Distributions and Samples

Clicker Question

A researcher studying the participation of students in class discussions sits in the classroom and discretely observes and makes notes about student participation. The research is
engaged in participant observation engaged in naturalistic observation
engaged in social observation
generates reactivity bias

Clicker Question

To determine how many vehicles travel a given road, a researcher installs a camera that takes a picture of traffic every 15 minutes. This researcher is using

Continuous observation
Time sampling
Event sampling
Situation sampling

Clicker Question

To avoid reactivity bias in observation, a researcher should
A. not engage in participant observation
B. not employ video cameras
C. avoid antropormophic vocabulary
D. try to avoid being detected

Clicker Question

The variable PARTY AFFILIATION (Libertarian, Green,
Republican, Democrat, other) is
A categorical or nominal variable
An ordinal or rank variable
An interval variable
A ratio variable

Distributions of values

Since the values of a variable vary, they will be distributed
A major part of understanding a domain of objects is to describe how values are distributed on a given variable

One of the best ways to present a distribution is to graph it

Nominal variables and bar graphs

Example: Profile of pet ownership in San Diego County

Value of graphs: provide an intuitive appreciation of the data

Bar graphs and pie charts work well with nomina and ordinal variables

Score variables and histograms

Since score variables are continuous, histograms rather han bar graphs are used
This is done by creating bins and tabulating the number of items in each bin

The size of bins can create radically different pictures of the distribution!

Normal and non-normal distributions

Normal distributions
 Have a single peak
 Scores equally distributed around the
 peak
 Fewer scores further from the peak

Clicker Question

The distribution below is

<70	$70-74$	$75-79$	$80-84$	$85-89$	$90-94$	$95+$

21	15	6	23	3
Normal since it has				

Normal since it has one peak
Normal since scores are equally distributed around the peak
Not normal since the scores are not equally distributed around the peak
Not normal since there are not fewer scores further from the peak

Describing distributions

Two principal measures:

Central tendency

Two comparable
distributions differing in
central tendency

Variability
Two distributions with same central tendency but differing in
variability

Three measures of central tendency
Consider this distribution of values
$2,6,9,7,9,9,10,8,6,7$

Mean: the arithmetic average

$73 / 10=7.3$
Median: the score of which half are higher and half are lower $=7.5$
Mode: the most frequent score $=9$

Which measure to use?

If the distribution is normal, all three measures of central tendency give the same result

The mean is the easiest to calculate and the most frequently reported
If the distribution is not normal and there are extreme outliers in one direction, the mean may be distorted

Exam scores:21, 72, 76, 79, 82, 84, 87, 88, 90,
91, 95
Mean: 78.6
Median: 84
In such a case, the median gives a better picture of the central tendency of the class

Measures of variability

How much do the scores vary?

Range: the lowest value to the highest value
Variance: $\quad \int(X-m e a n)^{2}$
Standard Deviation (SD): $\sqrt{ }$ Variance
Intuitive interpretation (with normal distributions):
One standard deviation: the part of the range in which 68% of the scores fall
Two standard deviations: the part of the range in which 95% of the scores fall
Three standard deviations: the part of the range in which 99% of the scores fall. 14

Same Mean, Different SD

Variance and Standard Deviation

Consider a distribution	
455666778	Mean $=6$
	X - Mean
411000114	(X-mean) ${ }^{2}$
$\sum(\mathrm{X}-\mathrm{mean})^{2}=12=1.33$	Variance
$\mathrm{N} \quad 9$	
$\sqrt{ } 1.33=1.15$	SD

Range of $1 \mathrm{SD}=6 \pm 1.15=4.85$ to 7.15
Range of 2 SD $=6 \pm 2.30=3.70$ to 8.30

Range and Standard Deviation

Clicker Question

On the exam on which scores were distributed normally and the mean was 86 and the SD was 3.5 ,
68% of the scores were between 82.5 and 89.5
95% of the scores were between 82.5 and 89.5 99% of the scores were between 79 and 93
68% of the scores were between 79 and 93

Populations

The group about which we seek to draw conclusions in a study are known as the population.
Sometimes one can study each member of the population of interest
But if the population is large
It may be impossible to study the whole population
There may be no need to study the whole
population

Samples

A sample is a subset of the population chosen for study.
From studying the distribution of a variable in a sample one makes an estimate of the distribution in the actual population
Sometimes the estimate from a sample may be more accurate than trying to study the population itself
U.S. Census
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad 19
\qquad
\qquad
\qquad

Does the sample reflect the population?
Does the mean of the sample reflect the mean of the actual population?

Very unlikely that the mean of the same will exactly equal the mean of the population
Given the mean of a sample, what is the range within which the mean of the actual population lies?

Bottom line-with larger samples this range becomes smaller and smaller
And this effect depends only on the size of the
sample, not the size of the population sampled!

Is the sample biased?

If information about the sample is to be informative about the actual population, the sample must be representative

Randomization: attempt to insure that the sample is representative by avoiding bias in selecting the sample
Risk: inadvertently developing a misrepresentative sample
E.g., using telephone numbers in the phonebook to sample electorate

From populations to samples

Start from the situation in which we know the distribution in the actual population: $p(M)=.5$
We draw a sample of a given size, say 10
Is it possible that we could get a sample of all males? Yes, the probability is about . 001

What is the probability that we could get a sample o 7 males and 3 females?
It is about . 117
What is the probability that we could get a sample of 5 males and 5 females?
It is about 246

What happens as sample size gets larger?

With larger sample sizes, the probability of a distribution in the sample closely approximating the distribution in the actual population increases

The important question is how much the mean of the samples will vary from the mean of the actual population
To determine this, we need to know the standard deviation (SD) of the sample.

Standard deviation and mean

In $\approx 68 \%$ of samples, the mean of the sample will fall within 1 standard deviation of the mean of the population

In $\approx 95 \%$ of samples, the mean of the sample will fall within 2 standard deviations from the mean of the population

Inferring Mean of Population from Mean of the Sample

Just as we can determine from the mean and standard deviation of the actual population where the mean of the sample is likely to be

We can infer from the mean and standard deviation of the sample how far from the mean of the sample
the mean of the actual population will likely be
68% of the time it will be within one SD
95% of the time it will be within two SD
99% of the time it will be within three SD
These percentages express our confidence that the mean will be in the range specified

Standard deviation and mean

$\approx 68 \%$ of the time, the mean of the population will fall within 1 standard deviation of the mean of the sample

$\approx 95 \%$ of time, the mean of the population will fall within 2 standard deviations from the mean of the sample

SD and larger sample size

As sample size grows, the SD of the sample shrinks. So with larger samples, the variability around the mean shrinks

Assume mean in the sample is 50%

Sample size	$+/-2$ SD (95\%)	$+/-3$ SD (99\%)
10	$34.5-65.5$	$29.5-70.5$
20	$39-61$	$35.6-64.4$
50	$43-57$	$40.9-59.1$
100	$45-55$	$43.5-56.5$
500	$47.8-52.2$	$47.1-52.9$
1000	$48.4-51.6$	$48-52$

Clicker Question

Why do most election polls study approx. 500 people even if the population is many million?

It gets hard to analyze data when too much is collected
It costs too much to survey more than about 500 people
With 500 people the SD is already small enough to make a good estimate of the actual population With 500 people the SD is already large enough to make a good estimate of the actual population

Generalize to Score Variables

Score variables: Interval and ratio variables
With score variables, it is the scores that are distributed (not the items in a given category)

Example: age of person eating at the Food Court
Draw a sample to make inference of average age of person eating at the Food Court

$<\mathbf{1 7}$	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$	$\mathbf{2 1}$	$\mathbf{2 2}$	$\mathbf{2 3}$	$\mathbf{2 4}$	$\mathbf{2 5}$	$\mathbf{> 2 5}$
6	18	23	34	32	18	26	29	14	10	10
	2	1	3	1	2		1			

Estimating real distribution

2π	$\mathbf{1 7}$	$\mathbf{1 8}$	$\mathbf{1 9}$	$\mathbf{2 0}$	$\mathbf{2 1}$	$\mathbf{2 2}$	$\mathbf{2 3}$	$\mathbf{2 4}$	$\mathbf{2 5}$	$\mathbf{2 5}$
7	18	23	34	32	18	26	29	14	10	10
	2	1	3	1	2		1			
	1	2	4	6	3	2	2			

Mean of the actual population: 20.63 Want to predict Mean of the sample: $19.4 \quad 20.1 \quad$ more accurately? SD of the sample: $1.9 \quad 1.6$
Range of $1 \mathrm{SD}=17.5-22.3 \quad 18.5-21.7$ Use a larger Range of $2 S D=15.9-24.2 \quad 16.9-23.3$

