#### Philosophy of Neuroscience

- The neurosciences, resulting from the integration of the brain sciences (neuroanatomy, neurophysiology, genetics, etc.) beginning in the 1960s, study brains and nervous systems in multiple species
- Philosophy of neuroscience studies the neurosciences and the scientists working in them
- What counts as a neuroscientific explanation?
- What sorts of evidence is available for understanding the brain?
- What role do representations play in neural explanations?
- Are cognitive functions localized in the brain?
- Can cognitive processes be reduced to brain processes?
- What can we learn about brains from organisms with no brains or much simpler brains?

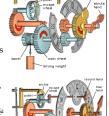
#### The Human Brain: 3 Pounds of What?

- What does the brain do?
- What are its parts?
- What do they do?
- How are these parts organized?
- To study the brain scientists need tools
- But equally, they need ideas in terms of which they can describe what they discover
- In developing ideas for new domains we typically draw on domains we already know
- Metaphors are a means to achieve this



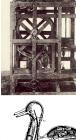





| Hydraulic Metaphors of the Body                                                                    |  |
|----------------------------------------------------------------------------------------------------|--|
| • Grounded in the water technology of                                                              |  |
| the Greeks                                                                                         |  |
| Water clock                                                                                        |  |
| <ul> <li>Applications to physiology</li> </ul>                                                     |  |
| Hippocratesfour humors: black bile                                                                 |  |
| yellow bile, phlegm, and blood                                                                     |  |
| Must be kept in balance                                                                            |  |
| • Otherwise, disease results                                                                       |  |
| • Galen                                                                                            |  |
| <ul> <li>linked humors to temperaments: sanguine, choleric,<br/>melancholic, phlegmatic</li> </ul> |  |
| <ul> <li>Nerves: conveyed animal spirits (fine fluid) between</li> </ul>                           |  |
| tissues dominated by the humors                                                                    |  |
| ·                                                                                                  |  |

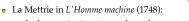
#### Freud: Continuing the Hydraulic Metaphor

- Initially set out to develop a neural account of mental function, but found it failed to help him understand the conditions of his psychiatric patients
- Psychodynamic accounts of the struggles within the unconscious mind
- Mind contains desires, some of which are unacceptable
- These may be repressed, but, like steam pressure, can only be held down so long without exploding
  - must be re-channeled into safe areas


## Clocks and Other Early Modern Machines

- Weight driven clocks were developed in the 13th century
- Pendulum clocks appeared in the 17th century
- Practical machines for lifting weights 14th and 17th century




### Mechanical Life

- Jacques de Vaucanson's (1739) mechanical duck, created as an entertainment piece
- Although biological organisms are not composed out of metal parts, the idea that they are machines captivated many biologists
- Crucial idea that diverse parts, each performing its own operation, work together to achieve the activities of living organisms
- Example: cells viewed as factories with different organelles performing different tasks



#### Applying the Mechanical Metaphor to Thought

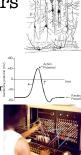
• Hobbes: ideas and associations result from minute mechanical motions in the head



 the human body is "a machine that winds its own springs - the living image of perpetual motion ... man is an assemblage of springs that are activated reciprocally by one another."



### Electricity and Animal Electricity


- Electricity at first a curiosity--static electricity generators to shock people
- The ability of electricity to cause muscle contraction played an important role in Galvani's and Volta's pioneering research on electricity in the 1790s
- Researchers such as du Bois Reymond developed the galvanometer to measure electric currents in animals--frogs and humans
- Helmholtz: measured the speed of electrical transmission
- Nerve electricity linked with chemical processes involved in the generation of action potentials at the beginning of 20th century





## Telegraph and Telephone Metaphors

- The first microscopic images of neurons emphasized their axons and dendrites
  Helmholtz proposed the telegraph metaphor
- A century later, Hodgkin and Huxley borrowed the mathematics developed for signal propagation in wires to model the generation of action potentials
- Telephone switchboard model of brain activity gained currency in the 20th century

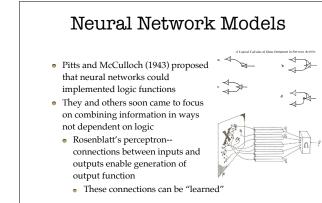


#### The Computer Metaphor

- In the 19th century Charles Babbage designed the difference engine to tabulate polynomial functions (only actually built in the 20th century)
- World War II provided incentives to perform complex calculations quickly, leading to the creation of ENIAC (commissioned in 1946)
- Soon after von Neumann and others developed computers that employed stored programs



#### Human Computers


- The model that Turing employed in developing the idea of computation was the human activity of calculation
- The Turing Machine metaphorically extended the idea of applying rules to symbols on paper to a machine
- Finite state device reads, applies rules, and writes numbers on a tape
- The surprising result is that such a device can compute any computable function



 $z1 \rightarrow 0Rs$ 



| Applying the Computer                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Model to the Brain                                                                                                                                     |
| • Boole articulated the idea that thought consists of the application                                                                                  |
| <ul> <li>of rules to symbols</li> <li>With the advent of computers in the 1950s, the idea that computers could think became very attractive</li> </ul> |
| <ul> <li>Artificial intelligence developed as a field</li> </ul>                                                                                       |
| <ul> <li>Newell and Simon's Logic Theorist served as an exemplar</li> <li>Winning the world chess championship became the holy grail.</li> </ul>       |
| • While especially prominent in cognitive science, the idea that the brain computes became attractive to parts of neuroscience                         |
| <ul> <li>The idea of a central processor manipulating symbols seems<br/>problematic</li> </ul>                                                         |
| <ul> <li>Rather, theorists often view individual brain areas as<br/>computing functions</li> </ul>                                                     |
| computing functions                                                                                                                                    |



# Moving Beyond the Electrical and Computer Metaphors?

- Cells: Chemical regulation
- transcriptional regulation
- post-translational regulation
- Chemical signaling
- hormones and peptides
- Sub-threshold electrical oscillations
- couple activity of neurons with each other
- resulting in waves of activation through the brain