Distributions and Samples	Distributions and Samples	
---------------------------	---------------------------	--

Clicker Question

The major difference between an observational study and an experiment is that

- A. An experiment manipulates features of the situation
- An experiment does not employ observation
- C. An observational study records what happens
- D. An observational study employs a coding system

Review

Observational research involves careful recording and analysis of what is observed

- Without an attempt to manipulate what happens

- In naturalistic observation the observer seeks to remain unobtrusive whereas
- In **participant observation** the observer becomes part of the situation
- Risks that must be minimized:
 - Observer bias
 - Reactivity
 - Anthropomorphizing

Review	
Recording observations	
 Must extract that which is to be analyzed: coding systems, etc. 	
 Distinguish continuous observation from 	
 Time sampling 	
 Event sampling Situation sampling 	
Analyze observations in terms of variables —a characteristic or feature that varies and takes on	
different values	

Clicker Question

To determine how many vehicles travel a given road, a researcher installs a camera that takes a picture of traffic every 15 minutes. This researcher is using Continuous observation Time sampling Event sampling Situation sampling

Types of Variables

Categorical or nominal variables: major Ordinal or rank variables: patient condition

Interval variables: temperature in degrees Fahrenheit

Ratio variables: age

Clicker Question The variable MINUTES OF COMERICALS PER HOUR is	
A categorical or nominal variable An ordinal or rank variable An interval variable A ratio variable	

Clicker Question	
The variable PARTY AFFILIATION (Libertarian, Green, Republican, Democrat, other) is A categorical or nominal variable An ordinal or rank variable	
A ratio variable	

Since the values of a variable vary, they will be *distributed*

A major part of understanding a domain of objects is to describe *how* they are distributed on a given variable

One of the best ways to present a distribution is to graph it

Score variables and histograms

Since score variables are continuous, *histograms* rather than bar graphs are used

This is done by creating *bins* and tabulating the number of items in each bin

The size of bins can create radically different pictures of the distribution!

Clicker Question	
The distribution below is	
< 70 70-74 75-79 80-84 85-89 90-94 95+	
21 12 9 23 21 8 13	
A. Normal since it has one peak	
B Normal since scores are equally distributed around the peak	
C. Not normal since the scores are not equally	
distributed around the peak	
D. Not normal since there are not fewer scores further from the people	

Describing distributions	
I wo principal measures:	
Central tendency Two comparable	
central tendency	
Variability Two distributions with same central tendency	
variability	

Three measures of central tendency

- Consider this distribution of values 2, 6, 9, 7, 9, 9, 10, 8, 6, 7
- Mean: the arithmetic average 73 / 10 = 7.3
- Median: the score of which half are higher and half are lower = 7.5

15

Mode: the most frequent score = 9

Which measure to use?	
 If the distribution is normal, all three measures of central tendency give the same result The mean is the easiest to calculate and the most frequently reported 	
 If there are extreme outliers in one direction, the mean may be distorted Exam scores: 21, 72, 76, 79, 82, 84, 87, 88, 90, 91, 95 Mean: 78.6 	
 Median: 84 In such a case, the median gives a better picture of the central tendency of the class 	

Measures of variability

- How much do the scores vary? Range: the lowest value to the highest value Variance: $\sum (X-mean)^2$ N Standard Deviation (SD): $\sqrt{Variance}$
- Intuitive interpretation (with normal distributions): – One standard deviation: the part of the range in which 68% of the scores fall
 - Two standard deviations: the part of the range in which 95% of the scores fall
 - Three standard deviations: the part of the range in which 99% of the scores fall.

rent SD

Populations
 The group about which we seek to draw conclusions in a study are known as the population. Sometimes one can study each member of the
population of interest But if the population is large It may be impossible to study the whole population There may be no need to study the whole
population
22

Samples

- A sample is a subset of the population chosen for study.
- From studying the distribution of a variable in a sample one makes an estimate of the distribution in the actual population
- Sometimes the estimate from a sample may be more accurate than trying to study the population itself

U.S. Census

Does the sample reflect the population?

23

- Does the mean of the sample reflect the mean of the actual population?
 - Very unlikely that the mean of the same will exactly equal the mean of the population
 - Given the mean of a sample, what is the range within which the mean of the actual population lies?
 - Bottom line—with larger samples this range becomes smaller and smaller
 - And this effect depends only on the size of the sample, not the size of the population sampled!

Is the sample biased?

- If information about the sample is to be informative about the actual population, the sample must be representative
 - Randomization: attempt to insure that the sample is representative by avoiding bias in selecting the sample
- Risk: inadvertently developing a misrepresentative sample
 - E.g., using telephone numbers in the phonebook to sample electorate

25

26

Distribution on nominal variables

- Take the special case of a variable with two values (exhaustive and exclusive)
- Heads/Tails
- True/False
- Born in January/not-born in January
- Male/Female
- where the value for each item is independent of that for other items
- Consider the likely distributions

Consider these to be orders of births of babies in a hospital. Which is more likely? MFMFFMFMFF MMMMMMMM FFFFFMMMMM Each pattern is equally likely

A very different question	
Consider these to be totals of births in a hospital on a given day. Which of these outcomes is more likely?	
5 males / 5 females	
7 males / 3 females	
10 males / 0 females	

From populations to samples	
Start from the situation in which we know the distribution in the actual population: $p(M) = .5$	
We draw a sample of a given size, say 10. Is it possible that we could get a sample of all males?	
Yes, the probability is about .001	
What is the probability that we could get a sample of 7 malos and 3 femalos?	
It is about .117	
What is the probability that we could get a sample of	
It is about .246	

What happens as sample size gets larger?	
With larger sample sizes, the probability of a distribution in the sample closely approximating the distribution in the actual population increases	
The important question is how much the mean of the samples will vary from the mean of the actual population	
To determine this, we need to know the standard deviation (SD).	

SD and larger sample size

As sample size grows, the SD of the sample shrinks.

So with larger samples, the range of 2 standard deviations shrinks

Assume mean in the sample is .50

Sample size	Percentage Range of 2 SD	Percentage Range of 3 SD
10	34.5-65.5	29.5-70.5
20	39-61	35.6-64.4
50	43-57	40.9-59.1
100	45-55	43.5-56.5
500	47.8-52.2	47.1-52.9
1000	48.4-51.6	48-52

Clicker Question	
Why do most election polls study approx. 500 people even if the population is many million?	
 It gets hard to analyze data when too much is collected 	
 B. It costs too much to survey more than about 500 people 	
 With 500 people the SD is already small enough to make a good estimate of the actual population 	
With 500 people the SD is already large enough to make a good estimate of the actual population	

Generalize to Score Variables

Score variables: Interval and ratio variables

With score variables, it is the scores that are distributed (not the items in a given category)

Example: age of person eating at the Food Court

Draw a sample to make inference of average age of person eating at the Food Court

<17	17	18	19	20	21	22	23	24	25	>25
6	18	23	34	32	18	26	29	14	10	10
	2	1	3	1	2		1			

	F	oti	m	ntir	nσ	r۵	a1.	di	otr	·ih	111	tio	'n	
	Ľ	511	1116	<i>u</i> 11	ig .	100	11	u	511	10	u	ιιu	11	
	<17 7	17	18	19	20	2	1 2	22	23	24	1	25	≫25]
	6	18	23	34	32	18	3 2	26	29	14		10	10	1
		2	1	3	1	2			1					1
		1	2	4	6	3	1	2	2					
Mea	in of	the a	actu	al po	pula	atior	n: 20	0.63	3	Wa	ant	to r	arod	lict
Mea	in of	the	sam	ple:	19.4		20.	1		mo	ore	acc	ura	tely?
SD	of the	e sai	mple	: 1.9)		1.6			Lle	~ ~	Jar	aor	
Ran	ge o	f1S	5D =	17.5	5-22.	.3	18.	5-2	1.7	sar	e a mpl	le s	ize	
Ran	ge o	12 S	5D =	15.9	9-24.	.2	16.9	9-2	3.3					

Clicker Question

Which of the following is NOT true of a normal distribution?

- A. It has one peak
- B. Scores diminish as one moves further from the mean
- C. The median is a better indicator of central tendency than the mean
- D. Scores are equally distributed around the mean

Review -2

Two principal measures of distributions

- Central tendency
 - Mean, median, mode

Variability

- Range, variance, SD
- 1 SD includes approx. 68% of scores
- -2 SD includes approx. 95% of scores
- -3 SD includes approx. 99% of scores

Review - 3

- Рор
 - e

 - L р

Your laboratory has chosen a sample of 1000 individuals to study. A new assistant suggests you should sample at least 10% of the actual population of 25 million (2.5 million). You should

- $\lambda_{\rm c}$ Point out to the assistant that accuracy depends on sample size, not percentage sampled
- Promote the assistant for improving the laboratory's research
- Point out to the assistant that sample size only affects the median, not the mean
- Point out to the assistant that the SD will increase if you sample a larger population

100 m = 3		
pulation and samples		
From studying the distribution in a sample, one can estimate the distribution in the actual population		
Mean of actual population will		
 Fall within one SD of mean of sample 68% 		
Fall within two SD of mean of sample 95%		
 Fall within three SD of mean of sample 99% 		
Larger sample yields smaller SD and hence more precise estimate		
Hence, to improve the precision of an estimate, use a larger sample		
	7	
Clicker Question		