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Abstract: This paper begins with a review of some claims made by biologists such as 
Waddington and von Bertalanffy, and others, that biology should seek general theories 
similar to those found in physics, for example in Newton's theory of gravitation and its 
elaboration in the Principia, some treatments of Maxwell's electromagnetic theory, or 
thermodynamics, quantum mechanics, and relativity theories. In these domains, broadly 
applicable differential equations system states and potential trajectories are found. I 
disagree with that view, and describe an alternative framework for biological theories as 
collections of prototypical interlevel largely qualitative causal models that can be 
extrapolated by analogy to different organisms. However, in the rare area of intersection 
between prototypical models which are largely qualitative and the equation-based models 
of physics, there are some significant accomplishments that may point the way toward 
important systems approaches in biology.  

I look at two cases in particular in this intersection area: the development of the 
Hodgkin-Huxley giant squid model for action potentials, and at a more recent model of 
Ferrée and Lockery for worm  (C. elegans) chemotaxis. The Hodgkin-Huxley strategy 
uses equations, but in specialized ways involving empirical curve-fitting and heuristic 
approximations, to build their model. In the worm example, model building proceeds 
from the organismal level down. It starts from a model of the nematode body which 
captures the head and neck turning movements (head-sweep), then seeks a neural 
implementation of the head-sweep mechanism using tools from compartment theory. The 
proponents of this model argue that their neural model is well-based on the worm’s 
neurophysiology but only weakly, at this point, on the organism’s neuroanatomy. Though 
both approaches use some of the tools of biophysics and other mathematically 
sophisticated theories of physics, the manner of their implementation is quite different 
from physics, but may be generalizable as an approach for systems biology. 
 
1. Introduction: The Structure of Biological Theories. Until quite recently, much of the 
analysis of theories in the biological and biomedical sciences had subscribed to what I term 
the "Euclidean Ideal." This notion assumes that the ideal structure of a scientific theory 
resembles Euclid's approach to geometry: a small number of fundamental definitions and 
axioms constitute the essence of a theory. The axioms are mathematically precise, and are 
then elaborated deductively in the form of theorems and applications that cover a broad 
(scientific) domain. This view of theory structure obtains fairly strong support in the 
physical sciences, and is exemplified by  Newton's theory of gravitation and its elaboration 
in the Principia, (1942 [1726]), by some treatments of Maxwell's electromagnetic theory 
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(see Stratton, 1941), thermodynamics, and by quantum mechanics (see von Neumann, 
1955). A similar orientation toward general theory in biology also can be found in the work 
of von Bertalanffy on “general systems theory” and his sets of multiple partial differential 
equations. 
 Biologists -- especially those biologists seeking a methodological unity with the 
physical sciences such as Waddington in his (1968) -- and philosophers of biology, such as 
the early Michael Ruse (1973), have maintained that the laws and theories of biology have 
the exact same logical structure as do those of the physical sciences (though recently there 
have been some changes -- see Kitcher (1984), Rosenberg (1985), Culp and Kitcher (1989), 
and van der Steen and Kamminga (1990)). This simple unity view is only supportable if one 
restricts one's attention to those few -- but very important -- theories in biology which in 
point of fact have a very broad scope and are characterizable in their more simplified forms 
as a set of "laws" which admit of mathematically precise axiomatization and deductive 
elaboration. Examples are certain formulations of Mendelian genetics and of population 
genetics.  I maintain that a deeper analysis of even these theories, however, will disclose 
difficulties with a strong methodological parallelism with the physical sciences (see 
Schaffner, 1980 and 1986, and Kitcher, 1984). I believe that a close examination of a wide 
variety of other biological theories in immunology, physiology, embryology, and the 
neurosciences will suggest that the typical theory in the biomedical sciences is a structure of 
overlapping interlevel causal temporal prototypical models.  
 
 The models of such a structure usually constitute a series of idealized prototypical 
mechanisms and variations (some of which may be mutants) that bear family or similarity 
resemblances to each other, and characteristically each has a (relatively) narrow scope of 
straightforward application to (few) pure types. The models are typically interlevel in the 
sense of levels of aggregation, containing component parts which are often specified in 
intermingled body part (e.g., head or tail), cellular (e.g., neuron or axon), and biochemical 
(e.g., receptor or ions) terms. Stages of temporal development in the models may represent 
either deterministic, causally probabilistic, random (Markovian), or even mixed connections. 
This probabilistic character of some causal connections (a failure of strict determinism) 
should be distinguished from the conceptually distinct failure of the exact match of a model 
to a non-pure type to which, nonetheless, it is closest given available knowledge. Such a 
match can be close, however, exhibiting a strong analogy between a model and an organism 
(or population of organisms). I argued at length (in my 1980) that this new type of theory, 
which I termed a "theory of the middle range" (with apologies to R.K. Merton (1968) who 
first used that term in a somewhat different context), both is found and should be expected 
to be found in the biomedical sciences. The term "middle range" seemed appropriate for two 
reasons: first the theories were not broad sweeping general theories but they were not 
summaries of data either; they were mid-way between these extremes. Second, in terms of 
levels of aggregation of the entities in such theories, the theories were not about high level 
populations evolving in evolutionary time and not about specific DNA sequences or specific 
enzymes functioning in well defined biochemical pathways, but were at the level of the 
organelle, the gene as characterized by functional products, the cell, and the organ. Thus 
though interlevel, their levels of aggregation tended to concentrate in the "middle range." 
  
 Though the Waddington and von Bertalanffy programs have not been confirmed in 
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the typical accomplishments and representations in molecular biology in general, and 
molecular genetics in particular, there are interesting advances that fall between those 
searches for broad theories couched in mathematically precise differential equation form, 
and the narrow classes of mechanisms, usually described in qualitative multilevel causal 
language, that constitute the vast majority of current biomedical explainers. In traditional 
population genetics, one important exception is the ability to develop a powerful 
axiomatization of the subject that does bear strong analogies to equation based theories of 
physics. (For a detailed example see the Jacquard axiomatization of population genetics 
summarized in my (Schaffner 1993a), chapter 8.)  
 There are several other theories that are equation-based which can be identified in 
contemporary biomedicine, and in the remainder of this paper I discuss two of these in 
detail. My view is that these can disclose some important ways that very general and 
quantitative principles can be applied fruitfully in biology and medicine. They also disclose 
the limitations of this kind of physics-oriented approach to biology, and a comparison of 
those areas where mathematical modeling works and at what points it begins to fail may 
indicate ways that systems biology can approach the issues of theories, models, and 
equations in this nascent area.  
 I will begin my discussion with a brief account of the development of the Hodgkin-
Huxley Giant Squid Model for Action Potentials, a stunning accomplishment for which 
Hodgkin and Huxley shared the Nobel Prize in  physiology or medicine in 1963. One of 
the current standard textbooks of neuroscience, (Kandel et al. 2000) states that fifty years 
after it’s publication, “the Hodgkin-Huxley model stands as the most successful 
quantitative computational model in neural sciences if not all of biology” (p. 156).1 
 
2. The Development of the Hodgkin-Huxley Giant Squid Model for Action Potentials 
as a Classical Example of Systems Biology.   
 
Action potentials (APs) are waves of potential difference (or voltage) that move down nerve 
axons, communicating the effect of a stimulus from the receptors located near the beginning 
of the neuron to the termination of the nerve cell. To a first approximation, APs are the 
result of a rapid (millisecond) changes in the membrane’s permeabilities to sodium and 
potassium ions, changes which underlie the wave of potential difference. Hodgkin and 
Huxley’s work on the action potential in nerve cells began from Hodgkin’s earlier work on 
electric currents on the shore crab in the late 1930s (Hodgkin 1964). He teamed up with 
Huxley, who was his student at Cambridge University, and they jointly turned their attention 
to the giant squid axon, which was a much more tractable experimental system in which to 
investigate the movement of specific ions, including sodium and potassium. Though their 
work was interrupted by World War II, they resumed their project in 1946, and in the late 
1940s through to the early 1950s they conducted their classical experimental and theoretical 
investigations (Huxley 1964). A series of papers culminated in their extraordinary 1952 
article in the Journal of  Physiology in which they systematically lay out the steps and their 
reasoning that culminates in the classical action potential model of nerve transmission 
(Hodgkin 1952).   

                                                 
1  The philosophy of science literature has just recently begun to address the Hodgkin-Huxley action 
potential model as an important exemplar. Weber in his 2004/5 book discusses it at some length in chapter 
2 of his book, and Bogen (2005) and Craver (2006) analyze it as well. 
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 The 1952 paper closely parallels their more historical account of their steps toward 
their quantitative model that appears in the two Nobel Prize lectures (Hodgkin 1964) 
(Huxley 1964). They begin by first discussing their careful experimental results which had 
employed the voltage clamp apparatus, developed in 1949 by Kenneth Cole. This 
experimental device permits the establishment of a set of different potential differences 
across the squid nerve cell membrane, and recording of the effects that the different 
membrane potential have on the state of the cell. (A detailed description of the apparatus and 
technique can be found in the textbox on page 152 of  (Kandel et al. 2000).) Their earlier 
papers had indicated that the movement of currents based on ions across nerve cell 
membrane could be well represented by an “equivalent circuit” involving a capacitor and 
three resistors, all in parallel, and with each resistor in series with a source of an electrical 
potential difference. This circuit captures the sodium (Na) and potassium (K) currents, as 
well as a small leakage current (l).This equivalent circuit from their 1952 paper is shown in 
the figure below, though this particular representation is from (Huxley 1964). 
 

 
 
The “laws of working” ( a term originally used by John Mackie, but see my discussion of 
the phrase in my 1993, pp. 287, 306-307) that govern this circuit are the standard physical 
laws including Ohm’s law as noted in the legend to the figure above. Additionally the 
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potential difference across the membrane established by differences in the Na and K ions is 
as required by the Nernst equation: 

Vion = RT/zF ln (Xo/Xi), 
where V is the potential difference (voltage), R and F are the universal Boltzmann and 
Faraday constants , T is the temperature, z is the valence of the ion, and Xo and Xi are the 
concentrations of the ion outside and inside the cell.  (Such laws are constraints and 
foundations, but are not the complete derivational source, for the later H and H equations I 
introduce further below (also see Bogen (2005) and Craver (2005) on this point.) 
 Part II of the Hodgkin-Huxley paper is a “mathematical description of membrane 
current during a voltage clamp.” Equations for the sodium and potassium currents, as 
conductances are developed. The equations do not come from “first principles” but rather 
are empirical equations fitted from the voltage clamp data. They are typically chosen based 
on simplicity, with a first order equation being preferred over a second order, etc.. A first 
order equation is satisfactory to represent a portion of the time course of nerve 
depolarization (a rapid change of voltage across the membrane), but a fourth order equation 
is needed to represent the beginning of the potassium depolarization process. The equation 
for potassium conductance, in the form that it could be compared with the empirical results, 
was chosen as: 
 

 
 

It is a theoretical equation, to use H and H’s language, based on the equivalent circuit and 
the general empirically found form of the rise and fall of ion conduction during 
depolarization and repolarization. H and H doubt it gives a “correct picture” of the 
membrane, though they do provide a possible physical basis for the equation (see pp. 506-
507 of the 1952 article). The equation contains a constant τn that can then be specified to be 
the best fit to experimentally determined depolarizations of different potential membrane 
differences. Hodgkin and Huxley found that there was reasonable agreement between 
theoretical and experimental curves. H and H then go on to develop the somewhat more 
complex reasoning leading to the equation for sodium conductance, which I shall not 
discuss, but which can be found on pp. 512-515 of their 1952 paper. They also develop 
equations for rate constants  α and  β, and the dimensionless proportions n, m, and h, of ions 
inside and outside the membrane, in part II as well. 
 

At the beginning of Part III of their (1952) paper, titled “Reconstruction of Nerve 
Behavior,” H and H summarize the equations they have developed in Part II of that 
paper. The summary is from from the H and H  (1952) article) and the numbering of the 
equations in parentheses comes from their original equation numbers. The summary 
looks like this: 
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The first four of these equations are the differential equations which govern the system’s 
behavior. The many computer simulations of the H and H model involve programs that 
repeatedly step through those first four equations (see Fodor, 2005, for one example). 

Equation (26) is then applied to the action potential. We are most interested in the 
“propagated action potential,” as distinguished from a uniform membrane action 
potential.  In the propagated action potential, the local circuit currents have to be 
provided by the net membrane current. At this point in their (1952) paper, H and H 
appeal to a well known partial differential equation from cable theory (which is a variant 
of Laplace’s well known heat diffusion partial differential equation) relating the current 
to the second partial derivative of the potential difference (V) with respect to distance (x). 
This equation is given by the expression: 

i = [ 1/( r1 + r2) ] ∂ 2V/∂x2   (27) 
 

There are some simplifications then invoked, e.g., since r1 << r2, r1 can be dropped. The  
expression for the current density for the fiber with a radius of a then allows the equation 
to be rewritten as: 

I = [ a/2r2) ] ∂ 2V/∂x2 

 

This relation is then substituted into equation (26), which yields a partial differential 
equation that is “not practical to solve as it stands” (p. 522). But a similarity is noted for 
the condition of steady propagation, one which permits the equation to be converted into 
an ordinary differential equation that can be solved numerically, if laboriously given the 
computational tools available in 1952. This is the propagated action potential equation 
and was written as: 
 
(30)          a       d2V    =   CM dV  + gK n4 (V – VK) + gNa m3h (V – VNa) + gl (V – Vl) 
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               2Rθ2  dt2                  dt 
 
 
Where θ is a paramenter that has to be estimated numerically, based on the behavior of 
the equation at extreme boundary conditions (see p. 522 of H and H for details).  A 
section on numerical methods of solution of such equations is interpolated in the 1952 
article, and after a  minor (abbreviational) substitution, equation (30) is rewritten as 
equation (31) (not shown here, but see p. 524 of the original article). This equation (either 
30, or the equivalent 31, is solved numerically, and graphs of the membrane 
conductances during a propagated action potential are depicted. H and H’s graphical 
results are shown in their figure 17, inserted just below: 
 

 
 
Readers will recognize these graphs of the conductances as THE classical action potential 
result, which is re-presented, based on largely qualitative considerations, in typical 
neuroscience textbooks. 
 
3. Implications of the Hodgkin-Huxley Model and their Methodology.  
 
3.1 One basic mechanism with many types of molecular realizations? 
 
An examination of the form of the key equations, especially the batch summarized 
beginning with (26) on page 8 above and then numbers (30-31) might suggest that H and 
H’s accomplishment is not that different than, say, James Clerk Maxwell’s articulation of 
the electromagnetic theory of light and Maxwell’s derivation of the wave equation for an 
electromagnetic disturbance.  (That disturbance importantly had the transverse wave 
features and the same velocity as light, which led Maxwell to postulate that light was an 
electromagnetic wave.) But the H and H equations are not universal equations as were 
Maxwell’s  – the H and H equations were empirically generated from curve fittings to the 
squid action potential changes read using the voltage clamp technique. Hodgkin and 
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Huxley remarked on the limitations of their model a number of times during the course of 
their (1952) article, limitations that are well summarized by Bogen (2005) and Craver 
(2005).  

Toward the very end of the 1952 paper, H and H  wrote: 
Applicabilility to other tissues.  The similarity of the effects of changing the 
concentrations of sodium and potassium on the resting and action potentials of 
many excitable tissues (Hodgkin, 1951) suggest that the basic mechanism of 
conduction may be the same as implied by our equations, but the great differences 
in the shape of action potentials show that even if equations of the same form as 
ours are applicable in other cases, some at least of the parameters must have very 
different values (p.xxx) (my emphases). 

 
In addition, toward the end of his Nobel lecture, Hodgkin returned to this issue and the 
related theme of a specific or “definite” model of the membrane when he wrote: 
 

To begin with we hoped that the analysis might lead to a definite molecular 
model of the membrane. However, it gradually became clear that different 
mechanisms could lead to similar equations and that no real progress at the 
molecular level could be made until much more was known about the chemistry 
and fine structure of the membrane. On the other hand, the equations 
that we developed proved surprisingly powerful and it was possible to predict 
much of the electrical behaviour of the giant axon with fair accuracy. 
Examples of some of the properties of the axon which are fitted by the equations 
are: the form, duration and amplitude of the action potential; the conduction 
velocity; impedance changes; ionic movements; and subthreshold 
phenomena including oscillatory behaviour. (1962, p. 42) 

 
 
A review of contemporary molecular models of various ion channels capable of 
supporting action potentials suggests that H and H happened on a most remarkable level 
of abstraction/aggregation that would support very broad generalization in terms of the 
specificity of membrane currents, though not any specific molecular mechanisms. For 
example, the chapter by Koester and Siegelbaum on “Propagated Signaling: The Action 
Potential” in Kandel et al 2000 states somewhat “teleologically” that: 
 

The squid axon can generate an action potential with just two types of voltage- 
gated channels. Why then are there so many different types of voltage-gated 
channels found in the nervous system? The answer is that neurons with the 
expanded set of voltage-gated channels have much more complex information-
processing abilities than those with only two types of channels. (p. 159). (my 
emphasis) 

The number and types of ion channels are explained, and to an extent unified, by the 
underlying genetics (and epigenetics) of ion channel diversity, a topic to which I turn 
next. 
 
2. Genetic and epigenetic diversity accounts for ion channel diversity. 
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Hille recounts the history of ion channel research over the course of the last half-century 
following H and H’s classic paper. The progress he writes has been “phenomenal,” and 
“the field has become highly interdisciplinary, combining approaches of biophysics, 
pharmacology, protein chemistry, molecular and medical genetics, and cell biology” 
(Hille 2001) p. 61. Several recent Nobel prizes have, in point of fact, been awarded for 
ion channel research, including to Neher and Sakmann in 1991, who developed the 
“patch clamp method” that provided direct evidence of ion channels, and to MacKinnon 
in 2003, for structural and mechanistic studies of ion channels, including his pore model. 

Genetic studies that began in the 1980s have indicated that there are three general 
genetic “superfamilies” of ion channels, comprising ligand-gated, gap-junction, and the H 
and H type of action-potential generating voltage gated channels. This last class, which 
are activated by depolarization, also contains three subclasses of channels selective for 
Na+ and K+ and Ca++ (Siegelbaum 2000). (Siegelbaum 2000) describe the similar 
architecture of this class of channels writing: 

They contain four repeats of a basic motif composed of six transmembrane 
segments [known as] (S1-S6). The S5 and S6 segments are connected by a loop, 
through the extracellular face of the membrane, the P-region, that forms the 
selectivity filter of the channel. A single subunit of voltage gated Na+ and Ca++ 
channels contains four of these repeats. Potassium channels are composed of four 
subunits, each containing one repeat. ( p. 119). 
 
Additional ion family channels are in the process of being discovered and 

characterized, including a class of Cl- channels. But already the number of different 
channel types is according to (Siegelbaum 2000) “enormous.” The diversity is accounted 
for in part because “most channels are made up of multiple subunits that can be combined 
in different permutations to produce channels with different functional properties” (p. 
119). Additionally, the variability is “produced by differential expression of two or more 
closely related genes, by alternative splicing of mRNA transcribed from the same gene, 
or by editing of mRNA” (p. 120).  
 Some simplification of this extensive diversity occurs in the axonal region of the 
neuron where just the two major channel types, Na+ and K+ are involved. However, even 
here, Hille also describes an extensive “diversity of K channels” in different tissues and 
even within single-cells. He sums up this “microheterogeneity of K channels,” noting that 
“such results are typical of experimental discoveries today. The finer the method of 
analysis, the more apparent subtypes of channels are discovered” ((Hille 2001) p. 74). In 
spite of this extensive diversity and variation, genetics can provide a rationale for 
generalization, at least involving similarity modeling. On this point Hille writes: “The 
NA, Ca, and K families of voltage gated channels form a homologous gene superfamily, 
as may be expected from their broad apparent functional similarity. This means that many 
findings for one type of channel can be generalized to the others” (Hille 2001), p. 85. 
  
3. The H and H “basic mechanism” as an emergent simplification. 
 
The account of the extensive diversity of specific mechanisms of ion channel types just 
summarized raises the question of how unity can be effective achieved amid such natural 
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variation. In a significant sense, H and H achieved that unification and simplification in 
advance of the more recent molecular knowledge by working at a higher level of 
abstraction. Their accomplishment suggests that in certain areas of biology, investigators 
can capture what might be termed “emergent simplifications” that transcend the specific 
workings of the molecular details. In a way, a more abstract mechanism can be a “basic 
mechanism,” even if it is clearly realized that there are as yet unknown molecular details 
of the mechanism. Possibly such a basic mechanism is more like a “prototypical” 
mechanism, which identifies and characterizes salient core features of a biological entity 
and its actions. 

In some circumstances, the core features of those simplifications can be generated 
by quantitative investigations and represented by mathematical equations that are 
formally analogous to what we find in the Euclidean types of theories discussed in 
section 1. But they lack that very broad universality, and instead serve their functions by 
being prototypes for analogical modeling to similar prototypes, albeit in this case, 
analogical modeling to other quantitative prototypes.  In addition, they are not usually 
uni-level, but instead mix levels of aggregation. In the H and H work, the discussion is 
focused on current flows and potential difference changes due to ions and inferred ion 
channels, but as situated in an axon of a particular species. Further reflection of the H and 
H systems-level methodology may provide important generalizable heuristics that can 
inform biology pursued at the level of general systems. 
 
 
4. A Neuroscientific Account of Behavior in C. elegans.  
 
An interesting comparison with the above H and H account can be found in a recent essay 
by Ferrée and Lockery. Whereas the typical study of the behavior of the model organism, 
C. elegans, tries to identify genes, and molecular sequences that are characterized as 
“causes” of behaviors, the example to be discussed in this section is more akin to the H 
and H inquiry and their mode of modeling. For an example of the more typical approach 
to worm behavior modeling,  see Mario de Bono and Cori Bargmann’s (1998)  Cell paper 
with their focus on a DNA nucleotide change as the “cause” of a behavioral phenotype 
involving social versus solitary feeding.) Ferrée and Lockery, in contrast, provide an 
analysis that attempts to model the factors and interactions that govern the neurons not 
the genes. Ferrée and Lockery’s general task was to determine “the behavioral strategy 
for chemotaxis in C. elegans,”  and their specific approach was to “derive a linear neural 
network model of the chemotaxis control circuit” in C. elegans, and then to “demonstrate 
that this model is capable of producing nematode-like chemotaxis” (Ferrée and Lockery, 
1999, 2).  This then is a simulation study, but one based on a considerable amount of 
empirical work. 
 Ferrée and Lockery  utilized a “candidate neural network” based on Bargmann’s 
earlier work on the worm (see figure 1). Lockery’s own investigations (Goodman et al, 
1998) have shown that the neural signals in C. elegans are encoded by graded electrical 
potentials (not by classic sodium action potentials). The individual neurons display 
nonlinear transfer functions, but Ferrée and Lockery propose that one can look at a 
simplified linearization of the chemotaxis system that can give some insights about this 
behavior, albeit as a first approximation.  
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.Fig 1 from F and L 1999  
 
Figure 1: Neural network model for the chemotaxis control circuit of C. elegans. The 
state variable of each neuron (circle) is voltage (Vi). The model contains one 
chemosensory neuron (V1), three interneurons (V2 to V4,) and two motor neurons (VD,VV). 
The chemosensory neuron receives input equal to the chemical concentration C(t) at the 
tip of the nose, and the motor neurons innervate dorsal (D) and ventral (V) neck muscles. 
(From Ferrée  and Lockery, 1999, 267, with permission.) 
  
 
The model building proceeds from the organismal level down. It starts from a model of 
the nematode body which captures the head and neck turning movements (head-sweep), 
then seeks a neural implementation of the head-sweep mechanism. Ferrée and Lockery 
argue that their neural model is based on the worm’s neurophysiology, but only – at this 
point -- weakly on the neuroanatomy.  Citing Goodman et al., 1998, they suggest the 
neurons can be represented as single electrical compartments. (Compartment models, like 
the simpler cable theory models that backgrounded some of H and H’s investigation,  are 
one of the traditional strategies used in neuroscience; see Bower and Beeman, 1995.)  An 
equation for the voltage Vi of the ith neuron can be written using standard compartment 
modeling as: 

  Ci
cell dVi/dt =  − Gi

cell  ⋅ (Vi − Ei
cell) − Ii

elec (V)  − Ii
chem (V) − Ii

sens (t)  (1) 
where Ci

cell  is the whole-cell capacitance, Gi
cell is the effective ohmic conductance 

associated with the linear region of the I-V curve, and Ei
cell is the resting potential of an 

isolated neuron. Here Ii
elec (V) and Ii

chem  represent electrical and chemical synaptic 
currents, V = (V1 ,..., VN) is an N-dimensional vector comprised of the voltages of all N 
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neurons in the network, and Ii
sens (t) represents chemosensory input (from Ferrée and 

Lockery, 14).  
 They then borrow from data on Ascaris, since as frequently noted in the worm 
literature, synaptic neurophysiological data are not yet available for C. elegans, so a 
closely related worm, Ascaris, is used). This data allows them to assert that the chemical 
synapses between cells i and j can be modeled by the a sigmoidal functional equation: 

   Ii
chem (V) =  

j

N

=
∑

1
Gij

chem ⋅ σ  (βij (Vj – V j) )⋅ (Vi – Eij)  (2) 

where Gij
chem is the maximum conductance in the cell i  due to synaptic connections from 

cell j  and Eij is the reversal potential for the corresponding postsynaptic current. 
Electrical synapses are similarly modeled by another slightly simpler third equation. 
Further, chemical inputs to the system are captured by: 
      Ii

sens (t)  = −δi1  κsens C (t)   (3) 
where C(t) is the chemical concentration at the tip of the worm’s nose, δi1 is the standard 
Kronecker delta and κsens is a constant parameter. 
 The total synaptic model can be further simplified by representing only the 
chemical synapses. Equation (2), which is then governing, is nonlinear, but it can be 
linearized by using a Taylor series expansion (familiar to elementary calculus students) 
and retaining only the linear terms. This process yields the following set of equations: 

   dVi /dt =  
j

N

=
∑

1
Aij Vj + bi +ci(t)   (4) 

( The matrix Aij and bj are complicated functions of  the G’s, V’s, and E’s introduced in 
equations (1)-(2) and are not reproduced here; see Ferrée and Lockery, 1999, pp. 16-17.) 
This linearized equation and two quite simple body model equations are then combined 
with an equation representing the chemical environment, C, and the equations solved to 
yield a state trajectory S(t) that begins from some specified initial state S0. The simulation 
solutions were obtained by numerical integration, akin to h and H’s work, though now 
using powerful computer tools, and some other tricks employed to eliminate transients. 
Figures 2a and 2b,below, show a comparison between real and simulated worms.  
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 Figure 2.: Chemotaxis control by neural networks: (a) biological nematodes, (b) model nematodes 
controlled by network Γ1. In both cases, simulation time T = 5 min. Axes labels are in cm.  (From Ferrée  
and Lockery, 1999, 270, with permission.)  
 
 
 Next, Ferrée and Lockery explored the linearized equation solution to develop a 
more intuitive result, since they note that “distributed representations” often lack this 
property of intuitability. This part of their paper provides a “simple rule for chemotaxis 
control which relates the body rate of turning … to time derivitives of the chemosensory 
input….” (p. 23). Based on the analysis, Ferrée and Lockery argue that their network uses 
strategies both of klinotaxis (alignment with a vector component of the stimulus field) 
and klinokinesis (change in turning rate in response to the scalar value of a stimulus field) 
to produce the behavior represented in figure 2b. (Here the definitions of klinotaxis and 
klinokinesis follow Dunn, 1990. These strategies also suggest seeking additional 
experimental worm stimulus and movement data to confirm or disprove the models. 
 Ferrée and Lockery’s approach does not use genes, and it does not employ 
structural data from molecular biology. It does utilize physiology and neuroscientific 
compartment analysis to formulate a mathematical model of a neural network that 
qualitatively agrees with the worm’s observed behavior. It is perhaps more similar to a 
biophysics approach such as H and H’s action potential model than a biomolecular 
approach. 
 
5. Implications of the Ferrée and Lockery Model for C. elegans Chemotaxis.  
 
 
The F and L model is a mathematical simulation, of C. elegans chemotaxis relying on a 
simplified neural circuit, and on generally accepted model-building strategies found in 
the neurosciences. Like H and H, it seeks to identify an appropriate level of abstraction 
from the much more complicated details that might constitute the specific mechanisms of 
neural interplay. But thus far it has not enjoyed the broad acceptance and heuristic 
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fertility of the H and H model. Why that is the case, needs further thought, since the 
general strategies appear to be similar. Possibly what seems to be the idiosyncratic 
aspects of the model arises because F and L are not dealing with a constituent low-level 
mechanism that could be found in multiple instances and more easily generalized to 
similar ion channel activities in related type of cells. Rather F and L deal with an 
intentionally particular wiring diagram that may restrict the generalizability of the results 
of their model. However, the more methodological modeling and equation building and 
solving strategies may have broader applicability, such as the reliance on an empirically 
confirmed circuit, and the application of compartment modeling to such interactive 
networks. 
 
 
6. Eight Implications of the Two Exemplars for Systems Biology. 
 
I can think of eight implications of the above discussion for philosophical issues in systems 
biology; other may see additional implications. 
 
1. In biology, the roles that general theories have in physics (as explainers, organizers of 
domains of inquiry, and experimental fertility) is carried out by a series of prototypes (think 
of these as models or as mechanisms) which are causal-temporal multilevel systems and are 
analogically related to other prototypes. 
 
2. Those prototypes may be formulated in quantitative terms, though typically they are not, 
and in their quantitative variants these may even appear in a mathematical form that is very 
much like that found in general physical theories, such as in Maxwell’s equations or the 
axioms of quantum mechanics. But the equations describing the prototypes are not universal 
ones, rather they are tied closely to the specific organisms on which they are based, though 
they can be extended. Such equations are also typically approximations rather than exact 
equations. 
 
3. Biological prototypes are applied, in the sense of being used as explainers or as extending 
the application to another biological organism, more by analogical reasoning than by 
determining the mathematically expressed initial conditions (or boundary conditions) and 
proceeding deductively, by inserting those conditions into equations to particularize and thus 
apply the general system. 
 
4.  Biological prototypes need not be only gene-based. The H and H and the F and L 
exemplars are not gene-based, but do their work well, though the H and H model is much 
more generalizable, for reasons speculated on in the text above. Genetic information may 
assist in specifying highly particular variants of mechanisms, such as receptors, and even in 
identifying classes of control mechanisms, but a genetic dimension is not always needed. 
 
5. Biological prototypes incorporate critical structural information. This structural 
information is “biological” in nature, as opposed to simple physical and chemical structural 
information. In an important sense, the explanation for biological structure requires an 
implicit appeal to billions of years of evolution, but working biologists need to assume that 
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structure as an “emergent” given in investigating any biological system, and need to 
characterize the prototype being studied at the appropriate levels with such structure 
assumed. We saw this in the H and H example in terms of accepting a cable model for the 
giant squid axon, constructed in part out of a structured membrane permitting sodium and 
potassium ion passage. In the F and L C. elegans example, we encountered a pre-existing 
wiring diagram of connected neurons, in addition to pre-existing compartments 
characterizing the neurons. See Kitano (2001) for the importance of taking structural 
information into account in systems biology. 
 
6. Biological prototypes may be most useful when they display dynamical or behavioral 
features, in addition to structural organization, whether these dynamical/behavioral aspects 
are presented as temporal-causal sequences or as a dynamics that can be captured 
mathematically and in simulations, as in the H and H and F and L exemplars discussed in 
this paper. The importance behavior and dynamics for systems biology is also stressed by 
Kitano (2001). 
 
7. In the case where the systems are characterized quantitatively, as in the H and H and F 
and L exemplars, simulations can be constructed fairly easily, and these can be valuable 
both in testing a prototype and in possibly extending it, by allowing for variation of 
parameters in a precise manner and their application to experimental systems. These 
simulations, however, need to be controlled both by specific data and by general biological 
principles, and not be purely speculative exercises in mathematical model building, as in 
much of von Bertalanffy’s (1968) writings. 
 
8. The two exemplars discussed above go some way toward identifying some potentially 
useful philosophical issues in systems biology, but they need to be supplemented with other 
exemplars, in order to provide a more comprehensive picture. One such additional area 
might involve gene-based systems together with high-throughput data. A valuable proof of 
principal paper along these lines is the Ideker et al.’s (2001) galactose metabolism model for 
yeast, -- one that points toward additional features, such as gene-protein and protein-protein  
interactions, that are likely to be important in a philosophy of systems biology.  
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