Neurophilosophical Foundations 3

The Artifact Problem

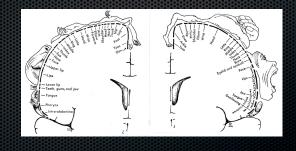
- Techniques to procure evidence alter the phenomenon about which scientists are trying to get evidence
 - Are the resulting observations merely a reflection of the alterations the investigator has made?
- Scientists confronted with observations made with new instruments are often very suspicious that they are artifacts
 - At the outset the signal is often very weak and variable--variations in the technique produce quite different responses
 - The procedures by which the instrument works are not sufficiently understood
 - We still don't know why Golgi's silver stain affects only some neurons
 - Are there is considerable disagreement about the source of increased blood flow detected with fMRI

Practical Solution to the Artifact Question

- Does the technique/instrument generate well-defined or determinate results?
 - If one isn't tracking anything, one would not expect a clear pattern in the results
- To what degree do the results from the technique/instrument agree with results generated by other means?
 - Would not expect perfect overlap since the new technique/ instrument is intended to generate new information
 - But in the domains where they overlap they should agree (or the new technique is calibrated so that it does agree)
- To what degree do the results cohere with what our theories led us to expect?
 - We believe results that seem plausible given what we think we know

Lesion Studies: Two Examples

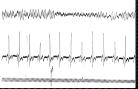
- Challenge 1: Knowing just what is lesioned
- Tan (Leborgne)
 - Broca met Tan late in his illness and could not examine his brain until after he died
 - By then the damage was widespread and Broca had to argue as to its likely origin
- HM (Henry G. Molaison)
 - HM suffered from serious epileptic seizures which Scoville sought to reduce by removing the hippocampus from which they seemed to originate
 - For the next 40+ years of his life HM acquired no new episodic memories
 - Although Scoville's aim was to resect the hippocampus, MR scans in 1998 indicated some of the hippocampus was initially spared (but atrophied) and nearby areas were damaged


Lesion Studies

- Challenge 2: What operations were due to the lesioned area?
 - Other areas may be secondarily altered
 - Neuroplasticity may result in some "recovery" of function
 - What operation involved in the lost ability is directly affected?
- Tan
 - Broca spoke of the faculty of articulate speech
 - In the 1970s the deficit was interpreted as a deficit in syntax
 - There is huge variability in patients with damage in Broca's area
- HM
 - Are episodic memories stored in the hippocampus?
 - Or is the hippocampus only involved in regulating access?
 - And are other functions performed by the hippocampus?

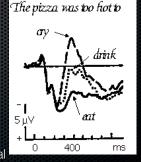
Stimulation Studies

- Just as eliminating a functioning component should change behavior in a determinate manner, so should adding more of it into the mechanism
- Challenge 1: Is what is added working in the same as the endogenous component?
- Challenge 2: Just what does the added component contribute to the mechanism?


Delgado's Bull Experiment

- Delgado claimed he found a center that inhibited agression
- Valenstein: Delgado really activated a pathway that controlled movement

Electrophysiological Recordings

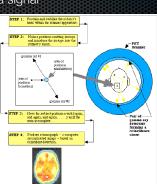

- Electroencephalogram (EEG): Electrodes placed on the skull detect ongoing electrical signal
 - Berger (1930) distinguished large amplitude, slower waves during rest (8-12 Hz alpha rhythms) and lower-frequency, faster waves after stimulation (12-30 Hz beta rhythms)

- Subsequent discovery of both higherfrequency (>30 Hz gamma rhythms) and lowerfrequency (4-7 Hz theta and 0.1-4 Hz delta rhythms) oscillations
 - Much of the focus directed at the lower-frequency rhythms associated with stages of sleep
- These oscillations were interesting even as researches were uncertain as to their origin
- But until recently they did not seem to have much to do with cognitive activities--BUT THAT HAS CHANGED DRAMATICALLY

Evoked Response Potentials (ERPs)

- By time-locking the EEG signal to the presentation of a stimulus and averaging over many trials, researchers could extract a detectable signal
 - Thought to reflect the brain's processing of that stimulus
 - N400 (discovered at UCSD by Marta Kutas) thought to reflect violations of semantic expectations
- ERP studies can provide high resolution information about timing of activity
 - But little information about where the signal is coming from
 - As there is no general solution to the inverse problem--inferring from what is recorded at different electrodes to the source of the signal

Single-Cell Recording

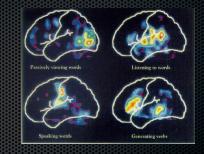

- Once the technique of inserting an electrode next to a neuron and recording its electrical behavior was developed it became the workhorse of sensory (especially visual) neuroscience
- Challenge 1: Finding the full set of stimuli that elicit response in a given neuron
- Challenge 2: Determining what that neuron is contributing to the processing of a given stimulus
- Challenge 3: Activity of individual cells may not be the relevant brain activity
 - Cannot detect what is going on in other cells and how timing of the responses in multiple cells might encode information

Neuroimaging: PET

- Positron emission tomography (PET)
 - Employs a radioactive compound to provide a signal
 - 2-deoxyglucose which is transported to cells like glucose but not metabolized
 - Builds up in cells as they recruit glucose for energy
 - Labeled H₂O which is carried by the bloodstream
 - Registering the increased blood flow as energy is needed
 - The products of the radioactive decay (gamma rays generated as an emitted positron collides with an electron) are detected by a scanner when they arrive simultaneously
 - Computerized tomography is used to generate a three-dimensional image from which slices in any direction can be viewed

Neuroimaging: MRI and fMRI

- Magnetic Resonance Imaging (MRI)
 - In a strong magnetic field, hydrogen nuclei align the axes of their spin
 - The energy from a radiowave pulse perturbs this alignment
 - When the pulse ends, nuclei return to the low-energy aligned state
 - And release radiowaves with a specific frequency
- Structural MRI uses the difference in frequency from atoms in grey and white matter to construct an image
- Functional MRI (fMRI) detects changes in deoxyhemoglobin resulting from changes in blood flow that exceed oxygen required by neurons
 - Blood oxygen level-dependent (BOLD) signal
- The question of why blood flow exceeds that required to provide oxygen to neurons is still a matter of serious dispute

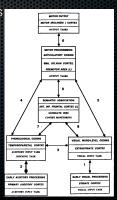

Neuroimaging: Relating Signal to Cognition

- Just as with single-cell recording, what one can infer from the results of a PET or fMRI scan depends on the input stimulus/task
- Researchers must find a means of relating inputs/task to the signal
 - During any task there will be activity throughout the brain (it is not dead when no task is presented)
- One of the most widely used strategies for relating task to detected activity is subtraction
 - An approach first developed by Donders in the 19th century for reaction time studies
 - Compare two different task conditions and subtract the time required for one from that required for the other
 - In neuroimaging, compare two tasks conditions and subtract blood flow produced by one task from that produced by another (baseline) task

Neuroimaging: The Verb-Generate

Task

- Four subtraction conditions
 - Passively viewing words resting
 - Passively listening to words resting
 - Speaking viewed words passively viewing words
 - Generating and speaking verb in response to viewed words speaking viewed words


- Last subtraction resulted in increased activity in the left prefrontal cortex, anterior cingulate, right cerebellum
 - The researchers contended that the left prefrontal cortex reflected semantic processing
 - This was one of the first studies to highlight the anterior cingulate, but they and others assumed it was involved in executive control

Neuroimaging: Answering Skeptics

- A variety of skeptics have raised doubts about the informativeness of neuroimagiing studies
 - Variability across studies: Different researchers, doing studies expected to generate the same results, show activity in different areas
 - Results reflect more the manipulations of the study than the underlying phenomenon (recall Golgi)
 - Holistically oriented critics claim that the idea of localization is built into the methodology
 - One assumes that the task is performed by a localized component and looks until one finds such

Neuroimaging: Answering Skeptics

- Why are neuroimagers so confident in their results?
 - The images reveal definite patterns, not just a hodgepodge of activations
- Results cohere with results from studies using other techniques
 - Reading activated visual areas and speaking activated motor areas
 - But generating verbs activated lateral prefrontal areas and not Wernicke's area in the temporal lobe
 - Frith et al. (1991) found activation in both Wernicke's and prefrontal areas
 - And interpreted only Wernicke's area as involved in semantic processing
 - Each group tries to answer the interpretations of the other
- Results fit within a theoretical framework: two pathways of processing, one direct and one through semantic associations

