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PREFACE

The structure of the essay is as follows:
Introduction: The complexity of cell-biological systems has an “inherent”

basis, related to the nature of cells (large number and variety of components, non-
linear, spatio-temporal interactions, constant modification of the components) and
arises also from the means we have for studying cells (technological and method-
ological limitations).

Section 1: Ontological and epistemological questions are intertwined: to study
the nature of living systems, we require modeling and abstraction, which in turns
requires assumptions and choices that will influence/constrain what we can know
about cells. We study cells, organs and organisms at a particular, chosen level, are
forced to select subsystems/parts of a larger whole, and pick a limited range of
technologies to generate observations. The study of cell biological systems requires
a pragmatic form of reductionism and the interpretation of data and models is sub-
sequently linked to a context. The framework to develop (mathematical) models
is systems theory.

Systems theory is the study of organization per se. While investigations into the
structural (material) organization of molecules and cells have dominated molecular
and cell biology to this day, with the emergence of systems biology there is a shift
of focus towards an understanding of the functional organization of cells and cell
populations, i.e., the processes (“laws” and “mechanisms”) that determine the
cell’s or organ’s behavior. The necessity to select a level and subsystem, leads
inevitably to a conceptual close in the theory of dynamical systems: by classifying
observables into dependent, independent and invariant ones (parameters) we draw
a boundary between an interior and exterior.

The main challenge is then to assemble a coherent whole from an (partial)
understanding of its parts. We argue that this is only possible through an iterative
process of modeling, design of experiments, further modeling and so on, in which
hypotheses about the whole guide interim models.

Section 2: Applying systems theory to molecular and cell biology, we seek
an understanding of structural and functional organization of the subcellular and
macroscale level. The cell’s functional organization at subcellular level can be
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grouped into three classes of processes: gene expression, metabolism, and cell
signaling. This classification involves a range of technologies for each class, leading
to an operational division.

Section 3: The preservation of genomic properties through evolution motivates
the notion of “model organisms”. Unfortunately, even the simplest model organism
is very complex and we give examples of the practical considerations involved
in understanding so called “pathways”. Not only are pathways, cells, organs or
organisms complex, the structures of knowing are similarly complex. The concept
of a “gene” and the notion of a “pathway” are examples of tools for understanding
that develop. Our discussion highlights the importance of discussing how we try
to make sense of observations in molecular and cell biology.

Section 4: With hundreds or thousands of components that need to be consid-
ered as actors in a pathway/network/subsystem, regardless of how sophisticated
the technologies are, our cognitive skills and mathematical tools seem very limited
to two- dimensional visualizations and only a handful of system variables. We crit-
icize the suggestion that methods of “artificial intelligence” could avoid thinking of
the experimentalist — data do not speak for themselves. Mathematical modeling
remains an art that (fortunately) cannot be automated.

Section 5: In systems theory objects and relations between objects have iden-
tical ontological status. We emphasized above the focus on the cell’s behavior
(functionality) as a consequence of spatio-temporal interactions of molecules. At
any level of a organism, its subsystems are interacting objects whose relationships
and properties are largely determined by their function in the whole. While we
can study a liver cell in isolation to investigate its stimulus-response behavior, we
will only understand the cell’s function fully by considering the cell and its envi-
ronment as an undivided whole. The whole-part relationship emerges as a major
stumbling block in dealing with the complexity of cell biological systems.

Section 6: The cells key functions include growth, proliferation, differentiation
and apoptosis. Mathematical modeling of any of these processes seeks simplifi-
cations to reduce their behavior to its essence, to extract a principle that serves
as an explanation. We argue that mathematical modeling is the art of mak-
ing appropriate assumptions, balancing necessary reductions/approximations due
to experimental/methodological limitations with abstractions serving explanatory
purposes. This is true for any level (atoms, molecules, cells, orgas, and organisms)
and since at any level there is another level above or below, every model is ren-
dered macroscopic or phenomenological. While physics-style mechanial models of
interacting mass points are not meaningful in systems biology, the attribute “phe-
nomenological” does not imply arbitrariness in the construction of these models
and their explanatory power — to paraphrase G. E. Box: all models are wrong,
some are useful.

Section 7: In previous sections we highlighted the fact that living systems can
be investigated at different levels, but also processes at subcellular and macroscale
can be understood in terms of organizational levels (e.g. gene expression, metabolic
networks and signal transduction pathways). The concept of a domain of auton-
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omy for different levels, suggests a systems-theoretic framework to identify levels
of bounded autonomy as subsystems that can be studied in relative isolation, while
preserving a chance to understand the larger whole from knowledge about domains
of autonomy. A rudimentary body of theory exists and we believe further research
into such theoretical concepts and their application in systems biology could lead
to practical tools, taking us a small step further in an attempt to resolve the tight
whole-part relationship discussed in previous sections.

Section 8: While previous sections focused on dealing with complexity, the
necessary reduction to subsystems will introduce uncertainty. The isolated view
of subsystems, the necessity of ignoring observables, the inability to keep external
variables constant in an experimental set-up, motivate stochastic model formalisms
to capture uncertainty in form of stochasticity. While this form of stochasticity
emerges from epistemological considerations, evolution is an example of purposeful
randomness (required to generate alternatives/variations). We briefly discuss the
semantics of deterministic vs. stochastic models.

Section 9 concludes our discussion with a summary of key points and an out-
look on the field of systems biology. The tight whole-part relationship and the fact
that ontological aspects of molecular and cell-biological systems are intertwined
with epistemological questions lets us conclude that philosophers of science could
actively contribute to the developments of the life sciences. There is a long history
of dynamical and mathematical systems theory during which concepts of self-
organization, emergence, feedback or system identification have been developed.
Studying the difference between physical and biological systems, between living
and non-living systems and studying the means by which we have investigated such
systems, could improve our chances of managing the complexity of cell-biological
systems. In the words of Ludwig Wittgenstein: “The fact that we can describe
the motions of the world using Newtonian mechanics tells us nothing about the
world. The fact that we do, does tell us something about the world.”

INTRODUCTION

Cells are basic building blocks of living systems. Whether one considers a single
cell, a colony of bacterial cells or populations of mammalian cells that form tissue,
organs and whole organisms, the attribute “complex” is appropriate for any of
these systems. An initial, intuitive analysis identifies for the complexity of living
systems the following sources:

• Cells are composed of a very large number and variety of components inter-
acting in space and time.

• Cell-biological systems are difficult to observe.

• The dynamic functioning of cells is of a nonlinear nature.

• Living systems are subject to continuous change.
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The biologist Ernst Mayr [2004] argued that it is owing to their complexity,
that biological systems have the capacity to reproduce, replicate, grow, adapt
and evolve: new biological properties can emerge from others. The process that
exemplifies the dynamic nature of cell-biological systems is the cell cycle. The cell
cycle is the series of events leading to the cell’s replication. Initially the cell grows,
accumulating nutrients and duplicating its components needed for “mitosis”, the
phase during which the cell is duplicating its DNA. Finally, the cell splits itself
into two distinct “daughter” cells. The cell-division cycle is a vital process that
underlies the development of an organism and the maintenance of tissue. The
cell cycle is a process subject to tight control, which includes the detection and
repair of genetic damage, and provision of various checks to prevent uncontrolled
cell division. The molecular events that control the cell cycle are ordered and
directional; that is, each process occurs in a sequential fashion and it is impossible
to “reverse” the cycle [Morgan, 2006].

A striking feature of living systems (organisms) is that their parts interact,
modify and create themselves so as to realize an autonomous self-fabricated, self-
organized whole. In living systems nothing remains constant; everything is in a
perpetual state of transformation; everything comes from other things and gives
rise to other things. This is true for the macromolecules making up a cell, as
well as for the cells that form organs, which in turn make up whole organisms.
A feature of living systems is that “the whole is in the parts”, that is, each cell
contains a copy of the genetic information for the whole organism. Related is the
notion of emergence, which asserts that the whole is also more than the (logical)
sum of its parts: The system as a whole displays a behavior that could not be
predicted from studying its subsystems. Taken together, this provides the basis
for a tight whole-part relationship, which is observed at each level of the system —
molecules, organelles, cells, organs, organisms. As we shall discuss in detail below,
the complexity of cell-biological systems, forces us to study subsystems/parts,
raising the question of what we can then learn about the system as a whole?

The term “self” in “self-organization” suggests a form of closure of the system
to outside influences, a kind of autonomy. Physically a cell is an open system
which relies on a constant exchange of energy, matter and information with its
environment. The closure of a living system is therefore not with respect to ma-
terial causes but with respect to efficient causation:1 In a living system each
part/process is at once cause and effect, a means and an end — the cell is a self-
organizing biochemical system that fabricates itself [Wolkenhauer, et al., 2007].
Living systems are thus self-referential, every part owes its existence/explanation
to the organization of the remaining parts. Through cyclic self-organizing and
self-maintaining processes, parts generate the whole as does the whole define the
context in which its parts function. The principle of autonomous self-fabrication
is a, if not the, fundamental property that distinguishes living from non-living

1Following Aristotles classification of causes, the material cause of a phenomenon is related
to the matter of what something is made of, efficient causation refers to the source of change or
process that produces something.
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systems. “Autopoiesis”2 is a terminological framework to discuss the nature of
living systems.3 The ideas are due to Humberto R. Maturana and Francisco J.
Varela [1987]. The boundary of an autopoietic system (e.g. the membrane in
the case of cells), that is the space in which its components exist, is actively pro-
duced by the network of processes that define the system. While acknowledging
the importance of self-organization/self-fabrication in living systems, we shall not
discuss this theme in greater detail. Instead we refer to an early discussion of these
concepts by Immanuel Kant [1892]:4

“In such a natural product as this every part is thought of owing its
presence to the agency of all the remaining parts, and also existing for
the sake of the others and of the whole, that is an instrument, or or-
gan. But this is not enough — for it might be an instrument of art. ...
On the contrary the part must be an organ producing the other parts
— each, consequently, reciprocally producing the others. No instru-
ment of art can answer to this description, but only the instrument of
that nature from whose resources the materials of every instrument are
drawn — even the materials for instruments of art. Only under these
conditions and upon these terms can such a product be an organized
and self-organizing being, and, as such, be called a natural end.”

We define the structural organization of a system as the configuration that
relates material components of the system. Structural changes of the cell do not
necessarily imply changes to the functional organization, that is, the processes that
determine the cell’s dynamic behavior, it’s functioning. For example, the three-
dimensional structure of a molecule indicates binding partners but does not define
its “function”. The function of a molecule is understood as its role in processes:
changes in the population/concentration of a protein within a region of the cell
underpin a process related to a cell function, i.e., growth, proliferation, differentia-
tion (the process by which cells transform into specialized cell types) or apoptosis
(“programmed” cell death). The behavior of such dynamical systems, realized
through networks of biochemical reactions, would subsequently be analyzed with
respect to the system’s stability, responsiveness, robustness and sensitivity with
respect to change in parameters. The function of a protein in such a network
may thus be a contribution that leads to the network functioning as a “switch”,
“amplifier”, “oscillator” or “filter”. The theory of dynamical systems provides the
conceptual framework to investigate the system’s behavior as a result of feedback
mechanisms [Tyson, et al., 2003; Novák, et al., 2008].

Studying biological cells we require technologies to observe their behavior and
methodologies to construct models. Due to the complexity of cells, existing tech-

2The term autopoiesis is constructed from autos=self and poiesis=generation or production.
3We note that the emergence of life itself and its chemical origins are important questions

relevant in this context. We refer to Luisi [2006] for a recent discussion of this issue.
4The quote of Kant ([1892], Section Critique of Telelogical Judgement, §65) can also be found

in Ernst Cassirer [1981, p. 336].
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nologies to generate quantitative measurements are restricted to a particular con-
text in which they can be interpreted. Similarly, we lack suitable methodologies
to analyze large scale nonlinear dynamical systems. There is no comprehensive
approach to study the functioning of living systems at all levels (molecules, or-
ganelles, cells, organs, organisms). Therefore, by considering the multitude of
technologies by which we generate measurements and the range of methodologies
we employ towards an explanation of observed phenomena, organisms appear to be
characterized by an unlimited set of qualities. The notion of a qualitative infinity
of nature is due to the physicist David Bohm [1957], who noted that at any level
at which we study a material system, the fundamental qualities and properties
defining the modes of being of the system are limited in number. On the other
hand, for every level there always appears to be another lower (respectively higher)
level of description; such that the richness of properties and qualities apparently
never approaches exhaustion.

Having settled on a particular level at which one investigates a living system
(say the “cell level”, studying spatio-temporal changes in protein concentrations),
the large number of components forces us to decompose a larger whole into smaller,
tractable parts for which we construct models. The process, by which a model is
established, relies on assumptions and approximations. These may be for mathe-
matical convenience but there is also the fact that in modeling we put a high value
on simplicity: the aim of modeling is a reduction of complexity, an abstraction
to extract essential properties of a system in a compact form, so as to formulate
generic principles,5 laws or mechanisms.

Taken together, the decision for a particular level, the limited range of tech-
nologies, the decomposition into subsystems, and the necessary simplifications in
modeling a system, we find that the question of how a system functions and the
process by which we describe the system are intertwined: what we can know about
the system depends on the availability and choice of technologies and methodolo-
gies with which we probe the system. Adopting the words of the physicist Werner
Heisenberg: “What we can observe is not nature itself, but nature exposed to our
method of questioning”.6

1 SOME ELEMENTS OF SYSTEMS THEORY

As a consequence of the complexity of biological systems, full understanding of
cells and their function(ing) cannot be assured. Instead, simplified hypotheses
must be formulated and tested by experiments. This requires a conceptual frame-

5The word “law” suggests universality of the principles discovered. A difference between
physics, where one seeks “natural laws” and biology is that in biology everything seems to make
sense only in a context (defined by the chosen organism, cell type, experimental set up, level
etc.). Any system is composed of subsystems and is located in a super-system, leaving modeling
to be an endless and always provisional exercise.

6In Werner Heisenberg: Physics and Philosophy: The Revolution in Modern Science [1958]
Lectures delivered at University of St. Andrews, Scotland, Winter 1955-56.
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work appropriate for making precise and empirically testable predictions. Such
a framework is provided by (dynamical) systems theory. A central theme of this
text is thus the role of modeling, as a means to formulate and test hypotheses.
A mathematical model is a representation, a simplified version of the part of the
biological system studied, one in which exact calculations and deductions are pos-
sible. An obvious priority in modeling is assurance that the model’s behavior
(established through numerical simulation or formal analysis) corresponds closely
to the empirical behavior of the biological system, that the formal system (read
“mathematical model”) in some way resembles the behavior of the natural system.
In addition to replication/reproduction of certain observed qualities or behavior,
simplicity and mathematical tractability can be important criteria in developing
a model.

A natural system (e.g. a cell or organism) is our interpretation of observable
facts in the light of a formal system that we ourselves invent/construct. Under-
standing a complex system requires abstraction, reducing one type of reality to
another. Mathematical modeling facilitates understanding through abstraction. If
we are to describe the mechanisms/principles/laws by which the components of
a system interact (and thereby realize the (sub)system functions), then the pur-
pose of the model is to distill something complex to a simpler, essential aspect.
Modeling does therefore imply for most cases a reduction of complexity; a model
is then understood as an excerpt or selection from the biological system under
consideration.

Abstraction can reveal truths, but never the complete truth. The growing
understanding it affords will push us to the boundary of its validity, where it
will eventually mislead if it is not continually re-examined. No abstraction is
fully forced upon us, however evidently it appears to suggest itself. It always
involves choice, those choices resulting from our standpoint — the position from
which, and the purposes for which, we view the system — the level at which
we are equipped to examine the system and how extensive are our powers so to
do. Diverse approaches, by researchers with different expertise and interests, result
in different abstractions which, taken together and made coherent with each other
to form a more comprehensive abstraction, can enrich our understanding of the
totality.

Fundamental philosophical issues present themselves quite concretely within
a scientific discipline: ontology describes basic assumptions about the specific
object of study; epistemology concerns itself with the tools we have for obtaining
knowledge of that object. Maybe ontology is merely self-deluding epistemology.
However the basic materialist presumption of science is that epistemology follows
ontology: there is ‘what is so’ and then there is the extent to which we know
‘what is so’. The separation, or better the “inseparability”, between what the
things are “in themselves” and how we represent observed phenomena, will haunt
us throughout the essay. The mingling of ontological and epistemological problems
tells us how important it is to reflect upon the modeling process itself, the diversity
of approaches by which we make sense of observations and limitations these may
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pose on what we can know about the natural systems under consideration. As
shall hopefully become clear towards the end of this essay, scientists in the life
sciences (biotechnology, biomedicine, genomics, molecular and cell biology, systems
biology) should or could benefit from interactions with philosophers of science.

A basic ontological assumption of all life sciences is that biological entities are
self-regulating through closed causal loops — through feedback, that is. The ap-
propriate language for discussing such matters is that developed in systems theory
[Klir, 1991]. Systems theory is the study of organization per se, a general system
being understood as a set of interrelated objects, organization being the form of in-
terdependence of objects. For some authors systems theory, and as a consequence
systems biology, is essentially the study of organization through mathematical
analysis.7 In this essay we shall treat systems theory as a branch of mathematics.
An exposition of a rather general mathematical setting was given by Mesarovic
and Takahara [1970; Mesarovic, et al., 1975]. A more specialized framework is the
theory of dynamical systems [Katok, 1995; Wiggins, 2003]. For a discussion of
self-organization in physico-chemical (nonlinear, nonequilibrium) systems through
nonlinear systems theory we refer to the book by Gregorie Ilya Nicolis and Ilya
Gregorie Prigogine [1989]. Despite its long history, the theory of nonlinear dy-
namical systems continues to provide various challenges for practical applications
in systems biology. In contrast, the study of linear dynamical systems has found
numerous applications in the physical and engineering sciences [Kalman, et al.,
1969; Padulo, et al., 1974].

A basic assumption in systems theory is that the natural system under consid-
eration can exist in a set of distinct states. The experimentalist is probing the
behavior of the system through stimulating it with inputs to produce observable
responses, or outputs. It is presumed that the stimuli employed have some similar-
ity with the conditions which the system experiences in its usual context. Using
these observables the experimentalist may or may not be able to determine which
state the system is in; in principle there may be an infinite number of observables
necessary for an exact representation.8 The degree to which he can be certain
about the state depends on his choice of observables selected for consideration in
the model, for which measurements are possible. This involves the resolution of
the measurement devices and the design of experiments, providing suitable stimuli
from which the system might be identified. So an observable in a mathematical
model is formulated as a mapping that relates states of the system with numbers;
the collection of observables which have been chosen is then a vector function of
the state.

The identification of a system consists not just of finding the state but in de-
termining how that state changes over time, as a function of the history of its

7With the (re-)emergence of systems biology as an active and supported research field there is
a natural tendency of researchers to adopt definitions of systems biology that suit their interest.
We here support the view that systems biology is a new paradigm, complementary but also
distinct to activities in the fields of genomics and bioinformatics [Wolkenhauer and Mesarovic,
2005; Wolkenhauer, 2007].

8See also the ,,infinite number of qualtities of living systems“ discussed by David Bohm [1957].
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previous states and the inputs to which it has been subjected. This is reflected
in similar functional relations between the observables over time which may be
classified into

• Observables whose values remain fixed for every state, referred to as param-
eters of the model — of course, these features which are “fixed” for the given
experimental context may well vary if that context is altered.9

• Observables that are determined by other observables and inputs to the
system.

The definition of inputs, outputs and parameters, draws a boundary, separating
the system from its environment. We shall discuss this conceptual closure further
below. The choices of observables and the decision about their type also define
the context in which the model is valid.

From these general and abstract considerations to the application of systems
theory in molecular and cell biology one has to accept further assumptions. Most
important for practical applications is the assumption that neither the relationship
between observables, nor the parameter values change with time. The next step for
a formal analysis and simulation of a dynamical system is that the set of abstract
states is replaced by a state space with suitable mathematical properties. The
mathematical model of the system subsequently encodes relationships between
state variables, for which difference or differential equations are most commonly
chosen. More radically, the notion of a state in such mathematical modeling can
be considered as a secondary concept, being just the functional relation between
stimulus and response. This is a purely external account, a severe ontological
denial which refuses independent status to states of the system which now crucially
depend on the observer (modeler) and his choices of experimental methods. The
state of the system (model) is then an encoding of the past behavior of the system,
sufficiently informative to form (together with knowledge of the current input
value) the basis for the prediction of the output of the system.

Given that numerous assumptions, approximations and simplifications that are
necessary for the use of mathematical modeling and computer simulations in prac-
tical applications, the phrase “the unreasonable effectiveness of mathematics in the
natural sciences”10 has been coined. Ludwig von Bertalanffy [1969] whose work
laid the foundations for theoretical biology and systems biology wrote: “Consider-
ing the inconceivable complexity of processes even in a simple cell, it is little short
of a miracle that the simplest possible model — namely, a linear equation between

9Experimentalists refer to variables such as temperature, pH etc., which they can manipulate
in the experiment as ,parameters’. In modelling biochemical reaction networks, environmental
variables like temperature and pH are frequently assumed constant leading to constant values
of rate coefficients. In a general mathematical model these rate coefficients are refered to as
,parameters’.

10See, for example, Eugene Wigner’s “The Unreasonable Effectiveness of Mathematics in the
Natural Sciences,” in Communications in Pure and Applied Mathematics, Vol. 13, No. I (Febru-
ary 1960).
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two variables - actually applies in quite a general number of cases.” In the light
of recent suggestions for computer modeling projects that should lead to virtual
cells, virtual organs and even an entire virtual human,11 one should not forget the
primary role of mathematical modeling in the understanding of complex systems:
a reduction of complexity, that is, a simplification through abstraction. Abstrac-
tion, while unpopular in its mathematical form amongst experimentalists, serves
a practical purpose — the reduction of complex relationships to their essence.

The modeling of cell biological systems with differential equations and the treat-
ment of cells or subcellular processes as physical systems has been criticized, no-
tably by Robert Rosen [1985; 1991; 2000] — see also George Kampis [2003]. Rosen
[2000] defines “A system is simple if all its models are simulable. A system that
is not simple, and that accordingly must have a nonsimulable model, is complex.”
Part of Rosen’s work is dedicated to show that living systems are complex in the
sense that they are not Turing computable. Turing-computability encompasses the
class of recursive functions and the formalism of state-based Newtonian physics
is just such a recursive formalism. What this entails is that state-based Newto-
nian physics applies within the realm of Turing-computability, only adequate for
modeling simple systems; and conversely, are inadequate for modeling complex
systems [Rosen, 1991].

A system theoretic framework formalizes the idea that everything exists only in
relation to something else. Causation understood as the principle of explanation
of change is thus treated as a relation, not between things, but between changes
of states of the system under consideration. Life is considered a relation among
molecules/cells and not a property of any molecule/cell. David Bohm [1957] writes:
“In nature nothing remains constant. Everything is in a perpetual state of trans-
formation, motion and change. [..] everything comes from other things and gives
rise to other things. [A]s we study processes taking place under a wide range of
conditions, we discover that inside of all of the complexity of change and transfor-
mation there are relationships that remain effectively constant. [..] The necessary
relationships between objects, events, conditions, or other things at a given time
and those at later times are then termed causal laws.”

A central idea of systems theory is that the study of any system requires con-
sideration both of its interior, the subsystems of which it is composed, and of its
exterior, the context in which it normally operates as a component of a larger sys-
tem. The wholeness of a system, its self-maintaining capability against external
changes within tolerable ranges, is achieved through interior causal adjustments
of its component parts. Thus the relation between part and whole manifests itself
dualistically, through seeing the object of study as a whole composed of parts, and
seeing it as being itself part of some larger whole and so on. Logically, such a view

11See the news brief ,,Systems biologists hatch plan for virtual human“, Nature Vol. 451, 879,
20 February 2008. The so called ,,Tokyo Declaration“ states that ,,Recent advances in Systems
Biology indicate that the time is now ripe to initiate a grand challenge project to create over
the next thirty years a comprehensive, molecules-based, multi-scale, computational model of the
human (‘the virtual human’), capable of simulating and predicting, with a reasonable degree of
accuracy, the consequences of most of the perturbations that are relevant to healthcare.“
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implies a tower of systems seemingly unending in both directions; we will return
in Section 7 to some implications of this multi-leveledness for biological systems.12

In order not to grapple with the whole of this potentially infinite reality at
once, some conceptual closure will be an inevitable feature of any model. Model-
ing, therefore, will always impoverish reality. It can proceed in two ways: either
collapsing the exterior into a simple characterization, when attention is focused on
the internal mechanisms operating between its component parts; or black-boxing
the interior, when the intervention of the exterior is the principal concern. In any
model both of these simplifications will be present, allowing us to focus on the
dynamics of selected variables with the rest of the totality, the elements excluded
from the dynamics, appearing as phenomenologically described contingencies. En-
larging the system to account for the sources of these contingencies incorporates
them into a larger model, but again there will be unexplained elements arising
from the inside or outside of this larger system. A consistent adoption of the sys-
tems approach will alert us to the actual openness of all systems, as opposed to
the necessarily closed models we employ [Muir, 1982].

There is an awkward confusion of terminology in this area. We will be referring
throughout by the word “reduction” to the necessary selection which occurs when
forming any model. This is to be distinguished from the philosophical stance of
“reductionism” which insists that higher level variables be expressible only in terms
of lower level ones, without the importation of emergent factors — factors which
cannot be grounded in properties of the components. This is usually contrasted
with “holism” which is dismissed as resting upon such emergence; we would suggest
this term be used merely to remind us that each part of a system is constrained by
the context of the whole. We will also allow ourselves use of the term “emergent”,
but only to express the possibility that new behaviors may appear when the scope
of a model is extended to take fuller account of the exterior.

The reductionism/holism controversy becomes a non-issue whenever adequate
conditions permitting closure of a system (model) are formulated. Indeed, the
interrelation of interior and exterior of a system is reflected in the need to con-
sider, in any model, how reductionist and holistic descriptions are related. When
confronted with the problem of giving a reductionist explanation of a system’s
behavior, one is inevitably guided by one’s knowledge of what one is trying to
explain; one cannot expect, merely by sufficiently understanding the parts, to be
able to assemble them to a coherent whole without, as in doing a jig-saw puzzle,
some guidance from the overall picture.

12Due to the space limitations for an essay we will only be able to sketch personal perspectives
derived from the literature and our own work. This will unfortunately neglect a vast number
of relevant publications. With regard to theories of living systems we point towards James
Grier Miller’s magnum opus “Living Systems” [1978] and to the theory of Memory Evolutive
Systems, rooted in category theory, beautifully presented in Jean-Paul Ehresmann and Andree
C. Vanbremeersch book “Memory Evolutive Systems: Hierarchy, Emergence, Cognition” [2007].
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2 THE CELL AND ITS COMPLEXITY

Research programmes in biology focussing on cells generally make an implicit
assumption that this will allow us to draw conclusions about higher levels of the
organisation (tissue, organs etc.). Our outline of systems theory suggests the
formulation of two central questions for cell biology:13

How do the components within cells interact, so as to bring about the
cell’s structure and realize its functioning? (The cell’s interior aspect)

How do cells interact, so as to develop and maintain higher levels of
structural and functional organization? (The cell’s exterior aspect)

In the following we assume that the functioning of the cell can be roughly
divided into three major classes of processes [Alberts, et al., 2008]: Metabolism
describes those processes that construct and maintain the cell; processes that real-
ize cell growth and the duplication of the genome before cell division. Metabolism
is usually related to the energy household of the cell, divided into catabolism,
yielding energy, and anabolism to describe processes that use this energy to con-
struct the components of the cell (including proteins, organelles etc.) [Fell, 1997;
Cornish-Bowden, 2004]. Cell signaling subsumes processes of inter- and intra-cell
communication and the coordination of cell function [Kholodenko, 2006]. While
cell signaling is realized through the generation, modification, degradation and
translocation of molecules, the primary focus of research in this field is the expla-
nation of signal transduction, information transfer, cellular decision making and
“higher-level” coordination of basic cellular processes. Gene expression and regu-
lation is here defined as the process by which information, encoded in the DNA,
is transcribed and translated into a gene product (e.g. a protein).

A system’s complexity arises from three factors: the quantity, the variety and
the interconnectivity of its constituent elements. An essay by Warren Weaver
[Weaver, 1948] is widely considered a founding text for thinking about complexity.
Weaver distinguished between disorganized complexity and organized complexity.
Disorganized complexity results merely from the quantitative aspect — having a
very large number of similar parts. The interactions of the parts are perceived as
“largely random” suggesting methods from statistical mechanics and probability
theory to understand properties of the system as a whole. Gas molecules floating
around in a container are a classical example of such disorganized complexity,
where one is not interested in, or able to, trace/describe the trajectory of each
material component using Newton’s law of motion. Models of such systems are
defined in terms of distributions, and predictions are usually expressed in terms of
their mean values or standard deviations. (We return to questions of randomness
in Section 8). Problems of organized complexity on the other hand are related to
systems with properties that arise from non-similarity of a variety of parts from
which it is composed and in which, moreover, the organization of the interacting

13cf. Ricard Solé and Brian Goodwin [2000].
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parts cannot be derived from a study of the parts in isolation. Moreover, this
internal complexity can be matched by a corresponding external complexity of the
supersystem of which it may be a part.

While live cell imaging, tracing organelles or molecules in the cell, gives the
impression of disorganized complexity, it is obviously a case of organized complex-
ity we are dealing with in systems biology. Studying the functioning of cells, the
experimentalists face various practical hurdles, discussed in the following section.

3 EXPERIMENTAL METHODOLOGY

The analysis of a system includes the design of experiments to generate data, the
construction of models and the possibility for predictions about the system from
a model.

Complexity, of itself, throws up immense challenges to experimental methodol-
ogy: selection of some overall function of a system as a suitable object for study
and identification of just a few relevant features from the immense variety of com-
ponents present. In biological systems experimental difficulties arise not just from
the three aspects of complexity but also from problems of size — technical issues
of visibility, monitoring and control.

For example, Escherichia coli is one of many species of bacteria living in gut
flora of mammals and which measures only two micrometer in length and a cell
volume of 10−15 Litre, containing an estimated number of 2,600,000 proteins, gen-
erated from about 4252 protein coding genes.14 In biology “Seeing is understand-
ing”, but making cellular processes measurable (visible) is an obvious technological
challenge.

A model organism is a species (e.g. yeast, bacterial systems, worms, fish or
flies) that is extensively studied to understand particular biological phenomena,
with the expectation that discoveries made in the model organism will provide
insights into the workings of other organisms. In particular, model organisms are
widely used to explore potential causes and treatments for human disease when
human experimentation would be unfeasible or unethical. This strategy is made
possible by the common descent of all living organisms and the conservation of
metabolic and developmental pathways and genetic information over the course of
evolution. Model organisms are often chosen on the basis that they are amenable
to experimental manipulation. This usually will include characteristics such as
short life-cycle, techniques for genetic manipulation and non-specialist living re-
quirements. The complexity of human cells leads then to a situation in which
E. coli, a bacterial cell living in the lower intestines, is used as a model to study
intracellular processes occurring in mammalian cells.

The threefold division of cellular processes into metabolism, signaling and gene
expression associates with each a range of specialized technologies for generat-

14See http://redpoll.pharmacy.ualberta.ca/CCDB/ for the E.coli CyberCell Database (In-
formation accessed November 2007).
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ing experimental data. The nature of the data can differ considerably, making
their integration a challenge. At the methodological level, where one is trying to
model and simulate these processes a range of approaches are used, depending on
what type of pathway or network one is looking at. The biochemical reactions of
metabolism are organized into metabolic pathways, while reaction networks to do
with signaling are organized into signal transduction pathways. Genes are some-
times regarded as nodes in a gene regulatory network, with inputs being proteins
such as transcription factors, and outputs being the level of gene expression.

The study of metabolism, cell signaling and gene expression requires a range of
technologies, often leading to an operational division of researchers into “Omics”
disciplines, including “metabolomics”, “proteomics” and “transcriptomics”. While
there is an obvious relation between metabolism, signaling and gene expression,
the complexity of the cell, specifically the technological difficulties of measuring
these processes has forced researchers to specialize with obvious consequences for
the overall endeavor – we can’t see the wood for the trees. Understanding neu-
rodegenerative diseases or cancer requires the integration of knowledge and models
of metabolism, signaling and gene expression.

To model inter and intracellular processes one requires quantitative spatio-
temporal data for a relatively large number of components. At present these
are not available, forcing us to handle uncertainty and “reduce” complexity. For
practical purposes to do with technological limitations, but also with the time and
money required to conduct the experiments, a subset of components is chosen. This
leads to the pragmatic notion of pathways or networks as a selected subsystem of
biochemical reactions (relevant to some cell function). For example, the Mitogen-
activated protein (MAP) kinase signaling pathway is a system that responds to
extracellular stimuli (mitogens) and is linked to various cellular activities, such as
gene expression, mitosis, differentiation, and cell survival/apoptosis. The Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway database15 includes about
40 proteins in a graphical representation of one variant of this particular pathway.
For most experiments one will, at the present time, only be able to focus on less
than 10 proteins — which ones?

One criterion for the identification/separation of subsystems is based on dif-
ferent time scales. For metabolic systems where processes are assumed to be at
steady state on the time scale of changes in metabolite pools, one can treat sets
of enzymes as modules with a defined input and output. This approach is how-
ever not applicable to cell signaling systems where the transient behavior of the
fast system (transfer of the signal) has consequences for the behavior of the slow
system (subsequent gene expression), which then feeds back to the faster system
after a delay. Examples include systems where the signal may be encoded in oscil-
lations (e.g. Ca signaling) or transient movements between cellular compartments
(e.g. NF-κB). Epidermal growth factor stimulation of the MAPK signaling cas-
cade causes transients on time scales of minutes and relaxes to a new quasi-steady
state within an hour but subsequent consequences can take much longer to emerge;

15See http://www.genome.jp/kegg/ (Information accessed November 2007).
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entry of cells into the cell cycle and commitment to cell division requires several
hours sustained signaling, whilst receptor internalization and recycling and gene
expression alter the concentrations of the components in the signaling system also
on time scales of hours. To this day, most pathways are studied in isolation, while
there are always many pathways that are relevant to any one cell function. The
recent concept of “cross talk”, more than anything else, is a proof of failure of our
initial attempts to define a subsystem.

The question of how to identify subsystems (modules, pathways etc.) as func-
tional subunits which possess, to some degree, bounded autonomy, and how one
could subsequently integrate the knowledge and models achieved into a larger
whole, are the two most important challenges for systems-theoretic research. A
key problem is that in a complex system the whole is more than the sum of its
isolated parts. In other words the interaction of subsystems can lead to emer-
gent behavior irreducible to the system’s constituent parts considered separately.
Emergent behaviors occur through interconnectivity – intricate causal relations
across different scales and feedback.

The difficulties listed above force the experimentalist/biologist to collaborate
with technologists and modelers. While nowadays there is no doubt that interdis-
ciplinary collaborations are necessary for advances in the life sciences, it is fair to
say that most scientists would prefer to rely only on their own skills. While there
may be some true “hybrids” with an equally good training in biology and math-
ematical modeling, the complexity of cell-biological systems requires specializa-
tion (in wet-lab experimentation, the development of technologies, data analysis,
mathematical modeling and simulation). The need to combine different exper-
tise, possibly across departments, universities, countries and cultures is a complex
undertaking. People might study a particular MAPK cascade because their su-
pervisor did the same, or because of what piece of equipment they have access to,
what cell lines are available, etc. — the choice is made for historical and social
reasons rather than scientific ones.

Finding the forest among the trees is a major challenge for today’s life sciences as
no individual, no single research group or institute can provide all of the necessary
expertise, technologies and experimental systems. Studying living systems requires
an interdisciplinary approach. The complexity of cells makes it necessary that
highly specialized experts from different disciplines communicate and this often
across long physical distances, countries and cultures. So we can add to our earlier
list a further group of problems for the experimentalist, which arise from the
social context, interdisciplinarity: specialisation, education, distances between
institutes.

If epistemology is to follow ontology in the field of systems biology, the struc-
tures of knowing should mimic the structures of existence. So the structures of
knowing will similarly be complex systems — inter-disciplinary teams exchanging
information on what is known within the specialized spheres of each participant.
This raises an intriguing philosophical question of the sense in which a group of
people can be said to “understand” something. Must there always be an individ-
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ual mind whose role is to be the overall understander — perhaps a convenor or
chairperson who coordinates the separate understandings into a coherent whole,
without necessarily knowing fully the details of any part. And what, anyway, is
understanding : we will encounter later a related question of whether a computer
program can deliver understanding by due processing of complex data.

Communication between participants in a collective scientific enterprise will be
mirrored in complex knowledge structures, primarily now on the internet, reflecting
the separate disciplines and how they interconnect. So the interrelated objects of
a system may be material or informational. This leads us to a distinction between
natural systems and formal systems [Rosen, 1985]. A natural system is a selected
portion of the external world which we investigate through experiments and model
through physico-chemical dynamics. A formal system is based on symbols, syntax
and transformational rules of symbol manipulation. The modeling relation [Rosen,
1991] describes the process by which we establish congruence between the two
systems; allowing us to study the formal system as a model of the natural system.
Genomics has a peculiar status as a natural information system, where the dynamic
modeling at the molecular level gives rise to rules taking the form of informational
transformations.

4 DATA HANDLING

Studying complex systems one is forced into practical forms of reductionism. Our
brains have evolved to cope with a relatively small number of pieces of information,
dealing with processes taking place in the time scales of everyday events and for
which linear/proportional relations may apply. Many nonlinearities, very fast or
slow dynamics, as well as delayed responses are beyond our intuitive common
sense; they surprise us.

Biological cells offer all of these sources of difficulty. However, there are now
technologies available to measure the expression levels of thousands of genes si-
multaneously. The resultant gene expression data is initially stored in the form
of a data matrix; the number of rows n, usually denoting genes, takes values up
to 30,000, the number of columns m would denote either a few time points at
which measurements were taken or a couple of different conditions. How does
one recognize pattern in thousands of gene expression profiles? Plotting the raw
data simultaneously and unordered would fill any computer screen or sheet of pa-
per with thousands of lines, which almost certainly would not allow a detection
of pattern by eyesight. Any analysis of high-dimensional data therefore requires
a dramatic reduction/projection into lower dimensions allowing visualization and
pre-grouping, in order that its structure may be grasped, in some intuitive sense.
This is a necessary prerequisite for forming hypotheses leading to models. While
3D visualizations of data are possible on computer screens, this approach is largely
for illustrative purposes. In practice, an analysis of experimental data is almost
certainly conducted through plots in the plane fitting a sheet of paper, a computer
screen or white/black-board.
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A cynic might say that studying high-dimensional multivariate data does not
only imply a form of reductionism into the two dimensions of computer screens
and standard-sized sheets of paper, but scientists are also forced to reduce their
understanding of complex systems into a 20 minute presentation and into about
eight pages of a publication. Regardless of how complex a system is, the commu-
nication of research results will, in practice, almost always be limited to a short
oral or written presentation that fits the constraints set by journals, conferences
but also not exceeding attention span of an interested audience. So called “holistic
approaches”, so desirable in the life sciences, are at present wishful thinking.

We are led to enquire what tools we possess to aid this reduction. The usual
suspects are mathematical modeling, statistics and computer programming. The
first of these forms a proper basis for choosing or developing techniques from the
other two, which is why in systems biology mathematical modeling has become an
essential component: mathematical modeling is the refinement of common sense
into the realm of complex systems. Most particularly for the present discussion, it
possesses the appropriate language for describing and analyzing high dimensions.

The statistics we use to reduce the raw data to a comprehendible form require
an underpinning mathematical analysis of their purpose. For example, we need
to take care when interpreting data via the familiar two-dimensional reduction
afforded by forming covariances between pairs of variables, since part of the essence
of complexity is the interpenetration of many variables acting together. So some
essential information will be lost by the very act of proceeding in this way. We are
probably obliged to employ such methods, whenever more appropriate techniques
are lacking, but we should remain aware of the desirability of their justification in
any new circumstances.

Once suitable methods for reduction have been settled on, we have the facil-
ities offered by computer programming to deliver the resultant reduction. Once
again, though, it might be dangerous to merely lift tools which have proved ef-
ficacious down from the shelf without at least attempting to understand their
underpinning justification. The availability of high-throughput and whole-genome
technologies, which generate gene expression profiles for thousands of genes, has
tempted some researchers to speak of a “holistic” perspective on cellular function.
Douglas Kell [ 2003] contrasts two strategies for understanding cell-biological sys-
tems with “omics-data”: “The reductionist view would have it that if we can break
the system into its component parts and understand them and their interactions in
vitro, then we can reconstruct the system physically or intellectually. This might
be seen as a ‘bottom-up’ approach. The holistic (or top-down) approach takes the
opposite view, that the complexities and interactions in the intact system mean
that we must study the system as a whole.” During the heyday of genomics and
bioinformatics it became common practice to collect data without preconceptions,
doing “some” (any) experiment and then search the data for pattern in what is
called “data-driven discovery”. It then seemed that no theory, hypothesis or model
was required for these “hypothesis-free fishing expeditions”.

With all respect to the area of “artificial intelligence”, the reason why high-
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throughput genomics and bioinformatics have been able to do without a more
focused approach is that in the early days of genomics it has been rather easy to
discover “something”. To continue the metaphor of a fishing expedition, fishing
in the North Sea or Atlantic during the 1960’s did not require much of a hypoth-
esis about how to find fish; putting out your net almost anywhere, would catch
some fish. Nowadays, you need to plan your fishing expeditions more carefully,
supported by a good understanding of the fish’s behavior. It is naive to believe
that “any” experiment would do. A living system, observed at steady state or
equilibrium, is either dead or does not reveal the information necessary to under-
stand its behavior. We can only reconstruct/model the mechanisms or interactions
that generate the observed behavior of a dynamic system if we systematically per-
turb/stimulate it and then observe its response. Even the simplest stress response
or knock-out experiment implies a hypothesis — if only about the fact that the
induced changes alter the behavior.

Some members of the computer science and bioinformatics community, provid-
ing boats and tools for these hypothesis-free fishing expeditions, argue that rather
than beginning with a hypothesis, “artificial intelligence” approaches would gen-
erate hypotheses, extract them from data by letting “data speak for themselves”.
These approaches would then be considered inductive, inferring a general law or
principle from the observation of instances. The philosopher Karl Popper famously
argued that induction is a myth. John F. Allen [2001a; 2001b] responded to these
genomic and bioinformatics fantasies, and this led to a series of articles document-
ing this interesting debate [Gillies, 2001; Kelley, Scott, 2001; Smalheiser, 2002].
Allen argues that knowledge cannot arise de novo from computer-assisted analysis
of biological data. What he comments on is the proposition that analysis of data
can enlarge human understanding in the absence of any hypothesis or preconceived
idea. “It makes little sense to insist on collecting genomic and structural data be-
fore you, or someone else, has posited an underlying mechanism. Without having
an underlying mechanism — in essence an explanatory, tentative hypothesis —
you have no basis on which to decide which data to collect. Data do not, and
cannot, ‘speak for themselves’.” [Allen, 2001c].

Studying complex systems one has to be able to adapt or refine the goal or
hypothesis as you go along. As Allen [2001b] writes: “Computers are necessary to
analyze large data sets, but they are not sufficient. [..] Creativity consists of a will-
ingness to consider the relevance of observations that have no apparent connection
with the problem as it is viewed conventionally.” The computer program can only
act via the given algorithm and cannot venture beyond the ominous “background
knowledge” which has been fed into the program.

Apart from practical considerations we face methodological challenges. For in-
stance, uncertainty can be seen as a consequence of complexity (“complex systems
are difficult to understand”) but apart from epistemological aspects of dealing
with uncertainty we shall later also consider ontological aspects of randomness in
nature.

At present, the questions asked in systems biology are largely determined by
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the technologies used to generate data, by the (model) organism chosen, by the
choice of a particular cell type and cell line, antibodies available etc. Take for
example the question of how the Ras/Raf/MEK/ERK (MAPK) signaling pathway
works. While most researchers would readily agree that this is a reasonable and
important question, there are several problems with this approach. To begin
with this pathway is not a module of bounded autonomy as discussed below.
The question should not be how this particular chosen pathway works but how
cells grow, differentiate, proliferate or die as this is in fact the process relevant
to diseases (cancer research being the primary motivation for studies on MAPK
pathways). One should therefore first identify a question or hypothesis about the
functioning/behavior of the cell, then identify a suitable model organism, cell type,
cell line, to decide upon a subset of components, a pathway and only then identify
the technologies adequate to generate the data required.

Assuming there are functional modules and levels of bounded autonomy in cellu-
lar systems, how do we best identify their boundaries and constituent components
in experiments? Given a selected subsystem, how do we then unravel feedback
mechanisms giving rise to the observed dynamical behavior and how do we inte-
grate knowledge and models of subsystems to understand the interconnectivity of
organizational levels and explain emergent behavior? Clearly, the study of com-
plex systems is not just about the nature of things (an ontological problem) but
this research also raises questions about the way in which we generate knowledge.

5 THE CELL AS A SYSTEM

Let us return to our two central questions of systems biology:

1. How do the components within cells interact, so as to bring about the cell’s
structure and realize its functioning?

2. How do cells interact, so as to develop and maintain higher levels of structural
and functional organization?

Studying living systems one is bound to confess that the more we learn about
them the less we are prepared to generalize. The complexity of cellular systems, the
difficulties in studying them in experiments, has led to high levels of specialization
within disciplines, hindering the generalization of results. Living systems appear
so complex, so diversified that no general statement can safely be made about
them. While systems biology has emerged from the need to put the pieces of the
puzzle together, it does not offer a holistic salvation in the sense that universal
laws (“physics style”) can be derived. Throughout the essay we have emphasized
the irreducible wholeness of living systems but also the impossibility of a truly
holistic approach in which we can study/observe a cell as a whole.

An important aspect of a systems-theoretic approach is that objects and rela-
tions between objects have identical ontological status: Life is a relation between
molecules/cells and not a property of any molecule or cell. Paraphrasing Henri
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Poincaré16 we might say that a cell is built up of molecules, as a house is with
stones but a soup of molecules is no more a cell than a heap of stones is a house.
Organisms, their cells, genes, and proteins are complex collections of interacting
objects whose relationships and properties are largely determined by their function
in the whole. In living systems everything exists only in relation to something else.
The cell or any subsystem of it, together with the associated environment, has to
be understood as an undividable whole. This almost obvious fact is constantly
ignored by the reductionism that is forced upon us by the complexity of cells. To
use the language of physics, the cell is a many-body system in which non-local
interactions between the constituent molecules exert influence on the locally ana-
lyzed components. In other words, the inter-relationships of the parts (sub-wholes)
within a system depend crucially on the state of the whole, in a way that is not
expressible in terms of the properties of the parts alone. The irreducible whole-
ness of living systems suggests principle limitations to what we can know about
them.17 We are forced into reduced representations, necessarily leaving things
out. The uncertainty arising from reduced or approximate representations could
be captured with stochastic models but this would not solve the problem of how to
distinguish between an intrinsic feature of the natural system and methodological
considerations.

Living systems are dynamic systems, they are constantly changing, almost every
part of an organism being exchanged throughout its lifetime. In systems theory
this is reflected in the interpretation of causality as the principle of explanation
of change: causal entailment is not considered to be a relationship between things
(genes, proteins, etc.) but a relationship between changes of states of things. Not
only do cells dynamically respond to immediate external changes and stimuli, they
are also subject to evolution, not only at a time scale that covers generations of
the organism but also in the range of hours, days and weeks. We can distinguish
between two dynamic principles of key importance in studying cell function: a
system’s ability to maintain its current state against external perturbations (e.g.
homeostasis) leading to some form of robustness and the system’s responsiveness
to environmental cues, to adapt its state or even modify its biophysical make-up.
The basis for all forms of regulation, control, adaptation and coordination is the
notion of feedback. Feedback loops provide the system with information about its
current state and possible divergence from a desirable state/trajectory. Based on
the current values of system or state variables a change is induced to move the
system into a “desirable state” or follow an “intended trajectory”. For example, in
development stem cells should grow, proliferate and differentiate but this implicitly
assumes the existence of an objective. In complex dynamic systems the change of
state is influenced not only by inputs to the system but also by an overall goal or

16“A collection of facts is no more a science than a heap of stones is a house” Henri Poincaré
(Science and Hypothesis, 1908) or, also attributed to Poincaré: “The aim of science is not
things in themselves but the relations between things; outside these relations there is no reality
knowable.”

17See George Kampis [2003] for a critique of state-space based (differential equation) models
as descriptions of living systems.
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objective (i.e. the distance between a current and desirable/reference state): Liv-
ing systems are anticipatory [Rosen, 1985]. The existence of feedback mechanisms
also highlights the importance of systematic perturbation studies as only then we
will be able to unravel the structure of dynamic networks from stimulus-response
data. A system that is self-organized or robust to external perturbations does not
reveal its internal functional organization in simple observations but requires an
experimental manipulation.

6 SYSTEMS BIOLOGY OF THE CELL

Molecular and cell biology to this day has been preoccupied with the identification
and molecular characterization of cellular components, leaving little time to con-
ceptualize biological information and to develop “theories”. The recent interest in
systems biology is associated with the hope that it will be possible to manage the
complexity of cellular systems, leading to postulated generic principles that gov-
ern those cellular processes that underlie the development and (mal)functioning
of cells, cell populations, tissues, organs and organisms.

The (re-)emergence18 of systems biology over recent years signals a shift of focus
from the study of the structural organization of cells towards an understanding
of the functional organization of cells. By structural organization we refer to
the physical structure and material basis of cells, including macromolecules (e.g.
DNA,19 enzymes,20 and receptors21), organelles22 as well as the outer cell wall
(and inner membrane in eukaryotes). The functional organization of the cell refers
to processes that determine the cell’s activity (its dynamic behavior). The word
“function” refers to a role defined by the context of a system or process. For
example, the role of stem cells can be the regeneration of tissue. This provides
the context for cell differentiation (a specialization of stem cells, turning them
into a specialized cell type). Cell differentiation in turn is the context for various
networks in which proteins interact in order to realize this function (or an aspect
of it). The most important cell functions studied in systems biology include cell
growth, cell proliferation, cell differentiation and cell death (apoptosis).

Not only are we forced to select a subset of proteins, respectively a subsystem,
even if we could quantify larger number of components, the analytical tools for the

18The need for a research field of systems biology was first formulated by Mesarovic [1968].
19Deoxyribonucleic acid (DNA) is a macromolecule that encodes the genetic information used

in the development and functioning of all known living organisms (virus being a special case).
The entirety of hereditary information of an organism is also referred to as the genome.

20Enzymes are proteins that catalyze (accelerate) biochemical reactions. The vast majority of
processes in a biological cell require enzymes to facilitate the modification or transformation of
molecules. Inhibitors are molecules that decrease enzyme activity; activators are molecules that
increase activity.

21In cell signalling a common mechanism for information transfer is the binding of signalling
molecules (ligands) to receptor proteins on the outer cell membrane. The binding leads to a bio-
chemical modification which transfers the information through a series of intracellular processes
into the nucleus where the information can lead to changes in gene expression.

22An organelle is a specialized subunit within the cell.
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analysis of such large, nonlinear models are missing. Proteins are modified (e.g.
activated), each of these states adding to the number of variables in a mathemat-
ical model. A system with 10 components can subsequently lead to 20 or more
system variables. The theory of nonlinear dynamic systems, the methodologies
and tools available to identify models (their structure and parameter values) from
experimental data, to investigate their behavior analytically or through numerical
simulations remains to this day limited. We are once more forced to simplify for
practical considerations (e.g. through linearization). The reduction of complexity
through abstraction and modeling does however not only serve practical purposes.
Studying complex systems we seek simplifications to reduce complex processes to
an essential aspect of their functional organization, to extract a principle that
serves as an explanation. Studying complex systems we are seeking general princi-
ples underlying the observations we make in experiments. Mathematical modeling
is then the art of making “appropriate” assumptions, balancing necessary reduc-
tions due to methodological and experimental limitations with abstractions serving
explanatory purposes.

The construction of dynamical models is informed by experimental data. In
an ideal situation, experimental time course datasets can be used to identify the
structure of a network (and hence of the equation that form the model) and pa-
rameter values can be directly estimated from time series. At present, there is a
lack of technologies that allow us to quantify temporal changes of gene activity
and changes in protein concentrations with sufficient accuracy/reproducibility, for
a sufficient number of time points and for a larger number of molecules (and their
activation states). There are on the other hand technologies that can detect thou-
sands of proteins simultaneously (e.g. 2D gels) or indicate the activity of genes for
whole genomes (e.g. microarray or gene chips). Such “Omics” data, coming from
high-throughput and whole genome technologies, have been analyzed in the area of
bioinformatics using methods from multivariate statistics, “machine learning” or
“data mining”. Their qualitative character has, so far, prevented the identification
of models from dynamical systems theory.

The study of complex systems is difficult, pushing state-of-the-art technolo-
gies to their limits and demanding new methodologies to interpret data through
modeling. We can distinguish between two complementary general aims for mod-
eling: reproducing complexity for computer simulations and reducing complexity
in models that encode general principles. In the first case we try to establish a
detailed replica computer representation of a complex system. Typical examples
are large-scale mechanical/physical models of engineering systems (say airplanes).
Computer simulations would then allow the study of the system’s behavior, pre-
dicting the behavior of the system under unobserved conditions. For as long as
the system is mechanical, subject to Newtonian physics the parameter values for
the computer model can be derived from “first-principles” (considering mechanical
properties of the constituent components). The second principle aim of modeling is
to simplify, reduce complexity to some general principle through abstraction. For
cell biological systems we cannot develop microscopic models in which molecules
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are treated as mass-points, instead one models changes in molecular concentra-
tions in a macroscopic sense. Since parameter values cannot be derived from “first
(physical) principles”, one could estimate them from time course data. As dis-
cussed above, state-of-the art technologies cannot — at present — deliver suitable
datasets, nor is system identification simple for nonlinear spatio-temporal systems.
Even if these macroscopic models may be phenomenological, this does not mean
that the structure of the equations is arbitrary as in black-box modeling. The
structure of the mathematical model encodes in this case a hypothesized princi-
ple. We are going to focus our discussion on the second type of models, which
cannot be derived from first principles. Whatever the goal of modeling, it will
be important to distinguish between the complexity of the natural system under
consideration and the complexity of the effort by which we gather information and
gain knowledge about the complex system.

7 THE MULTILEVELEDNESS OF CELL-BIOLOGICAL SYSTEMS

The structural (physical/material) organization of cells is the outcome of an elab-
orate self-organizing process, involving gene expression, regulation, signalling and
metabolism. This structural organization of the cell then serves as an environment
for the cell’s functional organization, leading to growth, differentiation, prolifera-
tion and cell death (apoptosis). The cell is itself a component of a larger system
with higher levels of structural and functional organization. For the human or-
ganism these can be summarized as follows.

At the spatial level of the entire organism the human body grows, reproduces
and dies in time scales that can be years. The human body is made up of organs,
which help to maintain, renew, repair or regenerate the organism and adapt it to
its environment. Organs realize their functions over hours and weeks. Organs are
made up of cells, which go through the cell cycle, grow, divide, specialise and die.
These processes take place over minutes and hours, while intracellular biochemical
reactions take place in seconds.

Multileveledness is a key organizing principle in complex systems where the re-
sponsibility for proper functioning of an overall system is shared by the subsystems
that constitute the different levels. A fundamental property that is determined
by interlevel relations is that the levels have the latitude to focus on their ‘allo-
cated’ tasks, and which implies that each level must posses a domain of autonomy
[Mesarovic, et al., 1970]. If two levels each possess a domain of autonomy it means
that each level has some range of behavior which is autonomous in the sense that
the two levels do not affect each other through changes in these ranges; changes
within the domain of autonomy of one level is perceived as “background” by the
other level and vice versa. The influence of one level is treated as a bona fide
signal by the other level whenever the receiving level is outside of its domain of
autonomy.

Making a distinction between the interaction (signaling) and the interdepen-
dence of levels is useful in this respect. Although the levels, belonging to the same
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system, are interdependent in many ways, they are non-interacting (non-signaling)
within their respective domains of autonomy. Identification of the domains of au-
tonomy of pathways is therefore a major challenge for systems biology. Domains of
normal behavior are delineated by tolerances. The system can become pathological
either when the a function on a level strays outside of the domain of autonomy or
when a tolerance on a level changes due to internal or external influences. Bounded
autonomy provides cross-level harmonization and illustrates that nature’s design
is not optimization of the behavior over time but rather optimization of a sys-
tem’s organized complexity. A major challenge for systems biology is to develop
methodologies and experimental designs that allow the identification of functional
modules, the separation of subsystems and levels of bounded autonomy.23

The very existence of different levels for experiment and modeling suggests an
ontological basis for the complexity reduction which is necessary for our under-
standing. Our epistemological efforts arise not merely from arbitrary selection of
features of a system. The fact that we observe coherence of the parts into higher
level structures, of which we can speak with a suitably-tailored language, sug-
gests the ubiquity of automatic stabilization. The procedures we adopt arise from
our attention naturally being drawn to objectively real coherent structures which
exhibit bounded autonomy.

The kinds of stability encountered in the major part of current systems theory is
entirely inappropriate to handle such phenomena. The most elaborated results of
this theory have been developed, mainly in engineering contexts, in the framework
of linear systems. In such systems the possible forms of stable states are very
limited and will not allow the kind of complexity reduction we are seeking, a
dramatic decrease in the number of dynamic variables which need to be considered.

Our attention should therefore be directed towards non-linear systems theory.
Recall that the simplest kind of dynamical system — a finite-dimensional, deter-
ministic, memoryless system — is described mathematically by a collection of first-
order differential or difference equations. The collection of dependent variables,
say n in number, are quantities characterizing the system’s state which develops
through time. Our principal concern is with complex systems in which n is large,
but for which we can regard as significant only a few functional combinations of
these. This may be achievable in the following way.

Suppose each orbit of interest to have a simple attractor — an attractor for
an orbit being its asymptotic limit as time tends to infinity. If the time-scale for
the dynamical events is short when compared with that employed by an observer
of the system, the state will appear to that observer to jump rapidly on to the
attractor and stay there. We need only assume that all the usual initial conditions
have orbits going to the same attractor and the observer will see an apparent self-
organization of the system to a coherent behavior. If the attractor, considered as a
subspace of the state space of dynamic variables has low dimension, we can regard
the motion within the attractor as a simple description of the system’s trajectory
in terms of just a few aggregate variables which play the role of coordinates within

23See Mesarovic et al. [2004] for a discussion of these ideas in systems biology.
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that subspace. Even allowing for perturbations away from the attractor, these
variables can approximately describe the actual position of the system’s state
when it moves within a sufficiently close neighborhood of the attractor. One
might then hope that the perturbations around the stable values, remaining small
in magnitude, may be handled by suitable statistical techniques.

We initially stated the intention to avoid ontological questions about the role of
randomness in living systems, instead focusing on epistemological questions, i.e.
uncertainty arising from reduced and approximate descriptions. As long as our
models capture a level of the functional organization of cells at which randomness
does not matter, we are fine. However, models should after all be a representation
of what the things are “in themselves”, which means that we cannot always ignore
the role of randomness. For nonlinear dynamical systems randomness is most
potent at bifurcation points and in systems sensitive to initial conditions. How
can we then distinguish between intrinsic (possibly purposeful) randomness and a
signal that is formed from a temporal average of a molecular concentration? What
this problem suggests is the importance of stating the context in which a model is
valid.

8 DEALING WITH UNCERTAINTY: RANDOMNESS, STOCHASTICITY

Observing a cell-biological system, irregularities and the absence of an obvious
pattern/trend in data induce uncertainty in the analysis of the system. The first
question is then whether this randomness is an inherent, possibly purposeful aspect
of the system or whether it is a consequence of limitations in observing the system
(the choice of subsystem looked at, components that are ignored or limitations to
measurement technologies)? In either case, one may consider a stochastic model
to describe the system in terms of probabilities [Ullah, et al., 2007; 2008].

Note that our discussion will be limited to the level of cells, where we investi-
gate the function(ing) of cells in terms of changes in the abundance of molecules
within cells and consequences this may have for populations of interrelated cells
[Raj, et al., 2008]. The discussion of randomness in physics, specifically statistical
mechanics, may thus be avoided in our present context. While thermal and per-
haps quantum fluctuations may in fact influence events at the cellular level and
above, instead of modeling them in detail we may, without losing essential cellu-
lar and higher order modeling power, represent their consequences by irreducible
stochasticities. The cell is here considered an open, non-equilibrium system, with
a constant flux of material and information in and out of the cell. At the level of
single molecules, the irregular motion of atoms and molecular bonds within the
system may well be relevant but will here be referred to as effects of the micro-
scopic level. This includes thermal fluctuations and Brownian motion. Looking at
changes in the concentration of molecules, following a clear trend that may well
be described in terms of differential equations, such models may be referred to as
macroscopic.

Where necessary, a stochastic model can be formulated comprising both the
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deterministic laws and the fluctuations about them. Such models are sometimes
referred to as mesoscopic models [van Kampen, 1992]. Considering a system of
interacting mass points, fluctuations in non-equilibrium systems do not arise from
a probability distribution of the initial micro-state, but are continuously generated
by the equations of motion of the molecules. While mesoscopic stochastic models
are attractive theoretical concepts, in a practical context where such a (nonlinear)
model and its parameter values would have to be extracted from experimental
data, we face various problems (which are in part a reason for the wide use of
ordinary differential equations).

We can illustrate the notions of microscopic, mesoscopic and macroscopic in
the context of cell biology by considering gene expression, the process by which
information of the genome is first transcribed into RNA before being translated
into proteins. These two stages involve two levels, the transcription of a gene be-
ing microscopic compared to fluctuations in the concentration of the protein for
which the gene encodes the information. While for the initiation of transcription,
say through the binding of transcription factors, a stochastic model may be ap-
propriate; changes in the concentrations of the proteins involved in the function of
a single (e.g. cell cycle) may on the other hand be described macroscopically by
ordinary differential equations. Taken together, the whole model is mesoscopic.

In many situations random fluctuations are sufficiently small to be ignored,
allowing macroscopic equations to predict the behavior of a system with great ac-
curacy. Cells however are “open systems”, where the environment may force them
into a stationary non-equilibrium state in which the system’s dynamics bifurcate,
the direction taken depending on the specific fluctuations that occur. Note that
therefore the “randomness” of the fluctuations (which we can only describe in
terms of probabilities) influences the behavior of the system of macroscopic equa-
tions most critically at specific bifurcation points, while other areas of the state
space may be perfectly well approximated by macroscopic equations. Intrinsic
noise from thermal fluctuations or transcriptional control could determine how
the system at the macroscopic level goes through a bifurcation. Looking at a pop-
ulation of genetically identical cells in a homogenous environment, this leads to
variability of cell states that may well be exploited by the biological system [Rao,
et al., 2002; Kærn, et al., 2005; Shahrezaei, et al., 2008]. The obvious context in
which randomness has a function is generating diversity in evolution.

Looking at a single gene in a single cell, the initiation of transcription at its
promoter site is driven by the association and dissociation of a very small number
of molecules. This very low copy number of molecules has two consequences: the
time of reaction events can only be described in terms of probabilities and changes
in the number of molecules are discrete, with no obvious trend that could be ap-
proximated with a differential equation (see [Paulsson, 2005] for a review). The ex-
pression of a gene does however serve a function; say during the cell cycle, growth,
differentiation or apoptosis of the cell. For example, in response to external stimuli,
the cell may produce large quantities of a protein. This response, measured as an
apparently smooth/monotonic change in concentration, appropriately described
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by differential equations. Small fluctuations around an obvious trend/mean are
thus ignored. At this level we are aiming at a description of a pathway acting as a
switch, filter, oscillator, amplifier, studying the network’s behavior in terms of its
robustness, responsiveness, sensitivity of the model to changes in parameters, tran-
sitions between steady states and bifurcations. A usual assumption in such rate
equation models is that parameters (rate coefficients) are constants. Since these
parameters are implicitly linked to environmental variables, such as temperature,
pH level or water balance, fluctuations in these are considered negligible. The art
of modeling is then to decide in the given context which modeling approach or
combination thereof is most appropriate. Even if ordinary differential equations
are chosen, noise can influence the onset of oscillations. An example, serving as
a toy model for this, is the “Brusselator” [Blomberg, 2006]. Here one observes
damped oscillations around the stationary point before the oscillation bifurcation
occurs. Noise afflicts these damped oscillations, and this gives information about
the bifurcation before it appears, in the region of a stable stationary point. Thus,
noise provides information and details about the type of bifurcation that are not
as clear in the basic differential equations.

As pointed out in previous sections, in experiments one can only study a limited
number of components and generate data for them. The unavoidable conceptual
closure in modeling and the neglect of system variables, will inevitably lead to
uncertainty in the analysis of a complex system, providing an epistemological
motivation for stochastic models.

David Bohm [1957] argued for the possibility that there might be an ever-
recurring dialectic between causality and chance - or stochasticity and determinism
in nature. If there could be an infinite number of levels of existence of matter then
for each level which manifested itself stochastically there could be a level below to
which that could be deterministically reduced: but, conversely, each deterministic
level could reflect some average behaviour of a complex stochastic level below.

9 WHAT CAN WE KNOW ABOUT LIVING SYSTEMS?

As the complexity of a system increases, our ability to make precise and yet signifi-
cant statements about its behaviour diminishes until a threshold is reached beyond
which precision and significance (or relevance) become almost exclusive character-
istics.24 Our understanding of complex systems arises from reducing one type of
reality into another.25 A complex system is by definition too complicated to be
comprehended by just using everyday common sense. Studying complex systems
through mathematical modelling is therefore to seek an understanding through
abstraction. In other words, studying complex systems we put a high value on
simplicity. The problem is that abstraction itself can be complicated to start with
and thus abstraction is often not perceived as what it really is: simplification.

24The statement has been attributed to Lotfi Zadeh.
25The statement is attributed to Claude Levi-Strauss.
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Dealing with complexity by reducing it in modelling suggests a loss of pre-
dictability. A model reduces a complex biological process to an essential aspect
of its behavior, removing a general principle by which a cell functions from its
experimental context of a particular culture, cell line or organism. All models
are wrong, some are useful.26 Abstraction lives from the fact that not everything
that is there in a natural system needs to be modelled. To reduce or simplify a
complex system into a tractable form requires however an understanding of the
natural system in question. Simplicity appears thus to follow understanding; to
understand a process we need to know it well. On the other hand, an understand-
ing of a complex system requires simplification; we are dealing with an iterative,
exploratory and creative process. Systems biology is indeed the art of making
appropriate assumptions.

Systems biology signals a shift of focus away from molecular characterization
towards an understanding of functional activity; away from studying the func-
tion of genes and proteins towards an understanding of cell function, supporting
inferences about phenomena at the physiological level of cell populations, tissue,
whole organs and whole organisms. A skeptic might argue that this is about the
same as trying to predict the world economy from observations I make at my local
superstore. While this endeavor seems impossible due to the complexity of cells,
encouragement comes from the likes of Max Weber: “All historical experience
confirms that men might not achieve the possible if they had not, time and time
again, reached out for the impossible.”; Mike Mesarovic: “It is less frustrating not
to catch a big fish than it is not to catch a small fish - we might as well ask the
big questions.” and Richard Feynman: “We do not know where we are ‘stupid’
until we ‘stick our neck out,’ and so the whole idea is to put our neck out.”.

If something seems impossible we improve our chances of success by trying it. In
the meantime the interdisciplinary endeavor systems biology would benefit from
the involvement of philosophers of science, discussing the process by which we
model complex systems. First steps in this direction have been made [Fox-Keller,
2002], Boogerd et al.. 2007]. In an essay for the journal Nature Fox-Keller [2007]
discusses the differences between physics and biology and asks whether biology
does have physics-style laws that are universally applicable? When limits to the
generality of findings are found in biology, this is usually not considered a prob-
lem and simply sets the context for the findings. Evelyn Fox-Keller asks whether
exceptions to presumed laws are just a reminder of the complexity of biological
systems or whether biologists should adopt a different attitude and systematically
search for all-encompassing laws. She concludes: “Even though we cannot ex-
pect to find any laws governing the search for generalities in biology, some rough,
pragmatic guidelines could be very useful indeed.” System biologist may already
benefit from reading the first pages of Popper [1959], where he quotes Novalis:
“Hypotheses are nets: only he who casts will catch.”

26The statement is attributed to George E.P. Box.
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