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We consider computational modeling in two fields: chronobiology and cognitive science. In circadian
rhythm models, variables generally correspond to properties of parts and operations of the responsible
mechanism. A computational model of this complex mechanism is grounded in empirical discoveries
and contributes a more refined understanding of the dynamics of its behavior. In cognitive science, on
the other hand, computational modelers typically advance de novo proposals for mechanisms to account
for behavior. They offer indirect evidence that a proposed mechanism is adequate to produce particular
behavioral data, but typically there is no direct empirical evidence for the hypothesized parts and oper-
ations. Models in these two fields differ in the extent of their empirical grounding, but they share the goal
of achieving dynamic mechanistic explanation. That is, they augment a proposed mechanistic explanation
with a computational model that enables exploration of the mechanism’s dynamics. Using exemplars
from circadian rhythm research, we extract six specific contributions provided by computational models.
We then examine cognitive science models to determine how well they make the same types of contri-
butions. We suggest that the modeling approach used in circadian research may prove useful in cognitive
science as researchers develop procedures for experimentally decomposing cognitive mechanisms into
parts and operations and begin to understand their nonlinear interactions.
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1. Introduction

Two widely accepted assumptions within cognitive science are
that (1) the goal is to understand the mechanisms responsible for
cognitive performances and (2) computational modeling is a major
tool for understanding these mechanisms. The particular ap-
proaches to computational modeling adopted in cognitive science,
moreover, have significantly affected the way in which cognitive
mechanisms are understood. Unable to employ some of the more
common methods for conducting research on mechanisms, cogni-
tive scientists’ guiding ideas about mechanism have developed in
conjunction with their styles of modeling. In particular, mental
operations often are conceptualized as comparable to the pro-
cesses employed in classical symbolic AI or neural network models.
These models, in turn, have been interpreted by some as
ll rights reserved.
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themselves intelligent systems since they employ the same type
of operations as does the mind. For this paper, what is significant
about these approaches to modeling is that they are constructed
specifically to account for behavior and are evaluated by how well
they do so—not by independent evidence that they describe actual
operations in mental mechanisms.

Cognitive modeling has both been fruitful and subject to certain
limitations. A good way of exploring this is to contrast it with a dif-
ferent approach, one that involves more direct investigation into
the internal parts and operations of the mechanism responsible
for a phenomenon and tailors modeling to this mechanism. To do
this we will focus on the phenomenon of circadian rhythms in
animals: the ability of the nervous system to regulate activities,
including human cognitive activities, on an approximately
twenty-four hour cycle. Circadian effects on cognition generally
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have been ignored in cognitive science, but whether or not that is a
desirable state of affairs is not relevant here. Rather, our goal is to
use the increasingly prominent role of computational modeling in
circadian rhythm research as a different type of exemplar against
which to view cognitive modeling. In circadian research, the mod-
els are not proposals regarding the basic architecture of circadian
mechanisms; rather, they are used to better understand the func-
tioning of a mechanism whose parts, operations, and organization
already have been independently determined. In particular, circa-
dian modelers probe how the mechanism’s organized parts and
operations are orchestrated in real time to produce dynamic phe-
nomena—what we have called dynamic mechanistic explanation
(Bechtel & Abrahamsen, in press).

We begin with an overview of mechanistic explanation in gen-
eral. We then develop the case of circadian rhythm research, where
the architecture has been highly constrained by empirical inquiry
into the physical mechanism and modeling is directed to under-
stand the mechanism’s dynamics. We do this by examining in turn
six different exemplars from the research literature on computa-
tional modeling of circadian rhythms. In all of these cases compu-
tational modeling was needed to understand the behavior of a
complex mechanism involving nonlinearly interacting compo-
nents. In examining their particulars, though, we draw out six
more specific contributions of computational modeling. We then
go through these six contributions again, this time presenting for
each a cognitive model and querying to what extent it might make
the same kind of contribution. This review of models also brings to
light certain differences between cognitive scientists and circadian
modelers in how they approach computational modeling.

2. Mechanisms and mechanistic explanation

Many philosophical presentations of cognitive science (and
other sciences) continue to focus on laws as the explanatory vehi-
cle. Laws are commonly construed as universal generalizations
that have a modal status—they identify not just what has hap-
pened when particular conditions are met, but what must happen
under those conditions. But cognitive scientists, and indeed life sci-
entists generally, seldom propose laws. When they do (in psychol-
ogy, typically referring to them as effects), they generally serve not
to explain but to characterize the phenomenon to be explained
(Cummins, 2000). When they advance explanations, life scientists
commonly seek to uncover the mechanism responsible for the phe-
nomenon of interest. Recently, a number of philosophers whose fo-
cus has been largely on biology have attempted to characterize
what scientists mean by a mechanism and how they go about
developing and evaluating mechanistic explanations (Bechtel &
Abrahamsen, 2005; Bechtel & Richardson, 1993; Glennan, 1996,
2002; Machamer et al., 2000; Thagard, 2006). Our own 2005 char-
acterization began:

A mechanism is a structure performing a function in virtue of its
component parts, component operations, and their organiza-
tion. (Bechtel & Abrahamsen, 2005, p. 423)

Discovering the parts and operations of a mechanism requires
decomposing it. This typically necessitates experimental tech-
niques since in naturally occurring mechanisms, especially living
systems, the parts and operations are so highly integrated that they
cannot be identified directly. It is relatively easy to find ways to
fracture a system into parts of some sort—the challenge is to iden-
tify the working parts that perform the operations producing the
phenomenon of interest. In the case of the brain, a variety of ap-
proaches have been pursued. In the nineteenth century, the focus
was on the sulci and gyri created by the folding of the cerebral cor-
tex, and while these still are used as anatomical landmarks, they
are not regarded as working parts. Once it was recognized that cor-
tex comprised individual cells—neurons—neuroanatomists such as
Brodmann (1994 [1909]) used the presence of neurons of specific
types and especially differences in the thickness of the layers into
which they were organized to differentiate regions in the cerebral
cortex. His clear hope was that these areas had functional signifi-
cance, but he lacked tools for determining this. Refined in later dec-
ades using such criteria as neural connectivity and topographical
mapping, and studied functionally using such techniques as sin-
gle-cell recording, it turned out that Brodmann’s areas demarcated
working parts of the brain so well that they still are in use
(Mundale, 1998).

Identifying operations usually involves a very different set of
experimental procedures than identifying parts. The goal is to
identify operations that do not produce the phenomenon individu-
ally but only in collaboration with other operations performed by
different parts of the mechanism (otherwise there is no explana-
tory gain from decomposing the mechanism). Detecting the effects
on overall behavior from experimental manipulations of particular
parts (e.g. ablating or stimulating them) often provides suggestive
clues, as does recording specific internal effects of altering the in-
puts to the mechanism. Whatever technique is chosen, proposing
operations on the basis of the outcome typically requires elaborate
inferential schemes (Bechtel, 2008b) that can lead to blind alleys,
overemphasis on particular operations to the exclusion of others,
and additional sources of dispute. The challenges in identifying
both parts and operations make mechanistic explanation a long
and complex endeavor, but in numerous domains of biology well
supported, enduring accounts have eventually been achieved, pro-
viding a foundation for more advanced research.

Discussions of mechanistic explanation often allude to the
importance of how the components are organized, but this has
been the least developed aspect both of philosophical accounts of
mechanistic explanation and of mechanistic science itself. Much
more attention has been paid to ways of decomposing a mechanism
into component parts and operations than to ways of recomposing
them into an appropriately organized system. Generally scientists
use the simplest organizational scheme that will serve their imme-
diate purpose. For example, since the 1930s and still today, the
main backbone of reactions in glycolysis has been represented as
a linear sequence (plus side reactions): Glucose ? G6P ? F6P
and so forth—not unlike a diagram of a simple assembly line. Yet,
as biological theorists from Claude Bernard to the present have rec-
ognized, there are distinctive modes of organization in organisms
that enable them to exhibit such phenomena as maintaining them-
selves in a non-equilibrium relation to their environment. Recogni-
tion, first of negative feedback and later of positive feedback and
self-organizing cycles, has offered biologists a more precise under-
standing of the key role of organization in living systems (Bechtel,
2006, 2007).

Such modes of organization orchestrate the parts and opera-
tions in real time. Thus, our 2005 characterization of mechanism
continued as follows:

The orchestrated functioning of the mechanism is responsible
for one or more phenomena. (Bechtel & Abrahamsen, 2005, p.
423)

Though this orchestration often is downplayed as investigators
focus on identifying parts and operations, attending to it can reveal
complex dynamics, ranging from periodic oscillations to chaos. Dif-
ferent tools than those employed in early investigations of a mech-
anism are required to pursue its dynamics: the tools of
quantitative computational modeling. These tools have a long his-
tory and have been employed in a variety of ways, often discon-
nected from any sort of mechanistic project. For example, the
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system of interest may not fruitfully be described as a mechanism,
or the modeler may prefer to focus on global variables and param-
eters. When explicitly anchored to a particular mechanistic ac-
count, however, computational modeling enables exploring and
understanding the dynamics of that mechanism. In short, it offers
dynamic mechanistic explanation.

To extend mechanistic explanation to accounts of dynamics, we
augment the above characterization of mechanism with the phrase
in boldface:

A mechanism is a structure performing a function in virtue of its
component parts, component operations, and their organiza-
tion. The orchestrated functioning of the mechanism, mani-
fested in patterns of change over time in properties of its
parts and operations, is responsible for one or more
phenomena.

In this paper we focus on the most common way of achieving
dynamic mechanistic explanation: computational modeling with
differential equations in which time is one of the variables. To pur-
sue this strategy, the modeler selects properties of certain parts or
operations of the mechanism that appear to be salient to a partic-
ular dynamic phenomenon. These properties are then pulled into a
computational model as variables or parameters, thereby anchor-
ing that model to the mechanistic account. The modeler has flexi-
bility in this kind of project; for example, a property initially
treated as a parameter may, as the model is further explored, be-
come a variable. These strategies for developing dynamic mecha-
nistic explanations are evident in the modeling of circadian
mechanisms to which we now turn.

3. Mechanistic explanation and modeling in circadian rhythm
research

The ability of organisms to keep track of the time of day, even
when deprived of external cues such as exposure to sunlight, has
fascinated investigators since ancient times (Androsthenes of Tha-
sus, a captain in Alexander’s fleet, recorded the daily movement of
the leaves of the tamarind tree, while Hippocrates and Galen both
observed how body temperature in patients with fevers varied
with time of day). Subsequently, circadian rhythms have been
found in a wide variety of living organisms, from cyanobacteria
to plants, fungi, and a variety of animals such as Drosophila, mice,
and humans. They affect biochemical processes (e.g. protein syn-
thesis), physiological functions (e.g. digestion), behavioral phe-
nomena (e.g. locomotor activity), and cognitive performance (e.g.
reaction times). Figuring out how they do so proved challenging.
Systematic study of these phenomena—incorporating experimen-
tal methods in addition to finer-grained description—began only
in the middle of the twentieth century and soon yielded a richer
characterization. In particular, it was learned that circadian
rhythms are endogenously controlled, but entrainable by Zeitge-
bers (environmental cues such as onset of daylight or temperature
changes), and are temperature compensated (the rhythms main-
tain nearly the same periodicity irrespective of temperature).

In the quest for the mechanism underlying circadian rhythms in
mammals, Stephan & Zucker (1972) and Moore & Eichler (1972)
established a central role for the suprachiasmatic nucleus (SCN),
a structure in the anterior hypothalamus consisting of approxi-
mately 8,000–10,000 neurons on each side of the brain. Their pri-
mary evidence was that lesions to the SCN left the organism
arrhythmic. Inouye & Kawamura (1979) found circadian rhythms
in the SCN’s electrical activity even when it was removed from
1 Gene and protein names are commonly abbreviated to three letters. Protein names are
and first letter capitalized for mammals (Per or mPer1).
the organism. The final demonstration of the centrality of the
SCN to circadian behavior was provided by Ralph et al. (1990).
They transplanted the SCN from a mutant hamster (whose circa-
dian period was significantly less than twenty-four hours) into a
non-mutant hamster whose SCN had been lesioned and showed
that the recipient had the same abbreviated circadian period as
the donor. A few years later, Welsh et al. (1995), using multielec-
trode arrays to record activity in tissue extracted from the SCN,
determined that individual SCN neurons maintained rhythms, al-
beit with a wide range of periods across neurons. Similar advances
were made during this period in locating the central clock in Dro-
sophila (fruit flies). This organism initially became the focus of cir-
cadian rhythm research because its eclosion (emergence from the
pupa) is closely timed to dawn. Regardless of the time of day when
a fruit fly completes its development, it delays eclosing until the
subsequent dawn. Moreover, even if the pupae are kept in total
darkness, they eclode at what would have been dawn (Pittendrigh,
1954). The search for the responsible mechanism in Drosophila
identified a small number of lateral neurons as playing the central
role in maintaining circadian time.

Having localized the responsible mechanism in two target spe-
cies, the longer-term project has been to figure out its parts and
operations and how they are coordinated so as to generate circa-
dian rhythms. In the remainder of this section, we discuss six ad-
vances at the intracellular and intercellular levels of investigation
that provided the foundation for new computational models. For
each advance we highlight one such model and address the contri-
bution it makes to understanding circadian mechanisms and their
dynamics.

3.1. Identifying and modeling the first clock component: PER

Explaining how neurons maintain rhythms required identifying
parts within them that individually perform different operations
but jointly generate a twenty-four hour rhythm. The pioneering re-
search involved inducing mutations chemically in Drosophila and
screening for mutants whose eclosion manifested aberrant circa-
dian rhythms. Konopka & Benzer (1971) found a genetic locus at
which mutations resulted in rhythms with shortened or length-
ened periods, or in loss of rhythms altogether, and designated
the responsible gene period (per). The cloning of per in the mid-
1980s by Michael Rosbash and his colleagues made it possible to
fill in additional components of the molecular mechanism respon-
sible for circadian rhythms. The expression of per results in in-
creased concentrations of per-mRNA and, in turn, of the protein
PERIOD (PER) that is synthesized from per-mRNA in the cyto-
plasm.1 Hardin et al. (1990) determined that the concentrations of
both per-mRNA and PER exhibited circadian oscillations, with the
peaks and troughs in PER concentrations lagging behind those of
per-mRNA by approximately eight hours. Moreover, since PER was
detected not only in cytoplasm (where it is synthesized) but also
in the nucleus, they proposed a mechanism involving a negative
feedback loop to explain the circadian oscillations. As illustrated in
Figure 1, per is transcribed into per-mRNA; this macromolecule then
is transported to the cytoplasm and translated into a protein, PER.
PER subsequently is transported back into the nucleus, where it
slows synthesis of additional PER by inhibiting per transcription. A
way for per to be released from inhibition was suggested by Edery
et al. (1994). They discovered that the molecular mass of PER chan-
ged through the day, indicating that it was undergoing phosphoryla-
tion. Since phosphorylation is often a prelude to the breakdown of a
molecule, this pointed to a process through which PER could be
written in uppercase (PER) and gene names in italics—lowercase for Drosophila (per)



Fig. 1. Hardin et al.’s (1990) proposed feedback mechanism for generating circadian oscillations in PER concentrations.

Fig. 2. Limit cycle generated by Goldbeter’s (1995) model. See text for explanation.
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degraded. With less PER in the nucleus, there would be less (or no)
inhibition of per.

By rehearsing these steps, one can mentally simulate the gener-
ation of a periodic oscillation from the mechanism. However, to
demonstrate that a sustained oscillation would result—rather than,
for example, a gradual dampening to a steady state—a quantitative
model of the process was required. To provide this, Goldbeter
(1995) adapted a model that Goodwin (1963) had created for a re-
lated purpose: exploring the dynamics of the feedback process in
Jacob & Monod’s (1961) operon model of gene regulation.2 Goldb-
eter’s version of the model employed five kinetic equations that
yielded predicted rates of change in concentrations of per-mRNA
and PER, based in part on the rates of these key operations:

� Transcription of per into per-mRNA in the nucleus (subject to
inhibition from nuclear phosphorylated PER) and its transport
into cytoplasm
� Degradation of per-mRNA in cytoplasm
� Synthesis of PER in cytoplasm (rate proportional to the concen-

tration of per-mRNA)
� Reversible phosphorylation of PER in cytoplasm
� Degradation of phosphorylated PER in cytoplasm
� Reversible transport of phosphorylated PER between cytoplasm

and nucleus

Nonlinearity in the equation describing accumulation of cyto-
plasmic per-mRNA (M) is particularly important to the generation
of oscillations in this model:

dM
dt
¼ vs

Kn
I

Kn
I þ Pn

N

� vm
M

Km þM

Here vS represents the maximum rate for the accumulation of
M, KI is a threshold constant for inhibition, PN is concentration of
PER in the nucleus, n is the Hill coefficient indicating the minimum
number of cooperating molecules required to achieve inhibition,
vm is the maximum rate for the degradation of M, and Km is the
Michaelis constant for the degradation reaction. For some values
of its parameters, the system described by the five equations will
quickly settle into a steady, non-oscillatory state. By running sim-
ulations with various combinations of parameter values, Goldbeter
identified values at which the steady state condition gives way to
limit cycle oscillations in the concentrations of per-mRNA and
PER of the sort observed in Drosophila. When values of per-mRNA
and PER fall on the limit cycle (dark oval in Fig. 2), they repeat
2 Goodwin was interested in the conditions under which oscillations in protein synthe
figures in Goldbeter’s model (see equation presented below) and represents the numbe
Goodwin had reported oscillatory behavior with values of n as low as 2 or 3, but shortly a
n > 9, a value he deemed too high to be realistic. Griffith took this to show that negative fe
undamped oscillations in the concentrations of cellular constituents’. Others, including Gol
(e.g. in the terms specifying degradation of various components).
the same pattern of change indefinitely. If the initial values fall out-
side the cycle, they follow a transient trajectory (one of the spiral-
ing lines) until they join the limit cycle. Goldbeter focused in
particular on a parameter vd, the maximum rate at which PER is de-
graded before entering the nucleus, and found that between two
critical values, the period of oscillation varied between 19.3 hours
and 64 hours. (The precise effect of vd also depended on the value
of other parameters, such as ks, the rate of protein synthesis.)
Goldbeter claimed that the ability of his model to generate altera-
tions in period length by varying one specific parameter offered a
possible explanation of the mutant forms with lengthened or
shortened periods that Konopka had found.

By showing that, with appropriate parameters, a model employ-
ing the proposed feedback of PER on per translation and transcrip-
tion could generate circadian oscillations, Goldbeter’s research
illustrates the first type of contribution computational modeling
can make:

(C1) A model can demonstrate that a mechanism, whose parts,
operations, and organization have been at least partially identi-
fied, is able to exhibit the phenomenon of interest.

Moreover, the model itself shows why computational modeling, not
just mental simulation, is required for this—there are many values
sis would occur. He identified as the key parameter the Hill coefficient n, which also
r of molecules that must cooperate to achieve inhibition. Using analog simulations,
fterwards Griffith (1968) showed that undamped oscillations would only occur with
edback involving a single gene product on a gene could never ‘give rise in practice to
dbeter, overcame this obstacle by incorporating nonlinearities elsewhere in the model
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of the parameters under which the phenomenon does not occur.
Mental simulation alone cannot reveal these. Goldbeter’s model
only generates what Craver (2007) calls a ‘how possibly’ explana-
tion, but when the issue is whether a particular organization of
components could realize an effect, that itself is an important con-
tribution to understanding the mechanism.

3.2. Adding and modeling a second clock component: TIM

While Goldbeter’s model seemed to suggest that the compo-
nents of the mechanism that he included might be sufficient to ex-
plain circadian oscillations, the molecular biologists knew that at
least one important component was missing. This is because the
PER molecule lacks the domain (region) needed to bind to DNA
and function as a transcription factor in inhibiting its own tran-
scription. A suggestion as to the missing component was provided
by the fact that PER was homologous to two other proteins that
were known to be transcription factors (the three proteins were
the first known members of the PAS group). The suggestion was
that PER might form a compound with one of these (or with a
yet unknown transcription factor), and that it would be this con-
joined protein that suppressed per transcription and translation.

To search for such a transcription factor, Sehgal et al. (1994)
generated Drosophila mutants in much the same manner as Kon-
opka. One of their mutants manifested no rhythmic behavior,
and they named the responsible gene timeless (tim). In a further
study, these researchers established that in this mutant, PER did
not enter the nucleus and was unstable in the cytoplasm (Vosshall
et al., 1994). Subsequently they also determined that PER and TIM
form a dimer (a compound of two similar units) in cytoplasm and it
is this dimer that is transported back into the nucleus. Moreover,
they established that a region found on both PER and TIM, which
they named the cytoplasmic localization domain (CLD), was respon-
sible for preventing either molecule alone from migrating into the
nucleus (Gekakis et al., 1995). They suggested that this region was
masked in the dimer and that this allowed the dimer to be trans-
ported into the nucleus (Saez & Young, 1996).

It turned out, though, that TIM, like PER, lacked a region for
binding with DNA. Thus, it could not resolve the original question
of how per transcription was inhibited. Yet, its discovery pointed to
an explanation for another important circadian phenomenon, the
entrainment of oscillations by light. Exposure to light in early
evening results in a phase delay in circadian behavior, whereas
exposure in the pre-dawn hours produces a phase advance. (In-
creased exposure to light during the day has neither effect.) The
fact that TIM is broken down when fruit flies are exposed to light
suggested a mechanism for this. In early evening, TIM levels are
rising and breakdown slows their accumulation, delaying inhibi-
tion of per. In before dawn, in contrast, TIM levels are decreasing
and breakdown hastens that process, hastening the release of per
from inhibition (Hunter-Ensor et al., 1996).

To determine how TIM might contribute to the working of the
circadian mechanism, Goldbeter extended his earlier model in col-
laboration with Jean-Christophe Leloup (Leloup & Goldbeter, 1998;
see also Tyson et al., 1999). The extended model required ten dif-
ferential equations and created limit cycles comparable to those
of the PER-only model. By varying parameter values, Leloup and
Goldbeter sought to understand the relation between phosphoryla-
tion of PER and TIM, the dimerization process, and the degree of
cooperativity (number of cooperating molecules) required to enter
the nucleus. They showed that with greater cooperativity, the
range of other parameters in which oscillations could be main-
tained was much broader, and that requiring phosphorylation
3 For more recent explorations of ways to generate birhythmicity through control of th
and dimerization both extended these ranges. In exploring these
conditions in the model, Leloup and Goldbeter were going beyond
simply showing that the mechanism might suffice for generating
circadian rhythms; they were beginning to use the model to ex-
plore how the mechanism might respond under a variety of condi-
tions. In particular, to explore how light exposure could change the
oscillatory phase by degrading TIM, Leloup and Goldbeter focused
on vdT, a variable in one of the equations in their model which rep-
resents the maximum rate of TIM degradation. To simulate condi-
tions of constant darkness they specified a fixed value of vdT, and to
simulate light exposure they doubled that value. Depending on the
interval during which vdT was doubled, the model generated phase
advances or phase delays comparable to those induced by light
exposure in Drosophila. This provided support for the mechanism
of entrainment proposed by Hunter-Ensor et al. (1996).

One of the benefits of working with a computational model is
that modelers can explore a variety of parameter values which, if
the equations correctly describe the behavior of components of
the mechanism, correspond to changes in the mechanism that
may be difficult to generate experimentally. For example, Leloup
& Goldbeter (1998) found certain parameter values that yielded
two stable oscillatory regimes with different periods, a phenome-
non known as birhythmicity, and others that produced chaotic
oscillations. Although commenting ‘It probably is too early to spec-
ulate on their possible physiological significance, particularly in
view of the reduced range of parameter values in which they occur’
(ibid., p. 85), they nonetheless proposed that this might account for
the birhythmicity observed empirically by Pittendrigh (1960) upon
changes in environmental conditions. Pittendrigh thought this
pointed to multiple oscillators, but Leloup and Goldbeter suggested
it may be due to identical oscillators in different cells responding to
different initial conditions.3 (In a further elaboration of the model
which we will not discuss here, Leloup & Goldbeter, 1997, showed
how it could account for temperature compensation.)

These explorations with the model point to a second contribu-
tion of computational modeling of mechanisms:

(C2) A model provides a means of exploring a much larger space
of parameter values than would be feasible experimentally, and
thereby of projecting how the actual mechanism would behave
under a variety of conditions.

Modelers, accordingly, often speak of conducting experiments with
their models. These experiments, unlike experiments on the physi-
cal mechanism itself, do not show that the mechanism in fact could
produce these effects. The equations cannot capture all salient as-
pects of the mechanism and may even misrepresent or leave out
critical components. But insofar as the focus in modeling is on the
effects of organization, they do demonstrate that if particular
parameter values and mode of organization were realized in the ac-
tual system, the effects should correspond to those in the model.

3.3. Discovering and modeling a second feedback loop

The original mystery of how PER inhibited translation and tran-
scription of per, which engendered the search for more clock com-
ponents, eventually was solved by researchers searching for clock
mutants in mice. This was much more challenging than the earlier
efforts with Drosophila, in that mice live longer and produce fewer
offspring. Nonetheless, within just two weeks of beginning their
attempt, Takahashi et al. (1994) generated a mutant with a long
circadian period that, when homozygotic, resulted in total loss of
rhythms. They named the responsible gene Clock (for Circadian
Locomotor Output Cycles Kaput) and determined that its protein,
e timing of light exposure in hamsters, see Gorman (2001).



326 W. Bechtel, A. Abrahamsen / Studies in History and Philosophy of Science 41 (2010) 321–333
CLOCK, also oscillated. When the same laboratory succeeded in
cloning Clock three years later, they predicted, based on the ex-
pected amino acid sequence of the protein, that it ‘encodes a novel
member of the bHLH–PAS domain family of transcription factors’
(King et al., 1997, p. 645). The PAS domain is the one found in
PER, whereas bHLH (basic helix-loop-helix) is a DNA binding do-
main. In virtue of possessing a bHLH domain, CLOCK, unlike PER
or TIM, is able to bind to per (specifically, to the binding region
on per denoted E-box promoter). King et al. (1997) predicted that
a Clock homologue existed in Drosophila, and indeed Darlington
et al. (1998) found it the next year. The Drosophila CLOCK protein
was also found to have a dimerization partner, named CYCLE de-
spite the fact it doesn’t cycle. (BMAL1 is the dimerization partner
of CLOCK in mammals.) Darlington et al. (1998) therefore proposed
that (1) the CLOCK:CYCLE dimer activates the transcription of both
per and tim by binding to their E-boxes; and (2) when the PER:TIM
dimer enters the nucleus, it can inhibit the CLOCK:CYCLE dimer
from performing this function—perhaps by removing it from the
E-box on the per and tim genes. As shown schematically in Figure 3,
(1) corresponds to subjective nighttime and (2) to subjective
daytime.

As Figure 3 makes clear, the CLOCK:CYCLE dimer not only ex-
cites the transcription of per and tim but also excites clock tran-
scription (via the action of PDP1e on the V/P box on clock). This
is a positive feedback loop: an increase in clock transcription re-
sults in increased PDP1e production; and the additional PDP1e
binds with the V/P box on clock, resulting in yet further increase
in clock transcription. The intermediate roles of VRILLE and PDP1e
were only discovered by Cyran et al. (2003) after the modeling ef-
forts described below, but the fact that CLOCK feedbacks positively
on its own production was already anticipated. (VRILLE initially
inhibits clock transcription, but this can be ignored since its effect
is soon supplanted by PDP1e. The overall feedback of CLOCK on its
own transcription is positive.)

These discoveries raised the question of how the positive
feedback loop (involving CLOCK) related to the negative feedback
loop (involving PER:TIM). Did it ‘cancel out’ the negative feed-
back? Or was it crucial to maintaining oscillations, as Hastings
Fig. 3. A more complete account of the Drosophila oscillator. The large open arrows
indicate whether the promoter turns gene expression on or off. The smaller open
arrows represent the combined processes of gene transcription in the nucleus,
transport to the cytoplasm, and translation in the cytoplasm.
(2000) proposed? To address these questions, Smolen et al.
(2001) developed an alternative model that was much simpler
than Leloup and Goldbeter’s and included only the processes
deemed essential to the oscillation. For example, they did not
differentiate the roles of PER and TIM, but combined them into
one variable. They also did not attempt to model transport be-
tween the cytoplasm and the nucleus but instead included a
parameter for the delay between changes in concentration of
CLOCK and changes in the rate of generation of additional CLOCK
and PER/TIM. Their model yielded oscillations in total CLOCK and
PER/TIM concentrations with a period of 23.6 hours, a result that
was robust over substantial variation in the various parameters.
To investigate whether oscillations in the concentration of
CLOCK were essential to maintaining rhythmicity they fixed
the value for CLOCK concentrations in the model. The model
continued to generate oscillations, and these remained robust
even in the face of substantial changes in the other parameters.
They concluded that the positive feedback loop involving CLOCK
was not critical to the generation of circadian rhythms; rather,
the circadian oscillations were due solely or primarily to the
negative feedback loops involving PER and TIM.

This reveals a different function for computational modeling of
a mechanism:

(C3) A model can indicate which parts and operations of a sys-
tem that have been identified empirically are essential for pro-
ducing the phenomenon of interest, and therefore should count
as components of the responsible mechanism.

Although it might be possible to conduct manipulations in an
experimental system similar to those performed in the model
(e.g. by finding a buffer, or otherwise stabilizing the concentration
of CLOCK), such exploration is much easier to accomplish in a
model. It is noteworthy that in this type of modeling, researchers
need to capture in detail only the parts they think might be rele-
vant, and therefore can use a simplified account of other parts of a
mechanism. Although there are purposes for which it is important
to have a relatively complete model, Smolen et al. (2001)’s work
demonstrates how simplifying the model can also be useful. In a
simpler model, is it easier to identify which components of the
system are sufficient to produce the phenomenon and hence com-
prise the responsible mechanism, and which are components of
the system but not of the responsible mechanism for that partic-
ular phenomenon.

3.4. The mammalian oscillator and modeling pathologies

After a Clock homologue was found in Drosophila, mammalian
researchers in turn investigated whether mammalian homologues
might exist for many of the genes first found in Drosophila. Two
groups of researchers identified a mammalian homologue to per
(Sun et al., 1997; Tei et al., 1997) and determined that the resulting
protein was 44% identical to the Drosophila protein (with many of
the differences involving neutral amino acid substitutions). Soon
after it was recognized that in fact there are multiple mammalian
homologues of per, designated mPer1, mPer2 (Albrecht et al., 1997),
and mPer3 (Zylka et al., 1998). The search for homologues also re-
vealed some important differences between the Drosophila and
mammalian clocks. CRYPTOCHROME (CRY) was identified in Dro-
sophila as subserving entrainment by light—it is a photoreceptor
and, in response to light, induced the degradation of TIM
(Stanewsky et al., 1998). In mammals, however, CRY usurps the
role of TIM as the primary dimerization partner of PER (Griffin
et al., 1999) and melanopsin replaces CRY for entrainment (Hattar
et al., 2003). Accompanying these changes were differences in how
the clock mechanism works—for example, when CRY plays an
entrainment function, it promotes the breakdown of TIM; in
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contrast, melanopsin operates by activating production of PER. (For
a discussion of how assuming evolutionarily conserved mecha-
nisms facilitated these discoveries, see Bechtel, 2009.)

Differences such as these led Leloup & Goldbeter (2003, 2004)
to model the mammalian mechanism by modifying their Drosoph-
ila model. Their basic finding was that the mammalian mechanism,
like the Drosophila mechanism, could produce limit cycle oscilla-
tions. The focus on mammals, though, enabled an extension of
the goals of modeling. Humans in particular exhibit a variety of cir-
cadian pathologies, two of which are delayed sleep phase syn-
drome (DSPS: attributed to those whose natural pattern is to fall
asleep several hours after midnight and wake up in the late morn-
ing) and advanced sleep phase syndrome (ASPS: attributed to those
who get very sleepy in the early evening and wake up around 3
a.m.). Leloup and Goldbeter found that, by altering the values of
parameters characterizing the phosphorylation of PER, they could
mimic these syndromes. This comported well with the finding by
Toh et al. (2001) that in one family with inherited ASPS a point
mutation had occurred in which a glycine molecule replaced a ser-
ine molecule in the casein kinase Id/e (CKId/e) binding domain,
which figures in phosphorylation of PER. Subsequently Xu et al.
(2005), studying another family with inherited ASPS, found a
mutation in the CKId gene (in which an alkaline substituted for a
threonine). This further supported Leloup and Goldbeter’s focus
on parameters describing the phosphorylation of PER to account
for these pathologies.

An important measure in assessing a mechanistic account is the
extent to which it can capture the effects of various kinds of dam-
age to the mechanism. In physiology, this means accounting, not
only for normal functioning, but also for various pathologies. Here
is another contribution of computational modeling:

(C4) A model serves as a basis for explaining a disorder when
specific alterations to the model produce effects that mimic
the disorder.

In this respect, the modeling goes beyond the empirical research,
which only showed what was different in the pathological cases,
not how the altered factor could produce the symptoms.

3.5. Modeling synchronization between cellular oscillators

The research by Welsh et al. (1995) demonstrating that
individual SCN neurons dispersed in culture sustained oscilla-
tions with a mean period of approximately 24 hours also re-
vealed a large range of variation (21.25 to 26.25 hours) and
standard deviation (1.2 hours). In contrast, Herzog et al. (2004)
noted that there is much less variability in measurements of per-
iod length for running wheel behavior in mice and established
that this was also true for SCN slices in which the spatial rela-
tions between neurons were maintained. This indicated that
individual neurons were synchronizing with each other. Synchro-
nizing oscillators, though, is a non-trivial problem. The dynamics
tend to get very complex, including toroidal oscillations, deter-
ministic chaos, or coexistence of multiple attractors (Grebogi
et al., 1987). Several groups of researchers have chosen compu-
tational modeling as an especially suitable strategy for under-
standing how synchronization is achieved among neurons in
the SCN.

Aton et al. (2005) proposed that vasoactive intestinal polypep-
tide (VIP) was a likely synchronizing agent. To investigate how re-
lease of VIP might play a role in synchronization, Gonze et al.
(2005) developed a model in which a population of oscillators
stood in for the neurons of the SCN. They modeled each oscillator
in a population using a variant of the oscillator Goodwin had pro-
posed for the operon by viewing it as describing the generation and
degradation of a single clock protein (e.g. PER). To the basic equa-
tions they added one describing change in concentration of VIP in
individual oscillators (one term describes its rate of generation as
proportional to the current concentration of the clock protein
and a second describes its rate of degradation as proportional to
its own current concentration), and another equation calculating
the mean of VIP concentration across the population. They then
added a term to the equation describing the change in concentra-
tion of the clock protein that increased the rate of change propor-
tional to the mean concentration of VIP. When the parameter in
this term was set to 0, Gonze et al. (2005) obtained results much
like those of Welsh et al. (1995) (periods that were highly variable
across oscillators), but when it was set to 0.5, the oscillators syn-
chronized. Analyzing the case of just two oscillators, Gonze et al.
were able to suggest that the oscillations of individual neurons in
the SCN might dampen without VIP and that sustained oscillatory
behavior is due to VIP.

Gonze et al. (2005) relied on mean VIP levels rather than mod-
eling diffusion, but To et al. (2007) offered a more complex model
that included details of diffusion as well as the pathway by which
VIP affects Per transcription. They also randomly perturbed a
parameter specifying basal transcription of Per-mRNA such that
only about 40% of the model SCN cells sustained oscillation in
the absence of VIP. (Aton et al. had found that in the mouse SCN
only 30% of cells appear capable of sustaining oscillations on their
own.) They succeeded in replicating Aton et al. (2005)’s empirical
findings—when VIP was present, the cells synchronized, but when
VIP was removed, approximately 60% became arrhythmic and the
rest desynchronized. They also replicated a finding that in constant
light, individual SCN cells continue to oscillate but are desynchro-
nized (Ohta et al., 2005).

Although synchronization between oscillators is known to
sometimes give rise to complex dynamics very different from those
of circadian rhythms, these two simulations suggest that relatively
straightforward processes of peptide release and uptake would
produce the sort of synchronization found in SCN neurons. In this
context, computational modeling serves another function:

(C5) A model can reveal conditions under which independent
mechanisms, each with its own internally determined dynami-
cal (oscillatory) behavior, can be coupled so as to exhibit coor-
dinated collective behavior.

Moreover, the models suggested rather direct ways to account for
the entrainment properties of light on populations of oscillators
and explain phenomena associated with different light regimes.

3.6. Desynchronization between oscillators and modeling jet lag

Although we emphasized above the achievement of synchroni-
zation between oscillators, there are conditions that result in
desynchronization. One of the most familiar is jet lag, in which
clock-controlled functions (most notably sleep, but also various
metabolic and cognitive activities) are disrupted for many days
after traveling multiple time zones, especially in the eastward
direction. The problem is not that the central clock is slow to adjust
to entrainment signals in the new environment, but that we have
multiple oscillators; those that become desynchronized require
considerable time to resynchronize.

It is now recognized that normal circadian behavior requires not
only synchronization among a homogeneous population of cells,
but also coupling between distinct populations of cells so as to
maintain normal phase offsets between them. The SCN has long
been recognized as containing two populations of cells—a ventro-
lateral or core region (these are the cells that produce VIP) and a
dorsomedial or shell region (these cells generate vasopressin:
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Moore et al., 2002).4 Oscillations are synchronized within each re-
gion, but out of phase between regions: PER reaches maximum con-
centrations nearly an hour earlier in the shell than in the core
(Nakamura et al., 2005). Moreover, most organs of the body (the liver,
heart, and brain have been most studied) have cells whose oscillation
is coordinated by the SCN with varying phase delays. It was long as-
sumed that these peripheral oscillators were unable to sustain oscil-
lations (rather, their oscillations dampened) without input from the
SCN; accordingly, they were regarded as slaves to the SCN. More re-
cently, evidence suggests that they maintain oscillations, but lose
synchrony. Davidson et al. (2004) appeal to this evidence to argue
that the SCN is better viewed as a conductor that synchronizes the
oscillation of peripheral oscillators than as a ringmaster that spurs
them into action.

To explore the effects of jet lag, Nakamura et al. (2005) sub-
jected rats to either to a six-hour delay (equivalent to traveling
westward, achieved by delaying turning off lights by six hours
and creating an eighteen-hour day) and a six-hour advance (corre-
sponding to traveling eastward, achieved by turning lights on six
hours early, creating a six-hour night). Although neurons in the
SCN core (the only ones to receive entrainment signals from the
eye) adjusted relatively quickly, the synchronization between dif-
ferent oscillators was highly disrupted. This was especially true
with a six-hour advance (corresponding to eastward travel). After
one day the core SCN had shifted significantly more than the shell
SCN, resulting in an inversion of the normal order of the cycles. In
fact, core SCN had advanced more than nine hours, a significant
overshoot of the six-hour change in the light schedule. By day
three, the overshoot in the core had reduced, whereas the shell
had advanced nearly six hours, resulting in virtually no phase dif-
ferences between them. It was only on day 6 that the normal phase
relation, with the shell leading the core by nearly an hour, was re-
stored, and even then both had advanced more than the expected
six hours.

To explore such effects between the SCN core and shell, and also
between those two and peripheral oscillators, Leise & Siegelmann
(2006) developed a model. They used just two equations to de-
scribe the oscillation of two state variables, X and Y (whose bio-
chemical interpretation they left unspecified), in each oscillator:

dX
dt
¼ rX

1þ Y2 � qXX

dY
dt
¼ rY X2ðt � ttagÞ � qY Y

Initially X peaked before Y such that plotting values of X against
those of Y reveals a limit cycle. To model entrainment by light, they
reduced the value of rY to indicate when light was available, and re-
stored it to indicate night. Then to model a time zone change, they
shifted the values of time t for which rY was reduced. They found
that after a simulated six-hour advance or ten-hour delay, the
oscillator exhibited a transient two-hour overshoot that gradually
reduced until the appropriate limit cycle was again attained.

In the next step, Leise and Siegelmann modeled connections
among six oscillators representing the two populations of SCN
oscillators and four populations of peripheral oscillators (about
which different assumptions were made concerning whether the
oscillations were damped and the phase lag from the core SCN).
The oscillator representing the core SCN was connected to one rep-
resenting the shell SCN, and that in turn was connected to the four
peripheral oscillators. Coupling between core and shell oscillators
4 One of the intriguing features of the core region is the presence of a dense collection of
remainder of the SCN neurons are not altered, overt physiological and behavioral rhythms
oscillate either in neuronal firing or in Per gene expression. Rather, PER1 and PER2 are s
Shirakawa et al., 2001). Antle et al. (2003) advanced a proposal that these calbindin cell
computational model.
was accomplished by increasing the value of rY, and thereby con-
centrations of Y, in the shell oscillator when the value of X in the
core oscillator exceeded a threshold. Coupling between shell and
peripheral oscillators was accomplished by increasing the value
of rX in the peripheral oscillator when the value of X (or, in other
cases, Y) exceeded a threshold. To simulate the effects of a six-hour
advance, they temporarily reduced the value rY in the equations
describing the core SCN oscillator and it advanced rapidly and ini-
tially overshot. Initially the shell SCN oscillator did not change, but
it subsequently advanced and itself overshot the target. After six
days, the peripheral oscillator appeared to have regained the origi-
nal phase relation to the SCN oscillators, but then overshot further
and required seven more days to again achieve the original phase
relation.

The peripheral oscillators also required approximately two
weeks to restore their phase relation with the two populations of
SCN oscillators, although different patterns of restoration resulted
from different assumptions built into the model. When the choice
of parameter values rendered the peripheral oscillators as damped
oscillators, they recovered their phase relation relatively quickly,
but when they were self-sustained this took longer and required
a strong degree of coupling. Under some conditions, the peripheral
oscillators restored phase relations by delaying fifteen hours rather
than advancing six hours. Leise and Siegelmann went on to explore
how more gradual phase advances affected the synchronization of
clocks. When the phase advance was spread over four days or
when the period of darkness was extended two hours during the
first two cycles, resynchronization was much more orderly and
achieved much more quickly than with the simple six-hour phase
advance.

At present there are a great many unknowns involving both the
nature of the coupling between SCN and peripheral oscillators and
how different transition regimes affect the restoration of syn-
chrony. In this situation, models can serve a different function:

(C6) A model provides a means of exploring the space of possi-
bilities for altering and restoring relations between multiple
mechanisms (e.g. synchrony or phase delay between
oscillators).

Given the current uncertainty as to whether peripheral oscillators
are damped oscillators or merely unsynchronized when they re-
ceive no input from the SCN, modeling phase advances (and delays)
with both kinds of oscillators can reveal the empirical signatures
that each may leave (e.g. delaying fifteen hours rather than advanc-
ing six) and so guide empirical attempts to answer this question.
Using models to further explore how systems of coupled oscillators
may respond to different procedures for changing periods may also
guide further empirical search for strategies for coping with jet lag
and related phenomena. In these cases, the modeling not only con-
tributes to evaluating explanations of accounts built up from empir-
ical inquiry, but potentially can guide empirical research as well.

3.7. Summary comments on circadian models

Offering circadian rhythms as an illustrative case, we have de-
scribed six contributions that computational modeling can make
to the understanding of mechanisms. The models we discussed
were constructed only after laboratory-based researchers had
learned a good deal about the parts, operations, and organization
of the biological mechanisms responsible for various circadian
calbindin D28K (CalB) cells (Silver et al., 1996). When these cells are destroyed but the
are eliminated (LeSauter & Silver, 1999). Yet, these calbindin cells do not themselves

ynthesized in them in response to photic stimulation (Hamada et al., 2001; see also
s function to gate signals to other SCN cells and explored how this could work in a
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phenomena. Computational modelers took advantage of these ba-
sic mechanistic explanations but confirmed and extended them by
deploying quantitative tools for understanding system dynamics.
Often these tools are applied abstractly, either because the system
cannot fruitfully be described as a mechanism or because the mod-
eler prefers to focus on global variables and parameters. When
substantially anchored to a particular mechanistic account, how-
ever, computational modeling helps to understand and explore
the dynamics of that mechanism—yielding what we have called
dynamic mechanistic explanation.

4. Modeling and mechanistic explanation in cognitive science

The relation between modeling and mechanistic explanation is
very different in cognitive science than in circadian rhythm re-
search and many other areas of biology. For the most part, empir-
ical research in cognitive science has not revealed the
representations or other component parts of cognitive mechanisms
or their operations (Bechtel, 2008a). Instead, cognitive scientists
generally posit these components in their computational models
and then do empirical research to demonstrate that they can pro-
duce the phenomenon of interest. If they can, the modeler claims
that the cognitive mechanism is like that specified in the computa-
tional model. (If not, the modeler usually revises the model and
tests it again.) This can be seen by considering more specifically
the two forms of computational modeling that, until recently, have
dominated cognitive science—symbolic modeling and neural net-
work modeling.

Symbolic modelers posit mental representations in which dis-
crete symbols are composed into strings, trees, or other symbolic
structures that are crucial parts of the cognitive system. Symbolic
modelers presume that cognitive activity involves rules that gener-
ate and operate on these representations. Among the many varia-
tions on this basic architecture originating in the early decades of
cognitive science are: Chomsky’s use of rewrite rules to generate
tree structures and transformational rules to modify them and
artificial intelligence programs operating on representations in-
spired by predicate calculus, semantic networks, or scripts. One
of the most enduring variations is Newell & Simon’s (1972) pro-
duction system architecture. Its key components are a working
memory (in which symbolic structures are stored) and a set of con-
ditional statements called production rules, of the form: ‘if X, do Y’.
When the antecedent condition is satisfied (e.g. the representation
that the box is not on the table is in working memory) the produc-
tion rule will fire, directing the system to perform action Y (e.g.
sending an instruction to put the box on the table, or modifying
the contents of working memory). A given production system
model (e.g. EPAM, SOAR, ACT*) is treated as a hypothesis about
the kinds of representations and operations implemented in the
brain. Initially the evidence for such a model was limited to behav-
ioral data (e.g. patterns of errors or reaction times or, more re-
cently, eye movements). Since these were the most relevant
available types of data, cognitive psychologists have become
skilled at procuring and interpreting them. Beginning in the mid-
1980s, the introduction of PET, and then fMRI, neuroimaging tech-
nologies, as well as advances in ERP, provided non-invasive means
of securing neural evidence regarding cognitive operations. Ini-
5 The fact that the computational models of cognition employ operations that mirror th
models themselves are often taken to perform cognitive activities. If, for example, operat
intelligent decisions, and the model employs similar operations over its representations, th
one would not regard a computational model of a circadian mechanism as itself genera
hurricane). This is because the model of circadian rhythms (or of the hurricane) does not
variables in the model reflect salient properties of the parts and operations in the mechan
computational model, if successful, tracks how the values of these variables change through
does not mirror its operation.
tially, this gave rise to a rapidly expanding field of cognitive neuro-
science. Increasingly, though, mainstream cognitive scientists such
as Anderson (2007) have sought to link the operations posited in
computational models to specific brain areas by examining neural
activation as people performed tasks designed to call upon partic-
ular hypothesized cognitive operations.

Artificial neural network models posit a different architecture,
one in which cognitive activity is presumed to involve propagation
of activation across networks of neuron-like processing units
(hence, these are also known as connectionist networks). In parallel
distributed processing (PDP) networks (Rumelhart & McClelland,
1986b), it is patterns of activity over sets of units that count as rep-
resentations (sometimes referred to as sub-symbolic), but there is
also a class of localist networks in which each unit serves a repre-
sentational function on its own (and hence might be regarded as a
discrete symbol). In both, the operations that propagate activation
are specified by equations applying to each individual unit (sum-
ming inputs from weighted connections into a unit, calculating
an activation level for the unit, and sending output to other units).
Below, we will present selected neural network models in greater
detail, but here we note that they are designed to execute appro-
priate transformations of input representations to output repre-
sentations for a given cognitive task—that is, to account for
phenomena—not to simulate the activity of known neural path-
ways (Rolls & Treves, 1998, constitute an important exception).

Despite their differences, symbolic and neural network models
share certain points of contrast with circadian models. Circadian
modelers begin with an existing mechanistic account and then
undertake computational modeling to explore its dynamics and,
simply, the question of whether it works. The computational mod-
el is a system of differential equations whose variables correspond
to selected properties of the parts and operations of the target
mechanism. The characterization of the whole mechanism, in de-
tail, is a prior task achieved by other methods (the conduct and
interpretation of laboratory research). But for cognitive scientists,
the computational model, with its hypothesized representations
and operations, is the only available account of the mechanism.
Depending on the type of model (they are quite diverse in cogni-
tive science), it may also capture dynamics qualitatively or quanti-
tatively. Cognitive operations and their dynamics are assumed to
be mirrored in the model, but the only empirical check on this is
the extent to which the model as a whole approximates the behav-
ior of humans performing the target task. Thus, much more is
asked of computational models in cognitive science than in circa-
dian research, but they benefit less from empirical constraint.5

Despite substantial differences in how computational modeling
is carried out, cognitive modelers can make some of the same kinds
of contributions as circadian modelers. We will illustrate this by
briefly presenting for each of the six contributions already dis-
cussed one comparison case from cognitive science. All involve
connectionist neural network models, and were discussed at great-
er length in Bechtel & Abrahamsen (2002), Chapters 8 and 10.
However, the same points could be made using symbolic models
of the 1980s and 1990s, as well as many contemporary cognitive
science models. These have in common that they are not based
on empirically grounded knowledge of the target mechanism and
hence have a more hypothetical status than the corresponding
ose taken to be involved in the cognitive mechanism helps explain the fact that the
ions over representations are hypothesized as enabling the cognitive agent to make
en the model itself, if successful, is capable of making intelligent decisions. In contrast,
ting circadian rhythms (or a computational model of a hurricane as itself being a
involve operations corresponding to those in the mechanism being modeled. Rather,
ism and the equations capture how values of these variables change over time. The
time. The computational model describes aspects of the working of the mechanism; it
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circadian models. In each case, we will note how this limits the
evaluation or interpretation of the model.

(C1) A model can demonstrate that a mechanism, whose parts,
operations, and organization have been at least partially identi-
fied, is able to exhibit the phenomenon of interest.

The models proposed in cognitive science often serve a similar,
limited objective: showing that a mechanism of the sort hypothe-
sized in the model would be adequate to produce one or more phe-
nomena of interest. Success in meeting this objective provides
weak evidence for the model as a whole (it is shown to be plausi-
ble) and indirect evidence that the posited operations correspond
to those of the actual mechanism. For example, Rumelhart &
McClelland (1986a) wished to demonstrate that a single connec-
tionist network was adequate to account for children’s U-shaped
pattern in learning to produce the past-tense of both regular and
irregular verbs (e.g. the correct form went gets replaced by the
overregularized form goed, eventually corrected to went). In its role
as a network that could learn, each time a verb was presented to
the network’s input units, the network applied (a) its operations
for propagating activation to its output units and (b) a learning
rule, which assessed how well the output pattern corresponded
to the target past-tense form and adjusted the connection weights
towards a slightly better response for next time. The same verbs
were presented hundreds or thousands of times, and discrepancies
from the correct past-tense forms could be examined at different
points in the learning phase and at the end. Since the model was
not grounded in research on the actual mechanism, it could be
evaluated only by the similarity of these discrepancies to those
exhibited by children—that is, its ability to exhibit relevant phe-
nomena. To their credit, Rumelhart and McClelland did not limit
themselves to the particularly striking phenomenon of a U-shaped
acquisition curve across the learning process; they identified a
number of other phenomena in the existing empirical literature,
some rather subtle ones involving subtypes of phonologically sim-
ilar verbs, and for the most part found that their model came
impressively close to replicating those effects.

Critics too focused on the fit between the model’s behavior and
empirical phenomena, but brought to the table additional phenom-
ena, and more stringent criteria, with the result that they judged
the model’s fit inadequate (Pinker & Prince, 1988). Favoring a more
traditional symbolic explanation, they argued for a dual mecha-
nism account: rules for regular verbs and memory look-up for
irregular verbs. The result was a vigorous debate in which subse-
quent modelers (e.g. Plunkett & Marchman, 1993) attempted to
overcome the shortcomings identified by critics, the critics formu-
lated additional objections, and on across multiple rounds. This
controversy illustrates one of the limitations of modeling in the ab-
sence of knowledge of the parts, operations, and organization of
the actual mechanism (which for cognitive phenomena is, at some
level of abstraction, a brain mechanism). In the absence of this
source of constraint on the numerous ways one or more competing
models might be modified to accommodate additional phenomena,
the ensuing conflicts are often irresolvable. The relevant models
are underdetermined, and the modelers themselves perhaps overly
determined to win an unwinnable competition.

(C2) A model provides a means of exploring a much larger space
of parameter values than would be feasible experimentally, and
thereby of projecting how the actual mechanism would behave
under a variety of conditions.

This second contribution captures the fact that, by altering the
values of parameters, investigators can perform experiments on
their models that are difficult or impossible to perform in the real
world. The benefits are available to even cognitive scientists lim-
ited to hypothetical models, especially when they target not just
the components of a mechanism but also its dynamics. Beer
(1995, 2000), for example, used the walking behavior of six-legged
insects as a domain for investigating the extent to which connec-
tionist networks could get outcomes similar to those of actual neu-
ral control circuits. He was guided by general knowledge about
how insects walk and the circuits involved, but his models were in-
tended as an abstraction of the broad class of actual circuits. Each
‘leg’ was controlled by a network of five fully interconnected units,
three of which (akin to motor neurons) also sent outputs to effec-
tors in the leg. All five units also had the potential to receive input
from sensors in the leg, and there were interconnections among
the six controller networks (one for each leg) so as to coordinate
their behavior. The weights on the various connections were ob-
tained via a genetic algorithm (that is, rather than using a learning
algorithm to train up the weights in a single network, Beer used
selection over multiple generations to evolve networks with
weights well adapted to the task). The resulting networks repro-
duced the tripod gait characteristic of actual fast-moving six-leg-
ged insects. Most relevant here, Beer conducted experiments in
which he varied sensory feedback. Consistent input during simu-
lated evolution yielded networks that reproduced fine-tuned walk-
ing with the tripod gait—but if sensory input was withheld during
testing, they could not walk. In contrast, networks evolved under
sensory deprivation walked with a stereotyped gait regardless of
whether sensory input was provided during testing. Finally, net-
works for which the sensory inputs were sometimes on and some-
times off during evolution produced a fine-tuned tripod gait when
tested with sensory input and the stereotyped gait otherwise.

Like the experiments on circadian models, the experiments Beer
conducted in evolving his model controller networks were illumi-
nating in exploring the parameter space (he regarded environmen-
tal input as a parameter in his broader framework). He also made
advantageous use of dynamical systems theory (DST) in further
interpreting the findings: since his networks had connections in
both directions between most units, they were interactive (rather
than feedforward) networks and therefore formed attractor basins
for which DST provides revealing analytic tools. As a motor control
model, grounded in part on neural research, but abstracted from it,
Beer’s model is less hypothetical than the others considered here.
Direct inferences would still be risky, but his results suggest that
blocking or degrading sensory pathways might be an intriguing
avenue of research on actual neural control systems. And were
more realistic versions of his model developed, experiments on
such models could more plausibly substitute for research in those
regions of parameter space that are intractable for actual systems.

(C3) A model can indicate which parts and operations of a sys-
tem that have been identified empirically are essential for pro-
ducing the phenomenon of interest, and therefore should count
as components of the responsible mechanism.

A model of memory consolidation offered by McClelland et al.
(1995) sought to make a similar contribution. Their model was sit-
uated at the intersection of cognitive science and cognitive neuro-
science, in that they started with a fairly well supported claim that
consolidation involved two different kinds of brain structure—hip-
pocampus and neocortex—and their modeling was directed to
explaining why this was the case. It is not obvious why consolida-
tion of long-term memories in the neocortex should take months,
nor why the hippocampal system (which specializes in quickly cre-
ating intermediate-term, contextualized memories) should be nec-
essary to that process. McClelland et al. proposed that a three-layer
feedforward network that learns via backpropagation provided a
reasonably close model of the type of memory mechanism instan-
tiated in neocortex. (This type of network has a middle layer of hid-
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den units; trained repeatedly on a set of input–output patterns, its
learning rule gradually modifies the weights on the connections
from input units to hidden units and from hidden units to output
units until the output patterns closely approximate the target out-
put patterns for each input.) A well known problem with this archi-
tecture is that it exhibits the phenomenon of catastrophic
interference, in which learning a new set of input–output pairs se-
verely compromises performance on those learned previously. This
can be avoided if the training regimen interleaves new items with
reinstated old items. McClelland et al. proposed that the hippo-
campus served as trainer, interleaving new items with old items
that it ‘replayed’ to the neocortex. Due to memory decay in hippo-
campus, the older the item the less often it would be replayed.
McClelland et al. provided training of this kind to a feedforward
network serving as a computational model of the neocortical mem-
ory mechanism. (They provided no model of the hippocampus—
that was a later project—but only the interleaved output it was
presumed to send to neocortex.) When they stopped the training
(corresponding to lesioning the hippocampal system), they found
that the feedforward network (neocortex) performed worst on
items that had the fewest consolidation trials (i.e. it showed the
graded retrograde amnesia that is a signature of hippocampal dam-
age). As intriguing as are the results of this modeling effort, the
ability to apply them to the actual interaction of the hippocampus
and the neocortex is limited by the fact that we do not yet know
whether the hippocampus provides appropriate interleaved train-
ing to the neocortex or that the neocortex functions like a feedfor-
ward network subject to catastrophic interference. The modeling
does advance hypotheses that, once empirical researchers find a
means of testing them, could make important contributions to
our understanding of mammalian memory mechanisms.

(C4) A model serves as a basis for explaining a disorder when
specific alterations to the model produce effects that mimic
the disorder.

A similar contribution has been offered in certain connection-
ist modeling projects, except that a connectionist investigator
typically alters a particular set of connections rather than reset-
ting one or a few parameters in a set of equations. To cite one
especially illuminating example, Hinton & Shallice (1991) de-
signed a network to model the role of semantics in reading aloud.
Positing a path from orthographic representations (spellings) to
semantic representations (meanings) to phonological representa-
tions (for reading aloud), they implemented the first half of the
path and assumed that the second half was unproblematic. Spe-
cifically, they started with a feedforward network in which ortho-
graphic units sent activation to semantic units. The challenge was
that similar input patterns tend to activate similar output pat-
terns, but orthographically similar words can have quite different
meanings. They therefore amended the architecture by adding
interconnections between semantic units as well as a set of
‘clean-up units’ that received inputs from the semantic units
and sent outputs back to them. This yielded an interactive net-
work that could develop attractor basins for different meanings.
Thus, although two words with similar orthographic representa-
tions would otherwise tend to activate similar semantic represen-
tations, the attractor basins served to pull them apart and the
network performed well. Hinton and Shallice then explored what
happened when different sets of connections were ‘lesioned’ by
removing a subset. They found three types of errors: visual errors
(reading ‘cat’ as mat), semantic errors (reading ‘mouse’ as rat),
and mixed errors (reading ‘cat’ as rat), in somewhat different pro-
portions for different lesions (e.g. more semantic errors with le-
sions higher in the network). Their proposed explanation was
that lesions restructured the attractor basins. Such errors are
characteristic of the pathological condition known as deep dys-
lexia. Their model made available a novel explanation of this dis-
order that was quite appealing, especially in that researchers on
reading had previously been baffled by the co-occurrence of
semantic and visual errors, and a higher than expected rate of
mixed errors. Despite genuine success, the same caveat applies
to this case as to those already discussed: because the computa-
tional model is not anchored to an account of the actual neural
mechanism responsible for reading aloud (either intact or altered
so as to produce deep dyslexia), any inferences that the model’s
architecture and specific operations explain the ability or the dis-
order are supported only indirectly. In the absence of a better-
grounded explanation, one might choose to rely upon the expla-
nation of Hinton and Shallice, but only tentatively and as a guide
to future research.

(C5) A model can reveal conditions under which independent
mechanisms, each with its own internally determined dynami-
cal (oscillatory) behavior, can be coupled so as to exhibit coor-
dinated collective behavior.

and

(C6) A model provides a means of exploring the space of possi-
bilities for altering and restoring relations between multiple
mechanisms (e.g. synchrony or phase delay between
oscillators).

These last two contributions of computational modeling ad-
dress the coordination, or the disruption of coordination, between
component mechanisms whose activities are determined primarily
by their internal constitution. In cognitive science, most modelers
treat components of their models as merely responding to inputs.
Some, though, treat them as oscillators that are intrinsically active.
For example, to account for the spontaneous way in which people
switch between alternative interpretations of ambiguous figures
such as the Necker cube, van Leeuwen and colleagues developed
a coupled map lattice model comprising 2500 (50 � 50) oscillator
units (van Leeuwen et al., 1997, 2000). They used the logistic func-
tion, xt±1 = A xt (1 � xt), as an activation function for each unit,
where xt is the net input to that unit at time t. Depending on the
value of the parameter A, a unit on its own can exhibit periodic
or chaotic oscillations (or not oscillate). However, each unit was
coupled to four other units (its neighbors in the lattice) at a
strength determined by the value of a coupling parameter C. With
appropriate values of C relative to A, synchronization was achieved
within small clusters of units.

To simulate shifting interpretations of ambiguous figures,
some elaborations were required. The modelers redefined A as
a variable that was sensitive to input and replaced C with indi-
vidually adaptive weights plus a global parameter Cmax that
could bias the model towards more or less stability. Presented
with a grid of equally spaced dots, vertical neighbors in the lat-
tice would temporally synchronize their oscillations (i.e. the
model would see the grid as columns of dots). At some point,
units would desynchronize, and the next synchronization might
involve horizontal rather than vertical neighbors (i.e. the model
would see the grid as rows of dots). The model exhibited meta-
stable synchronization as the interpretations irregularly alter-
nated. This is an impressive demonstration of how one
computational model that focuses on coupling relations between
oscillators can mimic a particular perceptual phenomenon. Like
the second and fourth cognitive science models introduced
above, it specifies both a mechanism and its performance
dynamics. Like the first and fourth models, it also simulates
learning dynamics. However, like all four of the above cognitive
science models, it was developed in the absence of information
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about the relevant parts and operations in the brain that realize
such a mechanism. At best, it suggests how and why the actual
perceptual mechanism behaves this way, if it in fact employs
oscillatory components organized and orchestrated like those
in the van Leeuwen model.

5. Conclusion

In summary, computational modelers who focus on cognitive
capacities use many of the same computational tools and seek to
make many of the same contributions as those focused on circa-
dian rhythms. Both can offer dynamic mechanistic models as
explanations for one or more phenomena. However, the models
we offered in illustration of these similarities also displayed an
important difference: whether component parts and operations
are posited in the model or discovered through empirical inquiry
prior to modeling.

Cognitive modelers begin by designing a computational model
that hypothesizes a mechanism with specified parts, operations,
and organization, and then try to show that such a model can mi-
mic the cognitive phenomena of interest. If successful, they offer it
as a model of the actual mechanism. Some researchers go beyond
basic mechanistic modeling to include dynamic phenomena
among the explanatory targets; in particular, those we cited ad-
dressed dynamics at a timescale of either real-time performance
or ontogenesis. While this is a welcome advance in cognitive mod-
eling, it does not change the status of these models as de novo pro-
posals for the architecture of cognitive mechanisms. Empirical
evidence can rule out specific models, but usually cannot decide
between competing architectures.

In contrast, computational models of circadian mechanisms, like
those advanced in many other sciences, elucidate the functioning of
a mechanism whose parts, operations, and organization already
have been identified by empirical research in which instrumenta-
tion, experimentation, and laboratory methods were tools of dis-
covery. The variables in such a model capture salient properties of
the parts, operations, and organization described in the mechanistic
account, and the model’s performance helps scientists assess
whether such a mechanism could realize the dynamic phenomena
of interest. This is particularly important when the operations are
nonlinear and the organization is sufficiently complex that mental
simulation of the mechanism’s functioning would be inadequate.

Computational modeling in circadian rhythm research hence
provides a different type of exemplar against which to view cogni-
tive modeling. It suggests a path for cognitive modeling that can at-
tend to dynamics without ignoring mechanism: equations in which
the variables include properties of parts and operations as well as
time. It also highlights the value of computational modeling that
is anchored in an empirically derived mechanistic account. This
kind of dynamic mechanistic explanation will not come easily in
cognitive science, in that it must target extremely complex mecha-
nisms. However, the necessary empirical and conceptual tools are
increasingly available, as is the will to use them in this way.
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