

Review

Correlation: relation between variables
Focus on relations between two score variables Prediction: predict the value of one variable (predicted variable) from the value of another variable (predictor variable)

Predict how far a value on one variable differs from the mean of that variable based on how far the value on the other variable differs from its mean Pearson coefficient
Prediction based on regression line Regression coefficient
Regression constant

Clicker Question

For the correlation between the average speed a person drives and gas mileage, $r=$
-.80 . The correlation accounts for
-80% of the variance
80% of the variance
64% of the variance
Cannot tell from the information given

Clicker Question

Which of the following is true if the regression line relating math ability and happiness score is defined by
happiness $=32-.8$ math ability
$r=-0.8$
$r=0.64$
$r=32$
r is less than 0

Do Humans Have Abnormally Large Brains?

Comparing the brains of a number of species, humans do seem to have larger brains

But hardly the
largest!
But humans also have larger bodies

How do brain sizes correlate with body sizes across
species?

Correlations and Allometry

Allometry Fig. $1 \quad \begin{gathered}\text { Mammals and Reptiles. } \\ \text { Brain and Body Mass Data }\end{gathered}$ correlates the size of parts of organisms (brains) with overall size Useful for unusually larger in a given species Human brains only slightly larger than expected

Correlations in samples and populations
The interest in correlations typically goes beyond the sample studied-investigators want to know about the broader population.
Two approaches
Estimating correlation in population (ρ) from correlation in sample (r)

Confidence interval
Determining whether there is a correlation in a given direction in the real population from correlation in sample
Statistical significance

Statistical significance and p-values

Fundamental question: How likely is it that the result (correlation in the sample) is due to chance rather than a real correlation in the population?
Formally: How statistically significant is the correlation?
How likely is a given correlation in the sample if there
were no correlation (or a correlation in the other
direction) in the population?
This is specified by the p-value
A p-value $<.05$ means there is less than a 1 chance in 20 of a correlation in the sample without a correlation in the real population
That is, more than 19 times out of 20 the correlation found in the sample is due to a correlation in the real population

Statistical significance and

 p-valuesp-values typically reported as less than some value
$<.05$ is the most commonly used significance level
If a study reports that the results are statistically significant with no p value, usually $p<.05$ is the intended meaning
<. 01 is a higher, more demanding significance leve Less than 1 chance in 100 of getting the result by chance
For some purposes, lower p values are useful to know Prediction with reliably of only .10 or .25 could be important to know

Chemical exposure and cancer, etc.

Clicker Question

A study reports a negative correlation between cell phone use and age at death with $\mathrm{p}<.15$. From this you should conclude

There is no correlation between cell phone use and age at death since p is not less than .05
There is less than a 15% chance that the
correlation is due to chance
There is less than a 15% chance of a correlation in the actual population
There is at least a 15% chance that the correlation is due to chance

Significance vs. Importance

A statistically significant finding may or may not be important.

All statistical significance means is that the finding is statistically reliable-not likely to have occurred by chance
where the p-value specifies what we count as likely
Whether it is important-worth knowingdepends on the finding

Correlations are hard to detect

Humans are terrible at recognizing intuitively whether two variables are correlated

We see correlations where none exist We fail to see correlations that do exist

Must actually look at the evidence, not rely on our impressions

Perform statistical analyses!

Fallacies of Prediction

Seeing correlations that don't exist
Failing to recognize regression to the mean
Explaining streaks that are to be expected
Failing to consider base rates

Fallacy of Prediction 1: Seeing correlations that don't exist
"When I'm waiting for the bus, the one going in the other direction always comes first!"
Evelyn Marie Adams won the New Jersey lottery twice, a 1 in 17 trillion likelihood-seem unlikely?

Given the millions of people who buy state lottery tickets, it was practically a sure thing that someone, someday,
somewhere would win twice.

Coincidences happen

Adams, Jefferson, and Monroe, three of the first five presidents of the US, died on the same date-July 4!

Charles Schulz died of a heart attack on the day his last published Peanuts cartoon!

Fallacy of Prediction 2: Failing to recognize regression to the mean
Last month you took the SAT/GRE and scored 750 out of a possible 800 on the quantitative part

For kicks, you decide to take the test again different questions, but of the same difficulty
assume that there was no learning or practice effect from the first test
What score should you/we predict for you on the second test?
The surprising answer is that you are more likely to score below 750 than above 750
the best guess is that you would score about 725

Regression to the Mean

Phenomenon discovered by Francis Galton, half cousin of Charles Darwin
Developed a regression analysis of height between human children and their parents
Found that "It appeared from these experiments that the offspring did not tend to resemble their parents in size, but always to be more mediocre than they - to be smaller than the parents, if the parents were large; to be larger than the parents, if the parents were small."

In fact, this applies only to extreme values

A way to understand regression to the mean

A given test is really a sample from a distribution. Assume that there is a large number, say 1,000 forms of a test and that
you take all 1,000 tests
there are no learning, practice, or fatigue effects.
Scores will be distributed:

A way to understand regression to the mean-2

Differences in the scores on these tests are due to chance factors:
guessing
knowing more of the answers on some tests than on others.

A way to understand regression to the mean-3

How could a first score of 750 have arisen:
It reflected the true score (all chance factors balanced out)
Your true score was <750 and you scored above it due to chance factors pushing you up
Your true score was >750 and you only scored 750 due
to chance factors dragging you down

Which is more likely?

There are very few people with "true" scores above 750 (roughly 6 in 1,000)
There are many more people with true scores between 700 and 750 (roughly 17 in 1,000).
Thus, it is more likely that you are from the latter group
20

A way to understand regression to the mean-4

Same principle applies to anyone at an edge of the normal distribution

More likely their true score is less different from the mean than the score obtained on a particular occasion when they obtained a very high score

Baseball player who has a great or
horrible batting average one year
Sales representative who had a spectacular or horrible year

Clicker Question

Why is it that most players who win "rookie of the year" honors perform less well their second year? By chance, the player performed above his/her natural level in the first year
By chance, the player performed below his/her natural level in the second year
Opposing players try harder against them The award winners don't try as hard the next year

Regression to the mean and punishment

Makes it seem like punishment works:
When someone is doing particularly poorly (for them), chastising them seems to result in better performance

But in fact it is only a case of regression
But praising someone does not seem to work:
When someone is doing particularly well (for them),
praise is usually followed by poorer results
Just another instance of regression!
"Nature operates in such a way that we often fee punished for rewarding others and rewarded for punishing them" (David Myers, Intuition, p. 148).

23

Watch out for pseudo explanations
A program proposes to help those who score at the very bottom end of a standardized test

For example, intervenes with those scoring
less than 300 on the SAT
After the intervention, the individuals are tested again

A larger proportion of this group exhibits
improved scores than decreased scores The program claims success BUT

It may have contributed nothing!
The results might totally be due to regression to the mean

Fallacy of Prediction 3: Explaining expected streaks
3.1415926535

THTTTHHTTT
3.1415926535897932384626433832795028841971 THTTTHHTTT HTTTTHTHHH HHHTTHTHTT THHHHHTTTT 6939937510582097494459230781640628620899 HTTTTTTTTH THHHTTHTHH TTHTHTHTHH ннннннннTT 86280348253421170679
HHHHHTHHHT THHTTTHHTT

Hot hand?

If someone just hit three shots in a row, is it a good idea to pass to them? What if they had missed three in a row?
Philadelphia 76ers' game data from the 1980-81 season (using all shots from the field)-success on next shot

Three Straight Hits	.46
Two Straight Hits	.50
One Hit	.51
One Miss	.54
Two Straight Misses	.53
Three Straight Misses	.56

Source: Gilovich, Vallone, and Tversky (1985, Cognitive Psychology,2zable 1)

Fallacy of Prediction 4: Neglecting

base rates

in trying to make predictions, we very often ignore the most important variable for making a prediction

Frank was drawn at random from a group of thirty lawyers and seventy engineers. He spends most of his free time hanging around his country club. At the bar he often talks about his regrets at having tried to follow in his esteemed father's footsteps The long hours he spent slaving in school could have been better spent learning to be less
quarrelsome in his relationships with other people
Is Frank a lawyer or an engineer?

What to base predictions on?

Would you answer this one any differently?

Frank was drawn at random from a group of thirty engineers and seventy lawyers. He spends mos of his tree the hanging around hiseoultry club
At the bar he often talks about his regrets a having tried to follow in his esteemed father's ootsteps. The long hours he spent slaving in school could have been better spent learning to be less quarrelsome in his relationships with other people

Is Frank a lawyer or an engineer?

Clicker Question

In a city in which two cab companies, Blue and Green, operate, a taxicab was involved in a nighttime hit and run accident
85% of the cabs in the city are Green, 15% Blue
A eyewitness identified the cab as Blue
The Court tested the ability of the witness to identify cab colors under appropriate visibility conditions, and he/she made the correct identification 80% of the time
What is the probability that the cab involved was Blue?
$\approx 80 \%$
$\approx 60 \%$
$\approx 40 \%$
$\approx 15 \%$

What to base legal decisions on?

	8aid Blue	8aid Green	Tetals
Blue	12	3	15
Green	17	68	85
Totals	29	71	100

Of the times he/she said it was Blue, it was blue $12 / 29$ or 41%
Is $<50 \%$ accuracy good enough to convict?

Base Rates

Base rates are often the best predictor
It matters greatly whether the population was
70/30 lawyers or 70/30 engineers
It matters greatly that 85% of the cabs were Green
This trumps the witness's 80% accuracy!
But humans almost universally ignore base rates if there is anything else on which to base the decision

Police, lawyers, scientists, doctors . .
Even philosophy professors

Comparing two populations

Populations defined in terms of nominal variables
Men/women
Gay/straight
Taking Phil $12 /$ not taking Phil 12
Compare the two populations on another variable. If this variable is a score variable, ask:

Do the distributions differ?
Do the means differ?
Do the variances differ? (asked much less
often)
${ }^{32}$

Diagramming differences between means

Use bar graph
Difference between heights of columns reflects differences in means

When the whole population is tabulated-very straightforward

Using samples to assess differences between means

 You take a sample and there is a difference in meansWhere did this difference come from?
A difference in the real population?

Using samples to assess differences between means - 2

In this case, the result in the sample is due to who happened to get chosen for the sample

How to tell whether a sample difference is real?

What is the probability that the difference in the sample could have resulted by chance had there been no difference in the population? The hypothesis that there is no difference between the means of the two groups is known as the null hypothesis.

Strategy: try to reject the null hypothesis Conclude that there is a difference in the real population when the sample you get would be very unlikely were the null hypothesis true

Clicker Question

A null hypothesis
Is the claim that there is a difference in the means in the two actual population
Is the claim that there is no difference in the means in the two actual populations
Is the claim that there is no difference in the means in the two samples
Is the claim that the difference in means in the samples is the same as that between the actual populations

Testing ESP

Your friend claims to have extrasensory
perception-ESP
Being a good skeptic, you want to put him to the test
You use a set of five cards, each randomly presented
twice
You look at and think about the symbol on the card Your friend tries to figure out the symbol on the card
you are looking at
You do this ten times, and your friend gets
2 right
3 righ
4 right
5 right
How many does your friend have to get right before you are impressed?

Testing ESP - 2

Two correct out of 10 trials is the most likely result if the null hypothesis were true

But results of 0, 1, 2, 3, 4 are all quite likely even if the null hypothesis were true

How unlikely a result should we demand?

How important is it to be right about ESP?

Number of correct answers	Probabilit y
10	$.00000+$
9	$.00000+$
8	.00007
7	.00079
6	.00551
5	.02642
$\longrightarrow 3$.08808
$\longrightarrow 2$.20133
$\longrightarrow 0$.30199
\longrightarrow	.26844
\longrightarrow	

Statistical significance again

Just as with correlations between score variables, we use the notion of statistical significance to evaluate results

A difference in a sample is said to be statistically significant when it has a very low probability of
occurring if the means in the population are equal
How low a probability is very low?
Investigators have to specify how high a probability they are willing to accept of being wrong
For many purposes, scientists accept a $1 / 20$ risk of being wrong- 5% ($p<.05$)

Clicker Question

If it is extremely important not to claim a difference between populations when there isn't one, one should

Insist that the difference in the means of the samples be large
Not worry about p-values since they aren't important
Insist on a p-value $<.01$ rather than $<.05$
Insist on a p-value <. 1 rather than <. 05

Statistical Significance - 2

f not being wrong when you claim there is a difference is extremely important, you might require a higher p value ($p<$ 01)

If not missing a difference that really exists is really important, you might take note of an even lower significance level ($p<.20$)—although you would want further study

Testing for Statistical Significance

There are a number of statistical tests that are employed (depending upon the specifics of the study) to determine whether a difference is statistically significant
The t-test $\quad \mathrm{t}=\mathrm{D}^{2}$ diference between group means
$\mathrm{t}=\quad \begin{aligned} & \text { difference between group } \\ & \text { within-group variability }\end{aligned}$

$t=$	$\bar{X}_{1}-\bar{X}_{2}$
$\sqrt{ } s_{1}{ }^{2} / N_{1}+\sqrt{s_{2}{ }^{2} / N_{2}}$	

The t-statistic thus obtained must be compared with a distribution derived from the null hypothesis

If it exceeds that value, the result is significant (at the specified level).

What has beer taught science?

William Sealey Gosset:
So that future statistics s (who would surely com GIUNNESS for his test) couldn't find published under the nar

Trained as a chemist brewery in Dublin

How to determine, from small samples, which ingredients gave the best results?
Published anonymously to avoid being accused of giving away trade secrets

A biological example

Biomass produced by two strains of bacteria

Bacterium A	Bacterium B
520	230
460	270
500	250
470	280

Are these differences reliable? t-statistic $=13.01$ Criterion value for $p<.05$ is 2.45
Criterion value for $p<.001$ is 5.96
Result is significant at $p<.00$

A Social Science Example

A sample of intravenous drug users is compared with a sample of non-intravenous drug users

How many see a dentist within a year? In this case, $\mathrm{p}<.001$ It is extremely likely that there is a difference in the actual population although not necessarily exactly the same as the difference in the sample

Showing Statistically Significant

Differences with Error Bars
Error bars can be used to identify 1 or more standard deviations above and
below the mean
If the error bars overlap, the difference is not statistically is not statis
significant
significant
If they do not, the difference may be statistically significant

Showing Statistical (non)Significance with Error Bars

The bar graph to the right shows suicide rates of people
between
15 and 24 in the different States and different States and erritories of Australia Error bars show 95\% confidence interval
 No differences are
statistically
significant

Non-significant Difference versus No Difference

If the difference in your sample is not significant, you conclude that you cannot tell whether there is actually a difference in the real population

There may be one, but the power of your test was too weak to find it
It is important to keep in mind that we impose a high standard on significance

If we use $p<.05$, the result is not likely to happen more than 1 in 20 times by chance
If p is only $<.1$, then the result is typically termed non-significant, but 9 times out of 10 there is a difference in the actual population

Coincidences happen

oarraine and Levinia Christmas are twins. They set out to deliver Christmas presents to each other near Flitcham, England. Their cars collide!
Philip Dodgson, a clinical psychologist at South
Downs heath center in Sussex, England, does psychotherapy with clergy and members of religious orders. He surfs the web to see if there are is anyone else named Philip Dodgson. He finds one in Ontario and writes to him.

The second Philip Dodgson is also a clinica psychologist working at Southdown Center, a residential psychotherapy center for clergy and members of religious orders

