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Abstract. Connectionist models based on activation spreading and attractor 
dynamics are functionally limited by representational and processing flexibility
constraints, the ‘feature binding problem’ and the need to balance accurately acti-
vation and inhibition. We suggest an alternative approach, in which network units
are characterized by two variables: activation and phase. Whereas activation evolves
according to a ‘classical’ connectionist rule, the phase variable is characterized 
by a chaotic evolution. We present a model of memory retrieval with reference to 
the paradigmatic McClelland’s 1981 ‘Jets and Sharks’ model. The model solves the
‘multiple reinstantiation problem’, i.e. the problem of retrieval of multiple items 
with overlapping features, implied by its classical predecessor. In our network,
multiple pattern reinstantiation in terms of activation spreading is disambiguate
through selective and differential coherence patterns. The system �exibly represents
pattern similarity and feature relationships by means of graded and intermittent
synchrony. The domain-general implications of this approach for connectionist
‘interactive activation models’ and its neurophysiological plausibility are discussed.

Keywords: memory retrieval, neural network, connectionism, graded synchro-
nization.

1. Introduction
1.1. Connectionist modelling of memory retrieval
Most connectionist or Parallel Distributed Processing (PDP) models assume that
memory retrieval occurs through pattern reinstantiation and completion in activation
spreading processes (e.g. McClelland et al. 1986b, Rumelhart et al. 1986, McClelland
et al. 1995). According to these models, when a subset of the features (elementary
traces) of a composite representational pattern is reactivated, activation spreads to the
remaining constituent features. When an input-cue is insuf�cient to lead to retrieval
of a stored pattern, fragments of the pattern may be reinstantiated (McClelland et al.
1995). For instance, this process may be involved in source memory failures occurring
when the representational fragments of an episode are retrieved without a recollection
of how or when the fragments were acquired (Schacter 1989, Squire 1992, Schacter 
et al. 1998).

Such content-addressable memory models with distributed representations are
robust in comparison to memory retrieval systems based on symbolic labels, and
exhibit dynamics preventing a representational combinatory explosion. In attractor-
based retrieval networks, pattern reinstantiation occurs through the convergence on
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to an attractor, representing the information stored in an activation space (Hop�eld
1982, Amit 1989, 1995, van Orden et al. 1990). The conspicuous virtues of such
dynamics are well known (McClelland 1981, McClelland et al. 1986a): graceful
degradation (even incomplete or partial probes can lead to retrieval); default assign-
ment (inferences based on known similarities between instances); and spontaneous
generalization (prototypes may be inferred, even if no actual presentation shares all
the typical features). Because of these functional properties, attractor dynamics
became prevalent as connectionist models of retrieval.

These models prevailed, despite their conceptual and dynamical limitations 
which result from the inertness of their dynamics. Attractor memory systems are
characterized by limited autonomy, since retrieval processes in terms of convergence
on to fixed point attractors are ultimately restricted to a set of stimulus–response
pattern associations. 

Attractor-based memory systems are also characterized by a limited dynamical
�exibility. The working range of these models is critically dependent upon the balance
of excitatory and inhibitory interactions. Insufficient inhibition during activation
spreading will lead to the activation of all units within the system, irrespective of
whether these units code for a target or not; by contrast, an excessive inhibition 
may cause activation to die out before the target-units are activated. Maintaining 
the appropriate excitation–inhibition balance is a non-trivial task in the cerebral 
cortex (see Braitenberg and Shüz 1991). If learning of new items is to be based on 
the strengthening of excitatory connections, learning will disturb this delicate balance.
Compensation by proportionally increasing the overall level of inhibition is implau-
sible, as connections between excitatory (pyramidal) and inhibitory (stellate) cells
are generally believed not to be plastic.

Finally, ‘classical’ connectionist models assume that a single variable codes for
retrieval in working memory: the activation of features belonging to a given composite
representation or multi-feature pattern. In realistic memory retrieval conditions,
however, features tend to act as clusters within a cluttered environment, rather than
as isolated or well-segregated subsets. For instance, multiple feature clusters could be
active simultaneously, working as cues for distinct patterns to be retrieved. We refer
to this problem as multiple reinstantiation problem in memory retrieval.

For example, let us to consider the classical ‘Jets and Sharks’ retrieval model
(McClelland 1981, McClelland et al. 1986a). In the original connectionist model (�gure
1), the members of the different gangs (the Jets and the Sharks) are represented in
terms of their features. When a subset of features is presented, a given individual is
recognized as a consequence of activation spreading. In realistic circumstances,
however, gang members are usually not encountered alone. In each other’s company,
they will provide retrieval cues that are likely to ‘cross over’, leading to a number of
spurious activation states and confusion as to which individual each activated feature
belongs. Such representational ambiguity in retrieval constitutes a problem for the
classical connectionist framework.

1.2. The binding problem at different representational and processing levels
The multiple reinstantiation problem may be regarded as a version of the well-known
binding problem (von der Malsburg 1981, Engel et al. 1992, Singer 1994, Gray 1999).
In perceptual areas of the cortex, the binding problem occurs when neurons or neural
assemblies within the same network code for features of more than one object in terms
of activation level (or �ring rate).
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In the neurosciences, the classic approach to neural coding is based on the
assumption that information is carried by neuronal �ring rates over time-scales of
hundreds of milliseconds. Firing rates, however, may not adequately disambiguate
neural responses when the features of a pattern have to be integrated into a coherent
representation (for instance, a visual object), while being segregated from other
features (for instance, features belonging to other objects). When a visual cortical
network is simultaneously presented with a red square and a green circle, with
enhanced �ring rates of the neurons coding for shapes and colours, the bindings of red
and square, and of green and circle, cannot be discriminated in the absence of speci�c
conjunctive representations. A strategy based on an explicit representation of con-
junctive features will ultimately lead to a combinatory explosion (von der Malsburg
et al. 1981, Engel et al. 1992).

It has been suggested that this binding problem may be solved in terms of temporal
coding, based on the selective synchronization of time-resolved neuronal responses
(von der Malsburg 1981, Eckhorn et al. 1988, Engel et al. 1992, Shastri and
Ajjanagadde 1993, Singer 1994, Roelfsema et al. 1996). According to this view, 
the action potentials (spikes) of neurons coding the features of the same object are
synchronized, while being uncorrelated to (or actively desynchronized from) the
responses of neurons coding the features of other objects. In support of this view,
there is evidence that neurons act as coincidence detectors: synchronous synaptic
inputs are more effective than asynchronous ones in eliciting spikes of the neurons on
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Figure 1. The units and connections for �ve of the imaginary individuals in McClelland’s 
(1981) Jets and Sharks network. Note the central ‘gang member units’ and the surrounding

‘characteristic units’. (Reproduced from McClelland 1981, with permission.)



which they converge (Abeles 1991). Temporal neural codes, therefore, may be read
out in terms of coincidence detection properties.

Modelling studies have demonstrated that temporal synchrony can be used in 
high-level binding for drawing inferences (Shastri and Ajjanagadde 1993, Shastri and
Mani 1997, Shastri 1999). Temporal synchrony may also be involved in handling
different instances of the same concept simultaneously, in the so-called multiple
instantiation problem (Mani and Shastri 1993, Sougné 1998, Shastri 1999). As these
studies indicate, given the appropriate architectures temporal coding may be effective
in high-level cognitive processes involving dynamic binding and complex relations
between active representations .

In memory retrieval, the binding problem takes the form of the aforementioned
multiple reinstantiation problem. During the retrieval process, cortical neurons or
neural assemblies will become activated that code for more than one neural
representation of an entity or episode.

Binding processes may also plausibly be involved in memory encoding. Also in
encoding, binding has to be achieved while avoiding representational interference
problems due to cross-talk (Schacter 1989, Moscovitch 1994, Schacter et al. 1998). 
In encoding, features are linked together according to their episodic, semantic and
intrinsic perceptual-structural organization. 

It is commonly agreed that episodic (e.g. Tulving 1985) and semantic organization
play important roles in memory encoding (e.g. Miller 1956). The role of structure in
memory encoding was studied in a series of articles in the 1970s (Restle 1970, 1976)
and 1980s (Geissler and Puffe 1983, Buffart and Geissler 1984, Buffart 1987, van
Leeuwen et al. 1988, van Leeuwen and Buffart 1989). Geissler and Puffe (1983) and
van Leeuwen and Buffart (1989) showed that, respectively, hierarchical and serial
patterns are encoded in terms of underlying features of their perceptual structure.
There is evidence that the binding processes of memory encoding continue after
perception. For instance, in early learning stages visual patterns are encoded in terms
of their independent sub-structures, but with increased practise they become stored
in terms of more integral features (van Leeuwen et al. 1988), and classi�ed accordingly
(Goldstone and Medin 1994). The role of visual working memory may be to assemble
representational patterns, thus binding increasingly complex sets of features. Shiffrin
(e.g. Czerwinski et al. 1992) called this process ‘unitization’. In this process, a pattern
that is complex at a certain level of representation is coded as a simple pattern in a
higher-order feature space.

These �ndings suggest that binding processes operate in visual working memory
processing to serve integration. In an elegant series of studies Luck and Vogel (1997)
showed that the storage capacity of visual working memory corresponds to approxi-
mately four objects. Significantly, the retention capacity does not depend on the
number of features making up the objects. Hence, visual working memory seems 
to process integrated objects rather than individual features, just as verbal working
memory handles higher-order ‘chunks’ instead of individual features or letters.

Raffone and Wolters (2001) have recently developed a neural model of retention,
limited capacity and chunking in visual working memory, based on the synchro-
nization and desynchronization of reverberating neural assemblies. The role of
oscillatory patterns in verbal short-term retention was put forth by Lisman and Idiart
(1995). Raffone and Wolters’ model (�gure 2) can parsimoniously account for both
the limited capacity of visual working memory and for the temporary binding of
multiple assemblies into a single pattern (Raffone and Wolters 2001, Raffone et al.

A. Raffone and C. van Leeuwen352



Activation and coherence in memory processes 353

200 300 400 5001000

100

80

60

40

20

1

1

.8

.6

.4

.2

0

time (ms)

n
e
u
r
o
n

i
n
d
e
x

a
v
e
r
a
g
e

a
c
t
i
v
i
t
y

A)

200 300 400 5001000

time (ms)

B)

assembly
1

assembly
5

assembly
3

assembly
4

assembly
2

continued . . .



2001). A critical capacity of about three to four independent patterns was observed
in the simulations, consistent with the results of Luck and Vogel (1997). According
to this model, oscillatory activity and selective synchronization play a crucial role in
visual working memory representation and processing.

Interestingly, several brain imaging studies (e.g. Buckner 1996, Haxby et al. 1996)
suggest that the same areas and neural representations that are active during the
retention of items in working memory are also active during retrieval from long-term
memory. Thus, it may be hypothesized that uniform neurocomputational mechanisms
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Figure 2. Retention, limited capacity and binding in Raffone and Wolters’ (2001) model.
Individual assembly behaviour with feature input and active feedback. (a) The top part of this
panel shows the spike-raster of the 100 neurons of a neural assembly in IT (inferotemporal
cortex) and of the 50 neurons of a reciprocally-connected prefrontal assembly. Spikes of the
two assemblies are coded by different grey tones. The bottom part of (A) shows the evolution
of the average activity of the IT-assembly. Stimulus onset and offset times are marked by the
vertical grey lines. Note how oscillatory neuronal �ring is maintained after the stimulus-offset,
due to feedback from the prefrontal cortex. (B) Phase segregation of IT-assemblies coding 
for simultaneously presented single-feature objects. Four out of �ve reverberations remain
active. Due to mutual inhibitory activity, the assemblies become spaced in the oscillatory phase,
thus allowing a markedly discriminative oscillatory reverberation and retention of the coded
objects. Assemblies are shown in an order allowing easy inspection of phase segregation. 
(C) The combination of within-chunk integration and between-item segregation. Three 
four-feature objects are retained in terms of three internally synchronized (bound) and 
mutually desynchronized oscillatory chunks, whereas all the four assemblies coding the features
of a fourth object are suppressed. (Reproduced from Raffone and Wolters 2001, with

permission.)
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are operating in perceptual binding, within-chunk integration and between-item
segregation in visual working memory (Raffone and Wolters 2001), as well as in
multiple reinstantiation during memory retrieval. This view is consistent with Phillips
and Singer’s (1997) proposal of common codes involved in different forms of cortical
information processing. Large-scale synchronization processes in cortical networks
may play a crucial role in these multifunctional neural computations. 

2. The graded synchrony hypothesis
Several recording studies from cat and monkey visual cortex have demonstrated that
the selective synchronization of oscillatory neuronal discharges is involved in visual
grouping and segregation (e.g. Eckhorn et al. 1988, Gray et al. 1989, Castelo-Branco
et al. 2000), as well as in binding sensory and motor responses (Murthy and Fetz 1992,
Roelfsema et al. 1997). Recent EEG studies suggest that oscillatory neural coherence
may be related to associative learning and large-scale cognitive integration (Miltner
et al. 1999, Rodriguez et al. 1999), not just to local feature binding. Simulation studies
have shown that phase coherence may be translated into behavioural outcomes based
on the effectiveness of correlated neural states (Tononi et al. 1992).

Although the recording data in many of the electrophysiological studies indicate
non-stationary or intermittent coherence episodes, the underlying cortical mecha-
nisms have usually been modelled in terms of networks of phase-locked neural
oscillators with a periodic dynamic behaviour (e.g. Sporns et al. 1989, König and
Schillen 1991, von der Malsburg and Buhmann 1992). Generally, in these models
synchronization is mediated by excitatory synchronizing connections, and desynchro-
nization is induced by random noise. However, these models present significant
functional limitations: (1) the desynchronization time of the initial phase is relatively
long, being proportional to the number of oscillators in a certain assembly and
inversely proportional to the squared amplitude of local noise; (2) even (large) weakly
coupled assemblies can eventually synchronize their phase (see also Hansel and
Sompolinsky 1992); and (3) assuming that a given oscillatory phase codes the set of
features belonging to a given object, it is hard to explain phase constancy when 
the related image size and retinal position are changing (Grossberg and Grunewald
1997).

Several studies have shown that functional limitations of coupled sinusoidal
oscillators are not inherent to networks of relaxation oscillators, in the case of 
long-range co-operation and short-range competition (Somers and Kopell 1993), 
as well as local co-operation and global competition (Wang and Terman 1997). 
In both kinds of cortical network models with periodic oscillators, neural synchrony
is interpreted as an ‘all-or-none’ phenomenon, implying a transitive relationship: if 
a neuron (or assembly) A is synchronized to a neuron B and to a neuron C, then the
neurons B and C are mutually synchronized as well (Neven and Aertsen 1992). Thus,
the stable synchronization of periodic neural oscillators cannot be used for associative
coding with multiple active patterns (if their overlap is higher than zero), i.e. neurons
cannot code for different objects in the visual scene, and cannot flexibly partici-
pate in almost simultaneous but disjoint neural computations. Moreover, this
synchronization can also reduce the amount of information that can be encoded, since
perfectly synchronous firing in a pool of neurons signals a single event (Ritz and
Sejnowski 2000).

Owing to phase-locking into �xed orbits, the stable synchrony of periodic neural
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oscillators cannot be effective in the multistable and reversible perception of
ambiguous patterns, i.e. visual patterns that may be dynamically perceived in multiple
ways (e.g. Kubovy and Wagemans 1995, Leopold and Logothesis 1999). By contrast,
intermittent patterns of synchronized (non-stationary) activity may enable the
integration of local features into global representations, as well as fast switching
between alternative global representations (van Leeuwen et al. 1997, 2000). Thus,
binding dynamics in perceptual neural networks must exhibit dynamic behaviours
that enable the intrinsic non-stationarity and multistability of perceptual experiences
to be captured.

A �exible temporal coding in neural systems is especially needed in high-level areas
of the visual system due to the large receptive �elds. Such a coding may be obtained
through graded synchrony (GS) of non-stationary (e.g. chaotic) signals, i.e. in terms
of degrees of inter-neuron synchronization (van Leeuwen et al. in press, Raffone and
van Leeuwen submitted). Distances in feature spaces, i.e. proximity and similarity
relationships, as well as the variable associative strengths between active neural repre-
sentations, may be effectively coded by relative degrees of synchrony among neurons
or neural assemblies.

This type of coding may be at work, for instance, when a network of visual neurons
with relatively large receptive �elds is presented at the same time with a red square
and a red circle (see �gure 3 for a related scheme). A transitive synchrony relationship
between the periodic signals coding for red, square and circle would lead to the
indiscriminate synchronization of all the active neurons. Alternatively, a graded
synchrony pattern in which a neuron coding for red is synchronized at different times
(in an intermittent manner) with the neurons coding for square and circle would solve
the binding problem in the presence of overlapping features. The multiple reinstan-
tiation problem in memory retrieval may be solved by graded and intermittent
synchronization as well, as we shall show below.

3. Chaotic binding processes and intermittency in coupled maps
The creation, maintenance and deconstruction of ordered spatio-temporal patterns
has been the subject of intensive investigations in the framework of coupled map
(CM) systems (Kaneko 1983, 1990, Gu et al. 1984, Waller and Kapral 1984). CM
systems are sets of coupled maps exhibiting non-linear dynamic behaviours.

In recent years it has been shown that CM (speci�cally, coupled map lattices, CML)
systems can be used for invariant feature detection (van Leeuwen et al. 2000),
perceptual segmentation and switching (van Leeuwen et al. 1997) and modelling
memory retention and forgetting dynamics (van Leeuwen and Raffone 2001). In
modelling these processes, there are functional advantages in assuming that the
network dynamic patterns are non-stationary. In particular, on the borderline between
chaos and ordered behaviour, there are critical regimes characterized by a scaling
behaviour similar to that of brain activity. In particular, in systems with many degrees
of freedom, such regimes occur spontaneously through a mechanism known as self-
organized criticality (Bak et al. 1988).

Speci�cally, regimes that are characterized by spatio-temporal intermittency (van
Leeuwen et al. 1997) present functionally-relevant properties. In the intermittent
regime, the system exhibits an ordered (activation) pattern for a certain time interval,
escapes from it and, after an interval of irregular behaviour, returns to the ordered
pattern, or moves to a different one. The dynamical principle of system intermittency
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Figure 3. Schematic representation of ‘neural superposition catastrophes in terms of both �ring
rate and coding in terms of a stable synchrony of periodic signals. In this idealized scheme,
visual neurons with large receptive fields, coding for specific object shapes or colours, are
simultaneously presented with two objects characterized by the same colour. Furthermore, 
we plausibly assume that lower-level visual areas with smaller receptive fields may not be 
read-out in high-level perceptual representation, i.e. in visual awareness. In these conditions,
both �ring rates (see also von der Malsburg 1981) and stable synchrony (phase-locking) cannot
discriminate the features belonging to the two separate objects (the active neurons are shown
as closed circles). The neurons coding for the colour of the two objects (shared feature) induce
the spurious synchronization of the unrelated features of the two objects, since synchronization
of phase-locked neural oscillators is transitive and may be propagated even through relatively
weak connections (Hansel and Sompolinsky 1992). In contrast, a code based on flexible or
graded synchrony under non-stationary or chaotic spiking conditions enables the neurons
coding for the shared colour to be ‘intermittently’ synchronized with the cells coding the features
of different objects (see text for more explanations about our graded synchrony hypothesis).



may be related to the assumption that higher-order coherence states in cognitive
activity are subject to intrinsic temporal constraints, called coherence intervals (Varela
1995), which could play a crucial role in perceptual and memory retrieval processes,
as well as in the neural dynamics of awareness.

Like neural network units, the state of coupled maps is updated in discrete time.
As a special case, we consider logistic maps, which are described by equation (1).
Whereas equation (1) presents only one system variable, CMs are characterized by
many system variables (xt), which evolve according to a coupled logistic map system.
The logistic map chosen for our model represents a generic family of homeomorphic
single-hump maps (Feigenbaum 1979), which all exhibit the same dynamic behaviour.
These maps are characterized by a familiar pattern of stability behaviour, called
‘period-doubling route to chaos’. The system may evolve towards fixed points,
periodic and chaotic attractors, depending on control parameter A. This parameter
also characterizes oscillation amplitude; small changes in amplitude have generally
strong non-linear effects on the behaviour of the system.

If A < 1 then Ax(1 – x) < x and the system will approach zero; if A > 1 and A < 3, x will
progress to a static point, which only depends on A. The function will approach a
stationary attractor for all initial conditions x0. With A = 3, the stationary point is 
no longer an attractor. The function will now approach a stable state in which it
oscillates between two points with a period equal to 2. This change in the stability of
the logistic map as a function of A is called ‘period-doubling bifurcation’. Still higher
values of A will result in further period-doubling bifurcations, until chaos arises. This
phenomenon, known as the period-doubling route to chaos, can be observed in the
well-known bifurcation diagram (�gure 4).

The Lyapunov exponent of the logistic map is given in equation (2). A positive
Lyapunov exponent indicates divergence of two signals that start out with in�nites-
imally small differences. A positive Lyapunov exponent is therefore a necessary
condition to call the behaviour of a system ‘chaotic’.

In �gure 5, the Lyapunov exponent of the logistic map is plotted against the parameter
A. According to this criterion, for values of A higher than 3.7, the logistic map yields
chaotic activity most of the time, except in small bands of periodic activity. These 
are shown as negative peaks in the Lyapunov function. These negative peaks are
known as ‘Arnol’d tongues’. In one of the higher Arnol’d tongues, as is shown in �gure
5, a cycle of period 3 appears at A = 3.8282. Just below this value of A, the evolution
is completely different. The transition is called ‘tangent bifurcation’. Intermittency is
observed for values of A just below the tangent bifurcation. Intermittency is char-
acterized by an alternation between ordered activity and episodes of irregular
behaviour.

Equations (3)–(6) introduce a simple example of two coupled logistic maps. Their
values at iteration t are x(t) and y(t). In the formulas, netx and nety are intermediate
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variables representing the net-input to these two units. The parameter A speci�es the
variation range of the function. The parameter C represents the coupling strength.
This non-linear coupling scheme was pioneered by Kaneko (1990) who, through
numerical studies, explored the stability characteristics of systems with a range of
�xed and uniform values of A and C for a variety of network structures and sizes. The
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Figure 4. Bifurcation diagram showing the limit behaviour of the logistic map (equation (1))
as a function of chaotic oscillator parameter A. Chaotic behaviour is observed within the range

Amin – Amax.
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parameter C plays a crucial role in the co-evolution of the states x and y. If C = 0.5,
trivially, x is equal to y. It can be demonstrated, however, that for values well below
C = 0.5, the system will evolve towards the state x = y, irrespective of the value of A
(van Leeuwen et al. 1997). In other words, even if x and y are oscillating chaotically,
they will reach a stable synchronization by exchanging a certain proportion of their
value through their coupling. For certain values of C that are just below the values
leading to a stable synchronization, spatio-temporal intermittency occurs. In this
regime, the units of the system will be synchronized during certain time intervals and
out of synchrony during certain other intervals. Numerical simulations by van
Leeuwen et al. (in press) show that spatio-temporal intermittency is a robust phenom-
enon. Intermittency does not depend on speci�c ranges of initial values, it is obtained
in suf�ciently large and compact regions of the A and C parameter space, generalizing
to larger systems of coupled units. Adaptive CM systems with a suf�cient numbers 
of units will be able to reach these states autonomously, which may explain why 
self-organized criticality occurs in these systems.

4. A model of memory retrieval based on activation and dynamic coherence
coding

In order to illustrate the functional advantages of systems based on the combination
of activation and graded coherence for modelling memory retrieval, we developed a
model closely inspired by the paradigmatic McClelland’s (1981, see also McClelland
et al. 1986a) Jets and the Sharks neural network. The original network, shown in �gure
1, is reproduced in most cognitive psychology textbooks to demonstrate the basic
connectionist principles in memory retrieval. In this model, the information about
persons belonging to different gangs is stored in the connectivity structure, the person
nodes being in a central ‘cloud’, and the attribute nodes in multiple surrounding
clouds.

Bi-directional excitatory connections exist in this model between a given instance
node and one node of each attribute-set, and inhibitory connections exist between (all)
the nodes of the same set. Retrieval takes place as a result of activation spreading
from one or more cue nodes. Inhibitory connections mediate activity competition
between nodes coding for mutually exclusive instances (gang members in the speci�c
example) or features. This activity competition allows only a restricted number of
instance nodes and feature nodes to be activated. Retrieval in this network occurs in
terms of activation levels of the nodes after several cycles of activation spreading and
mutual inhibition.

This simple, classical network model shares connectionism’s conspicuous 
virtues as well as its vices, as mentioned in the Introduction. On the positive side of
the balance, there are graceful degradation, default assignment and spontaneous
generalization; on the negative side, superposition catastrophe effects and limited
dynamic �exibility. In the following sections, we shall demonstrate that the Jets and
the Sharks model and, more generally, connectionist interactive activation models,
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may be functionally enriched by flexible dynamics in terms of chaotic or dynamic
coherence.

4.1. Model overview and architecture
A neural network with close structural resemblance to the original Jets and Sharks
model was studied in our simulations (see �gure 6). For the sake of generality, in the
following sections we refer to the nodes in the central cloud as ‘instance nodes’ and
to the nodes in the surrounding clouds as ‘feature nodes’ belonging to a given ‘attribute
or feature-domain set’. The network consists of one set of ‘central’ instance nodes
(coding for different entities) and eight sets of feature nodes, with bi-directional
excitatory connections between a given instance node and one randomly assigned
node of each feature set, and the inhibitory connections between nodes of the same
set.

In the simulations we manipulated the number of nodes in the feature sets
connected to the instance nodes. The probability of a connection between a certain
feature node and an instance node is inversely proportional to the number of other
feature nodes in the same set. Similarity between instance nodes may be expressed
by the average number of shared features (number of connections to the same feature
node). The average similarity between instance nodes is higher with a reduced set 
of feature nodes (alternatives for each feature dimension). Similarity, therefore, 
may be specified in the context of the present study as the inverse of the number 
of feature nodes. Alternatively, similarity may be set uniformly in terms of a (less
realistic) hard-wired connectivity schema.

Similarity plays a crucial role in memory encoding and in categorization. For
instance, phonological similarity (acoustical confusability) leads to a strong inter-
ference in encoding information in short-term memory, as well as in its subsequent
retrieval (Conrad 1964). By contrast, semantic similarity gives rise to interference
effects in (semantic) long-term memory storage and retrieval (Grossman and Eagle
1970). Very recently, Hommel et al. (2001) proposed the Theory of Event Coding
(TEC), in which a general representational architecture with feature-overlap between
active representations of stimuli and action plans may account for several effects
observed with different experimental paradigms.

Rather than modelling a speci�c set of experimental data on memory retrieval,
which would need domain-speci�c network architectures, in this study we are aiming
at generality and simplicity. A pattern (representing an arbitrary entity or event) is
coded by a set of nodes (units). One of these nodes is an instance node labelling the
pattern; the other nodes coding for the pattern are feature nodes, with only one node
being randomly sampled from a given feature domain. We assume that a mutual
exclusion and competition between alternative feature nodes in the same domain (or
‘cloud’) takes place. For instance, the shape of a simple visual object cannot be circle-
like and square-like at the same time.

The performance of the network is assessed in terms of ambiguity resolution, 
i.e. the degree to which during a stimulus-cued activation spreading process, the
activated feature-coding units are preferentially synchronized with the units coding
for one of the patterns. For ambiguity to be resolved, dynamic coherence between 
the eight feature nodes and an instance node belonging to the same pattern must be
highest amongst the activated and reciprocally-connected nodes. This coherence will
be selective and non-transitive, due to its intermittent (chaotic) character. These
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Figure 6. Scheme of the general architecture of our memory retrieval network. A set of nodes
labelling generic instances (e.g. gang members, stimuli or multi-feature patterns), i.e. instance
nodes, shown in the central box, are (reciprocally) connected to one of the feature units for each
of the eight attribute boxes. Thus, a speci�c pattern is coded by a dedicated instance node and
a set of eight feature nodes, which may be involved in multiple distributed representations (A)
In a high-similarity condition with �ve units in each feature set, the probability of ‘shared’
features is higher than in a low-similarity condition with 15 units in each feature box (B). Note
the higher number of connection converging links in (A), which facilitates a rapid activation

spreading in the network.



properties will prevent superposition catastrophe effects due to the parallel and
distributed architecture.

4.2. A computational scheme with interacting activation and chaotic phase 
variables

The computational logic of the model we are introducing is based on updating two
state variables for each unit at a given iteration. Each unit corresponds to a (micro)-
assembly or group of densely connected neurons (see also Tononi et al. 1992 for a
similar assumption). The �rst variable xi is a chaotic phase, which is assumed to code
the average onset of chaotically dispersed bursts within a local neural assembly, i.e.
it is a variable related to spike emission timing over a time-resolved scale, de�ned in
reference to an internal clock cycle. The other variable ai is an activation variable, and
it is assumed to be related to the average �ring rate of the neurons of a given assembly.
Hence, we assume an implicit separation of two dynamically related time-scales: a
fast time-scale of evolution of phase interactions and a slower time-scale of evolution
of activation level states. An iteration corresponds to a time period of several tenths
of milliseconds, with usually only one spike-burst being emitted by each neuron within
the micro-assembly. We assume that bursts are chaotically dispersed over the fast
time-scale periods (iterations) due to non-linear interactions between membrane
variables (see also Hansel and Sompolinsky 1992). Moreover, due to strong coupling
within micro-assemblies, it may be safe to assume a low dispersion of spike onsets
within assemblies, i.e. the average (unit) phase is representative of the spike timing
of individual neurons within the assembly. The chaotic phase of unit i, xi, is computed
in equation (7), as in equation (1).

In the simulations, the modulation term Ai is assigned within the chaotic oscillation
range [3.7, 4]. In these simulations, we assume that Ai models intrinsic brain ground
states, which are dependent on thalamic and reticular modulatory inputs. Initial phase
values are randomly assigned within a broad interval [0.25–0.75]. In previous models
(van Leeuwen et al. 1997, van Leeuwen and Raffone 2001), based on chaotic phase
dynamics only, stimulus input modulation was simulated through the Ai term. Neti

(t)

depends on the dynamic scaling of the x(t)
i value at the last iteration and the weighted

local �eld (WLF) of chaotic phases, the latter being computed in a previous algo-
rithmic step of the same time iteration

The weighted local �eld of a given unit i depends on both weights and activation of
the ‘efferent’ units. An efferent unit j is more effective in contributing to the local
�eld of a target unit i when its activation value ai is high. Thus, in this computation
different degrees of interaction between activations and phases may be considered.
This interaction is neurobiologically plausible, since the number of synchronous spikes
is proportional to the �ring rates of neurons, and in turn the synchrony of spikes affects
the �ring rates of neurons. Several studies (Neven and Aertsen 1992, Roelfsema et al.
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1996, Riehle et al. 1997) suggest that spike rates and temporal coding are comple-
mentary and in mutual interaction. For instance, attentional modulation of binding
by synchrony may be computed with our present equations.

The activation value decays with a decay term l and asymptotically approaches the
variation range extremes 0 or 1. The input contributions from other connected units
are speci�ed by two terms, Act and phAct, the respective contribution of which is
scaled by a proportion term p.

if Act(t) p + phAct(t) (1 – p) ³ 0 then
a(t +1)

i = a(t)
i g + [Act(t) p + phAct(t) (1 – p)](1 – a(t)

i g ) (10a)
else
a(t +1)

i = a(t)
i g + [Act(t) p + phAct(t) (1 – p)](a(t)

i g ). (10b)

The first term Act is computed in terms of a ‘classic’ connectionist scheme, i.e. it 
is given by the weighted (algebraic) sum of the activation values of the connected
units

Since neurons act as coincidence (correlation) detectors (Abeles 1982 1991), i.e.
synchronous synaptic inputs are more effective in triggering action potentials of target
neurons, we assume that the time-averaged �ring rate (the unit variable) is affected
by time-resolved correlations of afferent signals (phase values of the j units). Thus, a
phase-dependent activation term phAct is computed (equation (12)).

In this equation t (ranging from 0 to 1) corresponds to a neuronal membrane time
constant. When it is close to zero the input synchrony advantage is higher, and vice
versa. Thus, the behaviour of the simulated neural units as coincidence detectors or
as integrators may be speci�ed by this parameter (see also Abeles 1991). Note that if
the xi phases of the incoming input are only slightly different, the sum of the modules
of their differences from the WLF is low, and possibly equal to zero. But as such
difference modules are the arguments (multiplied by –1) of an exponential function,
their sum is higher when they are close to zero, and decays depending on the t para-
meter. In the present simulations we do not use this phase-dependent contribution to
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the units, thus setting the p term equal to one. However, we assume that coherence
between the units is read-out in terms of neural computations re�ecting coincidence
detection (see equation (6)).

In previously developed perceptual-memory CM models (van Leeuwen et al. 
1997, van Leeuwen and Raffone 2001), the coupling weights are plastic on different
time-scales according to Hebbian dynamics. Weights are then computed through 
time-averaging (low-pass �ltering) of phase coherence values. Depending on the time
constant, different time-scales of weight plasticity may be realized in the present
model. 

4.3. Data analysis
To evaluate the selectivity of node-couplings in the network, the following measures
of coherence and coactivation between two units i and j were used:

(i) A phase coherence (PC) measure averaged over a period T

in which the phase difference between two units is the argument of an exponential
function and t (set equal to 0.1) plays the role of a neuronal time constant (see
equation (12)). We assume that read-out assemblies (nodes), acting as coincidence
detectors, are sensitive to the phase coherence of the network nodes.

(ii) A coactivation (CA) measure, averaged over a period T

which measures to what extent two units are both active during a given period.

(iii) An effective phase coherence (EPC) measure, given by the product of phase
coherence and coactivation at a given iteration averaged over a period T, which may
be related to the number of synchronous spikes emitted by two assemblies (nodes)
over a given period
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4.4. Model behaviour
The retrieval dynamic behaviour of the network was tested in different simulation
conditions, in terms of activation and phase coherence. In the simulations, we
manipulated the following variables:

� The similarity of the 15 instance nodes, by alternatively considering attribute sets
of �ve features (high similarity condition), of 10 features (intermediate similarity
condition) and of 15 features (low similarity condition).

� The inhibitory strength coef�cient Winh, scaled to the excitatory strength Wexc
coef�cients and the number of feature nodes Nfeat, according to the following
rule

where b is usually set equal to 4.0 in low inhibition conditions and to 8.0 in high
inhibition conditions. Wexc was set equal to 0.02.

� The chaos level, by setting the phase modulation term Ai equal to 3.7 in weak
chaos conditions and equal to 4 in strong chaos conditions.

In the general simulation procedure, multiple trials for each condition were run by
activating one or two cue nodes in different attribute sets and then observing the
network evolution for 400 iterations in each trial. Different random connectivity
schemes, initial values and cue nodes were used in each run. The initial activation
values of the cue nodes were set equal to 0.75, and the activation values of the other
units equal to zero. No autonomous activation decay was considered in the simulations
( l = 1.0). The C parameter (equation (8)) was set equal to 0.375 for all the units. The
main aim of the simulations was to demonstrate the representational effectiveness of
phase coherence and chaotic correlations when the activation spreading in the
network gives rise to superposition catastrophe effects and to show the relationships
between activation and coherent states.

As shown in �gure 7, a few iterations after the cue nodes’ activation, the activation
spreads to the related instance nodes, and then to the other feature nodes which 
are jointly activated by the instance nodes with a relatively high activation level. 
The cue node effectiveness, in terms of the strong activation of a limited number of
instance and feature nodes, is maximal when cue nodes act in a conjunctive manner
(McClelland 1981, McClelland et al. 1986a). The speed of the retrieval spreading, as
well as the activation level in the entire network at the equilibrium state, depend upon
the strength of the excitatory connections, the relative strength of the inhibitory
connections, the number of retrieval cues and the instance node similarity, i.e. on
their ‘conjunctions’ in terms of feature nodes. In the high similarity condition (Nfeat =
5), the instance nodes spread their activation by converging on to a limited number
of feature nodes.

The simulations evidenced a trade-off between retrieval activation spreading and
disambiguation, i.e. which features belong to which instance (pattern), which features
are reciprocally related and which instances are mutually related. Disambiguation 
is resolved effectively in terms of dynamic coherence, without a rigid reference to 
the cued-retrieval associative path. Thus conceived, the model may be regarded as 
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a first step towards the realization of autonomous, or self-addressable, memory
functions.

At the same time as activation spreading, phase coherence spreading occurs in 
the network. This coherence spreading is related to the activation pattern, as the 
more active units are more effective in determining the phase value of coupled units
(see the computational scheme). As shown in �gures 7–13, even with a high level of
network activation, phase coherence is selective for a given connectivity pattern.
Chaotic phase coherence may effectively code for instance–feature relationships
(which feature belongs to which pattern) (figures 8–11), the similarity between
multiple instance nodes (�gure 12) and the relationships between feature nodes (�gure
13). The same instance unit may be simultaneously or subsequently engaged in
transient synchronous states with multiple coupled feature units (�gure 9). 

According to the graded synchrony hypothesis, read-out of coherence states in the
network will take place over a relatively long observation period, as in the classic
firing rate read-out. However, short-lived coherence episodes, cumulated over a
longer period, are temporally intermittent and spatially non-transitive, thus involving
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Figure 7. Activation spreading and chaotic phase differentiation in our content-addressable
memory model. Different clusters of chaotically-evolving phases enable the discrimination of
active sets of units coding for more than one pattern. Instance nodes are shown in the central
box; feature nodes are in the surrounding boxes. The activation level is coded by the radius of
the nodes, i.e. more active nodes are depicted with a larger radius. The chaotic phase at the
shown iteration, ranging between 0 and 1, is depicted by a grey level. (A) Simulation with 
high similarity among the instance nodes (implemented as the probability of a connection
between the instance node and a given feature node). In the high similarity condition, �ve
feature nodes are in each box. This condition is characterized by a low inhibition (b = 4) between
nodes in the same box, and a weakly chaotic phase evolution (Ai = 3.7). The network state 
is shown after 25 iterations: activation spreading originates from two feature nodes that 
act as memory retrieval cues. These two nodes are shown as relatively large circles; their
connections to instance nodes are grey. (B) The same simulation condition shown in (A), after
100 iterations. Note the increased activation spreading due to the recurrent connections. 
(C) In these conditions the connectivity diagram of the simulation is the same as in (B), but 
with a high inhibition ( b = 8) between nodes; note the lower number of active nodes due to a
higher activity competition. The network evolution with the same patterns (recurrent
connectivity condition) is shown with low similarity (15 nodes in each feature box), 
low inhibition and weak chaos, after 25 iterations (D) and after 100 iterations (E). (F) The
same condition as in (E), but with high inhibition. (G) The same condition as in (E), but with
strong chaos (Ai = 4.0); note the higher phase variance in terms of differentiated grey-tunes of

the units.
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Figure 8. Coherence between a selected (reference) ‘instance node’ and the other instance
and feature nodes in the network, averaged over a period from 200 to 400 iterations. The
effective phase coherence (see the data analysis section), coded by the grey level, is normalized
to a maximum value for each reference node (the grey-level ‘white’ codes for a coherence value
equal to zero and ‘black’ codes the maximum coherence value observed for a given reference
node in the central box). Connections of sampled reference nodes (white nodes in the central
box from which the connections diverge) to the feature nodes of a given pattern are shown. (A)
The instance node with index three in the instance node vector is the reference node, with weak
chaos (Ai = 3.7) and very low inhibition (b = 2). Despite the high number of coactive nodes,
coherence between connected nodes in the same pattern is higher than coherence between
uncoupled nodes belonging to different patterns. (B) In the same simulation and observation
period, the coherence of the ‘instance node 13’ is now shown; note the different coherence
con�guration related to the same network activation pattern of the ‘instance node 3’ shown in
(A). In (C), the ‘instance node 9’ is shown, in the same conditions described in the two previous
cases. The ‘instance node 3’ is shown with strong chaos (Ai = 4.0) and low inhibition ( b = 4) in
(D), with high inhibition (b = 8) in (E) and very high inhibition ( b = 12) in (F). Thus, selective
coherence may be an effective code to disambiguate pattern features with different levels of

activation spreading.
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different unit pairs at different times. This intermittency resolves an ambiguous 
read-out of active neural representations with overlapping representations.

Weak chaos (with Ai = 3.7) induces a relatively stable phase coherence between
coupled nodes, whereas with strong chaos (with Ai = 4.0) short-lived coherence
intervals are typically observed, with a given node being intermittently bound to other
nodes. Thus, chaos may be useful in solving the connectionist superposition problem
even with multiple overlapping patterns, as the involved network units may switch
from one pattern to another in intermittent coherence dynamics.

Interestingly, due to chaotic phase spreading, time-resolved correlations may arise
even between non-directly connected nodes. Such dynamic couplings may code
relationships between feature nodes that are not directly connected, particularly with
a high level of chaos (�gure 13). In such a dynamic scheme, units coding for features
that are repeatedly ‘conjoint’ in the instance-set, tend to be frequently synchronized.
The resulting correlation over a given sampling or read-out period would provide a
robust code for further processing dynamics.
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Figure 9. Temporal evolution of the effective phase coherence (see data analysis section)
between a given instance node and two feature nodes in the pattern labelled by this instance
node. Coherence between a reference instance node and the connected feature nodes of box
(feature domain) 1 (A) and box 2 (B), with weak chaos. Coherence between a reference instance
node and the connected feature node of box 1 (E) and box 2 (D), with strong chaos. (E) Cross-
correlation of the time series shown in (A) and (B), and (F) of the time series shown in (C) and
(D). Note the tendency to synchronization, and the �uctuations related to intermittent coupling

and decoupling between different nodes.
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Figure 10. Coactivation (see text for more detailed explanations) of instance nodes and the
coupled (in the same pattern) feature nodes (black bars), and of the same instance nodes and
the feature nodes belonging to other patterns (grey bars), averaged over 10 trials with different
connectivity (patterns). For a certain condition, a diagnostic measure of the discriminative
network behaviour is given by the ratio of coupled over uncoupled average coactivation
measures, i.e. by the ratio of the matched black and grey bar heights. (A) With low inhibition,
the discriminative network behaviour in terms of coactivation is poor, particularly with high
similarity of the instance (pattern-labelling) nodes. (B) With high inhibition, since only a subset
of coupled network nodes tend to be activated, the network behaves in a more discriminative
manner. In the high similarity condition, the high convergence of activation spreading involves

a high number of unrelated nodes.
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5. Discussion
Our simulations have shown that unambiguous neural representational states are
enabled by graded and intermittent coherence unit activity in a classic connectionist
network, even during the retrieval of multiple patterns with overlapping features.
Representational interference problems in pattern retrieval (leading to the super-
position catastrophe) were minimized by temporal coding mediated by chaotic
coherence states.

In the present model, pattern similarity and feature relationships are represented
in terms of graded synchrony. Unlike other models of feature binding in terms of
phase-locking of periodic oscillators (e.g. Sporns et al. 1989, von der Malsburg and
Buhmann 1992), our model re�ects a neurocomputational logic based on activation-
weighted chaotic correlations, and thus enables �exible coding of proximity in feature
spaces and population coding of complex feature constellations. By contrast, neural
binding dynamics in terms of phase-locking only allow for the formation of internally
synchronized and mutually desynchronized representational assemblies.

An interesting visual feature binding model, based on both activation and phase
variables, was developed by Tononi et al. (1992). In their computational scheme, 
the phase variable is stochastically computed according to an activation-based
weighting procedure. However, Tononi et al. implemented an arbitrary quantization
of the phase variable (in terms of phase bins) and the activation variable was not
characterized by an autonomous evolution, as in the present model. Moreover,
intrinsic non-stationarity of the phase evolution is optimal for allowing the network
units to switch from one active representational pattern to another.
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Figure 11. Effective phase coherence (see text for explanations) of coupled (black bars) and
uncoupled (grey bars) instance–feature node pairs, averaged over 10 trials with different
connectivity patterns. All network instance nodes and feature nodes were considered in
averaging. (A) With weak chaos (Ai = 3.7) and low inhibition (b = 4); (B) with weak chaos and
high inhibition ( b = 8); (C) with strong chaos (Ai = 4.0) and low inhibition; (D) with strong
chaos and high inhibition. When one compares these plots with the coactivation plots in �gure
10, the network’s discriminative behaviour (nodes in the same pattern versus nodes in different
patterns) is higher in terms of chaotic phase coherence. Note the relatively high ratio between

the heights of black and grey bars, even in the high similarity condition.
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Figure 12. Coactivation and coherence between instance nodes labelling different patterns,
with low inhibition. Average coactivation (A) and effective phase coherence (B) of instance
nodes as a function of the number of shared feature nodes, in a low similarity condition 
with strong chaos. Note how coherence is more effective than the simple coactivation in
discriminating the instance node relationships, i.e in �exibly coding the similarity of the instance

nodes or patterns labelled by the instance nodes.
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Figure 13. Coherence between feature nodes, with low inhibition. The effective phase
coherence between feature nodes is a function of the number of shared instance nodes, i.e. 
the number of patterns in which these features are associated, in (A) high, (B) intermediate 
and (C) low similarity conditions with strong chaos. As in the case of the couplings between the
instance nodes of figure 12, coherence is effective in coding the relationships between the
different features, i.e. the number of occurrences when they jointly pertain to the same instance.



The present model endorses a dual coding view, in which activation (�ring rate) and
synchronization-based coding play complementary roles in cortical information
processing. As observed in the primary motor cortex of monkeys in a recent study of
Riehle et al. (1997), synchronization and firing rate play different roles in neural
coding. In their study, spike synchronization without firing rate modulation was
related to internal cognitive events, while spike synchronization and rate modulation
were shown to co-occur in processing external, behaviourally-relevant events. Thus,
the brain may use different coding strategies, depending on functional requirements
(Riehle et al. 1997). Our recent simulations with networks of coupled chaotic model
neurons have shown that synchronization and firing rates may be differentially
affected by structural and dynamic coupling conditions (Raffone and van Leeuwen
submitted).

Spike rate coding and time-resolved coding may not be mutually exclusive, but
rather complementary in cortical information processing, thus interacting to various
degrees (Neven and Aertsen 1992, Roelfsema et al. 1996, Raffone and Wolters 2001).
A coherence based on time-averaged (in the order of 100 ms or more) spike rates
may reflect the recruitment of new neurons into an already active assembly, thus
giving rise to new or enlarged assemblies, even when the sub-assemblies are located
in spatially distant cortical sites. Complementarily, a coherence based on correlated
individual spikes (over a time-scale of several milliseconds) may plausibly organize
the simultaneously active groups into internally coherent (intra-assembly integration)
and mutually incoherent assemblies (inter-assembly segregation) (see also Neven 
and Aertsen 1992). Attentive top-down signals could bias the activation and inte-
gration of rate-coherent assemblies, while suppressing the firing rate of other 
neural assemblies (Usher and Niebur 1995). Consequently, the binding/unbinding
operations in terms of time-resolved coherence are less likely to give rise to ambiguous
or illusory responses, due to a lower number of active neurons or lower-order neural
assemblies.

In our present retrieval network, each node may participate in several correlational
schemes, thus coding for multiple disjoint patterns. This dynamic behaviour is
neurobiologically plausible, since it has been shown that during a time interval of
tenths or hundreds of milliseconds, a given neuron may be dynamically recruited 
in different correlational assemblies, thus participating in multiple disjoint compu-
tations (Vaadia et al. 1989, 1995, Diesmann et al. 1999). In associative cortices, robust
combinatory codes given by spatio-temporal spiking patterns may be implemented in
terms of multiple overlapping ‘syn�re chains’, as demonstrated by Diesmann et al.
(1999). Particularly robust and �exible associative codes in the cerebral cortex may
be provided by combining syn�re neurocomputational architectures with chaotically
spiking (or bursting) neurons. More generally, it has been suggested that (non-
stationary) spatio-temporal spike patterns appear to be more likely candidates for
perceptual and working memory cortical coding than ‘static’ attractors or phase-
locked neural oscillators (Fujii et al. 1996).

Using coupled logistic maps to generate chaotic states, as in our model, may not
be considered to be neurophysiologically realistic. Nevertheless, the model may
capture some relevant aspects of neuro-cognitive representation and processing. In
simulations with Hindmarsh–Rose chaotic spiking neurons (Hindmarsh and Rose
1984), we have recently observed that feature overlap between stimulus patterns may
be �exibly coded by neurons exhibiting chaotic behaviour, but not by phase-locking
of periodically oscillating neurons (Raffone and van Leeuwen submitted). Thus, our
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coupled map coherent behaviour may approximate the dynamic coupling of chaotic
spiking neurons.

Recently, Tsuda (2001) has discussed the relevance of a neural coding scheme
based on chaotic itinerancy in high-dimensional dynamical systems, as well as the
related neurophysiological evidence. According to Tsuda, chaotic itinerancy arises
when an intermediate state between order and disorder appears, and the dynamics 
of such a state may be regarded as being those of an itinerant process, indicating 
a correlated transition among states. A peculiar characteristic of this state is that the
‘trace’ of an original attractor remains, in spite of the generation of unstable directions
in the neighbourhood of the attractor. Such an itinerant process often becomes
chaotic.

Given that a similar dynamics is observed in our system, we endorse Tsuda’s notion
of chaotic itinerancy. Our interpretation of its neuro-cognitive relevance, however,
differs. Given the strong evidence of functional specialization in the cerebral cortex,
we emphasized the role of time-resolved coherence and its interplay with �ring rates
in neural binding (Raffone and van Leeuwen 2001). Tsuda (2001) favours a holistic
dynamic view over selective binding, mediated by correlational neural assemblies. 
In our view, the functional differentiation evident in the organization of the cerebral
cortex cannot be neglected.

The more general implications of our present approach for connectionist 
modelling may be summarized by the following points: (1) dynamic coupling among
representational units may take place on several time-scales; (2) distributed neural
representations are intrinsically non-stationary, and the same unit may participate in
several representational and processing schemes during a ‘psychological time-scale’
period; (3) autonomous representational and processing behaviour may be modelled
in the absence of inert attractors, but in terms of non-stationary trajectories in state
evolutions; (4) in this functional logic, representation (conceived as states in the
attractor paradigm) and processing (trajectories of state evolution) are not separable,
as both are aspects of a system’s dynamic behaviour; (5) thus, at the microstructural
level of cognition, the so-called state and process descriptions (Simon 1962) should not
be separated at all; and (6) the classic neural network activation and learning rules may
coexist with CM dynamic coupling rules, and their relative effect on system dynamics
is a matter of degree, depending on the computational (functional) requirements.

The possible relevance of chaotic coherent states for memory storage and retention
has been suggested by van Leeuwen and Raffone (2001). The current model extends
the synchronization-based binding approach to memory retrieval. These studies
predict that the coherence of neural signals in distributed cortical areas increases
during retrieval. For instance, correlated oscillatory signals in areas of the visual cortex
may be generated during reactivation of visual memory traces. We expect that such
coherence spreads from higher- to lower-level visual areas by backprojections, as has
been shown for activation levels (Roland and Friberg 1985, Kosslyn 1994).

Another hypothesis that follows from the model is the non-stationarity of
coherence. The lifetime of inter-neuron coherence is called ‘coherence interval’. The
distribution of coherence intervals may be 1/f. Its modal duration is expected to
increase from lower (e.g. V1) to higher (e.g. IT) visual cortical areas.

This model extends earlier studies (van Leeuwen et al. 1997, 2000). In these studies,
CMs were used to model chaotic activity in the visual system. The units of the system
represented activity of local assemblies, but their status remained unclear. By
introducing two variables for representing assemblies, activation and phase, a step has
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been made towards a more realistic application of CM in computational models of 
the visual system, even though more work in this direction needs to be done. These
developments are expected to result from new computational applications. In our
simulations we made the assumption that the phase variables depend on activation
levels of other coupled units. This assumption was made in order to minimize inter-
ference from weakly active units coding for irrelevant features. Future simulations will
systematically investigate the effect of phase coherence on unit activation levels. Since
computer simulations with coupled maps are computationally convenient, the current
phase activation algorithm could be applied to the segmentation of complex (e.g.
medical) images (Wang and Terman 1997) and other pattern recognition problems.
Further applications of more flexible interactive activation models of cognitive
processes could be developed. For instance, in word recognition (McClelland and
Rumelhart 1981) the simultaneous presentation of multiple words with shared
features or letters (as in reading) may give rise to representational interference
problems which could be resolved in terms of graded and intermittent coherence.
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