
9. What is distinctive about neocortex?   
 
As we noted at the outset, the neocortex is the brain area that has expanded the most in 
primates, including humans. It is clearly important for human life, especially for those activities 
that humans distinctively perform. But, as we have stressed through this Element, other brain 
structures are also important. With few exceptions, the neocortex does not take over their 
activities but supplements them. The relevant question is what is the distinctive type of 
processing that occurs in the neocortex. One suggestion comes from the studies of decorticate 
cats discussed in section 5.4. While cats in which the neocortex is removed can live in protected 
environments, they would be unlikely to fare well in the world in which they confront variable 
conditions, including predators. Based on these studies, Buchwald and Brown (1973) proposed 
that the neocortex serves for detailed analysis of stimuli, extracting and representing complex 
and subtle information about an organism’s environment and identifying relations between 
different bits of information. Such information is extremely useful in solving problems posed by 
a variable environment. In this section we investigate how the neocortex can perform these 
tasks. 
 
9.1 (Artificial) neural networks and pattern extraction 
 
The neocortex is organized in a distinctive manner that supports the hypothesis that it acts to 
extract subtle and complex information from sensory inputs. While many brain areas, including 
both the basal ganglia and the hypothalamus, are organized as interconnected nuclei, the 
neocortex is laid out much more systematically. As we discussed in section 2.4, Brodmann 
(1909/1994) differentiated areas within the neocortex based on the thickness of layers 
identified in stained cortical tissue. Tracing axons from neurons in one area reveals that they 
mostly project to selected neurons in specific other areas, resulting in relatively orderly 
anatomical hierarchies such as shown in Figure 14B. At the top of the figure are areas in the 
temporal and parietal lobe. Both streams, however, continue into the frontal cortex, reaching 
the far frontal area known as the prefrontal cortex, on which we will focus in section 9.4.    
 
To see how such a (anatomically) hierarchically organized network could enable the extraction 
of information, consider artificial neural networks (ANNs)—computational systems that were 
inspired by the architecture of the neocortex. As illustrated in Figure 23, these networks consist 
of layers of artificial neurons, commonly referred to as units. A weighted connection links a unit 
in one layer to units in the next higher layer; in processing, the weight is multiplied by the 
activity value of the unit in the lower layer to determine an input to the higher-level unit. Each 
higher-level unit accumulates these inputs and applies a nonlinear mathematical operation to 
determine its activity value. Such a network will generate output activity from values supplied 
on its input layer and can be trained to generate desired outputs for different inputs. A 
common way to train ANNs (known as backpropagation) is to let the network generate an 
output from whatever weights it has and then to apply an algorithm to gradually change 
weights so as to reduce the difference between the actual and desired output. Over multiple 
iterations of training, such networks can learn to respond similarly to different instances of the 
patterns. For example, a network can learn to recognize pictures containing different species of 



dogs. As a result, they are often characterized as recognizing patterns. When successful, these 
networks can generalize and recognize patterns when tested with novel stimuli (Bechtel & 
Abrahamsen, 2002; Buckner & Garson, 2019). In recent years, researchers have developed 
deep-learning networks that employ numerous layers of units between the input and output, 
with the weights on different layers of connections each able to be adjusted during learning to 
achieve better performance (Sejnowski, 2018). An intriguing finding is that when deep learning 
networks have been deployed to model processing of visual stimuli, they end up acquiring an 
organization of nodes that is similar to that found in the human visual system (Yamins & 
DiCarlo, 2016). 

 
Figure 23. Simple artificial neural network. Activation values for the input units at the 
bottom are multiplied by weights on the connections (indicated by arrows) to determine 
the activation of units in higher layers. Example weights and activation values shown. 

 
ANNs are powerful systems for recognizing patterns. Since the task of vision is to extract 
patterns in visual stimuli, it is not surprising that perceptual processing areas in the brain are 
organized in the same manner. It is also easy to see how an ANN-style architecture can 
implement motor control: allow inputs to encode a high-level description of an action and the 
network can be trained to generate outputs that implement the specific motor activities 
required. One can extend pattern recognition beyond perceptual and motor processing to more 
clearly cognitive tasks that involve a sequence of inferences. Each layer in a network can be 
viewed as making an inference based on inputs from the previous layer (e.g., infer that an 
object is a bird), providing the next layer an input from which it can make a further inference 
(e.g., that it can fly). Accordingly, ANNs are widely used to perform reasoning and problem-
solving tasks, and the fact that the neocortex is organized in a sequence of connected layers 
suggests that it carries out reasoning and problem-solving activities in a similar manner. 



 
9.2 The challenge of explaining the systematicity of thinking 
 
When theorists advanced ANNs as models of human cognitive processing in the 1980s, they 
were confronted by a host of objections, one of which is that ANNs cannot account for what is 
termed the systematicity of human thought. Systematicity is exemplified in arguments used to 
establish conclusions in such fields as mathematics, law, and science. Consider the argument: 
 

(1) A dog is a color 
(2) A color is a musical composition 
(3) Therefore, a dog is a musical composition.  

 
Even though the premises do not make sense and the conclusion is false, logicians consider the 
argument to be valid: if dogs were colors and colors were musical compositions, the conclusion 
would have to be true. It is for this reason that valid arguments serve to establish conclusions 
from accepted premises. What makes the argument valid is not the meaning of its words but 
how they are related: any argument in which the premises and the conclusion exhibit the same 
relations is valid. The importance of such structure (referred to as syntax) extends to language 
generally. Knowing the syntax of a language enables you to construct and understand an 
indefinite number of sentences with the same structure.  
 
In the era before researchers started to invoke ANNs to explain cognitive activities, most 
researchers assumed that cognition worked much in the manner of logical arguments: an 
individual was assumed to encode thoughts in structured representations and apply rules that 
depended on their structure (syntax) to develop new thoughts. This ensured the systematicity 
of thinking. Since ANNs don’t apply rules to structured representations, many theorists, 
including many philosophers (Fodor & Pylyshyn, 1988), argued they could not account for 
thinking (see Buckner & Garson, 2019, section 7).  
 
Proponents of ANNs have advanced several responses to this challenge. One is to treat the 
structures exhibited in thought as patterns to be learned by a neural network realized in the 
neocortex. Figure 14B represents the visual processing system much like a multi-layer artificial 
network. Each brain region shown at higher-levels extracts additional patterns from the 
patterns recognized at lower-levels. Brain areas in the central and anterior inferotemporal 
cortex, at the top of the ventral stream (shown on the right of Figure 14B and labeled 
inferotemporal stream), respond to patterns corresponding to abstract categories such as 
shape, color, or faces. Some areas in this region also respond differentially to categories of 
objects (e.g., dogs, houses). Barsalou (2008) has suggested how this process of identifying more 
abstract patterns from more concrete ones can be extended to relational categories such as 
“on top of” or “a type of.”1 A further challenge is to explain the ability to connect the states in 
the network that represent these categories in flexible (and sometimes arbitrary) ways to 

 
1 An important part of Barsalou’s project is to show that the categories we use in thinking, including abstract ones, 
are perceptually grounded.  



capture systematic relations as illustrated in the above example of a valid but nonsensical 
argument. O’Reilly et al. (2014) has crafted an ANNs that can represent many such relations 
and employs a simulation of the basal ganglia (section 5.4) to enable flexible combination of 
these relations with other mental concepts. 
 
To date, models of how the neocortex can implement systematic thought are hypothetical 
proposals, not grounded in details of neural activity or connectivity. What they show is that it is 
possible for a structure like the neocortex, assisted by the basal ganglia, to produce systematic 
cognition. A couple of considerations should be kept in mind, however: human thinking is not 
perfectly systematic (we make inferential errors) and we often employ other types of 
reasoning, such as reasoning by analogy and metaphor. Further, many animals that are 
generally not thought to engage in high-level cognitive reasoning also have an extensive 
neocortex. The ways in which humans use the neocortex, especially the prefrontal cortex, may 
reflect in part the cultures in which we live and modes of learning supported by those cultures. 
One thing these cultures make available are languages, which are themselves powerful 
representational tools both for logical reasoning as well as analogical and metaphoric 
reasoning. The networks in our brains, especially those in the neocortex, have learned to 
accommodate the structures available in the languages we acquire, and this may be a 
significant part of the explanation of our ability to engage in systematic thinking. 
 
9.3 Differences between the neocortex and artificial neural networks 
 
ANNs provide a powerful framework for modeling important features of the neocortex, but 
there are significant respects in which the neocortex is different from ANNs. First, in most 
ANNs, processing connections are only feedforward. Error is propagated backwards during 
learning, but not in processing. Yet, in the neocortex there are at least as many recurrent 
projections, projections from anatomically higher-level processing areas to sensory inputs, as 
forward projections. Although the full function of these recurrent projections is not 
understood, they allow a response in a higher-processing region, activated by whatever means, 
to activate other patterns in the lower-level input areas that are frequently associated with that 
response.  
 
The recurrent activation of lower layers from higher layers provides an explanation of what is 
referred to as top-down processing, according to which the concepts one applies to stimuli 
affects how one sees them. These is compelling evidence that we engage in such processing. In 
a classic experiment, Bruner and Postman (1949) flashed playing cards to participants and 
asked them to name them. Among the cards were abnormal cards, such as a red four of spades. 
Participants would regularly report a normal card, e.g., a four of hearts, although sometimes 
noting that something seemed to be wrong with the card (but unable to say what). Feedback 
from higher-visual areas on earlier-visual areas overrides the input from the senses. It can also 
explain abilities such as visually imagining a bird when one hears the word “bird” (Kosslyn, 
1994) or reporting seeing features of a bird that were not visible in a given presentation. 
 



The prevalence of recurrent projections in the neocortex has led some neuroscientists (Friston, 
2010) and philosophers (Clark, 2013) to advance predictive coding, an account of neural 
processing that reverses the more traditional account that starts from activation of the senses 
and proceeds to recognition of objects. Instead, these theorists propose that higher processing 
areas make predictions about subsequent sensory input. For example, if one looks down after 
viewing a person’s face, one expects that one will see a human torso. If the prediction is true, 
no sensory information is processed and the neural mechanism increases its confidence in 
making such a prediction in the future. But if the sensory input violates the prediction—one 
sees the torso of a bear—sensory information is processed further. If violations of expectations 
are frequent enough, one learns from them and makes different predictions in the future.    
 
A second feature distinguishes processing in the neocortex from that in ANNs: all regions in the 
neocortex are also interconnected with nuclei in the thalamus and the basal ganglia (section 
5.4), both receiving inputs from them and sending outputs to them. In many cases, these 
projections form loops that have functional significance. For example, as we have noted in 
section 6.3, negative (also positive) feedback loops generate oscillations such as those 
registered with EEG (section 3.3). The result is that there are ongoing oscillations in the 
neocortex at many different frequencies (Buzsáki, 2006). These affect how information is 
processed (discussed further in Bechtel, 2019). As just one example, when subthreshold 
oscillations in two different brain regions are synchronized, inputs from one region are more 
likely to generate action potentials in the other region. Recently, researchers have identified 
traveling waves—patterns of oscillation that move from region to region in the neocortex—and 
advanced evidence that these modulate such things as sensitivity to perceptual stimuli (Davis, 
Muller, Martinez-Trujillo, Sejnowski, & Reynolds, 2020). Another example involves loops that 
include the basal ganglia, which may be particularly important in controlling processing in the 
neocortex. As we discussed in section 5.4, the basal ganglia by default inhibit other brain 
regions. As a result of loops with the thalamus and neocortex, the basal ganglia decide which 
activity in the neocortex is released from inhibition and allowed to continue.  
 
9.4 Cognitive control and the prefrontal cortex 
 
An important feature of human cognition is what is referred to as cognitive control: the ability 
to resist habitual or emotionally salient behaviors in order to act in more context-appropriate 
ways (often ways that are expected to be more beneficial in the long term) (Miller & Cohen, 
2001). For example, when a European or North American drives in Thailand, she needs to resist 
her habitual responses to drive on the right side and follow instead Thailand’s rule of driving on 
the left. As another example, if we promised our best friend that we’d show up for his party at 
11pm, we might have to suppress our physical and emotional exhaustion to honor our promise. 
Such activities are common among humans. Even when not required to do so, children often 
share their candies fairly with their friends, suppressing their desire to eat more themselves. 
 
Cognitive control draws upon the processing capacities of a part of the neocortex that we 
haven’t discussed much so far, the prefrontal cortex, which occupies the front part of the 
frontal lobe (the rear portion primarily contains areas involved in processing motor commands). 



Like posterior areas of the brain involved in vision, the prefrontal areas comprise multiple 
different processing areas that have been associated, largely through single-cell recording 
studies in monkeys and neuroimaging studies in humans (see section 3.3), with a variety of 
capacities. These are organized into processing streams that extend those involved in visual 
processing shown in Figure 14B. The dorsal “where” or action-oriented stream gives rise to 
areas that represent actions, often complex actions, and the individual’s evaluations of those 
actions. As one moves forward in the prefrontal cortex, the areas first encountered code for 
learned associations between sensory stimuli and motor responses. Areas yet further forward 
code more abstract rules between contexts and classes of actions, including social and moral 
norms (Carlson & Crockett, 2018) and facilitate thinking about hypothetical actions and future 
states of the world. In contrast, the continuation of the ventral stream represents increasingly 
abstract features of objects as well as evaluations of these objects.  
 
Recurrent projections are especially prevalent in the prefrontal cortex. These enable individual 
areas to maintain active states for prolonged periods after the initiating stimulus has ceased. 
This provides for a form of temporary memory known as working memory, which is taken to be 
particularly important for carrying out complex actions or actions after brief delays. Goldman-
Rakic (1995) demonstrated how animals could retain information in these circuits until needed 
to perform the action. Fuster, Bodner, and Kroger (2000) emphasize how these circuits support 
the integration of information from different modalities needed for temporal structuring of 
behavior. However, the active maintenance of information needs to be coupled with flexible 
and appropriate update of information to be adaptive—when a social rule is no longer 
appropriate in guiding behaviors in a particular context, the cognitive system needs to be able 
to shut down the associated neural activities and replace them with ones that represent the 
currently appropriate social rules. Interconnections between prefrontal areas and the basal 
ganglia are important in doing this (section 5.4). 
 
These capacities, especially the ability of prefrontal areas to encode and maintain active 
representations of goals, rules, and values, suggest how cognitive control is possible. As these 
areas are connected to other brain areas, these representations can, for example, activate the 
relevant sensory inputs, memory representations, and motor outputs needed to perform 
context-appropriate actions while inhibiting actions that might be triggered directly by sensory 
stimuli (Miller & Cohen, 2001).  
 
We should note a few features to this account of cognitive control. First, cognitive control 
involves multiple levels in the various hierarchies in the neocortex: a lower-level motor 
response can be controlled by contextual information at a higher-level, which can in turn be 
modulated by superordinate contextual information. For example, children are often told to 
speak in a softer voice while indoors. They often learn quickly, though, that this rule only 
applies with the presence of adult supervision. The context of having an adult nearby, then, 
further contextualizes the indoor rule (Badre & Nee, 2018). Second, in addition to top-down 
control signals travelling from anatomically higher-levels to lower-levels in a given information 
processing hierarchy, recent empirical literature reveals control signals that are bottom-up and 
lateral, enabling controllers across different levels and hierarchies to constrain each other 



(Cisek & Kalaska, 2010). We turn to violations of hierarchical control organization in the next 
section. 
 
9.5 Summary 
 
The cortex, especially the neocortex, is organized differently than the rest of the brain. Within 
the neocortex there is a hierarchy of processing areas in which neurons in one area project to 
those in subsequent ones. ANNs, modeled on this pattern of organization, suggest that the 
neocortex is a powerful pattern recognition system. We sketched how this structure can 
account for the systematicity exhibited in human cognition. We also emphasized the 
importance of recurrent projections in the neocortex and the connections of regions 
throughout the neocortex with subcortical structures, especially the thalamus and basal 
ganglia, and sketched how these enable humans to exert cognitive control. 
 


