
 
6.2 Dynamical systems explanations 
 
Researchers in the life sciences often compare their sciences to physics. Explanations in many 
domains of physics appeal to laws that characterize how variables describing a system will 
change over time (hence, dynamical laws, often taking the form of differential equations). The 
explanation involves a demonstration that from the law and a specification of conditions at one 
time, one can derive what will happen at other times (Hempel, 1965). In many cases the 
application of laws is far from simple and requires computational simulation to determine the 
consequences of the laws. Some cognitive and brain researchers apply similar strategies to 
explain behavior, and some philosophers have embraced these as fully legitimate explanations 
that do not require characterizing a mechanism.  
 
A common approach of these investigators is to characterize a state space—a multidimensional 
space in which each dimension corresponds to a variable that describes the system. Consider 
three dimensions on which a gas can vary: pressure, volume, temperature. Characterizing such 
a space would be of little explanatory interest if in fact the system could evolve from any point 
in the space to any other. What laws do is restrict the trajectory the system can take through 
the space. The gas law: 
 Pressure = Volume x Temperature 
Imposes the restriction that when volume is held constant and temperature increases, so must 
pressure. If the actual system is shown to be similarly limited in its possible trajectories, then 
proponents of nomological explanations argue that the laws characterizing the possible 
trajectories through the state space explain why the system behaves as it does.   
 
The gas law example does not specifically take time into account. But other laws spell out how 
values of variables will change over time. These give rise to what are termed dynamical systems 
explanations. Some dynamical laws, such as xt+1=xt+1, are relatively simple: this law simply 
asserts that the value of the variable x increases by 1 at each timestep. If that is what happens, 
then the law explains why the variable follows this ascending trajectory. In many cases, the law 
will involve a more complex equation and produce surprising results. A mathematical function 
that is often employed to illustrate complex behavior is the logistic map function, xt+1=Axt(1-xt). 
The reader is invited to try various values of A between 3 and 4, picking an initial value of xt 
between 0 and 1, and calculating the results for several steps. For example, with A=3.3, values 
will initially fluctuate (a period referred to as the transient) but eventually begin to oscillate 
between two values (.47943 and .82360). When A is increased to about 3.5, the values, after 
the transient, will jump sequentially between four values (approximately .49, .87, .38, and .83).1   
 

 
1 The logistic map function is of interest because it can also demonstrate what is known as deterministic chaos—
for most values above A=3.6, the function will trace out a continually changing set of values without ever 
repeating, assuming one calculates the full real value of x. For illustrations, go to 
https://www.youtube.com/watch?v=ovJcsL7vyrk.  



These stable values are referred to as attractors—the idea is that values in their proximity will 
move closer to (fall into) the attractor. Figure 16A shows a two-dimensional state space in 
which there is just one fixed point attractor; initial values anywhere in the state space will fall 
into the attractor at the center. Sometimes attractors have more complex structure, such as the 
cyclic attractor shown with a dashed line in Figure 16B. In this case, no matter where the 
system starts, it arrives at a circle, around which it will progress indefinitely. Sometimes a space 
may have multiple attractors so that, starting from different points, the system may settle into 
different attractors. By representing a state space and identifying attractors in it, researchers 
can determine how the system will evolve from whatever point it currently occupies.  

 
Figure 16. Attractors in a two-dimensional state space. A. A point attractor. B. A cyclic 
attractor (dashed line). 

 
A much-cited dynamical model developed to explain animal behavior is the Haken-Kelso-Bunz 
(HKB) model of coordination dynamics. It describes phenomena such as the coordination 
between one’s legs in walking (Haken, Kelso, & Bunz, 1985). To experience what the model 
describes, place both hands in front of you with the forefinger extended (Figure 17). Pretend 
your fingers are windshield wipers on a car. In most cars, wipers move in parallel (both tips 
move left, then both tips move right), but sometimes they move in an antiparallel fashion (the 
tips come together and then move apart).  Try each pattern of movement, first slowly and then 
gradually faster. At slow-speeds most individuals can maintain both patterns, but when they try 
to speed up, they can only maintain the antiparallel pattern. The HKB model offers an 
explanation. It starts by describing the movement with the equation: 

𝑉(𝜙) = 	− a	sin𝜑 − 𝑏 sin 2𝜙 
in which f is the phase relation between the fingers (or limbs more generally) and the ratio b/a 
is inversely related to the rate. In the state space described by the equation, when b/a is high, 
corresponding to a slow speed, there are two attractors. However, when b/a is low there is just 
one attractor. The loss of the attractor at faster speeds, on the dynamical systems account, 
explains your inability to maintain the parallel finger movement. 
 



 
Figure 17. Parallel and antiparallel movement of fingers. Both can be maintained at slow 
speeds, but at faster speeds, only the antiparallel movement can be maintained. Figure 
by Hermann Haken released under the Creative Commons Attribution-ShareAlike 3.0 
License. 

 
A notable feature of the HKB model is that the variable employed refers to a feature of the 
phenomenon (the angle between limbs), not to any proposed mechanism that is decomposed 
into components so as to account for the phenomenon. Proponents of dynamical systems 
accounts maintain that one does not need to enter into the nervous system to explain the 
inability to maintain the asymmetric movement. The phenomenon itself has structure that 
provides explanation (Chemero, 2000; Chemero & Silberstein, 2008). There are other examples 
where, merely from the characterization of the structure of phenomena one can determine 
specific (and often unexpected) features of it. For example, from knowing the structure of tides 
around the ocean, one can determine that there must be a point in the ocean in which there is 
no tide. Likewise, from understanding how the circadian clock, discussed in section 5.1, 
responds to light stimuli, one can infer that in some organisms there is a time at which 
exposure to light will cause the amplitude of the oscillations to become 0 (which is to say, the 
clock will stop as there is no longer an oscillation to represent time). This necessity was in fact 
demonstrated before the mechanism of circadian oscillation was known and does not depend 
on any details about the mechanism (Winfree, 1987; for discusssion, see Bechtel, 2017). 
 
6.3 Dynamic mechanistic explanations 
 
As we noted in discussing mechanistic explanations in section 6.1, when mechanisms depart 
from sequential organization, it becomes challenging to mentally simulate their behavior. Even 
a simple feedback loop can present a challenge. As many people are aware from examples like 
thermostat controlling furnaces, feedback loops can generate oscillations (the temperature will 
rise after the thermostat turns the furnace on and fall after it turns it off). Accordingly, when an 
intracellular feedback mechanism was proposed to explain circadian rhythms (section 5.1), it 
was expected to generate oscillations. But the question was whether the oscillations would be 
sustained indefinitely or dampen over time. To address that question, Goldbeter (1995) created 
a computational model that showed that under biologically plausible conditions, the 



mechanism would instantiate a cyclic attractor (Figure 16B). He therefore concluded that the 
biological mechanism implementing feedback could oscillate indefinitely. This explanation is 
much like that provided by the HBK model in section 6.2, but here the variables refer to 
hypothesized operations of the components of the mechanism. Since in this case the 
explanation is a hybrid, drawing upon both mechanistic decompositions and the use of 
computational models to characterize the dynamical behavior of the mechanism, Bechtel and 
Abrahamsen (2010) refer to them as dynamic mechanistic explanations.  
 
Perhaps the best-known dynamical computational model in neuroscience is the Hodgkin-Huxley 
model of the action potential. Hodgkin and Huxley (1952) decomposed the current across the 
neuron membrane into components for sodium, potassium, and other ions and developed an 
equation for how each contributed to the current I across the membrane (Figure 18). From this 
they produced an overall equation describing how the current changes as the electrical 
potential changes:  

𝐼! = 𝐶!
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In this equation I is the current, Cm is the capacitance due to the membrane, Vm the electrical 
potential across the membrane, VK, VNa, and Vl represent the potential due to potassium, 
sodium, and leakage (other ions), and gK, gNa, and gl the conductance for the various ions. n, m, 
and h are parameters used to fit the model to data. From this equation, one can generate the 
pattern of the action potential (Figure 2). 
 

 
Figure 18. Hodgkin and Huxley’s (1952) representation of the current I across the 
membrane in terms of the currents for sodium (Na), potassium (K) and leakage (l) due to 
other ions. E represents the membrane potential and R the resistance for each ion. 
Reprinted with permission from John Wiley and Sons. 

 
Hodgkin and Huxley’s accomplishment, which earned them the Nobel Prize for Physiology and 
Medicine, has been the focus of considerable philosophical controversy. Weber (2005) treated 
it as an instance of an explanation that derives a phenomenon from a law. In the nomological 
tradition, laws are typically distinguished from causal claims, and Weber (2008) subsequently 
offered a revised account according to which Hodgkin and Huxley offered a causal explanation 
in which the ion currents caused the action potential. While granting the usefulness of the 



model as a description of the action potential, Craver (2006, 2008) has argued that it is not 
explanatory since it does not include, let alone characterize, what he takes to be the critical 
parts of the mechanism generating the action potential, the gates on the channels through 
which ions are allowed to enter or leave the neuron. It turns out that the coefficients of the 
parameters n, m, and h correspond to features of these gates, but this was only discovered 
years later. At best, Craver allows, Hodgkin and Huxley offered a sketch of an explanation that 
was only provided later. More recently, Levy (2013) has argued that the model does in fact 
provide a mechanistic explanation in so far as it presents the whole current as arising from the 
aggregate activity of each of the ions. The second, third, and fourth summed terms in the 
equation represent the current generated by each ion as a result of the difference between its 
current potential and the membrane potential. Levy contends that the Hodgkin-Huxley model 
captures the crucial activities in the mechanism. As a result, it offers a dynamical mechanistic 
explanation of how the changing concentrations of the ions give rise to an action potential. This 
debate illustrates different stances philosophers take on the nature of explanation and what is 
required to explain a phenomenon. 
 
6.4 Network and connectomic explanations  
 
As we have seen in various sections of this Element, the nervous system, and its various 
subparts, are often characterized as networks. The crucial idea of a network is that it consists of 
entities (represented as nodes) and connections between them (represented as edges). 
Networks are ubiquitous—any time entities are connected, they can be represented as a 
network. But some networks have distinctive properties which are sometimes viewed as 
explaining aspects of the behavior of the system instantiating the network.  
 
One of the earliest examples of a network analysis was Leonhard Euler’s solution to a problem 
posed by the bridges crossing the Pregel river in the Prussian town of Konigsberg (Figure 19A): 
can one cross each bridge just once on a walk? He represented the different landmasses with a 
node and the bridges with an edge (Figure 19B). From this abstract representation Euler proved 
no route is possible. For it to be possible to cross each bridge just once, each node other than 
the ones representing the starting and ending locations must connect to an even number of 
bridges. In this case all four nodes connect to an odd number of bridges; accordingly, such a 
walk is not possible.  



 
Figure 19. A. Joachim Bering’s 1613 map of Konigsberg with the Pregel river and the 
seven bridges indicated. B. Network graph, in which nodes represent different 
landmasses and edges the bridges between them. 

 
Starting in the mid-20th century, investigators identified a number of important features of 
networks that determine the properties of any actual system instantiating the network. Here 
we introduce just two concepts that turn out to be extremely important for understanding the 
brain: small worlds and hubs. To introduce these, we need to introduce some of the measures 
used to describe networks. One is the average of the shortest paths between each two nodes. A 
second is how clustered a network is: to how many of its neighbors a node is connected. In a 
randomly connected network, the average shortest path is short but clustering is low. In a 
regular lattice (a structure in which every node is connected to each of its neighbors), clustering 
is high (since it is connected to all its neighbors) but the average shortest path is long. Watts 
and Strogratz (1998) showed that many networks in the real world are more like the one in 
Figure 20, in which the average shortest path is relatively short but nodes are also highly 
connected to their neighbors (collections of nodes that are highly connected to each other are 
often called modules). They call these networks small world networks.  
 
A third measure is how the degree, i.e., the number of connections from each node, is 
distributed. If degree is distributed normally (i.e., if values are equally distributed about the 
mean and decrease with distance from the mean), no node will be especially highly connected. 
But in many real world networks, Barabási and Bonabeau (2003) showed the degree is not 
distributed normally but according to a power law (a mathematical relation of the form y=ax-k). 
This results in a few nodes being highly connected while most have few connections. As 
illustrated in Figure 20, those highly connected nodes can be the basis for a local module 
(provincial hubs) or can serve to integrate modules (connector hubs). 
 



 
Figure 20. A network with relatively short average path between any two nodes, 
relatively high clustering, with some nodes having many more connections than others 
and hence serving as hubs. 

 
A number of researchers have analyzed nervous systems in network terms. In section 4.2, we 
described how researchers produced a complete connectome for the nematode worm C. 
elegans. This network turns out to have small world properties. Developing connectome 
representations for other species at the level of individual neurons is extraordinarily 
challenging, although researchers are getting very close to having such a map for the fruit fly 
(which has about 100,000 neurons). Instead, researchers concerned with connectivity in the 
neocortex of mammals have focused on connections between brain areas (e.g., Brodmann 
areas) and are analyzing these for their properties (Sporns, 2010, 2012). The principles of short 
average path length, high clustering, and hubs all appear to apply. Van den Heuvel and Sporns 
(2011) have further shown that the human brain instantiates a rich club structure—a set of 
regions, each of which serves as a hub, are more connected than would be expected even given 
their high degree. Given their network properties, these are thought to serve as a 
communication backbone for the whole brain. 
 
Given the potency of concepts such as these to explain activity in networks, Huneman (2010) 
argues for treating topological explanation as a distinct form of explanation. In particular, he 
distinguishes it from mechanistic explanation since it does not focus on the contribution of 
parts but only on how they are connected. In more recent work, Huneman (2018) has focused 
on how topological and mechanistic explanations can be integrated. The basis for integrating 
them is that topological principles provide a basis for understanding the consequences of 
different modes of organization in biological mechanisms. When topological principles such as 
small-world organization suffice to account for the phenomenon, it is the organization, not 
features of the individual components, that explain the behavior of the mechanism (Levy & 
Bechtel, 2013). 
 



6.5 Control mechanistic explanations 
 
In philosophical discussions, mechanisms are often portrayed as ready to operate whenever 
their start or setup conditions are realized (Machamer et al., 2000). To experiment on 
mechanisms using techniques such as those introduced in section 3, researchers try to set up 
conditions in which they do operate in a regular manner. However, in an organism the 
continuous operation of a mechanism is often not needed and can in fact be harmful (just 
consider continually contracting the muscles in your legs). Instead, mechanisms need to be 
activated and deactivated as needed by the organism. The same is true of the machines human 
make. We do not desire a furnace to produce heat all the time. Accordingly, we employ 
thermostats that turn the furnace on when the temperature drops too low and off when it is 
warm enough. The thermostat represents a second machine that operates on the primary one, 
changing some of its parts so that it operates in different ways at different times. Biological 
organisms are replete with mechanisms that operate on other mechanisms. That is, in fact, 
what neurons and neural mechanisms do: they control the operation of other mechanisms such 
as muscles, glands, etc.  
 
There is an important difference between biological mechanisms and human-built machines. 
We design machines to be controlled by us. We turn our car engine on or off, and when on, we 
control the fuel supplied to it through depressing the accelerator. Who controls biological 
mechanisms? The short answer is the organism itself. Recognizing this, Maturana and Varela 
(1980) introduced the crucial idea that organisms are autopoietic: they build themselves by 
procuring matter and energy from their environments and directing it into the synthesis of their 
own bodies. This requires control over procurement and construction mechanisms. In addition, 
the tissues that make up organisms are prone to break down, requiring organisms to detect 
failures and deploy repair mechanisms (Rosen, 1972). In virtue of constructing and repairing 
themselves, organisms are sometimes referred to as autonomous systems (Moreno & Mossio, 
2015). 
 
Organisms are not agents over and above the mechanisms that constitute them. Autonomy 
results from the action of the mechanisms constituting an organism. More specifically, it results 
from the deployment of control mechanisms. Like a thermostat, control mechanisms act on and 
change the configuration of other mechanisms in light of conditions either in the organism or 
its environment (Winning & Bechtel, 2018). To do this, control mechanisms must make 
measurements (or utilize measurements made by other control mechanisms upstream of 
them). The measurement component of the control mechanism results in the state of the 
control mechanism being determined by the value of the variable being measured. Again, the 
thermostat provides a model—a component internal to the thermostat is altered by the 
temperature in the environment. Given the measurement, the control mechanism produces a 
specific action on the controlled mechanism. This means that control mechanisms must be 
properly configured so that the changes they make in other mechanisms are appropriate to the 
circumstances the organism faces.  
 



The word autonomy includes the Greek words for self (autos) and law (nomos) and thus 
signifies that an autonomous system sets laws for itself. Civil laws set norms for behavior. In 
determining the behavior of other mechanisms, control mechanism likewise impose laws or 
norms that govern that behavior (Winning, 2020). In the case of the thermostat, these norms 
ultimately derive from the humans who build and set thermostat. Biological control 
mechanisms are not designed by humans. Rather, they are the product of evolution. In the 
course of evolution, those control mechanisms are retained that apply norms that enable 
organisms to maintain themselves and reproduce. Those that do not, disappear over the course 
of evolution. 
 
One reason control mechanisms are so crucial to living organisms is that organisms regularly 
confront different circumstances that require different responses. They need to be able to 
adapt to these. Some circumstances repeat and, like a thermostat, control mechanisms can 
direct the same response on each occasion. But organisms often confront novel situations that 
require tailoring their basic mechanisms in new ways. To deal with these situations, control 
mechanisms must exhibit a degree of flexibility, directing basic mechanisms to operate in novel 
ways. In section 10, we will explore ways in which control mechanisms are organized so as to 
support creating effective responses to novel situations.   
 
6.6 Summary 
 
We have introduced several different perspectives on explanation: mechanistic, dynamic, and 
topological. Each appeals to different factors and seems applicable to specific phenomena. This 
suggests a pluralistic perspective, recognizing different types of explanation. It also suggests 
that different perspectives might be integrated, and we offered dynamic mechanistic 
explanations as one integrated perspective. Lastly, we noted the importance of control in 
biological organisms and described how the mechanistic perspective can be extended to 
characterize control mechanisms. 


