Valid Arguments	
Directions and sample questions for the Early Term Quiz are available at http:// mechanism.ucsd.edu/~bill/teaching/f16/phil12/earlytermquiz.sample.f16.pdf	

Brief Review

- Statements are sentences that have a truth value—are either true or false
- Compound statements
 - Tautologies: statements that are always true
 - Contradictions: statements that are always false
 - Contingent: statements that could be true or could be false depending on the truth value of their components
- Arguments are sets of statements, some of which serve as premises for others, which are conclusions

Evaluating Arguments

- Two criteria for evaluating arguments
 - Is the connection between the premises and the conclusion such that the premise would support the conclusion if they were true?
 - Valid arguments are arguments in which, if the premises are true, the conclusion *must* also be true
 - Are the premises true?
- Sound arguments are *valid* arguments with *true* premises

Valid Arguments
 A valid argument is defined by the condition: if the premises are true, the conclusion <i>must</i> also be true
 Or, equivalently: A valid argument cannot have true premises and a false conclusion
• Note the words must and cannot
be the case if the stated conditions are true
These conditions (premises) might not be true
 And so the definitions say nothing about what happens when they are not satisfied

Examples: Validity and Soundness

Consider the argument	
- You are an Independent, therefore you cannot be	
President of the US	
 Validity: Can the premise be true and the conclusion false? 	n
Yes, so this argument is not valid	
Consequently, it is not sound	

Consider the argument

٠

The President is a human being, therefore he is a mammal

Validity: Can the premise be true and the conclusion false - No, so this argument is valid

- Is the premise also true? Yes. So the argument is sound

5

Clicker Question
An argument with all true premises and a true
conclusion is
A. Sound
B. Valid
C. Valid but not sound
D. Cannot tell

Clicker Question	
An argument with a false conclusion is	
A Not sound B. Not valid	
 D. Cannot tell 	

Clicker Question

Can a valid argument have a false conclusion?

- A. No, all valid arguments have true conclusions
- B. Yes, any valid argument may have a false conclusion
- Yes, but only if it has one or more false premises
- No, since it would not then be sound

Clicker Question

The conclusions of valid arguments with false premises are always false

A. True

B. False

- Conditional statements consist of two component statements linked by the logical connective IF, THEN
 - If the dog barks, (then) the dog will bite.
- If and then are not argument indicator words they are not marking premises and conclusions of an argument
 - If it rains today there will be no picnic is not an argument!
 - It simply asserts a conditional relationship between two statements
 - Compare: It is raining today, therefore there will be no picnic.

 This is an argument whose conclusion is that there will not be a picnic.

Conditional Statements - 2

 IF (antecedent), THEN (consequent) is a truth functional connective: the truth of a compound (whole) statement depends only on the truth values of the component statements

If A, then B is false when the antecedent is true and the consequent is false. Otherwise, it is true.

If you trespass, then you will be arrested

is false if you trespass and are not arrested is true if you trespass and are arrested is true if you do not trespass and are not arrested is true if you do not trespass and are arrested

The last case may seem surprising, but of course there are other reasons you might be arrested

Clicker Question

The statement "If the door is open, the alarm sounds" is false if

- A. The door is open and the alarm sounds
- B. The door is open and the alarm does not sound
- C. The door is not open and the alarm sounds
- The door is not open and the alarm does not sound

Reversing Antecedent and Consequent
IF A, THEN B is false when A is true and B is false IF B, THEN A is false when B is true and A is false
Contrast
If the economy has improved, we will go to war If we go to war, then the economy has improved
IF A, THEN B is equivalent to IF not B, THEN not A.
If you trespass, then you will be arrested
is equivalent to If you are <u>not</u> arrested, then you did <u>not</u> trespass
13

Clicker Question

"If I miss this question, I need to study" is equivalent to

- A. If I don't miss this question, I don't need to study.
- B. If I don't need to study, I did not miss this question.
- C. If I need to study, I missed this question.
- D. I missed this question, therefore, I need to study.

ONLY IF - 2
 How to say "IF you are an officer, THEN you can eat in this room" with ONLY IF?
 ONLY IF you can eat in this room are you an officer
Both are false if you are an officer but cannot eat in this room
 What does "ONLY IF you are an officer can you eat in this room" say?
 IF you can eat in this room, THEN you are an officer
Both are false if: you can eat in this room but are not an officer
16

Clicker Question

Which statement is not equivalent to the others?

- A. If there is a storm, the dogs will bark
- 3. Only if the dogs bark is there a storm
- C. Only if there is a storm will the dogs bark
- D. Unless the dogs bark, there is no storm

Clicker Question
Which statement is not equivalent to the others? A. Unless there is a test, there is no need to
 B If there is a test, then there is a need to attend class
 If there is a need to attend class, then there is a test Only if there is a test is there a need to attend
class

Sufficient Conditions

When a conditional statement uses general terms (e.g., *dog*, *mammal*) it expresses relations between categories of things that satisfy those terms

If something is a dog, then it is a mammal

Presents a relation between **being a dog** and **being a mammal**

It asserts that meeting the first condition (being a dog) *suffices* for meeting the second condition (being a mammal)

If _____, then _____

suffices for

Necessary and Sufficient
Conditions
 Passing statistics is a necessary condition for a B.S. in psychology
 If a person has a B.S. in psychology, that person has passed statistics.
 Voting is sufficient for being a U.S. citizen. If someone votes, then that person is a U.S. citizen.
 Believing in God is necessary to be a Boy Scout.
- If someone is a Boy Scout, then that person believes in God.
 Not taking the exam is sufficient for failing this
course.
If you do not take the exam, then you fail this course.

If versus Only if again

What follows the *if* of a conditional is a sufficient condition

What follows only if is a necessary condition

You can vote only if you are at least 18 years old

Being 18 is a necessary condition for voting

If you are able to vote, then you are at least 18 years old

Being able to vote is sufficient (evidence) that you are at least 18 years old

Clicker Question

Assume: Sales are increasing = T Our sales force is less effective = F We need to build a new plant = F We have excess production capacity = T

What is the truth value of the following statement?

Whenever sales are increasing, we need to build a new plant

A. True B. False

Clicker Question	
Assume: Sales are increasing = T Our sales force is less effective = F	
We need to build a new plant = F We have excess production capacity = T	
What is the truth value of the following statement?	
Only if sales are increasing do we need to build a new plant	
A. True	
B. False	

Clicker Question	
Assume: Sales are increasing = T Our sales force is less effective = F We need to build a new plant = F We have excess production capacity = T	
What is the truth value of the following statement?	
Unless we have excess production capacity, we need to build a new plant	
A. True B. False	

Using conditionals in inference	
---------------------------------	--

There are two ways to use a conditional statement in a **valid** inference, one obvious, one less so:

The obvious way: From *IF A, THEN B*, affirm A From this it follows that B

Why? If *B* weren't true, and A is true If A, then B would be rendered false

So, the following form is VALID: If A, then B A ∴B

Modus ponens

Using conditionals in inference - 2	
The second, less obvious way:	
From IF A, THEN B, what happens if B is denied?	
If <i>B</i> is false and <i>A</i> is true, then what is the truth value of IF A, THEN B?	
It is false. Thus A cannot be true when the whole conditional is true. Accordingly:	
If A, then B Not B	
Not A is VALID Modus tollens	

Uses of conditional arguments in scientific reasoning

Modus ponens is most commonly invoked to make predictions from a hypothesis

If malaria is transmitted by mosquitoes and we eliminate the mosquitoes, malaria will decline Malaria is transmitted by mosquitoes and we are eliminating the mosquitoes ...Malaria will decline

Modus tollens is most commonly invoked to confirm or falsify a hypothesis based on the truth of falsity of a prediction

Invalid conditional arguments

Not all arguments that start with conditional statements are valid

What can you conclude about B (validly) from:

Denying the Antecedent INVALID

Remember, to be valid, it must be that *if the premises* were true, the conclusion would also have to be true

What conclusion about B has to be true in this case? Both B and not B are compatible with the premises There is no valid argument here!

Invalid conditional arguments - 2

What about if we start with:

Affirming the consequent INVALID

What conclusion about A has to be true in this case? Both A and Not A are compatible with these premises There is no valid argument here either!

Clicker Question What form is this argument? Lknow L passed since L took the test, and if L	
 a. Modus ponens b. Affirming the consequent c. Modus tollens d. Denying the antecedent 	

Clicker Question

• What form is this argument?

- Whenever the computer is broken, I have to calculate the result by hand. Today I had to calculate the result by hand. Thus, the computer must have been broken.
- A Modus ponens
- B. Affirming the consequent
- C Modus tollens
- D. Denying the antecedent

Clicker Question
 What form is this argument? Only if the dog is white is the ball blue. Indeed, the dog is white. So, the ball is blue.
 A. Modus ponens B. Affirming the consequent C. Modus tollogs
D. Denying the antecedent

35	

26		
30		
	-	