William Bechtel

I am  Professor of Philosophy in the Department of Philosophy and a faculty member in the Center for Circadian Biology and the Interdisciplinary Program in Cognitive Science at the University of California, San Diego.

As a practice-oriented philosopher of science, my research explores issues in the philosophy of the life sciences, including systems biology, cell and molecular biology, biochemistry, neuroscience, and cognitive science. Increasingly, I am employing research in circadian biology, as a model science from which I am developing my philosophical analysis. Over the past twenty years, circadian researchers have revealed critical components and organization of the intercellular oscillators responsible for circadian behavior in mammals, insects, plants, fungi, and bacteria as well as their entrainment and sychronization. Drawing on this model as well as others in molecular biology and neuroscience, my goal is to develop an account of the explanatory strategies scientists employ. My earlier work emphasized the strategies employed in developing mechansitic explanations in biology, but increasingly I am expanding my focus to consider dynamical models and network analyses that often abstract from the details of the mechanism and focus on the organization employed .

A major source for what has been labled the "new mechanistic philosophy of science" was my 1993 book with Robert Richardson, Discovering Complexity (reissued with a new introducton for MIT Press in 2010). We articulated the view that phenomena are often explained by specifying and describing the responsible mechanisms. This is in accord with how many life scientists actually work, but contrasts with the assumption in traditional philosophy of science that explanation involves deduction from laws. On our analysis of mechanistic research, researchers develop mechanistic explanations by decomposing a phenomenon into component operations localized in component parts of the mechanism. More recently I have emphasized that to understand how these component parts and operations generate the phenomenon, researchers must also recompose the mechanism. The orchestrated activity of a mechanism often reflects complex, non-linear organization of its components and the ways in which the mechanism is situated in a larger environment. In recent work, Adele Abrahamsen and I characterize accounts that integrate mechanistic detail with computational modeling, drawing upon resources of dynamical systems theory to explain the temporal orchestration of operations within a mechanism, as dynamic mechanistic explanations.

Mechanistic explanations are reductive insofar as they decompose a system into component parts and operations to explain its behavior. But insofar as the phenomenon of interest arises only when the mechanism is appropriately organized and is operating under appropriate environmental conditions, mechanistic explanation much also take these higher-level factors into account. This has led me to claim that mechanistic explanation requires not only decompositing the mechanism but recomposing it and situating it in its environment. Accordingly, a mechanistic philosophy of science should acknowledge the relative autonomy of inquiries focusing on multiple levels of organization (characterized locally via the decomposition and recomposition of mechanisms). A major concern of my recent work is with the types of organization and dynamics involved in living systems which must maintain themselves in states far from thermodynamic equilibrium. As a result of this requirement, living systems, unlike humanly-engineered mechanisms, are inherently active systems and involve complex non-linear interaction of components. The various mechanisms for maintaining circadian rhythms in different life forms provide rich examples of such mechanisms. Analyzing biological research on circadian rhythms provides a platform not only for investigating dynamic mechanistic explanations, but also issues concerning the decomposition, recomposition, and situating of mechanisms and the generalization of mechanistic accounts achieved as a result of phylogentic conservation.

A major focus of my investigation is on how scientists discover and reason about mechanisms. For example, scientists often rely on figures and diagrams and reasoning involves mentally or externally simulating the functioning of the mechanism. With support from the National Science Foundation, I, together with Adele Abrahamsen, Benjamin Sheredos, and Daniel Burnston are exploring the nature of such reasoning and how it differs from the sorts of reasoning with linguistic representations for which canons of logic have been articulated. Our group is known as the WORking Group On Diagrams in Science (WORGODS) and information about this project can be found by following the link.

I am also examining problems raised by scientists’ reliance on research instruments and techniques for identifying component parts, their operations, and their organization. New instruments and techniques are prone to produce artifacts, and a challenge for scientists is to distinguish artifacts from genuine findings. Since it is often not well understood how instruments and techniques themselves work at the time they are invoked in science, the criteria scientists employ to evaluate them are necessarily indirect. I have argued that one criterion is whether the results fit plausible mechanistic models of the phenomenon.

I try to main a focus on how scientific investigation occurs within the context of institutions and communities. Professional societies and journals do not just happen—they require constructive effort by scientists. They often are the result of deliberation by scientists about the kind of research they endorse and what types of colleagues they want to associate with. These institutions, however, also help define the opportunities for career development by scientists. I have examined how research at the intersection of established disciplines gives rise to new institutions.

My approach to these issues in philosophy of science is naturalistic. I appeal to the actual practice of science, particularly as observed in its history, to answer such questions as what counts as a mechanistic explanation, how new techniques are developed to investigate them, and the role institutions play in shaping investigations. Much of my work over the past two decades focused on the creation of modern cell biology in the mid-twentieth century. New techniques such as cell fractionation and electron microscopy enabled the decomposition of the cytoplasm of cells into component organelles and their operations. The main results of this investigation appeared in Discovering Cell Mechanisms (Cambridge University Press, 2006).

I have also been engaged in an examination of the development of cognitive science, neuroscience, and cognitive neuroscience in the 20th century. Cognitive neuroscience emerged in the last 15 years of the 20th century when new imaging techniques (PET, fMRI) as well as new modeling techniques (neural networks) made it possible to develop neurally-grounded mechanistic models of cognition. I discuss the development of mechanistic models of mental processes (including research in neuroscience and psychology from the 19th and 20th centuries but emphasizing recent cognitive neuroscience) in Mental Mechanisms (Routledge, 2008).

In addition to my research, I have played an active role in a variety of professional organizations. I am Editor of the journal Philosophical Psychology and serve on the Editorial Board of Cognitive Science and Philosophy of Science. I served as Chair of the Cognitive Science Society (2007-2008) and am past presedent of the Society for Philosophy and Psychology (1995-1996), the Southern Society for Philosophy and Psychology (1996-1997), the Society for Machines and Mentality (1995-1996), and the Central States Philosophical Association (1999-2000).


In March-April 2003 I presented the Cardinal Mercier Lectures at the Catholic University of Louvain. These lectures, entitled Philosophy Engages Cognitive Neuroscience, focused on the implications of adopting a naturalistic and mechanistic perspective on the mind/brain. Revised and augmented versions of these lectures appeared in Mental Mechanisms: Philosophical Perspectives on Cognitive Neuroscience (Routledge, 2007)
I directed a project initially funded by the Fund for the Improvement of PostSecondary Education (FIPSE) that generated a modular interactive webtexts for teaching. The initial focus of the project was a interdisciplinary research methods course for cognitive science majors, but I extended it into a more general course on scientific reasoing. The course materials for the cognitive science research methods course are available at the Inquiry website at Washington University. Those for the scientific reasoning course are available at the UCSD Inquiry Website. To access more than the sample site, please send me email.
Together with Cees van Leeuwen, I edit Philosophical Psychology, an interdisciplinary journal focusing on foundational issues in psychology, especially experimental cognitive psychology. In this I am assisted by Mitchell Herschbach, who was previously Editorial Assistant and now serves as Book Review Editor, and Daniel Burnston, now Editorial Assistant. For correspondence concerning the journal, please email:pp@mechanism.ucsd.edu.
Together with George Graham, I edited A Companion to Cognitive Science, a one volume overview of cognitive science, published in July 1998 by Basil Blackwell.   An expanded set of Biographies of Major Contributors to Cognitive Science is available on this site.
Together with former graduate students Pete Mandik, Jennifer Mundale, and Robert Stufflebeam, I edited Philosophy and the Neurosciences: A Reader, published by Basil Blackwell.



William Bechtel, Department of Philosophy-0119, University of California, San Diego, 9500 Gilman Drive, LaJolla, CA 92093
E-mail: bill AT mechanism.ucsd.edu
Phone: (858) 822-4461