Extrapolation, Capacities, and Mechanisms Imagine that a chemical occurring in some consumer products has been found to be carcinogenic if administered in large doses in rats, and the question is whether it is also a carcinogen in humans. The mere repetition of the experimental result in rats is not sufficient to answer this question, since the physiology of rats may differ in some relevant respect from that of humans. This is an example of extrapolation: given some knowledge of the causal relationship between *X* and *Y* in a base population, we want to infer something about the causal effect of *X* upon *Y* in a target population. For instance, in the example above, we know that the chemical is a positive causal factor for cancer in rats and we want to know whether it is also such in humans. Difficult cases of extrapolation are ones in which the base and target populations may differ in relevant respects and, moreover, in which ethical or practical considerations prohibit directly testing the claim at issue by experiment in the human target population. The most straightforward way to approach extrapolation is to presume that what is true of one population is also approximately true of other related populations unless there is some specific reason to think otherwise. I call this inferential strategy simple induction. However, since simple induction would inevitably lead to many mistaken extrapolations, a more sophisticated approach would be highly desirable. Any account of extrapolation that goes beyond simple induction must confront two basic challenges. The first is what I call the extrapolator's circle. Simple induction relies on some criterion of relatedness, such as phylogeny or type of economic system. The shortcomings of simple induction stem from the fact that satisfying such criteria is often not sufficient for being a reliable basis for extrapolation. Consequently, additional information about the similarity between the model and the target—for instance, that the relevant mechanisms are the same in both—is needed to justify the extrapolation. The extrapolator's circle is the challenge of explaining how we could acquire this additional information, given the limitations on what we can know about the target. In other words, it needs to be explained how we could know that the model and the target are similar in causally relevant respects without already knowing the causal relationship in the target. The second challenge arises from the inevitable presence, in the biological and social sciences, of causally relevant differences between heterogeneous populations must explain how extrapolation can be possible even when such differences are present. I argue that existing accounts of extrapolation fail to answer these challenges. One proposal I consider maintains that capacities or causal powers that exert a characteristic influence independently of context are a basis for extrapolation. However, this proposal does not adequately explain how one is to know that one is dealing with a capacity rather than a context-sensitive causal relationship, aside from already having found that the causal relationship obtains in all of the contexts in question. Thus, without some further elaboration, the capacities proposal does not address the two challenges just described. A mechanisms approach to extrapolation could be regarded as such an elaboration of the capacities proposal or as a separate approach. According to this approach, knowledge of mechanisms linking cause and effect and knowledge of factors capable of interfering with these mechanisms can significantly facilitate extrapolation. As noted in Chapter 1, this idea has been suggested by several philosophers, social scientists, and biologists. However, a mere invocation of mechanisms does not resolve the extrapolator's circle, nor does it explain how extrapolation can be possible in the face of causally relevant disanalogies. The mechanism approach needs to explain how the suitability of the model could be established without already knowing all of the important details about the mechanism in the target. Moreover, some differences in the mechanism in the model and the target are inevitable in biology and social science. Thus, the mechanisms approach requires an account of how extrapolation can be justified even when such differences are present. In this chapter, I develop a more satisfactory version of the mechanisms approach to extrapolation. The central concept is a mode of inference I call comparative process tracing, which aims to assess the suitability of the model as a basis for extrapolation. Comparative process tracing depends upon background information concerning likely similarities and differences between the model and the target. If significant differences between the model and the target are likely to be restricted to a relatively small number of stages of the mechanism, then comparisons at those stages may provide good grounds for the suitability of the model. The number of stages that must be compared can be reduced further if upstream differences must result in differences at an observable downstream point in the mechanism. Moreover, knowledge of just a few stages of the mechanism in the target alone (that is, without knowledge of the model) might not suffice for firm conclusions regarding the existence of a mechanism in the target. Hence, my proposal provides an analysis of how extrapolation can be justified despite the extrapolator's circle while indicating conditions in which it is a genuine problem. I illustrate my account of comparative process tracing with a case study concerning the carcinogenic effects of aflatoxin B₁. The question of how useful the mechanisms approach to extrapolation developed here is The aflatoxin example also illustrates how extrapolation may be justifiable even when there are some causally relevant disanalogies between the model and the target. I argue that the closeness of the match between model and target required for extrapolation depends upon the specificity of the causal claim to be extrapolated. While similarity in all causally relevant respects may be required for extrapolating an exact, quantitative causal effect, it is not required for extrapolating qualitative causal claims. In particular, claims about positive or negative causal relevance can be extrapolated even when there are causally relevant disanalogies. This point is illustrated by the aflatoxin example, wherein a causally relevant difference between the animal model and the human suggests that the carcinogenic effect is less in the model than in humans. Yet this difference does not indicate that it would be a mistake to extrapolate the claim that exposure to aflatoxin B₁ increases the chance of liver cancer in humans. A more general and precise characterization of conditions that suffice for extrapolating claims about positive and negative causal relevance is given in Chapter 6. #### 5.1 SIMPLE INDUCTION Imagine a case in which one is concerned to decide whether a causal generalization found in a base population (say, laboratory mice) also holds true of a target population of interest (say, humans). Simple induction proposes the following rule for such cases: Assume that the causal generalization true of the base population also holds approximately in related populations, unless there is some specific reason to think otherwise. In other words, simple induction proposes that extrapolation be treated as a default inference among populations that are related in some appropriate sense. The advantage of simple induction is that it can be employed in cases in which relatively little detailed information concerning the mechanisms underlying the causal relationship is available. There are, however, three aspects of the above characterization of simple induction that stand in obvious need of further clarification. In particular, to apply the above rule in any concrete case, one needs to decide what it is for a causal generalization to hold approximately, to distinguish related from unrelated populations, and to know what counts as a reason to think that the extrapolation would not be appropriate. It seems doubtful that a great deal can be said about these three issues in the abstract—the indicators of related populations, for instance, can be expected to be rather domain-specific. But it is possible to give examples of the sorts of considerations that may come into play. Simple induction does not enjoin one to infer that a causal relationship in one population is a precise guide to that in another—it only licenses the conclusion that the relationship in the related target population is "approximately" the same as that in the base population. It is easy to see that some qualification of this sort is needed if simple induction is to be reasonable. In biology and social science, it is rare that a causal effect in one population is exactly replicated even in very closely related populations, since the probabilities in question are sensitive to changes in background conditions. Nevertheless, it is not rare that various qualitative features of a causal effect, such as positive relevance, are shared across a wide range of populations. For example, tobacco smoke is a carcinogen among many human and nonhuman mammal populations. Other qualitative features of a causal effect may also be widely shared; for instance, a fertilizer may promote growth in moderate dosages and inhibit growth in large ones across a wide variety of plant species even though the precise effect differs from one species and variety to the next. In other cases, the approximate similarity may also refer to quantitative features of the causal effect—the quantitative increase in the chance of lung cancer resulting from smoking in one population may be a reasonably good indicator of that in other closely related populations. In the case of extrapolation from animal models, it is common to take
into account scaling effects due to differences in body size, since one would expect that a larger dose would be required to achieve the same effect in a larger organism (cf. Watanabe et al. 1992). Thus, in such cases, the scaling adjustment would constitute part of what is covered by "approximately." Depending on the context, the term "approximate" could refer to similarity with regard to any one of the aspects of the causal effect mentioned above, or other aspects, or any combination of them. Simple induction is also restricted in allowing extrapolations only among related populations, a qualification without which the rule would obviously be unreasonable: no population can serve as a guide for every other. In biology, phylogenetic relationships are often used as a guide to relatedness for purposes of extrapolation: the more recent a shared common ancestor, the more closely related the two species are (cf. Calabrese 1991, 203–4). A phylogenetic standard of relatedness also suggests some examples of what might count as a specific reason to think that the base population is not a reliable guide for the target population. From the mechanistic point of view, phylogenetic relatedness supports extrapolation because it increases the likelihood that the pertinent mechanisms are shared in the base and target populations as the result of descent from a common ancestor. But when the causal relationship in the base population depends on derived features—that is, characteristics not inherited from the common ancestor—this reasoning is fallacious. In many biological examples, simple induction requires only some relatively minimal background knowledge concerning the phylogenetic relationships among the base and target populations, and its chief advantage lies in this frugality of information demanded for extrapolation. Yet the weakness of the simple inductive strategy also lies in exactly this frugality: given the rough criteria of relatedness, the strategy will inevitably produce many mistaken extrapolations. According to one review of results concerning interspecies comparisons of carcinogenic effects: Based on the experimental evidence from the CPDB [Carcinogenic Potency Database] involving prediction from rats to mice, from mice to rats, from rats or mice to hamsters, and from humans to rats and humans to mice,...one cannot assume that if a chemical induces tumors at a given site in one species it will also be positive and induce tumors at the same site in a second species; the likelihood is at most 49%. (Gold et al. 1992, 583) A related challenge for simple induction is that it is not rare that there are significant differences across distinct model organisms. For instance, aflatoxin B_1 (discussed in section 5.3.2) causes liver cancer in rats but has little carcinogenic effect in mice (Gold et al. 1992, 581–82; Hengstler et al. 2003, 491). The consequence of these considerations is not that simple induction is wrong or useless for extrapolation. Rather, what follows is that simple induction is limited, and that it is highly desirable that it be supplemented with some more sophisticated inferential strategy. Let us turn to the question of just what this "something more" should be. #### 5.2 POWERS AND CAPACITIES The notion of a causal power or capacity is a very commonsensical one. For example, in virtue of its hardness and mass, a brick has the capacity to shatter a glass window. Moreover, this capacity is not tied to a specific set of background conditions, but is something that the brick can be reasonably be expected to possess in whatever circumstance it is likely to be found. Capacities and causal powers, then, seem like a promising point of departure from which to address extrapolation. For example, Cartwright maintains that it is only knowledge of capacities that enables one to extrapolate context-dependent relationships such as causal effects from one population to another (1989, 157-58, 163; 1992, 56). According to Cartwright, a statement about a capacity tells us what would occur when all other causes are absent (cf. 1992, 49; 1999, 82-83). But it tells us more than just that, since a capacity exerts its characteristic influence upon the effect even when other causes are present (ibid.). In this section, I argue that capacities approaches to extrapolation have failed to overcome the limitations of simple induction. The central feature of capacities is their stability across changes in background conditions. As Cartwright puts it, "A property carries its capacities with it, from situation to situation" (1989, 146). This stability need not be absolute (cf. Cartwright 1989, 163), but it is presumably required to be sufficiently robust to justify the expectation that causal influence will hold throughout the domain in question. Capacities are not limited to basic physical properties, such as the mass of a brick. Cartwright also uses the term "capacity" to refer to causal relationships that depend on a complex set of interactions. For instance, "aspirin's capacity to relieve headaches" is one of her stock illustrations (1989, 141). A claim about the palliative effects of aspirin is quite similar to a statement about the carcinogenic effects of a particular chemical compound. Both are claims about positive causal relevance that depend upon an interaction between a compound and an organism. Thus, the palliative virtues of aspirin exist only in relation to organisms with a particular type of physiology, and similarly for the carcinogenic effects of a particular compound. Clearly, it will often be difficult to know in advance whether a compound that has a particular effect in one species or class of organisms will have a similar effect in others. That of course is the extrapolation problem of concern in this chapter. But by definition, a capacity is a causal influence that is not tied to a specific context. Hence, if we know *only* that the compound is carcinogenic in (say) rats, we do not know whether its influence can be properly called a capacity. Consequently, if we do not know whether the extrapolation would be correct, we do not know whether the causal effect in question is a capacity. The difficulty here, then, it is that it is not clear how one is to know that something is a capacity independently of already knowing what one wanted to know about extrapolation. In other words, to call a causal relationship a capacity is to say that it is stable across a range of contexts of interest, but questions of extrapolation arise exactly in those cases in which the stability of the causal relationship is in doubt.² The objection that it is unclear how one is supposed to know whether a causal relationship is a stable capacity or merely a local, context-dependent effect has been raised by several authors (Morrison 1995, 165–66; Glennan 1997, 611–13). In response to such concerns, Cartwright writes: I have claimed that in the central uses of the concept, we assume that within the specified domain tendencies when properly triggered always "contribute" their characteristic behaviours unless there is a reason why not. (1995, 180) This statement amounts to a commitment to the use of simple induction: within some set of related populations (the domain), one assumes that the relationship holds unless there is some reason to suppose otherwise. However, we have seen that simple induction is often highly problematic in the context of extrapolation from animal models. Hence, without some further elaboration, the capacities approach will not suffice as a normative account of extrapolation. Cartwright does provide some elaboration on the issue of whether there is a reason why the capacity will not operate in the new context. This judgment is said to be based upon knowledge of "how this tendency naturally operates and how its power to do so is transmitted, what could distort it, what enhance it, what could damp it and in what ways" (ibid.). This appears to be a reference to Cartwright's notion of a nomological machine, which is one of several related mechanism concepts, as was discussed in section 3.4.1. On this proposal, then, capacities inhere in the component parts of a nomological machine or mechanism, while extrapolation depends upon information about how the component parts are arranged and interact. That is very similar to the suggestion that knowledge of mechanisms and interfering factors is a basis for extrapolation. But merely to invoke mechanisms is not to have explained how the challenges confront extrapolation. For all we know, the causal effects of the components of the mechanism might be context-dependent, and the components in the model might be arranged and interact differently than those in the target (Alexandrova 2006, 186-87). Demonstrating the relevant similarity of the model and the target would presumably require separately studying the mechanisms in both and then comparing results. But it is not clear how that can be done when the ability to study the target directly is severely limited. In short, to gesture toward mechanisms is not to have answered the challenges confronting extrapolation. Across the Boundaries Cartwright's proposal is not unique in this regard: the same point can be made in the context of an account of causal powers provided by Patricia Cheng (1997). Although the aim of Cheng's approach is primarily the psychological one of understanding how people actually draw causal inferences, her proposal is highly interesting from a philosophical perspective. Like Cartwright, Cheng stresses the value of causal powers with regard to extrapolating causal conclusions. In the reasoner's mind, causal powers are invariant properties of relations that allow the prediction of the consequences of actions regardless of the causes of an effect (those other than the candidate causes) that happen to occur in a situation. (2000, 127) Thus, Cheng's causal powers are very similar to Cartwright's capacities in that
they are intended to be stable influences that operate independently of changes in context or background conditions. In its simplest version, Cheng's proposal assumes the existence of two types of causes, generative and preventive, which may be either present or absent (but not vary otherwise). No event occurs unless it is caused, and causes can influence their effects only when they are present. An event occurs if and only if at least one of its potential causes is present and causes it on that occasion. For a generative cause C, the causal power of C with respect to E, which we may denote by p_{ce} , is the probability that C causes E provided that C occurs. It need not be the case that $p_{ce} = P(E|C)$, since P(E|C) depends not only upon the efficacy of C but also upon the probability of the presence and effectiveness of other causes of E. Cheng's innovation is to demonstrate that, given certain assumptions, causal powers can be estimated from statistical data (1997, 373–74). In her 1997 paper, one of these assumptions is that p_{ce} is independent of the occurrence of all other causes of E. This means that C, in affecting E, does not interact with any other causes. But in biology and social science, causes typically influence their effects interactively, so that the impact of one depends upon the presence or absence of others. Indeed, extrapolation is difficult precisely because the relationship between cause and effect might depend on some unknown, variable factor. In light of this limitation, Cheng (2000) develops a concept of interactive causal power. She points out that when causes interact, the formula described in her original proposal does not estimate causal powers, but only what she terms the "contextual causal power" (2000, 235). Cheng also specifies conditions in which interactive causal powers can be estimated from statistical data, provided that all the interacting causes have been measured (2000, 241-46). However, in most interesting biological and social science examples, it can be expected that the causes under investigation interact with other causes that have not been measured or otherwise explicitly taken into account. For such cases, Cheng suggests that one proceed by first assuming that the causal power is simple (that is, independent of all other causes) and then postulate causal interactions only when necessary to accommodate conflicting data (2000, 232, 238). Yet the proposal that one estimate context- or population-sensitive causal relationships, and then assume that these hold approximately in related populations unless there is some evidence to the contrary, is simple induction. And as explained in the foregoing section, simple induction is often not a sufficient basis for extrapolation from animal models. Thus, the proposals considered in this section have not provided an adequate account of how extrapolation could proceed even when not justifiable by simple induction. Let us turn, then, to a distinct proposal. #### 5.3 MECHANISMS-BASED EXTRAPOLATION The mechanisms approach to extrapolation suggests that knowledge of mechanisms and factors capable of interfering with them can provide a basis for extrapolation. But this proposal must also answer the two challenges to extrapolation described above. Since causally relevant differences between model and target are inevitable, some explanation must be provided of how extrapolation can be justified even when there are some differences in mechanism between model and target. The extrapolator's circle confronts the mechanisms proposal as well. Presumably, justifying the appropriateness of the model would involve comparing mechanisms in the model and the target, which would involve independently studying the mechanisms in both and then comparing results. But that makes it unclear how the suitability of the model can be established without already knowing what the extrapolation was supposed to tell us. In this section, I argue that existing discussions of mechanisms do not adequately address these challenges. Then I present a more adequate account of mechanisms-based extrapolation that is founded upon what we call comparative process tracing. ## 5.3.1 The Existing Literature on Mechanisms and Extrapolation There is a small literature that provides detailed case studies of extrapolation in biology or social science, often with particular attention to the role of mechanisms (cf. Burian 1993; Ankeny 2001; Schaffner 2001; Weber 2005; Guala 2005; Alexandrova 2006). Essays in this genre point out some circumstances that facilitate, and some that hinder, extrapolation. For instance, it has been observed that extrapolation is on firmer ground with respect to basic, highly conserved biological mechanisms (Wimsatt 1998; Schaffner 2001; Weber 2005, 180–84). Others have observed that a close phylogenetic relationship is not necessary for extrapolation and that the use of a particular animal model for extrapolation must be supported by empirical evidence (Burian 1993). Similarly, Francesco Guala (2005) emphasizes the importance in experimental economics of providing empirical evidence to support the claim that the model is relevantly similar to the target. These suggestions are quite sensible. The belief that some fundamental biological mechanisms are very widely conserved is no doubt a motivating premise underlying work on such simple model organisms as the nematode worm. And it is certainly correct that the appropriateness of a model organism for its intended purpose is not something that may merely be assumed, but a claim that requires empirical support. Yet such observations do not answer the challenges to extrapolation. Objections to animal extrapolation focus on causal processes that do not fall into the category of fundamental, conserved biological mechanisms. For example, Marcel Weber suggests that mechanisms be conceived of as embodying a hierarchical structure, wherein the components of a higher-level mechanism consist of lower-level mechanisms, and that while lower-level mechanisms are often highly conserved, the same is not true of the higher-level mechanisms formed from them (2001, 242-43; 2005, 184-86). So, even if one agreed that basic mechanisms are highly conserved, this would do little to justify extrapolations from mice, rats, and monkeys to humans regarding such matters as the safety of a new drug or the effectiveness of a vaccine. Since critiques of animal extrapolation are often motivated by ethical concerns about experimentation on animals capable of suffering (cf. LaFollette and Shanks 1996), they primarily concern animal research regarding less fundamental mechanisms that cannot be studied in simpler organisms such as nematode worms or slime molds. Nor do the observations sketched in the foregoing paragraph explain how extrapolation can proceed even when there are causally relevant differences between model and target or how the extrapolator's circle is to be avoided. For example, noting that the appropriateness of an animal model for a particular extrapolation is an empirical hypothesis does not explain how such a hypothesis can be established without already knowing what one wishes to extrapolate. There also are discussions in the philosophical literature of strategies for learning about mechanisms. A distinction between mechanisms and the "phenomena" (Craver and Darden 2001, 113-14) or "behavioral descriptions" (Glennan 2005, 446) those mechanisms explain is helpful for understanding these proposals and contrasting them with comparative process tracing. Phenomena are regularities of the system under study that are more easily observable than the underlying mechanisms. For example, that HIV exposure causes AIDS is a phenomenon, whereas the mechanism consists of the molecular processes through which HIV has this effect. Since phenomena are often more easily discovered than underlying mechanisms, several authors have examined strategies for discovering mechanisms, given the phenomenon and some background constraints on what the components of the mechanism and their interactions could be (cf. Bechtel and Richardson 1993; Craver and Darden 2001; Darden and Craver 2002). Lindley Darden and Carl Craver's (2002) discussion focuses on what they term schema instantiation and forward chaining/backtracking. Schema instantiation begins with a schematic outline of the mechanism in which central functional roles are specified, but important details concerning the entities and activities involved in the performance of those functions are omitted. For example, the mechanism of HIV replication instantiates a schema that is common for retroviruses: attachment to a target cell, insertion of viral RNA into cytoplasm, reverse transcription, integration of viral DNA into host DNA, and synthesis of products for the formation of new viruses from this integrated viral DNA by means of the host cell's genetic machinery. Next, one attempts to discover the specific entities and activities that instantiate the schema, often by means of tracing forward from a known starting point or backward from a known end point (or both at once). For convenience, we will refer to the joint application of these strategies, schema instantiation and forward chaining/backtracking, as process tracing. Glennan points out that process tracing is sometimes unfeasible for ethical or practical reasons (2005, 459-61). In such cases, one may attempt to discover the mechanism through more detailed descriptions of the phenomenon (ibid.). For example, alternative hypotheses concerning the mechanism may yield differing predictions about how the system would behave in a new circumstance. But although the strategy that Glennan suggests differs from process tracing, it is aimed at solving the same inference problem: given a description of the phenomenon, discover the mechanism that accounts for it. In extrapolation, by contrast, what one wishes to infer is a mechanism and
phenomenon in a target organism. The evidence given includes the mechanism and behavioral description for a model organism, and perhaps some partial information about the mechanism in the target. By "partial information," I mean that the information concerning the mechanism in the target is not sufficient on its own to infer the phenomenon (e.g., whether the compound is carcinogenic in humans). The mechanisms approach to extrapolation must indicate a strategy for solving the following inference problem: given both the mechanism and the phenomenon in the model, and partial information concerning the mechanism in the target, infer the mechanism and/or phenomenon in the target. ## 5.3.2 Comparative Process Tracing Suppose that one is given a description of the mechanism in the model organism and wishes to use this information as a basis for extrapolation. Such an inference is a case of reasoning by analogy. The form of arguments by analogy can be represented schematically as follows: the base (or source or analogue) is known to possess properties 1 through n, while the target is known to have properties 1 through n-1; therefore, the target also possesses property n. It is obvious that not all inferences satisfying this abstract schema are reliable. For instance, Bob and Sue may both own 2005 Volkswagen Beetles, yet the information that Bob's car is iridescent lime green provides little support for the conclusion that Sue's car is the same color (cf. Weitzenfeld 1984, 138; Davies 1988, 229). Arguments instantiating the above schema, then, provide substantial support for their conclusions only given some additional, perhaps implicit, information. This additional information would consist of generalizations asserting that objects of specified types typically resemble one another in certain ways, though not necessarily in others. For instance, suppose one wanted to know whether the engine in Sue's Volkswagen Beetle is in the rear of the car (as in the older models) or in the front. If we learned that the engine of Bob's car is front mounted, we readily conclude that the same is true of Sue's car. The difference between this analogical inference and the one above is that cars of the same make, model, and year are typically manufactured in a variety of colors yet are generally similar with regard to basic design features such as the placement of the engine. Likewise, mechanisms-based extrapolation depends on knowledge of likely similarities and dissimilarities of the mechanisms between model and target. If one peruses a text or review article on animal extrapolation in toxicology, one finds a compendium of information concerning how pertinent mechanisms differ between humans and various model organisms, and with respect to which types of compounds.³ In the case of carcinogenesis, probably the most frequent differences concern metabolism (Calabrese 1991, chap. 5; Hengstler et al. 1999, 918). Since the metabolism of foreign, potentially toxic compounds consists of chemically transforming them so as to make them less toxic and more readily excreted, differences with regard to how a particular compound is metabolized, and at what rate, can have implications for its carcinogenic effects. Mechanisms for metabolism of foreign compounds are typically described in terms of two phases (cf. Calabrese 1991, 206). In phase I, the compound is chemically altered (often through the addition of oxygen or hydrogen atoms) in a manner that makes it more polarized, and consequently more easily excreted. In phase II, the compound resulting from the modification in phase I is conjoined with a macromolecule, such as a carbohydrate, which typically detoxifies the compound and further facilitates its removal. Metabolic mechanisms can differ with respect to how the compound is altered at either phase and in virtue of which enzymes catalyze the process, which has the result that some mechanisms may be more effective than others at detoxifying and eliminating a given foreign compound. The above discussion suggests a procedure for extrapolating a mechanism found in the base population to the target population, a procedure that I call *comparative process tracing*. First, learn the mechanism in the model organism, by means of process tracing or other experimental means. For example, a description of a carcinogenic mechanism would indicate such things as the product of the phase I metabolism and the enzymes involved; whether the metabolite is a mutagen, an indication of how it alters DNA; and so on. Second, compare stages of the mechanism in the model organism with that of the target organism in which the two are most likely to differ significantly. For example, one would want to know whether the chemical is metabolized by the same enzymes in the two species, and whether the same metabolite results, and so forth. In general, the greater the similarity of configuration and behavior of entities involved in the mechanism at these key stages, the stronger the basis for the extrapolation. The reliability of comparative process tracing depends on correctly identifying the points at which significant differences between the model and the target are likely to arise. Significant differences are those that would make a difference to whether the causal generalization to be extrapolated is true in the target. For instance, metabolism is a source of potentially significant difference in carcinogenesis, since how a compound is metabolized often matters to whether it is carcinogenic or not. Judgments about where significant differences are and are not likely to occur are based on inductive inferences concerning known similarities and differences in related mechanisms in a class of organisms, and on the impact those differences make. In the present case, the relevant generalizations would concern the common similarities and significant differences in carcinogenic mechanisms between humans and rodents. Comparative process tracing, then, resembles simple induction in relying upon generalizations concerning the relation between the target and model organisms. The chief difference concerns what these generalizations assert. Simple induction depends upon generalizations of the form "What is carcinogenic for rats is probably carcinogenic for humans, too." In contrast, comparative process tracing depends upon generalizations like "Features A, B, and C of carcinogenic mechanisms in rodents usually resemble those in humans, while features X, Y, and Z often differ significantly." The toxicology literature described above is plausibly interpreted as an effort to provide an empirical basis for generalizations of the latter but not the former sort. Of course, it might be questioned whether the data presently available to toxicologists constitute a representative sample. However, that is a standard problem of statistical sampling rather than Figure 5.1 Comparing a downstream stage a difficulty specifically raised by extrapolation, such as the extrapolator's circle. But even given accurate information about the points of likely similarity and dissimilarity, comparative process tracing might still be impractical if not all likely points of significant difference could be compared. Fortunately, comparative process tracing often does not require comparing every stage of the mechanism at which significant differences are likely to be present. In particular, suppose that many points of likely difference are upstream of a later stage that is relatively easy to measure and compare. Then it may be possible to omit comparisons of the upstream stages and focus on the downstream one. For instance, imagine a mechanism like the following: Suppose that *X*, *Y*, and *Z* represent points of the mechanism at which significant differences between model and target are likely, while *A* and *B* represent points that are likely to be the same. If differences in *X* or *Y* must result in differences in *Z*, then it is necessary only to compare the model and target at *Z*. That reduces the amount of information about the mechanism in the target that is needed to establish the suitability of the model, which may be very helpful if it is difficult to study the mechanism in the target directly. Furthermore, comparing a downstream stage of the mechanism also renders mistakes about upstream sources of difference less consequential. For instance, suppose that differences were in fact likely at *A* in Figure 5.1, despite our belief to the contrary. Yet if a difference at *A* must generate differences at *Z*, then the mistaken belief about *A* will not lead to a faulty extrapolation so long as a comparison is made at *Z*. Thus, efficient applications of comparative process tracing can focus on likely sources of difference in *downstream* stages of the mechanism. A few important qualifications about the emphasis on downstream stages should be noted. First, the strategy could lead to mistaken conclusions if there is a path that bypasses the downstream stage. For instance, suppose in Figure 5.1 there was a path from *X* to *E* that did not go through *Z*. In that case, checking *Z* would not be sufficient since there might be significant differences in the mechanisms that would not leave a mark on *Z*. Hence, applications of the strategy depend on knowing where to look for bottlenecks through which any influence upon the outcome must be transmitted. Second, the mark that upstream stages leave upon the downstream stages must be distinctive in the sense that it could not have resulted from some independent cause. The mark should be, as it were, a fingerprint whose presence or absence indicates something causally significant about upstream processes. In examples from toxicology, the distinctive mark is often a particular chemical compound that retains a distinctive, identifiable structure even after being metabolized. That point is illustrated by the aflatoxin $B_1(AFB_1)$ example that we discuss now.
Extrapolation of the carcinogenic effects of aflatoxin B₁(AFB₁) is a good example of comparative process tracing. Produced by certain species of fungi that grow on various types of grains and nuts, aflatoxins are now generally regarded as an important risk factor for liver cancer, a belief dating back to the 1960s that has its origins in laboratory experiments on rats and epidemiological studies (Wogan 1992, 123). Jointly, a positive correlation in epidemiological data between liver cancer and exposure to aflatoxins through food contamination, and a corresponding experimental result in rats, provided a prima facie case for the conclusion that aflatoxins are carcinogenic in humans. However, this evidence alone is not unequivocal. The epidemiological correlation might result in whole or in part from an unmeasured common cause of aflatoxin exposure and liver cancer, while rats might be an inappropriate model for humans with respect to aflatoxins. The appropriateness of the rat as a model in this context was hardly an idle concern, given that aflatoxin was found to have little carcinogenic effect in mice (Gold et al. 1992, 581-82; Hengstler et al. 2003, 491). Differing results among animal models are a clear case of a "reason to suppose otherwise," blocking extrapolation by simple induction. Let us consider how comparative process tracing ameliorated this situation. Since there are often trans-species differences in the metabolism of foreign compounds, a natural starting point for this inquiry was to analyze the metabolism of aflatoxins in humans and in the rodent populations in which aflatoxins were found to be carcinogenic. It was found that AFB₁, the most common aflatoxin, was converted to the same phase I metabolite across these groups (Wogan 1992, 124). Given the sharp differences in carcinogenic effects of AFB1 in rats and mice, it was of obvious interest to inquire which of these two animal models was a better guide for humans. It was found that although the phase I metabolism of AFB₁ proceeded similarly among mice, rats, and humans (and in fact at a higher rate in mice), the phase II metabolism among mice was extremely effective in detoxifying AFB₁ but not among rats or humans (Hengstler et al. 1999, 928-31). Furthermore, this metabolite bound to DNA in rat liver cells in vivo at sites at which the nucleotide base guanine was present to form complexes called DNA adducts (ibid., 927). It was further found that such cells suffered unusually frequent mutations in which guanine-cytosine base pairs were replaced with adenine-thymine pairs, a mutagenic effect found in vivo among rats and in vitro among cells of a variety of origins, including bacteria and human (ibid., 923, 927). In addition, guanine-cytosine to adenine-thymine mutations were found in activated oncogenes present in rats exposed to AFB1 but were absent in the controls (ibid., 130–33). Thus, comparative process tracing yielded the conclusion that the rat was a better model than the mouse. 93 The example also illustrates that comparative process tracing need not be restricted to comparisons between a single model-target pair, but may involve selecting among several candidate model organisms. In fact, rats and mice were not the only model organisms considered: guinea pigs and hamsters were also studied. These were compared with humans on the basis of quantity of AFB₁ DNA adducts present per unit of peripheral blood among individuals exposed to AFB₁, with a one strain of rat, the Fischer rat, bearing the closest similarity to humans (Hengstler et al. 1999, 925-26). However, even in the Fischer rat, the quantity of DNA adducts was significantly less than in humans, suggesting that even the most sensitive rodent model provides an underestimate of the human impact of AFB₁. The quantity of DNA adducts provides information about a downstream stage of the mechanism (like Z in Figure 5.1). Thus, by focusing on the quantity of DNA adducts, researchers could avoid the cumbersome task of comparing every likely point of difference. This example also demonstrates how comparative process tracing can indicate extrapolative limitations of the best model. In this case, one could reasonably use the Fischer rat to extrapolate the conclusion that AFB₁ exposure increases the chance of liver cancer, and perhaps even use the effect in the Fischer rat to estimate a lower bound for the strength of that effect. But it is doubtful that a quantitative estimate of the impact of AFB₁ upon liver cancer could be correctly extrapolated from the Fischer rat to humans. #### 5.4 CRITIQUES OF ANIMAL EXTRAPOLATION An account of extrapolation should be able to adjudicate methodological disputes on this topic, and this section illustrates how the proposal advanced here can do that. In a book and series of articles, Hugh LaFollette and Niall Shanks argue that model organisms cannot be reliably used for extrapolation at all, but only as sources of promising hypotheses to be tested by clinical or epidemiological investigations (1993a, 1993b, 1995, 1996). They use the term causal analogue model (CAM) to refer to models that can ground extrapolation, and hypothetical analogue model (HAM) to refer to those that function only as sources of new hypotheses. According to LaFollette and Shanks, animal models can be HAMs but not CAMs. A similar though somewhat more moderate thesis is advanced by Weber. He maintains that, except for studies of highly conserved mechanisms, animal models primarily support only "preparative experimentation" and not extrapolation (2005, 185-86). Weber's "preparative experimentation" is similar to LaFollette and Shanks's notion of a HAM, except that it emphasizes the useful research materials and procedures derived from the animal model in addition to hypotheses (2005, 174-76, 182-83). In this section, I argue that these pessimistic claims about the potential of animal extrapolation are not correct. #### 5.4.1 No Relevant Difference Extrapolation, Capacities, and Mechanisms LaFollette and Shanks's primary argument for the conclusion that model organisms can function only as HAMs and not as CAMs rests on the proposition that if a model is a CAM, then "there must be no causally relevant disanalogies between the model and the thing being modeled" (1995, 147; italics in original).⁴ It is not difficult to show that animal models rarely if ever meet this stringent requirement. But an obvious reply is that LaFollette and Shanks's criterion of CAM-hood is unreasonably strict. In light of this, LaFollette and Shanks consider the possibility that a weaker condition than the complete absence of relevant causal disanalogies could suffice for extrapolation. They suggest that this proposal be interpreted as follows: Begin with two systems, S_1 and S_2 . S_1 has causal mechanisms [a, b, c, d, e], S_2 has mechanisms [a, b, c, x, y]. When stimulus s_f is applied to subsystems [a, b, c] of S_1 , response r_f regularly occurs. We can therefore infer that were s_f applied to subsystems [a, b, c] of S_2 , it is highly probable that r_f would occur. (1995, 153) However, they argue that this inference is valid only if the relationship between the stimulus and the response is entirely independent of the differing mechanisms, [d, e] and [x, y] (ibid.). But if these mechanisms make no difference to the relationship between the stimulus and the response, then there are no relevant disanalogies between S_1 and S_2 , which would mean that S₁ is a CAM after all. Thus, LaFollette and Shanks conclude that when it comes to extrapolation, only a CAM in their sense will do: there must be no relevant causal dissimilarities between model and target (cf. 1996, 180). Needless to say, this strict condition is rarely if ever satisfied. Not only are relevant differences across species inevitable, but dissimilarities are also extremely common within species and even for a single organism at different stages of its life. The field of pharmacogenomics, for instance, is dedicated to the study of genetic differences among humans that produce divergent responses to drug therapies. Likewise, susceptibility to, say, harmful side effects of a therapy may be contingent upon factors associated with age, such as declining kidney functioning. Thus, if the strict criterion of CAM-hood proposed by LaFollette and Shanks were accepted, not only would extrapolation from animal to human be illegitimate, but so would extrapolation from humans to other humans. Indeed, even extrapolations from past to future in the life of a single person would be unjustified.⁵ The flaw in LaFollette and Shanks's argument is that it overlooks the connection between the specificity of the claim to be extrapolated and the standard of a suitable model. This point is illustrated nicely by the aflatoxin example. In this case, the Fischer rat would not qualify as a CAM in LaFollette and Shanks's strict sense, since the quantity of DNA adducts resulting from AFB₁ is less in the Fischer rat than in humans. Yet this difference does not undermine extrapolating the positive causal relevance of AFB₁ for liver cancer. The difference suggests that the effect in the Fischer rat is *less* than that in humans. But if the effect in Fischer rats is positive and less than that in humans, then the effect in humans must be positive, too. Consequently, although it would be unwise to extrapolate the *exact* causal effect of AFB₁ upon liver cancer from Fischer rats to humans, the known difference provides no reason against extrapolating a claim about positive causal relevance. Thus, a model might provide a good basis for extrapolating a *qualitative*, but *not a quantitative*, claim concerning a causal effect. This example suggests that LaFollette and Shanks's stringent criterion of CAM-hood is simply a characterization of what a model organism must be if it is to serve as a basis for the extrapolation of exact causal effects. Generally, neither
animal-model-to-human nor human-to-human extrapolation can expect such precision. For instance, there is reason to think that the quantitative effect of AFB₁ upon liver cancer varies among human populations. One important reason is that exposure to the hepatitis B virus appears to increase susceptibility to the carcinogenic effects of AFB₁ (cf. Kew 2003), and rates of exposure to that virus vary geographically. LaFollette and Shanks's mistake, therefore, is to present their characterization of a CAM as an entirely general condition required for the extrapolation of any causal claim whatever, when it is in fact only a criterion for extrapolating an extremely precise causal generalization. The conditions that suffice for extrapolating claims concerning positive causal relevance are far less stringent than those needed for extrapolating the exact probability distribution of the effect, conditional on interventions that set the value of the cause. Chapter 6 explores in greater generality and precision conditions that suffice for extrapolating claims concerning positive or negative causal relevance. In section 6.2.2, I explain how these sufficient conditions are in fact quite reasonable in the aflatoxin example. #### 5.4.2 The Extrapolator's Circle LaFollette and Shanks also use the extrapolator's circle as an argument for their conclusion that animal models can function only as HAMs and not as CAMs. They claim, reasonably enough, that the appropriateness of a model organism for extrapolation must be demonstrated by empirical evidence (1993a, 120). But they argue that this appropriateness cannot be established without already knowing what one hopes to learn from the extrapolation. We have reason to believe that they [animal model and human] are causally similar only to the extent that we have detailed knowledge of the condition in *both* humans and animals. However, once we have enough information to be confident that the non-human animals are causally similar (and thus, that inferences from one to the other are probable), we likely know most of what the CAM is supposed to reveal. (1995, 157)⁷ LaFollette and Shanks presumably mean to refer to their strict CAM criterion when they write "causally similar," but the extrapolator's circle can be stated independently of that criterion. Whatever the criterion of a good model, the problem is to show that the model satisfies that criterion given only limited, partial information about the target. However, LaFollette and Shanks's argument shows that extrapolation from animal to human is never legitimate only if it proves the same for extrapolation from one human group to another. For suppose that a particular causal generalization is known to obtain in one human population, and the question is whether it does so in a second. How is one to know whether the two populations are sufficiently similar for the purposes of the extrapolation? According to LaFollette and Shanks, this similarity can be established only on the basis of independently learning the causal relationship in each population and then comparing results. But that would obviate the need for the extrapolation. Thus, the extrapolator's circle shows that animal extrapolation is never justified only if it shows the same about extrapolation in all heterogeneous populations. This result suggests that the extrapolator's circle does not really show that animal extrapolation can never justify informative conclusions about humans. An account of extrapolation should be able to specify where LaFollette and Shanks's argument goes wrong, while indicating the extent to which the extrapolator's circle is a genuine problem. Unlike previous accounts of extrapolation, the proposal advanced here can do that. LaFollette and Shanks's attempt to turn the extrapolator's circle into a general critique of animal extrapolation overlooks the role of premises concerning likely similarities and differences in analogical reasoning. Thus, in comparative process tracing, providing evidence for the suitability of the model requires comparisons only at stages in the mechanism in which significant differences are likely to occur. Consequently, it may be necessary to compare only a few stages of the mechanism. For example, metabolism is the most common source of difference in carcinogenic mechanisms among mammals. Thus, showing that phase I and II metabolism of AFB₁ proceeds similarly in rats and humans strengthens the case for the rat as a model organism. Yet an understanding of the phase I and II metabolism of AFB₁ in humans, considered on its own, provides little information regarding the carcinogenic effects of this compound. Moreover, it is not necessary to compare all points of likely significant difference if there is a downstream stage of the mechanism upon which upstream differences leave their mark. This point is illustrated in the AFB₁ case by the use of the quantity of DNA adducts to assess several potential animal models. In sum, making a case for the suitability of the model may require examining only a few key features of the mechanism in the target, and knowledge of these features alone would fall far short of what one hopes to learn from the extrapolation. In such cases, the extrapolator's circle is avoided. The extrapolator's circle is a serious challenge if little is known about likely similarities and differences in relevant mechanisms or if it is known that the model and the target are likely to differ in almost every relevant respect. In the latter case, one would effectively know that the organism in question is in fact a very poor model, which would imply that it ought not to be used as a basis for extrapolation. The more interesting case, then, is the first: little is known about likely similarities and differences or their significance for the causal relationship in question. There can be little doubt that such cases sometimes arise, and when they do, extrapolation obviously cannot proceed by comparative process tracing, but would presumably rely upon simple induction. But transforming the extrapolator's circle into a general critique of extrapolation from animal models would require not merely showing that such circumstances sometimes arise. It would be necessary to show that this situation is almost always the one faced in animal extrapolation. That is an argument that LaFollette and Shanks have not made, and it is one that seems difficult to make, given examples like aflatoxin. That comparative process tracing can establish the suitability of an animal model also demonstrates that extrapolation is not restricted to entrenched mechanisms inherited from distant ancestors. The carcinogenic mechanism in the AFB₁ example is clearly not of this character since, for instance, it is not present in mice. In short, that a mechanism is highly conserved is *one*, *but not the only*, possible basis for extrapolation. #### 5.4.3 HAM Versus CAM? An underlying assumption of LaFollette and Shanks's argument is that there is a sharp divide between CAMs, which can support extrapolation, and HAMs, which only suggest fruitful hypotheses and lines of research. They write that "there is a big difference between an animal model being a good source of hypotheses and its being a good means to test hypotheses" (1996, 199). LaFollette and Shanks support the claim that there is a strict divide between HAM and CAM by appeal to the old distinction between the contexts of discovery and justification (1996, 194).8 According to this doctrine, the manner by which a hypothesis is generated has no relevance whatever to the assessment of its scientific adequacy. Whether the new hypothesis was inspired by a dream, a poem, or the floral pattern of a colleague's Hawaiian shirt makes no difference to its epistemic virtues, which can be decided only through a careful examination of the relevant evidence. The sharp contrast between HAM and CAM drawn by LaFollette and Shanks is simply the context of discovery versus justification distinction applied to animal models. HAMs are animal models in the context of discovery, while CAMs are models in the context of justification. However, the context of discovery versus justification dichotomy has been critiqued from a wide variety of perspectives (cf. Hanson 1958; Kuhn 1977, chap. 11; Longino 1990; Darden 1991; Kelly 1996; Simon 1998). Current discussions of the distinction in the philosophy of science literature take it as more or less given that aspects of the discovery process can be relevant to the assessment of hypotheses, and then proceed to consider the finer points of proposals about how this is so (cf. Darden and Craver 2002; Castle 2001; Elliott 2004). The problem with the thesis that there is an unbridgeable chasm between the contexts of discovery and justification can be appreciated by means of simple examples like the following. Imagine two procedures for generating hypotheses, the first of which generates correct hypotheses 95 percent of the time and the second that generates correct hypotheses 1 percent of the time. Now suppose that the two procedures have produced conflicting hypotheses. Given this information, which hypothesis—the one generated by the first procedure or the one generated by the second—do you think is more likely to be correct? The obvious answer is the hypothesis produced by the first procedure. Thus, that a hypothesis was generated by a procedure likely to produce empirically successful hypotheses can be relevant evidence. Although it is rarely possible to assign exact rates of success to distinct discovery procedures, the process is nevertheless typically not a matter of ineffable and mysterious inspiration either. For example, scientific discovery is typically guided by prior knowledge of constraints that must be satisfied by a successful hypothesis in the domain in question. Ignoring these constraints is likely to lead to a grossly inadequate hypothesis. In sum, the process by which
hypotheses are discovered is amenable to logical analysis and can be relevant evidence to be considered in assessing the hypothesis. A defender of the context of discovery versus justification dichotomy might object that the mode of discovery is evidentially relevant only insofar as it suggests that the hypothesis is consistent with particular observations or experimental results. Consequently, the mode of discovery would be irrelevant to one who knew all of these data and who was able to directly assess the hypothesis with regard to them. That may be true, but it is nevertheless the case that information about the mode of discovery may be evidentially relevant to someone in a less than perfect epistemic position. One might not know what all of the relevant data are, or one might not be able to directly assess whether the hypothesis is consistent with them. In such cases, information regarding the source of the hypothesis may remain evidentially relevant. This is very much the situation one faces with regard to animal extrapolation. For instance, to a person with complete knowledge of carcinogenesis in humans, information about animal models would be irrelevant for assessing the accuracy of any hypothesis about the effects of AFB₁. But for ordinary mortals who lack such perfect knowledge, animal models can be a useful source of evidence. These considerations are directly relevant to the supposed sharp distinction between HAM and CAM. As LaFollette and Shanks observe, although hypotheses can be inspired by practically anything, not everything is a good HAM (1996, 195). The most obvious way a model could be a good HAM is in virtue of being likely to generate hypotheses about the target that are true, or at least approximately so. Yet this account of what makes a good HAM entails that the difference between HAM and CAM is one of degree. Both provide some evidence for the extrapolation; it is just that the evidence provided by the CAM is stronger and less equivocal. But LaFollette and Shanks cannot distinguish between good and bad HAMs in this manner, since that would contradict their claim that *only* CAMs in their very strict sense provide *any* evidence for extrapolation. So what does make a good HAM, according to LaFollette and Shanks? They write, "A HAM is likely to be valuable if there are demonstrable functional similarities between the model and item modeled" (1996, 195). But it is difficult to see how this could be true, given their persistent claim that functional similarity is no indicator of similarity of mechanisms. For in that case, there is no reason to think that a functionally similar HAM will lead to fruitful hypotheses rather than unproductive dead ends. Of course, model organisms typically share more with their targets than mere functional similarity. They also share a common ancestor and some fundamental mechanisms at the level of biochemistry, the cell, and physiology. These similarities provide some—albeit rather uncertain and rough—grounds for extrapolation. And that is what justifies regarding them as HAMs. Rather than a sharp dichotomy between HAMs and CAMs, then, there is a continuum from models providing weaker to those providing stronger grounds for extrapolation. A model might be a weak basis for extrapolation because little is known about likely sources of significant difference and similarity, or because mechanisms in the model and the target have not been compared at stages of likely difference. The more that is known about likely similarities and differences, and the more the likely differences have been checked and found to be absent, the stronger the basis for extrapolation. Moreover, exactly how similar the model is required to be depends upon the claim of interest to the extrapolation, as noted above and explored in further detail in Chapter 6. From this perspective, any sharp HAM versus CAM distinction is inevitably arbitrary and ultimately unimportant. The pertinent issues are how thoroughly comparative process tracing has been carried out and what conditions are required to extrapolate the generalization in question. Despite disagreeing with LaFollette and Shanks's methodological critique of animal extrapolation, I think that they deserve credit for articulating objections that had not been adequately addressed in the literature on this topic. I also think that they are correct that these methodological questions matter to ethical issues surrounding animal experimentation, since animal research is typically justified on the grounds that it provides knowledge that benefits humans. Thus, the ethical question turns on whether the benefit to humans outweighs the suffering of the animal model. Although an in-depth exploration of these ethical issues is beyond the scope of this book, I would like to briefly indicate what I regard as the main ethical implication of the account of extrapolation developed here. LaFollette and Shanks wish to argue that animal experimentation is unethical in general, and hence they endeavor to show that extrapolation, in general, is not a reliable source of new information about humans. And if animal extrapolation were indeed so utterly incapable of providing useful information concerning humans, then the standard ethical defense of animal research would be undermined. In contrast, I suggest that extrapolation is reliable and informative in some circumstances but not others, and make some steps toward clarifying what those circumstances are. This perspective calls across-the-board moral vindications or condemnations of animal research into question. 10 Whether animal research is ethically defensible in a given case may depend in part upon the potential for extrapolating useful information about humans. And the extent to which this is or is not possible will depend on complex, casespecific scientific details. I do not pretend to answer the question of whether and to what extent animal research is ethically defensible. However, I do think that my account of extrapolation casts doubt on any "one size fits all" argument on either side of the issue. #### 5.5 CONCLUSION This chapter presents a mechanisms approach that addresses some of the primary methodological challenges confronting animal extrapolation. I began by considering simple induction, which is an undeniably important aspect of extrapolation but also limited in important ways. Simple induction alone would result in many mistaken extrapolations from animals to humans. In addition, there often is some reason to suppose that the extrapolation might be inaccurate, and simple induction provides little guidance about what to do when that is the case. More sophisticated approaches to extrapolation attempt to indicate how the suitability of a model for a particular extrapolation could be established. Any proposal of this sort must confront what I called the extrapolator's circle. That is, it must explain how the suitability of the model could be established without already knowing what the extrapolation is supposed to tell us. Moreover, since causally relevant disanalogies between animal models and human targets are inevitable, it is necessary to explain how extrapolation can be legitimate even when such disanalogies are present. I argued that existing proposals concerning extrapolation—either in terms of capacities or in terms of mechanisms-fail to adequately address either of these challenges. However, I proposed that the mechanisms approach can be developed so as to provide an answer to the extrapolator's circle. The key proposition in this proposal is what I called comparative process tracing. Comparative process tracing depends upon possessing information about the stages at which significant differences in mechanisms are and are not likely to occur, and on the directional property of the mechanism which enables one to focus on downstream stages when looking for relevant difference. Thus, it may be possible to establish the suitability of a model organism through a comparison with the target at a small number of stages in the mechanism. Finally, I examined several general methodological objections to animal extrapolation that were motivated by concerns about the ethical permissibility of animal research from the perspective of the approach to extrapolation proposed in this chapter. Although I think that these objections raise important issues, I argued that they are unsuccessful. In the next chapter, I explore conditions that can justify extrapolating claims of positive or negative causal relevance in greater detail, and suggest that this topic is closely relevant to the issue of ceteris paribus laws. # Ceteris Paribus and Extrapolation Laws and generalizations qualified by the expression "ceteris paribus," a Latin phrase for "other things being equal," are argued by some to play an important role in biology and social science. In contrast, others object that there is no satisfactory interpretation of ceteris paribus (hereafter, cp) laws and that they are not useful for understanding characteristic generalizations in the biological or social sciences. This chapter examines the controversy over cp laws from the perspective of extrapolating claims about positive or negative causal relevance. I propose that considering the topic in this light helps to resolve a central puzzle concerning the scientific role of cp laws. A survey of the current literature on the topic reveals that the expression "cp law" is highly ambiguous: several types of generalizations have been classified under this label. This point has been made explicitly by Gerhard Schurz (2001b, 2002), and it is also implicit in the variety of proposals concerning the manner in which cp laws should be understood. On some of these interpretations, cp laws are in fact illustrated by causal claims encountered in earlier chapters, such as causal effects and descriptions of mechanisms. The issue of cp laws is also related to extrapolation: one
might say that a causal generalization found in one context will also obtain in another, provided that nothing interferes or all else being equal. That is, the expression "ceteris paribus" can serve as a vague, all-purpose term for indicating whatever conditions are needed for the extrapolation to be correct. Moreover, extrapolation is an important part of what motivates discussions of cp laws, since the content of the cp clause is intended to provide guidance about when the generalization can and cannot be appropriately applied. A common type of analysis of cp laws known as the "completer approach" interprets laws as universal generalizations and the cp clause as stating conditions in which the law holds without exception. But in cases in which the conditions that lead to exceptions to the law cannot be listed exhaustively, the completer approach inevitably violates what I call the *domain specificity criterion*. This criterion requires that a law of a domain should provide information specifically about that domain rather than merely asserting, say, that determinism is true. I propose that the failings of the completer approach arise from two sources. First, it interprets "ceteris paribus" as qualifying a *generalization* in cases in which that expression should be understood in reference to an *inference schema*. Unlike an empirical law, an inference schema (such as *modus tollens*)