilit y
10	$.00000+$
9	$.00000+$
8	.00007
7	.00079
6	.00551
5	.02642
$\longrightarrow 3$.08808
$\longrightarrow 3$.20133
$\longrightarrow 2$.30199
$\longrightarrow 0$.26844
\longrightarrow	.10737

Statistical significance again

Just as with correlations between score variables, we use the notion of statistical significance to evaluate results

A difference in a sample is said to be statistically
significant when it has a very low probability of occurring if the means in the population are equal

How low a probability is very low?
Investigators have to specify how high a probability they are willing to accept of being wrong
For many purposes, scientists accept a $1 / 20$ risk of being wrong-5\% ($p<.05$)

Clicker Question

If it is extremely important not to claim a difference between populations when there isn't one, one should

Insist that the difference in the means of the samples be large
Not worry about p-values since they aren't important
Insist on a p-value $<.01$ rather than $<.05$ Insist on a p -value $<.1$ rather than $<.05$

Statistical Significance - 2

If not being wrong when you claim there is a difference is extremely important, you might require a higher p value ($p<$.01)
f not missing a difference that really exists is really
mportant, you might take note of an even lower significance level ($p<.20$)—although you would want further study

