Significance Testing and Errors	

After taking a SAT review course, those who scored below 250 improved their scores by an average of 30 points. This improvement

- Must be attributed to the quality of the review course
- B. Probably represents the hot hand phenomenon
- C. Is likely an instance of regression to the mean
- D. Must be due to the students trying harder

Clicker Question

A study based on a sample of 100 UCSD students reported a difference in interest in partying between men and women (p<.01)

This result is not reliable because of the small sample size

This result is not reliable because of the small p-value

There is less than 1 in 100 likelihood that there is a difference in the actual population

There is less than 1 in 100 likelihood that the difference in the sample is due to chance

Clicker Question A study showing a positive correlation between	
age and interest in the Beatles re[prts p < .01. This means	
A. There is little correlation between age and interest in the Beatles	
 B. The correlation is highly important C. The correlation has low significance 	
There is less than 1 in 100 chance that the correlation in the sample is due to chance	

Showing Statistically Significant Differences with Error Bars

Error bars can be used to identify 1 or more standard deviations above and

below the mean If the error bars overlap, the difference is not statistically

significant

If they do not, the difference may be statistically significant

Non-significant Difference versus	
No Difference	
 If the difference in your sample is not significant, you conclude that you cannot tell whether there is actually a difference in the real population 	
 There may be one, but the power of your test was too weak to find it 	
No significant difference does not mean there is no difference	
There may well be a difference, but one that has not been detected given the tests employed	
difference	
7	

If the attempt to find a difference in means based on a sample is reported to be non-significant, that means There is no difference between means in the actual population The probability that the null hypothesis was true was less than 5%

No difference between the means in the actual population has been detected The result is not important

Caught Between Two Errors

Type I error (over confidence): Concluding there is a difference between means when there is none Use higher significance levels: instead of requiring only p<.05, require p<.01 or even p<.001

Type II error (false humility): Concluding there is no difference between means when there is one Use a larger sample, which has a greater chance of finding a significant difference if one is to be found

9

	Two dangers - 2		
		H _o is true	H _o is false
	Did not reject	Correct	Type II error
	H _o	failure to reject	(β)
	Did reject H _o	Type I error (α)	Correct rejection
		()	
			10

α and β levels	
•	
when it is true	
 Statistical significance and p-value 	
 β-level is the probability of failing to reject the null hypothesis when it is false 	
$(1-\beta)$ is probability that the researcher will correctly	
reject the null when the null is indeed false	
44	
11	

Under what conditions should one focus more on reducing type II errors than type I errors?

- A When it is critical not to claim a difference when there isn't one
- One should always be more concerned with type I errors
- When it is critical not to miss a difference when there is one
- D. When there is little worry about being wrong

Clicker Question

In which type of situation would you most likely expect that a Type II error has been committed?

- When the difference between means in a small or moderate-sized sample is not found to be statistically significant
- When an extremely large sample has been used When the difference between means in a sample has been found to be significant (p<.01) When the difference between means in an extremely

large sample is not found to be statistically significant

Clicker Question

To reduce the likelihood of a Type II error, one should Always insist on using p-values <.01 Not worry about the p-value and just look at the differences produced in the sample Use a large enough sample so that if there is a difference, it will produce a significant difference in the

sample Use a small sample since then if there is a significant difference, there is likely to be a large difference in the

real population

Science without Error?
One can reduce the risk of type I and type II errors to whatever level one desires if one
insists on a small enough p-value
But one cannot eliminate the risk of error It is always possible that there is no difference in means despite obtaining a significant result in one's
sample It is always possible that there is a real difference in
means, but the difference in the sample is not
significant
This is one more example of how scientific knowledge remains fallible!

Is the following a good argument for confirming a correlational claim based on a sample:

If there is a difference between means in the population, the result in the sample will be statistically significant (p<.X)

The result in the sample is statistically significant (p<.X)

. There is a difference between means in the population

Yes, the argument is valid

Yes, the argument is sound

No, the argument affirms the consequent

No, the argument denies the antecedent

The Logic of Correlational Research

To confirm or falsify a correlational claim based on a sample, we use *modus tollens*. The first premise in each case, though, is different

Confirming a correlational claim: If there is *no* difference between means in the population, then there will *not* be a statistically significant (p < ?) difference in my sample There is a statistically significant difference (p < ?) in means in my sample

. There is a difference between means in the population

We pick the level of significance in the first premise according to how great a risk of error in our conclusion we can accept

The Logic of Correlational
NESEALUI - Z
alsifying a correlational claim
If there is a <i>detectable</i> difference between means in the population, then there will be a statistically significant difference (p < ?) in my sample
There is no statistically significant difference (p < ?) in means in my sample
There is no <i>detectable</i> difference between means in the population
he truth of the first premise depends upon using a roe enough sample
OTE: The conclusion refers to DETECTABLE ifferences