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Abstract. Both natural and engineered systems are fundamentally dynamical in nature: their
defining propertics arc causal, and their organisational and functional capacities are causally
grounded. Among dynamical systems, an interesting and important sub-class are those that are
autonomous, anticipative and adaptive (AAA). Living systems, intelligent systems, sophisticated
robots and social systems belong to this class, and the use of these terms has recently spread
rapidly through the scientific literature. Central to understanding these dynamical systems is
their cemplicated orgamsation and their consequent. capacities for re- and self-organisation. But
there is at present no general analysis of these capacities or of the reguisite organisation invelved.
We define what distinguishes AAA systems from other kinds of systems by characterising their
central propertics in a dynamically interpreted information theory.

1. Introduction

Both natural and engineered systems are fundamentally dynamical in nature: their
defining properties are causal, and their organisational and functional capacities
are causally grounded. Among dynamical systems, an interesting and important
sub-class are those that are autonomous, anticipative and adaptive {AAA). Living
systems, intelligent systems, sophisticated robots and social systerns belong to
this class, and the use of these terms has recently spread rapidly through the
scientific literature. Central to understanding these dynamical systems is their
complex organisation and their consequent capacities for re- and self-organisation.
But there is at present no general analysis of these capacilies or of the requisite
complex organisation involved. We define what distinguishes AAA systems from
other kinds of systems by characterising their central properties in a dynamically
interpreted information theory.!

A satisfactory dynamical account of AAA capacity must bring together the
resources of physical theory and process arganisation theory into a unified theory.
This presents a number of problems, not the least of which is formulating a dynam-
ical account of process organisational notions, such as that of control.? Whereas

*This paper has reached its present formulation through joint discussicn and it is impos-
sible now to discntangle our individual contributions; however, one of us (J1}C) has especially
contributed the initial ideas for our treatment of informatien while the other (CAH) contributed
initial ideas on systems (types, modularity}). We also want to acknowledge valuable discussions
with co-researcher Wayne Christensen (see references) and Bruce Penfold as well as Mark Bick-
hard, Jonathan I).H. Smith and Tim Smithers.
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physical theory primarily involves the disposition and time evolution of energy and
matter, control theory is more concerned with the organisation of interaction and
information flow within a system (though its ultimate aim is controlling the dis-
position of matter and energy). The central problem is that a very small amount
of information can alter the dynamical behaviour of a very large amount of energy
and matter, as when a change of state of a bit of information in a computer can
control a counterweighted dam gate to release megalitres of water. The control-
ling effort is minuscule compared to the effect, but it is not negligible: any control
device must do some work to change its control state. It turns out that work is
the common ground for informational and dynamical processes.

Most approaches to the problem since Descartes have been dualistic, treating
the organisational design purely functionally (note 2) and then treating a func-
tional design and its physical realisation separately, the only constraint being that
the physical realisation can implement an appropriate functional design. Little
attention is given to how functional requirements can be satisfied dynamically,
in particular to the constraints that proper functioning places on the dynamics
of the physical implementation.® These problems are seen as primarily technical,
rather than central to the nature of functionality itself. This approach has the
inevitable conscquence of pushing back the origin of teleology into the mists of an
originating mind. In robotics and Al, one is seduced into accepting purpose as an
extension of the purposes of the human designers rather than as arising intrinsi-
cally in an appropriately organised system. In cognitive science, intentionality is
presupposed by restricting psychology to the study of the “cognitively penetrable”
[116] and focusing it on functional explanations [46]. In biology, teleclogy hecomes
an embarrassment. Nature, through its role in selection, not only tends to take
over the traditional role of God (as was recognised, though controversially, soon
after the publication of Darwin’s The Origin of Species), it becomes difficult to
even investigate the natural origins of purposive creatures.

Not all control theory ignores dynamical organisation. A number of authors?
argue that consideration of dynamical processes can illuminate the minimal func-
tienal requirements for types of control problems. The outcome of this strategy is
that many contro! problems turn out be much simpler than they would appear to
be from a purely Cartesian computational perspeclive. Al the same time, the strat-
egy reveals the extent to which the Cartesian presupposition of the intentionality
of the mental obscures a genuinely difficult problem: if relatively simple dynamical
devices can solve apparently complex functional problems, what use are intention-
ality and symbelic computation? To answer this, we need to delermine a class of
interesting problems that either require intentionality or are advantageously solved
by Cartesian reasoning.® We do not address this problem here but attempt to lay
a principled foundation from whick it can be addressed, along with other proper
questions concerning the nature of living and intelligent organisational processes,
by showing where, and on what basis, those capacities which ground them (namely
AAA) fit into dynamical characterisations of systems.
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Living systems are not passively independent, in the way a rock’s crystalline
structure is undisturbable by all but the most violent signals from its environment.
Rather, they are vulnerable to disruption by impinging signals — storms, preda-
tion, cold ... — and constantly in need of replenishing their dissipating energy
and order. The cohesive order of living systems must be actively regenerated by
processes of various kinds (cellular reproduction, structural repair, energy supply,
and so on). Their structural bonds have energies measured in electron volts, even
fractions thereof, not the millions of electron volts that fix a rock into responseless
stability. This explains why systems of this kind are adaptable, for unless they can
constantly adapt to mitigate or compensate for disturbing signals they will be dis-
rupted and, losing their cohesion, lose their identity as that sort of system.® This
same vulnerability is the basis of their adaptability, since their internal delicacy
makes them easily alterable, allowing them both to be sensitive to signals and to
respond to these signals malleably and flexibly in order to regenerate themselves.
Their responses to sigrals cannot be mostly passive, like thoge of a gas, nor largely
uniform, like those of a crystal, but must so interrelate as to preserve the organ-
ised complexity that underwrites that very responsiveness and adaptability. This
active independence, their characteristic organisational property, we will call their
autonomy.”

Systems of this kind have many subsidiary organisational properties, i.e. sys-
tem properties that are preserved by the open cycle of interaction with the envi-
ronment. The Cheetah’s capacity for the rapid chase is a complex neuro-optico-
muscular property which is regenerated through the food successful chases provide,
and through its very exercise (itself a neural entrenchment capacity arising from
more basic properties of neurones ultimately regenerated through their support
of entrenchable skills like chasing). Fach such capacity adds to the adaptive fit-
ness of its system. Indeed, antonomous systems are intrinsically organisationally
global: because their capacities, i.e. their organised processes of interaction that
ground their functional properties, must be so integrated that they are able to
actively regenerate themselves, their overall functionality can not be grounded in
a mere aggregate of independent processes but requires that distinctive global pro-
cess integration that alone insures regeneration of the whole as a joint interactive
consequence across all their interrelated process cycles. Process control in such
integrated systems is typically complex, acting across many different dynamical
timescales {cf. feeding cycles with moulting cycles) and requiring coherent acti-
vation and modulation (including nested sequencing) of subsidiary processes (cf.
feeding following hunting, with optical and motor sequences nested inside hunt-
ing); this requires a system capacily for adaptability. The same requirement is
reinforced by the need for effective response to changing environments. The selec-
tive advantage of being able to relevantly improve various functionalities completes
the grounds for the importance of, not just adaptation, but adaptability.

Such autonomous, adaptive (adapted and adaptable) systems are intrinsically
anticipative. Their capacities imply that their actions anticipate responses that
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will support autonomy, including those capacities. Behaviour, in particular, is fed
forward in anticipation of receiving desired response signals from environment
and self. Hunting hehaviour, for example, is feed forward action in anticipation
of receiving subsequent hunger satiation signals. Anticipative feedforward is fun-
damental to all self-controlling syslems, to intelligent systems in particular; it
combines with error-corrective feedback to deliver powerful learning and response
capabilities. And thus we arrive at the AAA systems we wish ultimately to char-
acterise.

We suggest that the roots of intelligence lie in the complex organisational
requirements of AAA systems, that intelligence is essentially an articulated refine-
ment of AAA capacities. As just noted, AAA systems already display subtly inte-
grated stimulus-response capacities subject to considerable anticipative, modifi-
able endogenous control; this is already to show some of the central hallmarks of
intelligence. Once the dynamical nature of that internal constitution is properly
appreciated, we contend, it will be clear how intelligence, and our kind ol concep-
tual intelligence in particular, is a natural extension, a natural refinement, of it. It
is not the purpose of this paper to carry out that task®, here our prior aim is to
lay the foundation for that understanding by developing a general and principled
account of complex dynamical systems which shows what systems have to be like
to be AAA.

A key to approaching our task here is Schradinger’s {125] negentropy principle of
information. Information is a very abstracl and powerful concept that can in prin-
ciple represent all computational and formal relations, conditions and constraints
quantitatively.? These formal properties of information present us with some hope
that system organisation, including cognition, can be quantitatively represented
within the language of information theory. The negentropy principle, on the other
hand, gives a quantitative connection between information and thermodynamic
state variables of physical systems. The result is a dynamical information theory
(in distinction to the abstract formal information theories of mathematicians and
communications theorists.} Although this goes some way towards reducing the gulf
between sophisticated functional (especially coguitive) and dynamical characteri-
sations, it does not tell us how to do it.

Schrédinger [125] also suggested that the defining characteristic of life was the
capacity to feed ofl exergy (available erergy) to maintain and produce negentropy
(system orderedness). While this is correct, the negentropy principle alone can-
not distinguish intelligent or even living systems from hurricanes, siream eddies,
sunspots, or the universe itself. The key to understanding Schrédinger’s claim lies
in unpacking the phrase “maintain and produce”; specifically we propose that liv-
ing systems are distinguished from other non-equilibrium phenomena at least by
their AAA capacities, as well as by their ability (R) to biologically reproduce them-
selves, including their own regenerative capacity. (A sine qua non of these systems
is that AAAR is itself an invariant of both autonomous regencration and biological
reproduction.!®) But it turns out that Lhese properties are also intimately tied to
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concepts of complexity and self-organisation, which are in turn amenable to an
information theoretic treatment. The rest of this article is an extended investiga-
tion into selected aspects of this treatment.

2. Organised Complexity Is Essential, Self-Organisation Is
Characteristic

The AAAR systems with which we are most familiar — living systems, especially
ourselves — are all very complicated. It would be nice if we could construct a
model of a simple system that possessed these capacities and thereby obtain a
better understanding of their essentials. Unfortunately, there are reasons (already
suggested) to believe that the systems we wish to understand are inherently com-
plicated, and that to understand such systems we need to understand the relevant
kind of complicatedness. Our strategy will be to consider increasingly complicated
kinds of systems, examining their limitations to see what additional features are
required.

In classical physics, the tractability of three ypes ol sysiems has meant that
they have received most of the study. These systems are 1) single particle and
conservative, decomposable (linearisable) multi-particle systems, 2) statistically
specified systems at or near o equilibrium (e.g. gases, fluids), and 3) sufficiently
well constrained but non-linearizable multi-particle systems, e.g. many machines
and some electromagnetic systems. What each of these three kinds of systems share
in common is the existence of analytic solutions for their dynamics, or convergent
higher order additive approximations to these. In one sense that is why these sys-
tems are tractable, but this response does not illuminate the physical basis for
their tractability. To do that we need to distinguish two different dimensions to
tractability, often conflated or confused, complexity and organisation. Essentially,
complexity refers to the number of independent pieces of information needed to
specifly a system (whether the specification is from an internal or external perspec-
tive), while organisation characterises the extent of the interrelations among the
components of the system in terms of their number, scope and dynamics (degree of
non-lincarity). Tractable systems reduce the burden of accurately modelling their
dynamics (and hence functioning) by exhibiting only low values in one or both of
these two dimensions. Type 1 systems are uncomplex and unorganised (at most
additive composition); type 2 systems are complex but unorganised; type 3 systems
are uncomplex but organised. Complexity and organisation are relative notions in
the sense that they are mattlers of degree, but they are not arbitrary. To a first
crude approximation we can classify systems under the two dichotomies: complex
versus uncomplex (simple), and organised versus unorganised (random). Qur clas-
sification depends to some degree on physical scale: At a large scale organisational
details or complexily at smaller scales may be irrelevant. Like the relativity of
strength of complexity and organisation, their relativity of scale, although incon-
venient, is not arbitrary.
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The three types of systems tractable toclassical physics fill up only three of the
possibilities created by the complexity and organisation dichotomies. The fourth
possibility comprises complex but internally organised systemas. It is perhaps obvi-
ous that known living systems, especially cognitive and social systems, fit into this
fourth category. Unlike systems of types 1 and 3, whose organisation, if any, is fully
determined by their initial internal and boundary conditions, some type 4 systems
can produce new organisation through time. And, unlike type 2 systems, whose
organisation, if any, is entirely imposed by boundary conditions, tvpe 4 systems
contribute internally to regenerating their organisation and, where it increases, to
increasing it. Some natural non-living type 4 systems are weather systems, stream
eddies, and solar systems.

In properly understanding this classification it is important to note that the
strength and scale relativities of complexity and organisation allow type 4 sys-
tems to mimic type 1, 2 or 3 systems under certain conditions. Specifically: A)
over short time scales, except for type 4 systems near critical points in system
phase space, behaviour is relatively linear. Only over longer time scales or near
critical points do characleristic type 4 properties reveal themselves. For example,
the revolution and rotation periods of Mercury are in a 2:3 ratic. On the small
scale, this is cxplained by the analysis of planetary dynamics using gravitation-
al theory with additive higher order perturbations. On the large scale, however,
the question arises, why this harmony rather than none or the more expected 1:1
ratio? The answer requires understanding how order can arise through dissipa-
tive processes in systems with multiple attractor basins, a characteristic type 4
problem. B) On both small and large scales relative to system size, organisation-
al properties are relatively unimportant. For example, the complex dynamics of
stellar interactions can be treated largely statistically at the scale of galaxies, and
as u type 1 system for binary stars; however the dynamics of globular clusters,
especially their stability conditions, require type 4 analysis. C) The organisational
properties of most systems are relatively insensitive both to interactions with much
mote strongly and much more weakly cohesive systems, For example, the human
body has immense internal organisation crucial to its nature and yet, respectively,
interactions between the human body and the air can be treated largely through
particle mechanics and statistical fluid dynamics, and a human body falling onto
rocks can be treated in terms of the theories of fluid and rigid bodies. Interactions
between human bodies and food, however, cannot be completely understood with-
out understanding the organisation and anticipatory capacities of human bodies,
which we will characterise below as a type 4 problem.

Current computers are an interesting case because they are made of highly
redundant components put together in a modular way, Their high redundancy and
moderate physical organisation makes them type 3 systems, but they are capable
of running highly complex and organised programs, and have been used to approx-
imately model typical type 4 processes. Although their general principles of opera-
tion are very simple, they appear complex to many users because of the complexly
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organised injtial and boundary conditions imposed by their programs. In contrast,
the operation of living systems is of at least the same order (and usually higher) of
organised complexity as their boundary and initial conditions. If computers {and
computer guided robots) are to be capable of type 4 behaviour, their program-
ming will need to be quite a bit different than it is now, allowing a high degree
of self modification not under the control of initial constraints.!! Physically, then,
computers are type 3 systems, but with the addition of suitably designed programs
they can show some of the functional characteristics of type 4 systems; however
they are still far from being paradigmatic type 4 systems even under these condi-
tions, their sometimes unexpected and novel behaviour notwithstanding, because
their dynamics is highly constrained (largely to on-off behaviour).

Because type 1, 2 and 3 systems are much more tractable than type 4 svs-
tems, and both scientists and engineers understandably tend to work with what
is tractable, there is a natural tendency to subsume type 4 systems under the
tractable classes using various scales and approximations, and ignore the condi-
tions under which such systems are not tractable. This natural tendency should be
resisted, because it leads to neglect of characteristic type 4 system properties which
are among the most interesting and practically important, if most challenging, in
nature.

Ingarden et al. [78] usefully distinguish between microscopic, macroscopic and
mesoscopic systems. Most often these are understood relative to human interests
(e.g. relative to human scale), but the ideas can be applied relative to any natu-
ral cohesive scale. For example, galaxies are macroscopically cohesive relative to
stars, microscopically cohesive relative to the entire cosmos, and mesoscopically
cohesive on the spatial and temporal scales of galaxies themselves. Ingarden et al.
suggest that the mesoscopic domain introduces a new set of issues, those for which
conservative classical mechanical and equilibrium methods (together, Hamiltonian
methods) are not well suited. We suggest that it is definitive of type 4 systems that
their mesoscopic domain properties can not be reduced to either their microscop-
ic or their macroscopic properties without significant loss of explanatory value.
Organisation requires a scale of the same order as the organised system, so the
appropriate scale for understanding organised systems is mesoscopic. In the case
of type 3 systems, which are organised but not complex, the organisation can be
understood as the sum, or limit of, expansion of small scale dynamical properties,
or else as the analytical product of, or limit on, reduction of the scale of large scale
functional properties. Current computers, for example, can he understood in both
these senses, in terms of the sum of the dynamical contributions of their physical
components (their highly modular construction insures this), and in terms of their
functional role in human scale applications (typical contemporary well-behaved
program design reduces problems to highly modular and predictable components).
Type 4 systems, by definition, require a more holistic, nonreductive approach.

While type 4 systems may contribute to regenerating their own organisation,
this is compatible with their organisation actually decreasing, e.g. when dissipa-
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tion overwhelms the regeneration. Hurricanes disperse and creatures die. Even
systems that can increase their organisation must eventually cease doing so when
they have exhausted their internal organisational space and/or the capacity of
their environment to supply new order to them. These arc processes of senescence
[119, 120]. We shall label the first, scnescent decline, and the second, senescent
fixation. Non-senescent systems that are increasing their organisation we will call
immature. Systems whose organisation is constant divide into two, non-dissipative
systems will be held at their organisational ceilings, so in senescent fixation, while
dissipative systems will be in a steady state (a dynamic equilibrium) and we will
call them stably non-senescent, or mature. Natural systems typically pass from
rapid growth in the immature phase, to stable non-senescence at maturity, and
then to senescent decline and finally extinction (as that type 4 system). Of course
this can occur at different rates in different parts or sub-systems of a system; e.g. in
Alzheimer’s disease a person’s neurological functioning declines while their cardio-
vascular functioning typically continues, and the reverse case is also common.

Consider now the processes which tend to promote organisation, the organising
processes. These can be of two kinds, those where no new macroscopic constraints
are formed and those where new macroscopic constraints emerge (expressed cither
as structures or structured processes). The former are essentially passive [liltering,
sorting and re-arranging processes, and we will call them re-organisation processes,
in contrast to the latter self-organisation processes. To facilitate comparison we
consider an example of each. Coins are often sorted by being placed in a sorting
box, above a series of gradnated meshes ordered by mesh size (biggest size on top)
and chosen so that each mesh size is intermediate between the corresponding coin
sizes. The sorter is randomly jiggled horizontally and the coins are antomatically
sorted by size as each eventually falls to its appropriate mesh, the meshes acting
as passive filters. The coins have acquired a small increase in organisation (von
Fiirster’'s order-from-noise principle, with gravity the ordering principle) but the
coin-+sorter system has simply re-organised. On the other hand consider a collec-
tion of randomly positioned molecules at rest at equilibrium and then again subject
to jiggling so that they acquire random increases in momentum; but this time sup-
pose that they interact exothermically above some energy threshold, so that first
one pair bonds as a result of a particular fluctuation, releasing energy, and in con-
sequence an increasing cascade of bonds are formed, with the ultimate result that
the collection condenses into a rigid, regular hexagonal crystalline object, releas-
ing energy to form a surrounding radiation ficld. The molecules have acquired
a small increase in organisation (through the ordering of bonding and radiative
dissipation), this time through self-organisation.

First, consider what these cases share in common. Both systems have available
an ordering principle and both are subject to uncontrolled perturbations which are
required to initiate the organising process. (Here “uncontrolled” means a pertur-
bation whose variable features are unconstrained by existing system constraints,
i.e. by system structures and processes.) These features are essential for either
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process - - otherwise order would be created ex nihilo. Without an ordering prin-
ciple there would be no coherent motion in either system, their clements would
disperse at random like an uncontained gas. Without an input of perturbations,
each internally (if idiosyncratically) ordered, there would be no external source of
new order from which to generate the new system order and organisation.'? For the
same reason, in both cases these perturbations must be unconirolled.'® The point
of their being random is only to ensure that sufficient possibilities are explored
to make it probable that at least one them will contain order that can initiate
system ordering in response. This requires, again in both cases, that the system
dynamics (in particular the ordering principle}) must be such that the order in
sufliciently many inputs is effectively retained (not “washed out” by subsequent
fluctuations) and perhaps even amplified. In the coin case gravity transforms the
order in a horizontal fluctuation that brings a coin into an appropriate correlation
with a mesh (namely, over a larger hole) into downward metion and these motions
are retained and concatenated into sorter-scale order. In the crystal case bonding
force transforms the order in motion correlation into retained bonding which con-
catenates into a crystal and also amplifies it radiatively to initiate other bondings,
ultimately retaining it in the final radiation field. In both cases the systems pass
through a symmetry-breaking transition which corresponds to the creation of order
or physical information within them [38]. The coins begin randomly positioned,
the correlation function among like coins identical in all directions, but end asym-
metrically organised vertically; the molecules begin likewise but end hexagonally
arganised. In both cases the resulting system state changes some of its dynamical
behaviour. The coins will now comprise a vertically organised sequence of masses,
each of a distinctive size, density and total weight, where initially they comprised
a single mass of yet different distinctive size, density and total weight, and these
initial and final arrangements will each be characterised by a distinctive gravi-
tational field, rotational inertia and so on, and hence interact distinclively with
other objects. And similarly for the other case. Finally, in both cases the process
is irreversible because of dissipation; the coins dissipate their falling kinetic energy
as heat as they bounce to a halt on their mesh and the molecules dissipate their
energy as release of radiation as they bond.' All of these features are essential to
all organising processes — and thus none of them distinguishes between re- and
self-organisation.

Consider then what distinguishes between the processes in the two cases. First,
there is new cohesion formed in the crystal case but not in the coin case. The new
constrainls, respectively on the molecules in the crystal matrix and on the quan-
ta in the radiation field, are each markedly different from those applying to the
unbound molecules; the crystal molecules are now bound together cohesively into
a rigid object while the radiation quanta can freely superpose, neither of which
applies to the movement of the individual free molecules. By contlrast there are no
new cohesive constraints formed in the coin sorting case, both initially and finally
they simply act under gravity. More generally, a self-organising process is distin-
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guished by the production of order at a higher constraint level (known as higher
order redundancy in the communications theory literature) or the promotion of
order from one constraint level to another. Second, and correlatively, neither the
laws by which coins are governed nor those governing the sorter will have changed
in the process, but in the other case the two emergent objects — crystal and radi-
ation field — obey correspondingly different laws from those for free molecules.
In the coin case the cointsorter system uses its existing dynamical laws, in inter-
action with its environment, to reorganise itgelf without adding any new kinds of
internal constraints and hence without changing its dynamical form. By contrast,
during its organising process the change in laws across the crystal-forming process
is a change in dynamical form. Moreover, third, the change in form is quite specif-
ic: whereas in its initial state all the system components (the molecules) could in
principle interact with one another so as to form correlated movements, typically
time-varying, in the final state the movements of the molccules arc invariantly,
repetitively correlated and movements of individual molecules are not correlated
or correlatable with the movements of quanta in the radiation field, even when
the two interact. From a single interactive dynamics the dynamics has bifurcated
inle a fixed cohesive dynamics plus a collection of fluctuations uncorrelated with
it. By contrast, there is no such bifurcation in the coin case. Thus, fourth, in the
re-organisation case there is no phase transition and in the self-organisation case
there is. Fifth, the result of the new cohesion formation is the construction of a
new system level which filters out fluctuations on smaller scales. In the crystal case
movement fluctuations in individual molecules resulting from interaction with field
quanta are not preserved but dissipated as re-radiated heat from the crystal, the
crystal literally averaging across such individual fluctuations because of its cohe-
sion. There is no corresponding formation of relatively macro scale filtering in the
coin cage.'8

Finally, sixth, it follows that in the case of self-organisation new kinds of possi-
bilities will emerge because of the new cohesive level created. Thus the system will
be characterised by increasing degrees of freedom in the relevant respects. These
may be wholly new; the collection of separated molecules has no degrees of [free-
dom as a rigid body (thus for rigid rotation, sliding, strain and stress — e.g. when
supporting weights, and so on) or as an electromagnetic wave conductor (e.g. as
a polariser) while the crystal does. (The constraints are enabling, see [107, 65].)
Of course other possibilities will also have been surrendered. The collection of
molecules can disperse, stream and eddy, collect in odd shapes and so on. (Con-
straints are also always disabling.) Thus there will be a sharp shift in degrees of
freedom, a characteristic of phase transitions. In the re-organisation case there will
be no such sharp shift since the dynamical form remains invariant, there can only
be gradual quantitative alteration of existing degrees of freedom.!® These contrasts
generalise to all cases. All the features of self-organisation are present, e.g., in the
paradigm cases of Bénard cell formation, slime mould aggregation and others and
are clearly absent from all the cases of re-arranging, sorting and filtering that leave
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the original elements and their interrelations unchanged. To sheet home this often
mis-understood distinction, consider the following subtlely different cases. First, a
standard learning system, e.g. a neural net equipped with some error correction
process, learns to discriminate environmental stimuli and provide a discriminated
response. Second, consider the same example, but now with the net weights so
arranged that if they fall in value below some threshold they pass irreversibly to
zero, 1.e. to effective disconnection.’” In both cases the stimuli are uncontrolled
perturbations for the net, environmental order in the stimuli is incorporated into
system order and learning will correspond to increased system organisation. How-
ever, in the first case the laws by which the learning system works, e.g. neural net
node and error correction rules, will not have altered and all net elements remain
connected. The interactive system+-environment super-system evolves [rom its ini-
tial condition under its unchanging dynamical laws and environmental information
is simply transferred or copied into the system. In the second case, by contrast,
the collapse of connections establishes new net-scale constraints which future fiue-
tuations in net values cannot disturb, so that this new constraini [ormation acts
as a macro level filier; the net changes its dynamical form and so passes through a
phase transition. In short, in the first case we have learning through re-organisation
and in the second casc we have learning through self-organisation.'®

Since in all realistic type 4 systems internal interactions not only support cre-
ation and maintenance of organisation but also degrade energy and order (second
law of thermodynamics), these systems need to be constantly replenished by an
input of ordered encrgy. Their structures and processes are sustained far from
thermodynamic equilibrium by this flow. The river’s standing waves, for example,
are sustained by the flow of water downhill. Where fluctnations are fixated as new
structure it will be this flow which sustains the new dynamic equilibrium. And
where micro fluctuations are amplified to macro scale, it will be this flow which
ultimately supplies the energy and order to do so. Thus type 4 systems are of nomic
necessity far from equilibrium dissipative systems driven and stabilised by external
ordered energy flows [114, 115, 105] and exhibit spatio-temporally distributed {i.e.
“global™, or “holistic”) constraints on their behaviour.1®

We know that these conditions govern the physiological processes that under-
lie typical living systems, all of which are AAA. Conversely, each of the AAA
capacities requires type 4 endogenous organised complexity. Process control in
autonomous systems, we noted, iz typically complex, acting across many different
dynamical timescales and requiring coherent activation and modulation (includ-
ing nested sequencing) of subsidiary processes, which in turn requires complex
endogenous organisation. Anticipatory systems must be complex and organised to
be able to respond selectively and differentially to stimuli so as io likely produce
a state of their environment that would otherwise be unlikely {roughly, that state
most advantageous to the support of their autonomy). And adaptiveness, espe-
cially adaptability, also requires anticipative control over internal processes and
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behaviour, again requiring organised complexity. Thus the confirming evidence for
the idea that organised complexity is required by AAA systems is strong.2?

Type 4 systems are not maximally complex, nor are they maximally ordered.
All other things being equal, ideal gases and perfect crystals respectively take the
complexity and order kudos. Complexity and order arc necessary to type 4 systems
but not in themselves desirable. Complexity per se is a liability for highly organised,
integrated systems because it adds to their endogenous co-ordination costs. Order
per se is not desirable because the strongest forms of order are too constraining to
be compatible with the kind of organised flexibility a type 4 system, especially a
AAA system, must show to remain viable. To understand type 4 systems, we need
instead to understand the significance of their kind of organisation and organising
processes, especially self-organisation.

Another significant characteristic of type 41 systems has both a diachronic,
or generative aspect, and a synchronic, or structural aspect. The AAA systems
with which we are familiar have all evolved from simpler forms, and regenerate
themselves from simpler, inherited material. Various evolutionary theorists have
suggested mechanisms by which historical developments constrain further evolu-
tion and development. The pracess has been called coevolutionary adaptation [47],
canalization [135], generative entrenchment {139, 13], and the sell production of
historical constraints [13], depending on theoretical framework. Similarly, phys-
iological development involves a progressive constraining of later development,
especially in maturity and senescence {119, 42]. And the same idea is common in
theories of cognitive development.?

Much of the language used Lo describe historical constraints uses depth meta-
phors: levels, entrenchment, canalization, stages. [arlier historical constraints are
buried deeper, and are harder to change without being lethal. This is reflected
structurally in the way that some earlier constraints create complex interdepen-
dencies in later developments. For example, the surface structure of an organism,
its phenotype, is constrained not only by the need to make the various parts fit
together, but also by the need to generate the phenotype [rom superficially sim-
pler forms (its genotype and basic metabolism). The same chemicals, for example
hormones and neurotransmitters, can play vastly different roles in different cells
and organs, but the overall regulation is inevitably interconnected. This sort of
deeply co-ordinated structure is quickly recognised as “organic”.

We emphasise that in all these cases the cohesive constraints are dynamically
real, they arise from the actual dynamical interactions of the system components,
and once formed they genuinely constrain the behaviours of those components.
The molecular interactions that make for a rigid, non-conducting wooden table
are dynamically different from those that make for a malleable conducting cop-
per wire and so place different constraints on their component nuclei and elec-
trons. These constrainls are neilher mere patterns, epiphenomenal, or observer
relative.?? Moreover, they deliver the kind of organised complexity that prevents
our ever abtaining simple models of these systems. The kinds of changes char-
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acterising self-organisation, e.g., where there is an inter-play between relatively
micro level dynamics and relatively macro filtering formation, presents cases of
simultaneous “bottom up” and “top down” causal influences (better: intcractive
constraint formation) and we as yet do not have, and may never have, satisfying
mathematical models of such processes.?> We turn instead to the development of
analyses that throw useful light on these inherently complicated, but ubiquitous
and important, systems.

3. Informational Complexity

To understand the kind of organised complexity required for AAA systems requires
a common formal language that can make rigorous sense of the notions of com-
plexity, organisation, depth, entrenchment, canalization and constraint. None of
these notions is in itself dynamical; they are at best abstractions from their under-
lying dynamics. The language must have a dynamical interpretation, i.e. a clear
definition of non-dynamical notions in terms of dynamical conceptls. Ideally, the
definitions should allow us to measure, or determine from measurable quantities,
the amount of complexity, organisation, depth, and so on. The only language that
is both broad enough and rigorous enough to do the job is information theory.

Complexity has proven difficult to define. Different investigators, even ir the
same fields, use different notions.?! The Latin word means “to mutually entwine
or pleat or weave together”. In the clothing industry one fold (e.g. in a pleat)
is a simplex, while multiple folds are a complex. The most fundamental type of
complexity is informational complesity, It is fundamental in the sense that any-
thing that is complex in any other way must also be informationally complex. A
complex object requires more information to specify than a simple one. Even the
sartorial origins of the word illustrate this relation: a complex pleat requires more
information to specify than a simplex, one must specify at least that the folds
are in a certain multiple, so a repeat specification is required in addition to the
“produce fold” specifications. Further information might be required to specify
any differences among the folds, and their relations to each other.

The size of a structure (defined, for example, in terms of the sum of the number
ol its nodes or elements that have values and the number of the particular value
relations among nodes) is not a good guide to its informational complexity. Two
structures of the same size or made from the same components might have very
different informational complexities if one of the structures is much more regular
than the other. For example, a frame cube and a spatial structure composed of
eight irregularly placed nodes with straight line connections between each node
may encompass the same volume with the same number of components, but the
regularity of the cube reduces the amount of information required to specify it. This
information reduction results from the mutual constraints on values in the system
implied by the regularities in the cube — all the sides, angles and nodes must be the
same. This redundancy reduces the amount of information required in a program
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that draws the cube over that required by a program that draws the arbitrary
eight node shape. Similarly, a sequence of 32 ‘T’s requires a shorter program to
produce (namely one specifying 5 doublings of an initial output of ‘7°) than does
an arbitrary sequence of decimal digits. To take a less obvious case, any specific
sequence of digits in the expansion of the transcendental number = = 3.14159. ..
can be produced with a relatively short program, despite the apparent randomness
ol expansions of #. The information required to unambiguously describe certain
types of structures can be compressed due to the redundant information they
contain; other structures can not be so compressed. This is a property of the
constraints contained in the structures, not directly of any particular description
of the structures, or language used for description.

The informational complexity of a structure s can be given a precise, mathe-
matical definition: Let s be mapped isomorphically onto some binary string o, (s0
that s and only s can be recovered from the inverse mapping), thea the informa-
tional complexity of s is the length in bits of the shortest self-delimiting computer
program that produces o, minus any computational overhead required to run the
program, i.e. C'r = length (g,) — O(1). The first {positive) part of this measure is
often called algorithmic complexity, though it is also called computational complex-
ity, or Kolmogorov/Chaitin complexity. The second part of the measure, O(1),is a
constant {order of magnitude 1) representing the computational overhead required
to produce the string o,.2% This is the complexity of the program that computes &,.
It is machine dependent, but can be reduced to an arbitrarily small value, mitigat-
ing the machine dependence.?® We deduct it to define the informational complexity
because we want a machine independent measure that is directly numerically com-
parable to Shannon information?”, permitting a rigorous formal identification of
algerithmic complexity and combinatorial and probabilistic measures of informa-
tion. A nearly complete proof of the interchangeability of the different concepts of
information is given in [78] (pp. 25ff — the proof lacks an explicit derivation of the
algorithmic formulation of information). They argue, and we agree, that there is
only one underlying notion of syntactic or formal information. We hold that this
notion is ultimately based in the capacity to make distinctions (see next section
on work capacity, especially the sorting example).

All non-computable strings are algorithmically random [93]. They cannot be
compressed, by definition; so they contain no detectable overall order, and cannot
be distinguished from random strings by any effective statistical test. This notion
of randomness can be generalised to finite strings with the notion of effective ran-
domness: a string is effectively random if it cannot be compressed. Random strings
do not contain information in earlier parts of the sequence that determines in any
way later members of the sequence (or else they could be compressed).?® Thus
any system whose trajectory cannot be specified in a way that can be compressed
is dynamically disorganised. It cannot anticipate, control, or show any other like
features, except coincidentally.
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4. The Negentropy Principle of Information

To connect information theory to dynamics, it is useful to define the notions of
order and disorder in a physical system in terms of informational complexity. The
concept of disorder is connected to the concept of entropy, which has its origins in
thermodynamics, but is now largely explained via statistical mechanics. The sta-
tistical notion of entropy has allowed the extension of the concept in a number of
directions, directions that do not always sit happily with each other. In particular,
the entropy in mathematical communications theory [126], identified with infor-
mation, should not be confused with physical entropy.?? Incompatibilities between
formal mathematical conceptions of entropy and the thermodynamic entropy of
physics have the potential to cause much confusion over what applications of the
concepts of entropy and information are proper (e.g. [138, 12]).%° One way to con-
trol such problems is to restrict the use of the concepts of entropy and information,
respectively, to the thermodynamic and communications realm [48], keeping their
quantitative budgets separate, so that no conflict can arise. This move, though,
can obscure interesting relations between the entropy and information budgets,
and also prevents an illuminating unification of their respective theories, which
might permit extension of the joint concepts to new areas.™

We prefer to adopt the interpretive heuristic known as the Negentropy PPrinciple
of Information (NPI), according to which the information in a specific state of a
physical system is a measure of the capacity of the system in that state to do
work [125, 11], where work is defined as the application of a non-inertial force
in a specific direction, through a specific distance.? Through this connection with
worlk, NPI ties information, and hence complexity and order as well as the concepts
of constraint, sorting and selection required to understand regulation and control,
to dynamical concepts (e.g., see the sorting and steam engine examples below, and
the discussion of constraints, including regulation and contral, in Section 8). NPI
implies that physical information [11] has the opposite sign to physical entropy®®,
and represents the difference between the maximal possible entropy of the system
{its entropy at equilibrium with its environment, assumed otherwise unchanged,
aller all cohesive constraints internal to the system have been removed) and the
actual entropy, i.e.

fp = Hmax! pocons — HacT

E=const ?
€ =const

E the environment, ' the constraints. The actual entropy, Hact, is a specific
physical value that can in principle be measured directly [1], while the maximal
entropy, Humax, of the system is also unique, since it is a fundamental principle
of equilibrium thermodynamics that the order of removal of constraints does not
affect the value of the state variables at equilibrium [82]. This implies that the
equilibrium state contains no trace of the history of the system, but is determined
entirely by synchronic boundary conditions. Physical information, then, is a unique
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measure of the amount of form, order or regularity in the physical system. Its
value is non-zero only if the system is not at equilibrium with its environment. It
is fundamentally a measure of the deviation of the system from that equilibrium.
It is important to remember that the Negentropy Principle of Information (NPI)
is a heuristic physical principle, not a formal or operational definition and, given
the current proliferation formalisms for entropy and information, it needs to be
interpreted as appropriate for a given formalism and for a given physical system
and its environment.?*

On the other hand, NPI has some of the formal properties of a definition,
since it determines how terms like entropy and information are to be used in a
physical context. As in mathematics, central definitions in empirical theory should
be supported with an existence proof. This is done by showing that violating the
definition would violate known observations [94, pp.264ff]. If we assume NPI, then
reliable production or reproduction of one bit of information requires a degradation
of at least k7' 1n 2 exergy (available energy), where & is Boltzmann’s constant in a
purely numerical form {11], and 1’ is temperature measured in energy units. This
relation must hold, or Maxwell’s demon will come to haunt us, and the Second Law
of Thermodynamics will come tumbling down.?® NPT is empirically justified; we
know, for example, that violation of NPI, which would amount to using information
to reduce the entropy of an isolated system, violates our most common experiences.
NPI implies that a bit of information can be identified with the minute but non-
negligible physical value k1n 2 and that its transfer from one system or part of a
system to another will require the transfer of at least kT In 2 exergy (i.e. entropy
change = —(information change) = heat change/T, T In 2/T in this case, whence
heat change = maximum work done = —7T(information change); see [11]). This
gives us a quantitative physical measure of form that is directly related to exergy
and entropy, the central concepts in non-equilibrium processes. These relations
allow us to study complexity changes in physical processes, and permit principled
extensions of the concepts of entropy and information.

To take a simple example, imagine that we start with a container of m “red”
and n “white” molecules in an ideal gas at equilibrium, Sp, and it ends up in a
state, S, in which all the red molecules are on Lhe right side of the container, and
the white molecules are on the left side, so that we could move a frictionless screen
into the container to completely separate the red and white molecules without
doing any additional work. The entropy of Sgis — 3" Fokln Fy, and the entropy of
Sy is =3 Pikln Py, where Fy is the inverse of the number of complexions in the
initial state, and P, is the inverse of the number of complexions in the final state.
Simplifying again, assume the m = n = 1.°¢ Then the cntropy of the final state is
obviounsly 0, since there is only one possibility, in which the red molecule is on the
right, and the white molecule is on the left, so P, = 1. The entropy of the initial
state is higher: both molecules can be either on the right or the left, or there can
be a red on the left or a red on the right, giving four distinct possibilities, and
Fy = 1/4. If we know that the system is in 57, we have 2 bits more information than
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it we knew merely that it was in Sp. For example, we might have the information
that no two molecules are on the same side, and that a red molecule is on the right,
requiring two binary discriminations. To slide the screen in at an appropriate time,
we need the information that the system is in 51, i.e. we need the information
difference between Sy and Sy. This is exactly equivalent to the minimum entropy
produced in a physical process that moves the system from Sy to S|, as can be
seen by setting & to 1, and using base 2 logarithms to get the entropy in bits. To
move the system from Sy to Sy, then, requires at least 2T work. This 1s a very
small amount; the actual work input would be larger to cover any energy stored
and/or dissipated. Alternatively, a system in S; can do at most 27" work before
it has dissipated all its available cnergy from this source. Putting this in other
words, the system can make at most two binary distinctions, as can be seen by
reversing the process.>” These two bits measure the maximal controlling potential
of the system: implemented as a controller, controlling either itself or another
system, the system could function as at most two binary switches. Calculating the
physical information for each case from the definition above, Ir(S5;) = 0, while
Ip(S1) = 2. As it should, the difference gives us the amount of information lost or
gained in going from one state to the other. A number of years ago it was confirmed
that the entropy production of the kidneys above what could be atiributed to the
basal metabaolism of its cells, could be attributed to the entropy produced in sorting
molecules for elimination. Presumably, more subtle measurements would confirm
a physical realisation of our example.

The relations between information and work capacity are somewhat subtle,
since they involve the correct application of NPI, which is not yet a canonical
part of physics. The physical information in a given system state, its capacity to
do work, breaks inlo two components, one which is not constrained by the cohe-
sion in the system, and one which is. The former, called intropy, ¢, is defined by
Ar = A(exergy) /T, so that [ TAw measures the available energy to do work, while
the latter, called enformation, £, measures the structural constraints internal to
the system that can guide energy to do work.® Intropy measures the ordered ener-
gy which is not controlled by cohesive system processes, l.e. by system laws, it is
unconstrained and hence free to do work. For this reason, though ordered, both
intropy and exergy are system statistical properties in this sense: their condition
cannot be computed from the cohesive or constrained system state, the cohesive
state information determines the micro state underlying the intropy only up to
an ensemble of intropy-equivalent micro-states. There is another system statisti-
cal quantity, entropy, e, but it is completely disordered or random, it cannot be
finitely computed from any finite system information.3® Entropy is expressed by
equiprobable states, hence appears as heat and has no capacity to do work, relative
to the system constraints for which it is defined; Ae = AQ/T, where (Q is heat,
and [ TAe measures heat. Enformation is required for work to be accomplished,
since unguided energy cannot do work.?? Intropy is required for work in dissipative
systems, to balance dissipation (e production}.
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Consider, for exampie, a system S with heat @ as its only unconstrained ener-
gy. If § is at equilibrium then the only enformation is the existence of a system
temperature (not that it is of some specific value T), for only that follows from the
system constraints, and z = 0 and @ is entropic since ¢} cannot do work on §. If §
nomicly maintains an internal temperature gradient G then & is enformation [or
S since it cannot be released to do work without first altering the cohesive struc-
tures of S. If (¢ is unconstrained by S then G expresses intropy in S since &' is an
ordering of the heat energy and work can be done in § because of G. (In fact S
will dissipate (7, creating entropy, until equilibrium ig reached.) Further, note that
if S, even if at internal equilibrium with G = 0, is made part of a larger system
5" where it is in contact with another sub-system P of §' at a lower temperature,
then there is now a new temperature gradient ' unconstrained by 8 so S will do
work on P with heat flowing between them until equilibrium is reached (G’ = 0)
at some intermediate temperature; hence G is intropic in 5’ even though  has no
intropy and 5’s temperature, which serves in part to determine (&', is enformation
in 5.41 These analyses carry over to all other physical forms of energy.

The main difference between intropy and enformation is the spatial and tempo-
ral scale of the dynamical processes Lhat underlie them.? The dynamics underlying
intropy have a scale smaller thar that of the whole system, and involve no long
term or spatially extended constraints except those thal govern the system as a
whole, which in turn constitute the system enformation. The intropy of a system S
is by definition equal to the difference between 5’s actual entropy and its maximal
entropy when exergy has been fully dissipated (given enformation invariant, i.c.
S’s constraints remaining unchanged, and environment invariant); so,

b= L = HMAX(S)] e — HAGT(S)lmm :

C=conet C'=const

The enformation is just the additional information equal to the difference between
Hpcr(S) and the entropy of the set of system components that result when the
constraints on S are fully dissipated and S comes to equilibrium with its environ-
ment {assumed to remain otherwise invariant);

£ = Is = HMAX(S)

E=const HMAX(S)

E=const "
C=const

Note that

H=tonst
C=const

Ip(S) = 14 = HMAX(S)| peruns — HacT(S)

as required by NPL This is perhaps more clear with an example. A steam engine
has an intropy determined by the thermodynamic potential generated in its steam
generalor, due to the temperature and pressure differences between the generator
and the condenser. Unless exergy is applied to the generator, the intropy drops
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as the engine does work, and the generator and condenser temperatures and pres-
sures gradually equilibrate with each other. The enformation of the engine is its
structural design, which guides the steam and the piston the steam pushes to do
work. The design confines the steam and the piston in a regular way over time and
place. If the engine rusts into unrecoverable waste, its enformation is completely
gone (as is its intropy, which can no longer be contained), and it has become one
with its supersystem, i.e. its surroundings. Such is life.

As noted, NPI allows us to divide a physical system into a regular, ordered part,
represented by the physical information of the system, ie. fp =242 = I, + 1., and
a random, disordered part, represented by the system entropy ¢. The orderedness
of the system is its information content divided by the equilibrium (i.e. maximal)
entropy, i.e.; O = Ip/Hnax, while the disorderedness is the actual entropy divid-
ed by the equilibrium entropy, i.e. D = Haycr/Hvax [90, 89]; it follows from NPI
that O + D = 1. The informational complexity of the information in the system,
C1(Ip), is equal to the information required to distinguish the macrostate of the
system from other macrostates of the system, and from those of all other systems
made {rom the same components.*® The mathematical relalions belween stalistical
entropy and algorithmic information [83, 84] ensure that Cr(fp) = Hmax — HacT,
so Cy(fp) = fp. This is so since the physical information of a system determines
its regularity and this regularily can be neither more nor less informationally com-
plex than is required to specify the regularity. (The informational complexity of
the disordered part is equal to the entropy of the system, ie. Ci(Hyax — Ip) =
Ci(Hact) = Hact, Ci(8) = Ci(Ip) + Cr(Ilvax — Ip) = Cr{Huax) = Huax
and since O = fp/Humax, the ordered content of 5 = HuaxO = Ip as required.)
These identities allow us to use the resources of algorithmic complexity theory
to discuss physical information, in particular to apply computation theory to the
regularities of physical systems. This move has always been implicit in the use of
deductive reasoning to make physical predictions, and should be non-controversial.
T'he main achievement here is to explicitly tie together computational and dynam-
ical reasoning within a common mathematical language (see also [6]).** As noted,
the system intropy is an important resource, measuring system self-organisation
potential.*° The self-organisation potential is a measure of the room a system has
to spontaneously generale new cohesive organisation or structure.’®

5. Conservative Systems

We can now begin to discuss the information budget of dynamical interactions
through the connection between information and physical action sanctioned by
NPI. To best illuminate the inherently complicated AAA systems, we start with
simple predictable systems and move to more complex ones as required.

It is convenient to classify all dynamical systems as conservative or dissipative.
Conservative systems have Haor = constant. They are therefore closed systems,
so that the sum of the potential and kinetic energy is a constant, they have a
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time-invariant Hamiltorian, and their dynamics are reversible [60]. In realistic
systems, In which cxergy eventually dissipates, this implies that Ip = constant,
1 — 0 (since any internal order that is not constrained has been dissipated already,
or the system would not be conservative), and Ip = £. Examples are equilibrium
thermodynamic systems and classical particle systems. In the former case the
enformation is determined by the properties of the external constraints on the
syslem {e.g. the container of an ideal gas), while in the latter it is determined by the
location of the system in phase space at any given time. In a conservative system,
then, dynamical changes must involve shifts of enformation within the system that
are permitted by the dynamical symmetry laws governing conservation of energy
and momentum, i.e. system re- organisation only.

These constraints are severely restrictive. Conservative systems cannot sup-
port the sort of organised complexity we require. A complete representation of
the microstate of an ideal gas at equilibrium, for example, is very complex algo-
rithmically, but its disorder makes it an unsuitable candidate AAA system. Its
regular properties are few (low Ip), and are entirely determined by the bound-
ary conditions of the gas. Internally, an ideal gas is almost completely disordered
(fluctuations can create but very temporary regions of order), and contains no
useable information. Adaptation and anticipation (forms of work) require rule-
conforming (regular) complex responses to diverse stimuli that a system with few
regular properties is informationally incapable of martialling. Autonomy at the
very least requires an internal control of regular activity, not merely boundary
condition determination. So ideal gases, though their complete representation has
a large Cy, fail on both counts to be autoromous and anticipatory.*” All other type
2 or approximately type 2 systems would fail on the same grounds.

Perfect crystals are at the other, simple extreme. They are ordered, gince their
complete specification needs only the structure of the components together with a
local concatenation routine. This also implies a low overall (7, and a corresponding
inability to show any of the AAA capacities: Perfect crystals are too regular, too
strongly constrained. The entropy of a perfect crystal is 0, so Ip = Cy, and its
order is complete, i.e. O = 1. A perfect crystal should be immune to deformation
that would increasc its C; and lower its orderedness. This seems to ensure the
independence of the crystal from boundary conditions, but this is not the kind of
autonomy relevant to AAA systems, since it is precisely their organised interactions
with their environment and their organised internal modifications to support those
processes that expresses their AAA capacities. {The crystal is not internally self-
regenerating and solves no problems at all, because it has none of the relevant
kinds of capacities.) Thus perfect crystals, and like simple systems of classes 1 and
3, also fail as candidate AAA systems.

The enformation can be divided up into conformational information,*® I, and
dynamical information, Ip, where Ig + Ip = Ip in the conservative case. Con-
formational information is contained in the position parameters of the Hamilto-
nian, while dynamical information is contained in the momenta and the relations
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between positions and momenta which represent the laws governing the system.
Thus, the dyvnamical information includes the information contained in the laws
governing the dynamics of the system.*? It would be convenient to divide the enfor-
mation into separate parts representing the potential energy and the kinetic energy,
but this is possible only if the potential energy is a function of positions alone (e.g.
a system of two non- dissipative bedies in an inverse square force field). In that
case, the information of the potential energy is the conformational information
plus the information in the relevant force law(s). This division will always be pos-
sible in equilibrium and other linear systems, but general conservative systems are
often nonlinear.5Y

Linear conservative systems are extremely simple in one sense: they are dynami-
cally decomposable, allowing independent testing, analysis, engineering and control
of subsystems. Near-to-linear systems can be approximated arbitrarily accurately
with linear approximations and a series of linear corrections of higher order, as
needed. This method is used extensively in physics and other areas of science.
The main root exemplar is the analysis and prediction of the orbits of the planets
where gravitational interaction is weak.>! Despite the simplicity implied by decom-
posability, linear conservative systems can be informationally complex if £ is high
(2, of course, 1s negligible), but this can only occur in a highly constrained structure
which is nonetheless random (an amorphous solid, like glass, but more so). Such a
structure would have high Ip due to its high £, but, because of its randomness it
would not be capable of organised interactions with its environment. These struc-
tures are extreme versions of aperiodic crystals, a class to which Schrodinger once
sugpgested that DNA belongs.5? Again, we see that complexity alone is not enough
for organised behaviour.

Other forms of complex conservative systems are possible, if we allow non-
linear systems (at the cxpense of decomposability). These permit, indeed typ-
ically construct, rich organisational siructures, t.e. their non-linearities impose
constraints which produce correlational redundancies of many kinds, e.g. those
of entrained oscillatores and n-body planetary systems, both of which may show
chaotic behaviour [140]. But much of the richness produced by non-linearity is
most clearly and relevantly seen in non-conservative systems and we postpone its
exploration until then, pausing here only to briefly place deterministic chaos within
our framework.%?

While perhaps currently the most notable non-linear systems are those that
exhibit deterministic chaos, we have just noted that complex organisation does
not require this. And we need to recall that even chaotic systems are deterministic
and their specifications are typically highly compressible (e.g. to a lew equations),
so the appearance of complexity in the extensive manifestation of an algorithm
may be misleading. Consider a Penrose tiling [108], which can be generated by
a relatively simple recursive function, but which shows no obvious redundancy
within any given region. It would be extremely difficult (il not impossible) com-
putationally to recover with demonstrable certainty the generating function by
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sampling the conformation {pattern) of a Penrose tiling, so the pattern complexity
or conformational information appears to be very high. This is an illusion, howev-
er, since all this information can be compressed to the generating function. Despite
appearances, Penrose tilings are not very complex (i.e. they have low £) though
they are highly arganised.® We now have a large catalogue of systems with these
charactleristics, which can be implemented on computers. It can be disarming that
such apparently complex and even chaotic patterns can be generated by simple
programs, since the simplicity of the programs proves the low ¢ of the patterns.
We can imagine, however, chaotic systems that have a relatively high e, are not
locally redundant, but are still highly organised. Weather systems and living ner-
vous systems quite possibly manifest this type of organisation — although these
systems are not conservative, only partially chaotic, and perhaps not fully deter-
ministic. So let us turn to considering organisation in general.

It might seem that conservative systems must have constant order, since their
disorder is constant. Although this is true for equilibrium systems, for which the
internal order is zero, structured systems can maintain constant disorder while
order increases. This is possible (however physically unlikely), if the phase space
of the system is expanding. Hpax increases, while Hacr remains constant, as
required by conservation, thereby increasing Ir through an increase in intropy.
Recall that availability and entropy, unlike energy, are not conserved; available
work has increased becaunse existing energy is not redistributed across new modes
as fast as these modes are being created (e.g. between matter and radiation) and
this ordered energy distribution is not constrained by the system, so some existing
modes cah now do work on others.®® If the phase space expansion is a consequence
of system dynamics, as appears to happen as a result of the spatial expansion of
the universe, order can increase spontaneously as well. The surprise of the result
that conservative systems can thus increase their order is mitigated by the fact that
the intropy produced by expansion is extremely subject to dissipation, so we are
unlikely to observe such an event. Nonetheless, if the expansion occurs faster than
the system relaxes, some residual intropy will remain, and order will still increase.
it turns out that this allows order and disorder to increase together, and permits
an explanation of the origins of organisation. To be physically realistic, however,
this takes us into the realm of non-conservative or dissipative systems.*®

6. Organisation and Logical Depth

Organisation is the co-ordination or interdependence of parts or components, espe-
cially in support of vital functioning (OED). A living body is well organised when
its organs so interrelate that the body as a whole can regeneratively maintain all
its vital functions, i.e. is autonomous. A sporting team (football, relay, etc.) is
properly organised when its members so interrelate that the team can perform
its sporting function, and well organised when it performs well. Similarly for the
parts of a machine., To be co-ordinated or interdependent is at least to be corre-
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lated in states and/or behaviour. But it is typically not to be identical in state or
behaviour, for that produces only simple order (like the crystal, all of whose atoms
stand in identical local relations to their neighbours); it is the different contribu-
tions of each component that gives the richness to organisation. Correlations entail
descriptive redundancy; if A, B and  are correlated in respect X we may replace
their independent description {A(X), B{X),C(X)} with {A(X), R(A, B,C)} and
g0 on. So the search for a formal characterisation of organisation might profitably
focus on understanding its specification in terms of redundancy.

Following [126] redundancy orders are determined by the minimal number of
elements in which a redundancy can be detected, so the redundancy in a system
(physically, its fp) can then be decomposed into orders n based on the number of
components, k,, required to detect the redundancy of order 2.57 Order 1 redundan-
cy can be detected by examining elements of a system pairwise, whereas order »
redundancy is dectectable over a minimum of 2n elements. Examples of low order
redundancies are the simple repetitions of molecular arrangement characterising
a perfect crystal and imposed by its molecular bonding and the requirement that
being a word of English places on sequences of letters. Examples of related higher
order redundancies are the long-range correlations in some crystal pattern frac-
turing produced by strain or the introduction of impurities and those imposed by
being a sequence from a possible lost Shakespearian play or being a sequence of let-
ters from a PhD thesis. In the higher order cases a much Jarger sample is required
to recognise the appropriate property than is required to recognise the properties
in the low redundancy cases. We can recognise a play as a sample of English with
a much smalter sample than we can recognise it as a genuine work of Shakespeare.
As the examples suggest, high order redundancy is also much harder to produce
than low order redundancy, independently of the complexity of the sequences that
contain them.

There is only a very loose constraint connecting high and low order redundan-
cy: For fixed I(p), high order redundancy implies less than maximal low order
redundancy (a completely redundant system, e.g. a row of 1’s or a perfect crystal,
could show no high order redundancy). Otherwise high and low order redundancy
are found to vary widely, effectively mutually independently, across real systems
(which also show wide variations in 7{p)). First, while large low order redundancy
may constrain high order redundancy, there are systems with substantial measures
of both. Consider, for example, the dynamics of a typical digital computer running
a colerent program, e.g. drawing a complicated picture; its dynamics are locally
redundant, since the local transitions are highly constrained, but the overall pro-
gram coherency provides considerable higher order redundancy. Similarly, there is
sufficient local low- order redundancy at cellular level in living creatures to main-
tain the local coherence of cells and at multi-cellular level to maintain the local
coherence and differentiation of organs while at the same time organ interrela-
tions permit the organism as a whole to show complex organisation, e.g. to permit
the significant higher order redundancy characterising the co-ordination of lung,
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blood, muscular, nervous and hormonal systems that permit fight, flight and rest.
Second, while high order redundancy may be accompanied by low order redun-
dancy, as the case of living systems shows, it need not be. A computer CPU has
much less low order redundancy than a memory chip but much greater higher level
redundancy, as a casual glance at pictures of chips will show. Complex chaotic (and
nearly chaotic) conservative systems, e.g. a steel ball pendulum swung over a pair
of magnets under frictionless conditions, typically show relatively little low order
redundancy, but a significant amount of high order redundancy. However, unlike
the self-similar patterns associated with chaos, the local and global redundancies
of living systems are typically highly non-self-similar across orders.®®

We will also differentiate between local and global system redundancies, e.g.
between those of the body and that of one of its organs. While the body has organs
which arc essential to its organisation, it is also intrinsically globally organised,
and recall that this last is an essential feature of all autonomous systems. Modular
systems segregate their redundancies into those within and those between their
modules, while integrated systems do not (see Section 8 below]), but integration
can also be “patchy”, across diffusely defined regions of a system, varying over time,
as does that synchrony among neurones which Crick takes to define consciousness
[45]. It is ultimately an empirical matter just how local and global redundancies
interrelate to lower and higher order redundancies in particular classes of systems,
though in general higher order redundancies will also have the larger temporal or
physical scale, or both. For a group of components that support interrelations of a
maximum finite order, eg. DNA components, the only way to obtain higher order
relations is to add components, but it is alsc possible to have localised redundancy
of very high order, e.g. il a localised sub- system supports a strange attractor {cf.
nole 58).

To be organised requires redundancy. But real systems show various combina-
tions of high and low order redundancy, local and global redundancy. This provides
an internal richness to the notion of organisation. It also undermines any attempt
to provide a simple univocal redundancy correlate of organisation. The foregoing
discussion suggests, for example, that we distinguish between the gquantity and
quality of organisation in a system, since adding more components to a system
without increasing the order of redundancy among their interrelations does not
seem to produce any increase in quality of organisation, just in quantity of comp-
nents organised. We might associate the quality of erganisation with the highest
order of redundancy the system exhibits and the quantity of organisation with
the total number of redundancies present across all orders. Bul while the former
intuition is well defined, there is before us no apparatus for quantifying organisa-
tion in this way, particularly not one with principled grounding in the underlying
notion of physical information. However, even the notion of erganisational quality
is rendered ambiguous by variation along the global/local continuum and by scale
dependence. To the extent a system is modularised, for example, we regard its
organisation as distinct from that of its modules, especially if the redundancies
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within one of its modules is higher order than that between its modules, but what
of a system that is but patchily redundant across space and time, as our bhrains
are? We therefore rest content for the moment with the following: The higher
order the global redundancies involved at the mesoscopic scale the more organised
the system. Computers and creatures are more highly organised than mechanical
machines and machines are more organised than perfect crystals.

A significantly organised system is not maximally complex, because of its redun-
dancy (more internally ordered than a gas), but it is not maximally ordered either,
because of its higher order correlations (less ordered than a crystal). This is the
intermediate region we have previously established (Sections 2,5) for type 4, living
systems and represents the organised complexity required for AAA systems. There
is at least one promising lool for capturing this kind of organisation.

As the examples of the Shakespearean sentence, PhDD word, and programmed
computer show, the higher order redundancy of systems is often, perhaps typically,
hidden or buried, in the sense that it is not evident from inspecting small parts
of the systern or local segments of the dynamic trajectory of the system. However
it can {in principle) be seen in the overall structure of the system, and/or in the
statistics of its trajectory. For example, it is impossible to specify what a comput-
er drawing a complicated picture is doing from examining cither a few transistor
states or a small section of the drawn lines; equally, the trajectory of a chaolic
system is locally chaotic, but it is often confined to spatially restricted attractor
basins. Because the information in such systems involves large numbers of com-
ponents considered together without any possibility of simplification to logically
additive combinations of subsystems (the systems are non-linear), computation
of the surface form from the maximally compressed form (typically an equation)
requires many individual steps, i.e. it has considerable logical depth [5, 93). Of
course, this measure applies whether or not we regard the order as epistemically
hidden or buried. Formally, logical depth is a measure of the minimal computation
time {in number of computational steps) required to compute an uncompressed
string from its maximally compressed form.%® Physically, the logical depth of a
system places a lower limit on how quickly the system can form from disassembled
resources.%°

Bennett has proposed that logical depth, a measure of redundancy, is a suitable
measure of the organisation in a system. However, while adding more components
to a system at the same redundancy level will not increase the system organisation,
orly the size of the system organised, it will increase its depth because the sheer
length of the sequence to be computed has increased. All sequences of n identical
entries are intuitively equally trivial, however the depth of each string depends on
the depth of n itself. This effect can be made negligible if we consider only relative
depth: The depth of a sequence relative to the depth of the length of the sequence.
The relative depth itself of a sequence of n identical entries is no more than the
depth required to specify the entry itself (and negligible if the entry is 0 or 1). In
the case of adding identical components to a system the relative depth does not
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increase since the depth of a compnent is already included in the original system
relative depth. It is not transparent whether relative depth deals satisfactorily
with all possible cases of this kind, but it is a reasonable, and plausibly sufficient,
refinement of logical depth simplicitur to adopt.

Relative logical depth promises lo capture the core of the intuitive sense of
organisation we discussed above. More cautiously, relative logical depth seems
strongly associated with the highest order mesoscopic global redundancy in a sys-
tem. On the one hand, since low order redundancy can be produced with relative-
ly simple programs (in the order 1 case, with a “repeat” command), high relative
depth implies high order redundancy. On the other hand, from the examples above,
it seems that high order redundancy requires considerable relative depth, since typ-
ical examples take a longer time to produce from simpler resources. Crystals are
much easier o produce than are computers and, within the latter, otherwise com-
parable memory chips are much easier to produce than CPUs. However we do not
know of a theorem that requires this. We will assume that higher redundancy order
implies higher logical depth, oether things being equal. Whether or not organisa-
tion requires anything else is somewhat unclear to us at present. It is, for example,
unclear to us whether relative logical depth can be used to satisfactorily distinguish
the kind of deep organisation exhibited by a computer running a complex coher-
ent programme and that exhibited by a living cell, which is autonomous, defends
an internal/external phase separation through a controlling boundary membrane,
and is self- regenerating (and reproducing), all organisational features the com-
puter lacks.

Lurking behind this issue are two important ambiguities in our inuitive concept
of organisation; these need to be made explicit. The first arises from the lact that
system redundancy orders are quite distinet from system levels. A cohesive system
level is a dynamically grounded real constraint (structural or process) in a com-
plex system which occurs when (and only when) cohesion emerges and operates to
create organisation (note 6). A level acts as a macro filter, its formation requires a
change in dynamical form, a phase change, and expresses a sharp shift in degrees
of freedom (Section 2). Because a level may (and typically will) contain many com-
ponents (e.g. many molecules bound inte a structure, or circulating within Bénard
cells), the same level may manifest or support many different orders of redundancy
and the same order of redundancy may be manifested or supported at many dif-
ferent levels. (Since the use of “level” in the literature at large 1s multi-vocal and
often undisciplined, and allows the hasty to reify talk of all kinds of levels, we shall
coafine the use of “level” to just the foregoing cases.) The first ambiguity concerns
whether levels should play any intrinsic role in the concept of organisation. Consid-
el two systems constituted of the same basic components and with equal measures
of correlations among them, the first a single level system with subtlely correlat-
ed parts so that they mutually regulate and some control others, and the second
a multi-level heirarchy with internally simple levels but cross-level correlations,
none of which are control relations. If' the notion of organisation is fundamentally
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concerned with just the extent of co-ordination in the sense of correlation then ex
hypothesi these two systems would have the same measure of organisation. If, on
the other hand, the notion of organisation also includes reference to the degree to
which correlations are heirarchically organised by levels, as it will for many, then,
the second system will be judged to possess the greater organisation. The second
ambiguity in our concept of organisation concerns whether ordering of regulation
or control should play any intrinsic role in the concept of organisation. If they are to
then the first system will be judged to possess more organisation than the second.
Here it will not suffice for systems to display correlations to exhibit organisation,
they will need to display correlations distinctive of regulatory or control relation-
ships. [inally, these two intuitions are oflen joined to emphasize the importance of
heirarchical order of regulation or control to organisation. In this case the second
system will be judged to possess more organisation than the first, since the first
system can show only first order hierarchical regulation or control while the second
system can show higher order hierarchical regulation and/or control. OQur response
is to recognise the usefulness of both kinds of ways of medifying the root concept,
reserve organisation simplicitur for the correlations-only notion and introduce the
terms “hierarchical organisation”, “regulatory (control) organisation” and “hier-
archical regulatory (control) organisation” for the others.

The importance of these distinctions goes beyond conceptual clarity. The dis-
tinctive features of the living cell introduced above all concern its heirarchical
and regulatory/control character, which are dynamical features. This extends to
charactlerising type 4 systems generally. But logical depth is concerned with organ-
isation simplicitur, i.e. just with correlations; evidently it is silent about dynamics.
If this is the case then organisation simplicitur will not suffice to pick out the fea-
tures of type 1 systems which are crucial for understanding them, in particular
for understanding their AAAR capacities. Plausibly these concern their distine-
tive heirarchical and/or regulatory/control organisation. To deal with these logi-
cal depth evidently needs to be supplemented with a dynamical account of depth,
within the context of NPL. (“Evidently” because it is possible, though it seems
unlikely, that the logical depth construction will prove to contain the resources for
this task.8!)

How to dynamically ground logical depth is not presently entirely clear because
it requires a way to physically quantify the notion of computational time, or,
equivalently, of a computational step, and how to properly do this is not clear
(note 60). However, when we do observe organisation we can reasonably infer that
it is the result of a dynamical process that can produce depth. The most likely
source of the complex connections in an organised system is an historically long
dynamical process. Bennett recognised this in the following conjecture ([5] quoted
in [931):

A structure is deep, if it is superficially random but subtlv redundant, in
other words, if almost all ite algorithmic probability is contributed by slow-
running programs. ... A priori the most probable explanation of “organized



268 J.D. Collier and C. A. Hooker

information” such as the sequence of bases in a naturally occurring DNA
molecule is that it is the product of an extremely long biological process.

However we should also note that higher order redundancy could arise accidentally
as an epiphenomenon (a mere correlation), but then it would not be based on
a cohesive structure and so its emergence cannot be controlled and it will not
persist. It is also possible that cohesively based higher order redundancy could
form accidentally via dissipation, e.g. as eddies in an expanding gas. Some of our
own cosmic structure seems of this kind, gravitation providing the cohesive force.
Thus, though we tentatively adopt (relative) logical depth as an important measure
of systemn organisation simplicitur, we regard it as an incomplete account of the
important system features we wish to characterise and look towards grounding it
in NPL

For the sake of clarity we pause here to note that the converse of Bennett's claim
is not generally true: a system’s being the product of an extremely long biological
pracess does not ensure that it will contain a lot of organised information; in many
environments the best adapted creatures might be relatively simple. Too much
organisation can be as much of a disadvantage as too little, since organisation
not only enables, but also restricts system variability by placing constraints on
the system, making the system less adaptable o conditions the system is not
organised to deal with. There appears, for example, to be an optimal range of
system interconnectedness at between three and six connections per system node
[134]. Furthermore, substantial portions of the information concerning the complex
evolutionary history of the whole environment-system supersystermt may be lost
through species extinctions and not appear in its current physical information. And
many of the simpler creatures may be long term survivors, like amoebae, rather
than the recent products of selection. It is presently unclear whether or not our
planet’s evolutionary process is increasing the mean depth of physical information
in its ereatures, though this not occuring is compatible with depth increasing in
some lineages (e.g. the mammals, [106]) and with increase in mean depth being
the general evolutionary tendency but for external disruption, geological {volcano
eruptions, etc.) and cosmic (comet collisions, etc.).

However, it is also important not to judge this issue by considering structures
in isolation. It is tempting to conclude, for example, that many viruses are recent
products of selection and yel sirnple. But viruses are not autonomous systems; they
do not control themselves but need the higher order organisation of their hosts to
reproduce. They can be simple because the control resides elsewhere. By contrast a
specialised autonomous species may need its specialised food source for exergy and
materials buf may not need the {ood’s organisation to control its self-regeneration
pracesses. In fact, when food arganisation enters autonomeous organisation and is
viable as such — as when a drug or virus is ingested — it often causes trouble
precisely because the system does not then fully control the subsequent processes,
although humans, for example, are dependent on their food containing some amino
acids which they cannot synthesise themselves and to that extent have surrendered
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control of self-regeneration to their environment. The perhaps counter-intuitive
but important lesson is that the order and organisation of the virus cannot be
characterised for the material virus object alone but only for the entire virus-host
system, even il the former can be separately structurally characterised, whereas the
order and organisation of systems can be separately characterised, no matter how
dependent they are on their environment, to the extent they are autonomous. (Le.
parasitism implies much stronger informational requirements than mere depen-
dence.} More generally, for all sub-system/system relations, only in the respect in
which a sub-system is autonomous can its organisation be considered separately.
Internal organs/parts can range from autonomeous sub-systems to complete para-
sites, in each case more or less co-operative; the exact relationship in cach case is
an empirical issue.

We can now explain Bennett's conjecture in more common biclogical terms.
Entrenchment is physically embodied depth per se, with no direct implications
concerning the historical origing of the depth. Canalisation, on the other hand
is entrenchment resulting from a deep historical process (and also describes the
process). Bennett’s conjecture is, then, that cases of entrenchment are, most likely,
cases of canalisation. This i1s an empirical claim.

Depth permits complex, organised control, e.g. as with programmed computers
and DNA contral of development, even in complex conservative systems.® There is
still a problem, however, of how the necessary organisation might originate.%* Since
organisation requires both order and complexity, which “pull” in opposite direc-
tions, solving this problem is tantamount to explaining how the two can come into
existence at the same time. Doing so involves introducing dissipative systems.

7. Dissipative Systems and Self-Organisation

Dissipative systems are open, non-equilibrium dynamically irreversible systems.
Thus, as noted earlier, if they are to maintain their order, a fortiori if they are to
self-organise, they nced to export their entropically degraded (disordered) energy
and import ordered energy as intropy and/or enformation. Entropy production
is analogous to friction (friction is actually a special case) and systems tend to
evolve along trajectories that follow the local path of least resistance determined
by their constraints {minimise “friction”), since these trajectories have the lowest
accessible energy levels. This leads to a minimization of the local rate of entropy
production, commonly denoted by .54 Under the right conditions, ¢ will be min-
imised if the system changes its state so as to produce macroscopic correlations.
The classic exemplar is Bénard cell convection, in which convection in rotating cells
replaces conduction along a temperature gradient {e.g. convection cells replacing
vertical heat conduction in a slowly heated saucepan); here convection starts when
¢ is greater for the non-convecting state than for the convecting state.%°It is a
seif-organising process, the spontaneous production of macroscopic higher order
redundancy. Physically, this implies creation of new non-local spatial and tempo-
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ral correlations among individual component (particle} trajectories. This is exact-
ly what we observe in the transition from conduction to convection for molecular
motions both within and between rotating cells.

The most commonly studied systems are near-to-equilibrium systems where
departures from equilibrium can be linearly approximated [17]. In these systems
the local statistical fluctuations are larger than or equal to the local gradient
of intensive state variables, so they can for the most part be treated like equi-
librium systems. The minimization of entropy production is global and locally
isotropic.?® The isotropic nature of ¢ in near-to-equilibrium systems severely con-
strains their complexity. By and large, their structure is under the control of their
boundary conditions, e.g. Bénard cells and river standing waves [ormed with a
fixed stony bed and bank shape, because the isotropy of ¢ implies that the sys-
tem cannot act locally on itself to produce differential internal structure [96, 98].
And this also removes any historicalness from their constraints. This constraint on
complexity is also a constraint on depth, and hence organisation. However, near-
to-equilibrium dissipative systems are somewhat autonomous, since their internal
order results from internal processes, and the order is relatively robust in the face
of chance perturbations within or to the system. But their autonomy is limited
by their inability to act on themselves, which requires further internal phase sepa-
rations. This is reflected in analyses of near-to-equilibrium dissipative structures,
which typically consider only the microscopic dynamics and the global dynamics,
constrained only by the requirement of consistency, specified in terms of boundary
conditions (see note 65).

In far-from-equilibrium systems, the situation is more complex, since local
changes in the dynamics of the system can occur faster than the system can dis-
sipate them or adapt to them. This creates the conditions for complex non-linear
interactions to play a significant role within the dynamics of the system. However,
the system still tries to follow the path of least resistance locally by minimising o,
insofar as it can. Prigogine [113, 114, 105] has conjectured that a far from equilib-
rium system will respond in such a way that it minimises the component of ¢ in
the generalised direction of any generalised lorce applied to the systern. Olten, this
will involve a change in the macroscopic state of the system that produces new
information within the system, Other components of ¢ are not necessarily reduced,
let. alone minimised. The resulting potential can lead to further effects on other
aspects of the system. And as long as far-from-equilibrium conditions are main-
tained, perturbation and re-organisation, even disruption on occasion, will tend
to propagate through the system. This is quite different from near-to-equilibrium
systems, in which all components of  are reduced almost simultancously, damping
out any propagalion of disruptions, and leading to a stalionary stale rather quickly.
Far from equilibrium conditions, then, have more self-organisational possibilities,
and consequenily show constraint historicalness, i.e. their macroscopic constraints,
the laws under which they operate, evolve/develop irreversibly over time.57 This
historicity is also a central characteristic feature of living, especially of learning,
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systems. And indeed far-from-equilibrium systems lead to much more diversity and
complexity of response to perturbations (stimuli), and are much more conducive
to the development of autonomous anticipatory systems, than either conservative
or near-to-equilibrium conditions.

From an informational point of view, self-erganisation through dissipation (Sec-
tion 2) is the formation of enformation from intropy. Systems that are already
strongly constrained (like nearly conservative or nearly equilibrium systems) have
little variability to support this sort of transformation. Far-from-equilibrium dissi-
pative systems, on the other hand, can produce increased enformation and depth
through the complex and diverse but organised ways they can respond to external
forces. As long as they are kept well away from equilibrium, the complexity and
organisation of such systems can increase indefinitely. This provides the possibility
of their acquiring the informational complexity required for autonomy, anticipation
and adaptiveness (AAAness).

But we can go a small step further than mere possibility. A system would be
more autonomous if it could resist external forces by itself repairing their deleteri-
ous effects or otherwise re-organising itself internally to make itself less vulnerable
to disruptive forces. It would be even more autonomous if it could anticipate dis-
rupting forces and prepare itself to counter them before they arrive. Something
like this, in a generalised, rudimentary form, already characterises dissipative self-
organising systems. The processes underlying self-organisation tend to reduce the
entropy gradient that impinges on the system. Such a reduction would decrease
the intensity of the entropy potential and consequent disruptive effects of both the
gradient itself and of interral fluctuations 113, 114, 105, 122, 123]. Brooks has
called this tendency of a dissipative system to re-organise itself to resist disruptive
forces the Principle of Compensatory Change [13]. Although the ability of differ-
ent systems to compensate varies according to boundary conditions and internal
structure, all dissipative systems have a rudimentary ability to resist disruptions
inherent in their dynamics. This ability is rudimentarily anticipatory at least inas-
much as it applies to generic disruptions, in particular to counteracting the effects
of dissipation (see above).

On the other hand, it is a spontanecus response to disruption, enabling self-
regulation, but able to sustain control processes only insamuch as it is constrained
to occur in predictable ways that further support autonomy. More discerning
anticipation requires further claboration and articulation of this basic dynamical
principle, first negatively toward avoiding damaging environmental circumstances
and then positively toward those envirenmental circumstances where resources
may be obtained for preserving developmental processes, thus leading to adaptive,
anticipative systems. Once established, spontaneous compensatory responses can
become embedded in the dynamics of the system through selection {either natural
or artificial) or other entrenching processes, ready to be triggered by appropriate
environmental input or their vicariant representations (see Section 9 below). In
principle, compensatory responses could be designed rather than evolved, but this
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is an unlikely history for all but the most advanced cognitive cases. For example,
Piagetian accomodation could follow either path, however only the spontaneous
origin account seems likely to underlie the earlier stages of cognitive development.
Similarly, in evolution it would be much more efficient to select preexisting spon-
taneous compensatory responses than to construct such responses piecemeal.

Living system complex organisation, and that in AAAR systems in particular,
then, requires far-from-equilibrium conditions in a many-component interactive,
non-linear system with structure and process dynamically emergent. Far-from-
equilibrium dissipative conditions are both necessary for, and likely to produce
and support, the degree of organisation required for AAAR systems and their
characterislic self-organising processes. But this is not an equivalence since it is
not an inevitable result of these conditions, as shown by the range of complex-
ly organised systems lacking these propertics. We have no neal formula for what
additional constraints to add to single oul the AAAR systems (or even just liv-
ing systems) which, like that of dissipativeness, would be more fundamental than
specifying their organisational character directly.%% In any event, we next tuen to
briefly investigate one further relevant type of constraint.

8. Modularity and Organisation

The constraints characterising modular systems are such that the system dynam-
ics can be expressed as an interactive product, the dynamical product of its intra-
modular dynamics and its inter-modular dynamics. This provides a principled
distinction between components of the system. We distinguish two kinds of modu-
larity, based on two dimensions to cohesion relations, horizontal and vertical mod-
ularity (respectively Hmodularity and Vmodularily). Hmodularity obtains when
there is a principled division of a system into contemporaneous spatial parts with
enough unity or cohesion to each part for the system dynamics to be expressible as
the product of the individual module dynamics and their interactions. This is how
we currently design and model buildings and machines of all kinds (from homes to
hotels, typewriters to television sets) and how we usually attempt to model both
biological populations {the modules being the phenotypes) and their individual
members (the modules being internal organs). Vmodularity, in contradistinction,
obtains when a system’s dynamics may be decomposed into the interactive product
of its dynamics at different system levels. This requires the presence of relative-
ly macroscopic constraints in systems sufficiently cohesive to impose extractable
constraints on their dynamical behaviour. A crysial lattice, for example, resists dis-
ruption by thermal agitation of its lattice molecules and thereby constrains them
to lattice interrelations, an internal organ has a similar relation to its member cells.
Each instance of Hmodularity also involves many instances of Vmodularity, since
each Hmedule must be sufficiently cohesive to be a dynamically separable part
and so must exhibit Vmodularity with respect to its members, but Vmodularity
may be system-wide {as with crystals, typically) and involve no Hmodularity.
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Modularity means that a system satisfies certain constraints as a matter of inter-
nal cohcsive dynamics without the need to invest further resources to ensure that
the relevant correlations are maintained. Moreover it allows system resources to be
used in different ways with less chance of interference or cenfusion, and it allows
modules to be modified without modifying the whole system. Again, both of these
features reduce the need for additional resources to maintain needed correlational
structures. In particular, the regulatory resources required to maintain a high order
redundancy, e.g. a system-wide operational coherency condition, are great and the
risk of error correspondingly large; if instead an appropriate cohesive structure
were present which dynamically constrained the system to satisfying the condition
then the system redundancy condition would instead be nomicly assured and sys-
tem resources could be invested elsewhere. For example, direct parallel connection
is a simple and eflective, and typically more reliable, method of maintaing output
phase coherency of electrical generators than is sampling, computing discrepancies
and corrective signals, and feeding them back to the individual generators, and
similarly for direct mechanical governors; much of the cohesive structure of living
bodies plays similar roles {e.g. cell wall cohesion as regulator of sodium- potas-
gium balance). So we can expect to find modularity intimately connected with
the expression of higher order redundancy, i.e. with logical depth. (However, we
also note that, while modularity reduces resource demands, this benefit may in
various circumstances also be outweighed by its costs, e.g. where there is selective
advantage to altering modularity.)

But while Vmodularity makes it possible (though not necessary) for a system
to display global logical depth while remaining locally shallower or more simply
organised, Hmodularity makes it possible to trade-off greater organisational depth
in individual modules against shallower organisation in the interrelations among
the modules. H and V modular systems combine these two opposite-leaning char-
acteristics in various ways to make systems that can display both deep modu-
lar subsystems and deep global organisation. Living systems are generally {if not
always) of this sort.

For completeness we should recognise process modularities as well as the spatio-
temporally based H and V modularities. This is especially so for autonomous sys-
tems, for whom its process closures play the key role. As for modularity simplicitur,
process modularity occurs when a system’s process dynamics can be expressed as
a product of its intra-modular and inter-modular process dynamics, and again we
may have both H and V process modularity [ollowing analogous constraint defini-
tions. A serial computer completing a programme with nested iteration loops must
exhibit V process modularity while a parallel distributed processing machine must
exhibit H process modularity (though in both cases the other modularity may also
be present). With our currently severely limited capacity to model the dynamics
of complexly organised systems, it is often more uscful to directly model system
processes and then process modularities typically provide important insights into
system capacities. Modularities of communication and decision making within a
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business organisation, e.g., reveal ways that its members do not interact which may
provide important insights into both its capacities and limitations. (For a partic-
ularly important class of cases see the ultimate paragraph of this section.) But,
so far as we can see, all H process modularity arises from and requires appropri-
ate Hmodularity and similarly for V process modularity. So we proceed to discuss
H and V modularity, treating process modularity as derivative on these, while
recognising the importance of process dynamics to autonomy and so to all AAA
systems.

Modular systems have internal cohesive structure that constrains system dynam-
ics. These constraining cohesions are required for both regulation and control rela-
tionships within the system, which themselves impose further variable constraints
on system dynamics. Vmodularity results in system levels which in general pro-
duce vertical control asymmetry. A higher level constrains lower level dynamics
(as a crystal lattice constrains the behaviour of its atomic constituents), will often
regulate it through feedback (e.g. coherence of crystal vibrations) and sometimes it
will also control the lower levels in important respects (lop-down control, e.g. brain
control of muscle). But it will also typicaily be true that lower level dynamics will
constrain higher levels (as electron orbital dynamics constrains crystal angles}, may
regulate them through feedback (e.g. catalysis of chemical reactions) and might
contral certain aspecls of the higher level (bottom-up control, e.g. indirect control
of volume Hebbian learning through local NO release). And for many properties
it might be the case that there is no control asymmetry involved, simply mutual
constraint through interaction, e.g. of oscillatory behaviour in a system ol small
oscillating springs connected to a common rigid, but moveable, bar. This latter
interaction-only condition will be the common case among Hmodular components
at the same level, e.g. among cells of the same organ. Whenever there is a con-
trol asymmetry we shall speak of hierarchy relationships, with the direction of the
hierarchy being the direction of control asymmetry (cf. [52, 118]; Dyke’s usage is
confined to the rare special case where constraint is one-way only, [49]). Commonly
among living and human engineered systems a heirarchy is specified by assembling
cohesive combinations of Hmodular components, e.g. building organs from cells
and bodies from organs. But it is possible to have at least dynamically distribut-
ed feedback regulation thai does not require Hmodularity, e.g. the distributed
rate dependency phase separation of Belusov-Zabotinsky chemical reaction struc-
tures.

Some explanation for the modularity features of living systems is in order. Onc
possible explanation is that the dynamics of self-organisation itself leads inevitably
to an H and V modular form of organisation. Whenever new enformation is pro-
duced through self-organising processes, that enformation is distributed in the form
of large scale temporal and spatial correlations within the system. This amounts to
a new level of organisation that did not exist in the system before local activities
became globally co-ordinated. This does not imply that the system organisation
must be modular; e.g. a system consisting of a single Bénard cell will show global
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organisation, but has no modules, H or V. Many other classic dissipative structures
show no modularity. Nonetheless, many do, simply as a result of their dynamics.
Typically, as the system self-organises, it fragments into cells, which in turn self-
organise, and so on. In the case of Bénard cell formation, e.g., an arrangement of
many smaller cells provides far more efficient heat convection (and se dissipation)
than does one large cell and so as the Bénard system is forced more strongly it
forms cells of dynamical necessity. Another possible explanation for modularity
is that the origins of living systems involved the separate evolution of different
modules that gained a competitive advantage by orgarising together. This theme
is now common in origin of life scenarios [51, 138], and is also a popular expla-
nation of some aspects of the structure of eukaryotic celis. Holland locates the
reason for this character principally in the power of cross-over and transposition
in genetic algorithms [67]. This account places the explanation in historical circum-
stances allied with genetic constraints. It explains why cooperation was superior
to development of the same capacities independently because of the advantages
of distributing adaptation among trait-producing modules rather than waiting for
useful gene combinations to emerge with an otherwise disorganised whole. A [ur-
ther possible explanation looks to the adaptive advantages of distributing work
among modules rather than exerting central contrel over otherwise disorganised
parts. As noted above, the advantages probably derive [rom resources saved or
freed up for other uses. {Cherniak [20], for example, provides a nice argument that
memory storage should be somewhat, but not too, modular for efficient retrieval.)
There may be other advantages as well. In sum, because of the systematically inter-
related possible stales modularity economically provides, modularity is essential to
the kind of co-ordinated organisation and capacities possessed by AAAR systems
but most likely dynamical, historical and adaptive considerations are all involved
in explaining the prevalence, and particularities, of modular organisation.
Nonetheless, it is importantly also typical of living systems that their modu-
larities, both H and V, are approximate only, both through interpenetration of
cohesive structures (e.g. the interpenetration of the hormonal and cardio-vascular
sub-systems) but more importantly through cokesive structures heing modifiable,
and modified, as a consequence of system dynamics. The operation of the nervous
system, for example, profoundly affects that of the hormonal system, and vice
versa, with the affects not just confined to their states within fixed neural and
hormonal dynamics but includes these dynamics themselves {(e.g. through new
neural connections and changed glandular production relations). This is where a
process dynamics specificalion may be of particular use, since process organisation
may be preserved across such changes — indeed, it may be that the changes occur
precisely to ensure that (as when the body alters its local physiclogy to support a
higher order process, in switching to fat consumption under performance stress, or
stimulating new dendritic branching to satisfy reward demands). Sometimes mod-
ularity shills spectacularly, as in the emergence of a new macroscopic, internally
specialised form from aggregation of individual identical cells in the slime mould
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Dictyostelium under starvation conditions ([55, 65]; this is also an example of pre-
serving higher order regenerative process). To reduce complexity and increase ease
of regulation or control, currently we largely design such plasticity /flexibility out
of engineered systems in favour of rigid modularities.

9. Adaptation and Anticipation

We conclude our discussion by bringing adaptation into the dynamical information
framework we have established. Construed generally, the process of adaptation is
a system-environment open-loop interaction that yields system meodification such
that system unity is at least preserved and system autonomy and internal system
information increases. We shall say that a system with a capacity for that process is
adaptive in that respect and call the resulting system moedification an adaptation.
Recalling our discussion of Section 2, adaptations may involve either system re-
organisation, e.g. those thal resull from assimilation of new perceptual information,
or system self-organisation, e.g. those resulting from perceptual accommodation
or appropriate genetic change. From this principled perspective we may consid-
or all these generalised “learning” processes. Indeed, even if we restrict this term
to self-organisation it will comprise both genetic algorithm processes and various
psychological processes. Various versions of a unified conception of evolution and
ontogenesis of this sort have been claimed or suggested [9, 50, 70, 72, 109, 110, 111]
though the specific roles of all of the re- and self-organisation processes is ulti-
mately an empirical matter. Since an adaptation need not be deep or especially
complex, though it often is, adaptation varies somewhat independently of system
complexity, order and organisational depth. Adaptation introduces the first seman-
tic notions into information theory, in the form of significance, so that something
more immediate can be interpreted as a sign of something else [8, 86]. Typically,
for example, adaptive behaviour is not directed immediately at self-preservation,
but only through some means whose significance is the increased likelihood of self-
preservation. For example, the adaptive significance of food seeking behaviour is
that food is required for life and biological reproduction.®?

In evolutionary theory a trait is an adaptation if the process producing it
involves essential reference to what having the trail achieves (in termns of preser-
vation of the lineage). This may be a narrower conception than that above and,
while it may be seen as appropriate for the AAAR systems involved, it is unclear
how to specify it in a principled manner. (Rather, it invites eticlogical talk of
the purposes of capacities and functions, which quickly becomes a morass; [21].)
Any trait that is produced by natural selection is an adaptation. The converse is
more controvergial. Orthodox biological theory asserts that all or nearly all adap-
tation results from natural selection, to the point that an adapted trait is not
considered an adaptation unless it has been selected. If the trait is merely there
and happens lo aid survival, il is just that, and not an adaptation; it is said to
be adapted (or, confusingly, adaptive). However, this restriction is questionable
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and impossible to specify non-arbitrarily; it would again be better replaced by a
principled distinction, such as that above, However, adaptation as an evolutionary
process in a lineage is traditionally distinguished [rom adaptation as developmen-
tal, physiological and behavioural processes in an individual organism [16, 137].
But as we have shown, the two senses can be unified by subsuming both processes
under a general principled concept of enhanced information and autonomy which
perform the same ultimate function for lineages as individual adaptation performs
for organisms. Indeed, from this perspective biological reproductive capacity and
adaptiveness, ‘AR’ of AAAR systems, are necessary {and plausibly sufficient) con-
ditions for lineage autonomy.”™

Adaplation implies a correlation between what is adapted and its environment,
which in turn implies mutual information with the environment, called the infor-
mation of edaptation [39, 42, 136]. A measure of the complexity of adaptation of
a system, this information places certain constraints on the system-environment
super-system that enhance system survivability by making strategies that lead to
destruction less likely, and strategies that lead to self preservation more likely. The
information of adaptation is a mutual constraint between the system and its covi-
ronment that shapes the fitness landscape for the system’s survival. The solution
of problems posed by the environment requires the production of the information
in these constraints. This can come about either through chance adaptation, or
through a more inventive anticipatory process. The latter enhances adaptability,
bul it requires greater informational resources, both in terms of complexity and
depth (organisation).

While in genetic evolution environmental information constrains the genetic
infermalion thal survives by acting as a [ilter, panselectionist evolution is high-
ly idealised; in fact not all useless traits are eliminated, and the most adapted
traits do not necessarily survive. Evolution can go faster than genetic equilib-
rium is reached, allowing non-optimal traits to survive, as is suggested by the
wide phenotypic diversity of most species. This latter can be an advantage where
adaptability is concerned [39, 40], but is to be contrasted with the achievement of
behavioural adaptability through endogenously directed re- and self-organisation
[63, 26, 28, 30]. If evolution tracks the optimal fit between lineage and environ-
ment, then the lineage stays in genetic equilibrium with the environment, and
there is little or no genetic variability to allow for changes in adaptive strategy.
{Although an optimally adapted species could dynamically alter its environment
s0 that a local fitness maximum became instead a saddiepoint, permitting further
fitness ascent.) On the other hand, if evolution is not optimal it is not entirely
environmentally driven, and possibilities arise for increasing the information of
adaptation through self-organisation in adaptive space. This might happen, for
example, through combinations of prior adaptations [44}, or through the adaptive
martialling of pleiotropies [2], though neither Conrad’s nor Baatz’ formulation dis-
tinguishes non-optimal evolution from the previous option. The extent to which
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non-optimal adaptation occurs is an empirical issue that requires quantificatior. of
the relative strengths of selective and other self-organising forces to resolve.”

Ontogenetic (developmental-psychological) adaptation is similar to evolutionary
adaptation in requiring increased mutual information with the environment and
again re-organising and self-organising processes are able to produce new informa-
tion to be selected. In the case of psychological adaptation selection on vicariant
representations of possible strategies in expected environments [9, 19] plays a cen-
tral role and provides it with distinctively powerful articulation and usefulness,
with self-directed vicariant learning playing a particularly striking role [29, 30].
Perhaps the bulk of the adaptiveness of thinking organisms over their unthinking
competitors resides in this capacity.™

While adaptation does not require increased complexity or organisation, it pro-
duces both through the production of the information of adaptation. Converse-
ly, the main advantage of complex organisation comes from its contributions to
adaptability. Adaptability is second and higher order adaptation, the capacity to
adapt adaptations. It is advantageous in variegated environments {both spatially
and temporally) since no one adaptation can be but temporarily effective. Adapt-
ability is inextricably linked to information processing ability [43] and through
that it is intimately linked to intelligence ([71] and note 73 references). Whereas
adaption tends to constrain expression of traits and behaviours to those that are
functional in a given environment, through incorporating the right kinds of higher
order organisational constraints (see below), adaptability permits the selection of
traits and behaviours with both greater variability and greater specificity, thereby
achieving tke advantages of both non-optimal and optimal adaptation.

Adaptability has been operationally defined [43] as the uncertainty of the most
uncertain environment it can tolerate. However this fails to distinguish between
genuine adaptability and merely increasing system stability by closing off the
system as much as possible, rendering it, stone-like, impervious to interaction,
Genuine adaptability requires that toleration should be understood in terms of
autonomy: system regenerative self-maintenance at a level sufficent for system
survival. (This depends on the identity conditions of the system.} Adaptability
is then enhanced by increasing the uncertainty of the most uncertain tolerable
environment, which requires building features into the regulatory design of the
system corresponding to as wide-ranging dynamical patterns shared by the class
of tolerable environments as possible and using these as the basis for anticipative
adaptations in response to local, short-term perceptual information. While the lat-
ter represents an immediate, short-term increase in the information of adaptation
typically concerned with organisationally shallow features, the former represents
a crucial long-term extraction of mutual information which corresponds to much
more deeply organised environmental features. This kind of information requires
in turn complex organisation within the system to express it. So we associate
increases in adaptability with increases in organisational depth, with the great-
est adaptability expressed in cognition. Moreover, responsiveness on this basis is
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clearly strongly anticipative, the system usés its higher order invariant patterns and
current information to anticipate the current course of events and so adapt accord-
ingly (typically, but by no means exclusively, behavicurally), with the strongest
anticipativeness found in cognition. Finally, self-directedly organised adaptability
of this kind provides the foundations for system intentionality, and cognition.™

10. Conclusion

Dynamical systems show a bewildering variety, many of them with highly com-
plicated characters and capacities. We have aimed to bring some principled order
into this variety, and to provide a principled basis for the analysis of dynamical
system capacities. In particular, we have focused on developing a principled basis
in dynamical systems for understanding the capacities of autonomy, adaptiveness
and anticipation which, as we understand it, are the root capacities for life and
intelligent systems.

Autonomous systems show all the hallmarks of life and intelligence. The essence
of the living cell is its ability to actively maintain a phase separation between its
interior and exterior of a kind which permits compensatory regulation over what
passes through its boundary and in a way that permits self-regenerating con-
trol of internal production and biological reproduction, including this boundary-
maintaining regulatory capacity itself - i.e. its essence is its autonomy. This basic
autonomy is already highly organisationally complex and intrinsically anticipative
in its compensatory dynamics, which also provides it with its adaptive capacities.
Moreover, because of its reproductive capacity it belongs to a lineage whose auton-
omy derives from cellular adaptiveness and self-reproductiveness. Similarly, at a
higher degree of organised complexity, intelligent systems display complexly organ-
ised internal control of anticipative response, conditionalising it on many subtle
signals and, to the degree their control is itself adaptable, they are able to modify
it and thus learn, with the most deeply organised systems capable of self-directing
learning {learning how to learn). Their responses are aimed at solving a problem
normative for them: How to act so as to maintain or enhance their autonomy,
for that is a sine qua non of their continuing identity as that kind of organised
system. If we assume that they have at least one way to evaluate their success or
failure in this, that is, at least one reward signal (e.g. pain/pleasure), then they
already display an epistemic relation to their initiating signals, taking a signal to
signify the appropriateness of their anticipative response to it (downstream mod-
ulation) for this end, about which they could be in error. {This is where lineages
part company from phenotypes as individuals.) In this manner they generate for
themselves a semantic content for a signal, namely what is thus signified. (Epis-
temicly their end is to maintain or enhance reward, while its dynamical ground
is to maintain or enhance their autonomy.} And, combining self-directing adapt-
ability with epistemic semantics, they display basic intentionality. (Note that on
this account contemporary computers are not intelligent or intentional systems at
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all because they lack autonomy, having no self-significant, epistemic capacities or
functioning of their own but rather being entjrely derivative from cur attributions
of content to their states in virtue of our uses of their formal functions; because
of their grossly simplified dynamics they are misleading models of what it is to be
intelligent or possess a mind.) This provides, we believe, the principled basis for a
realistic and powerful conception of intelligence in general, with human intelligence
properly seen as a partial special case.

Notes

1. This approach is not novel with us, but we claim a greater precision and inte-
gration than is found in previous work. The idea of bringing together dynamics
and information theory has roots in discussions of Maxwell’s demon ([92, 37] for
references), and has been developed by Brillouin [11), Landauer [87, 88], Bennetl
[3, 4, 5, 6], Gatlin [66], Layzer {90, 91], and Kiippers [86]. Kampis [79] has applied
the idea of self-organisation to the same set of problems we deal with. Recent
papers by Kampis and other representatives of the general approach called inter-
nalism, or endophysics, have been collected by Matsuno [97]; while this approach
parallels ours in several ways, we do not adopt the subjectivism of some of its
representatives, see note 27.

2. In their technical dynamical usages, constraint, regulation and control are dis-
tinguished as follows: Constraint refers to any dynamically based restriction on
system access to regions of ils state space, regulation to constraint satisfaction
through dynamical feedback relations (as cpposed to simply eventuating from the
stability of the unperturbed dynamics), and control to regulation obtained by a
process of comparing relevant system state conditions with a reference condition,
and generating a correcting feedback signal accordingly. We do not pursue these
important distinctions further here, nor the subtleties of deciding which obtains
(as opposed to system behaviour as if it obtained) because, while of great impor-
tance for understanding the precise ways various kinds of adaptiveness are realised
[23, 28, 30}, they are not crucial for the more general foundational account we
are developing here. Instead, we will sometimes refer to “regulation and control”
where we wish to avoid the distraction of a more detailed analysis, but more often
utilise a more colloquial, vaguer sense to the term “control” under which it means
(toughly) “sufficiently constrained” — as in “a computer is controlled by its pro-
gramme” — where the precise means of constraint can encompass any or all three
of constraint simpliciter, regulation and control as defined technically, and leave
context to sufficiently disambiguate what is involved.

However, these terms can also be used in a more a-dynamical functional sense
where “regulation” means only “yields (roughly) constant output for varying input”
(where the “roughly” encompasses the usual considerations of allowable transients
and nearness to constancy to count as sufficiently stabilised) and “control” means



Complexly Organiscd Dynamical Systems 281

“regulated in a reference-conditioned way™. Used thus they are multiply dynami-
cally implementable and so imply nothing about the specifics of their dynamical
implementation from application to application. The tendency to exploit, but not
recognise, this ambiguity of functional/dynamical sense, and the failure to prop-
erly tackle the relations among dynamical and functional specifications, has led to
many unnecessary difficulties in discussing complex organised systems {[68], [62,
Sec.IV.2.3]). Setting aside the technical mathematical use of the term, here we
eschew functional talk in place of talk of interactive capacities, which are their
dynamical underpinnings, unless the context makes it clear either that there this
is the colloquial meaning of “function” (as in “physiologicai functioning™) or that
we are explicitly referring to input-output characterisation.

3. Descartes” approach to the problem was so crude that it is a caricature. Sup-
posing no conceptual connection between mental and physical activity, Descartes
relegated them to separate substances., Physical activity was constrained by var-
ious fluid pressurcs working through tubes connecting parts of the body. Control
was organised in the mind, and exerted through pressures the mind placed on
the pineal gland. This control was then distributed through the body through the
tubes. (For Freud’s version see [112].) Replacing “nerves” for “tubes”, suitable
electrochemical activity for fluid pressure, and computation for mental activity,
Descartes’ position is not so far from contemporary cognitive science (except that
the shadowy notion of essentially separate substances has been dropped in favour
of property essentialism to justify the dualism). The theme is common to a variety
of contemporary idealist approaches to mind and language ([95, 26] — wherc it is
labelled “internalist”}.

4. See e.g. [10, 15, 31, 32, 73, 72]

5. The dynamical approach to control theory is not without its own problems. It
requires considerable ingenuity (and/or luck and patience) to implement a general
dynamical approach to specific process problems. In particular, dynamical solu-
tions to different problems cannot necessarily be added together to solve a more
complex problem that is the logical sum of the two problems, because of interfer-
ing interactions among the dynamical parts of the system. In the Cartesian model,
a solution to a functionally specified problem that is computationally solved is
not “lost” when the problem is added together with another functional problem
that has been computationally solved, as long as the solutions are not strictly
inconsistent. For example, a Cartesian robot that has computational solutions to
the problems “move towards a light source”, and *avoid barriers” thereby has a
computational solution to the corresponding joint problem. However a robot with
individual dynamical solutions to each of the corresponding process organisational
problems (“generate a smooth interaction flow that converges system location on
a light source location” etc.) might not be able to solve the combined problem
because its dynamical solutions to avoiding barriers and moving towards a light
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source might require the robot to use the same resources in incompatible ways.
There is a corresponding difficulty within Cartesian design, however: given a solu-
tion (algorithm}, it is not always clear what problem the solution solves. Except in
very controlled circumstances {equivalent to a very restricted problem), not every
contingency can be rigorously accounted for, and a given algorithm might turn
out to be a solution for a much more restricted, or even diflerent, problem than
expected. This difficulty is well-recognised by programmers, and has been paid
homage to in the sardonic labelling of some program bugs as “features”.

6. System cohesion refers to the dynamical stabilities arising from the counstraints
which a system of a particular non-linear dynamical kind imposes on its con-
stituents. The essential idea of cohesion is that of an emergent system dynamical
property that is insensitive to relevant local variations (e.g. thermal fluctuations)
in the system components, including in those non-linear interactions that formed
t [35]. For example, a kite, but not a framed soap bubble, has noticeable lift in
a wind because the cohesion of its surface molecules successfully integrates the
collisions with air molecules and transfers it to the frame. This is in turn different
in kind from the (still dynamical) communicational interactions that constitutes
the cohesion of a flock of birds, and from the non-cohesive but correlated wave pat-
tern formed in a boat’s wake. Note also that while the kite’s cohesion is primarily
expressed as a structurel stability, that of the bird flock is expressed primarily as
the stability of the flocking process through flight path changes. Living systems
are primarily characterised in terms of their process organisation. Their structures
may change, and must change somewhat whenever their adaptability is manifest-
ed; the more organised their adaptability the higher order the cohesive processes
that characterise them (see below and [27]-[30]). In [23, 35], we have shown how
cohesion grounds both system properties and individuals.

7. There have been a number of attempts to develop a characterisation of actively
individuated systems related to the concept of autonomy outlined here, though
there is considerable diversity in the details. Maturana and Varela [99] present a
theory of autopeeitic, or closed self-reproducing, systems based on cells as paradigm
examples. Also using cells as the primary model, Rosen {117] develops a mathe-
matical theory of self-repairing systems he calls meifabolic-repair systems. Bick-
hard [8] contrasts energy well and far-from-equilibrium systems, and labels far-
from-equilibrium systems whose identity is process-based self-maintenant systems.
These had been much earlier noted by Fong [53, appendix]. Ulanowicz [133] and
Smithers [129], to our knowledge independently of each other, both speak of a class
of autonomous systems described as self-governing. The conception of autonomy
used here (and developed furiher in [24, 30, 23]) is most influenced by the work
of Rosen, Ulanowicz and Bickhard, however much of the detail of the analysis is
original. (See e.g. [22, 27] for a critique of autopoiesis as too focused on first order
structure and Smithers as too cenfined to first order dynamics.) Fong, whose main
work was ¢.1970, has an overall approach similar to ours in outline, e.g. in ground-
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ing explanation of more complex systems in physical organisation and infermation,
but lacks the idea of autonomy and other later technical notions we employ. (How-
ever he has developed a bracing breadih of vision that we hope someday to match.)
The concept of autonomy also has a long-standing definition in mathematical sys-
tems theory which is closely related to our own, see note 10.

8. For an initial account see [26, 70], [27]-[30].

9. This is a technical sense of “information” used in information theory. It is really
a measure of the capacity to carry meaningful information.

10. That is, in regenerating itself a system must also regenerate its capacity to
reproduce, and in reproducing it must confer on its offspring the capacity to regen-
erate as well as reproduce. (Note that for many systems regeneration may include
component reproduction, e.g. cellular reproduction to replace component cells in
multicellular organisms.) AAAR invariance allows us to relate cur notion of auton-
omy Lo that found in mathematical systems theory. There “autonomy” is given a
formal meaning: A system S is autonomous if the functional dynamics of S does
not contain time explicitly [58]. On the one hand this definition is wider than
the meaning we have given to the term here because it includes systems which are
merely passively stable, like a brick, as well as those which actively maintain them-
selves at a far-from-equilibrium dynamical stability, as all living systems do and
as our AAAR systems do (see below). On the other hand, if the definition is read
as requiring that every aspect of the dynamics of an autonomous system be time
invariant then it will be narrower than our own because actively self-regenerating
systems include adaptable systems and all adaptable systems have the capacity to
modify (adapt) some parts of their dynamics to better suit their current situation,
so that in a time-varying environment (the typical biological case) at least some
of their dynamics will be a function of time. However, it follows from the text
remark that there is a privileged specification of the dynamics of these systems
which is time-invariant, namely that it is AAAR. This corresponds to the whole-
system level of cohesion or scale for these systems. Furthermore the time-varying
components will only correspond to autonomous sub-systems when these latter
also satisfy such an invariant specification and hence exhibit appropriate cohesion
at their whole-sub-system scale. Thus, excluding passive stability, and with the
definition read as stating that a system is autonomous just in respect of its time-
invariant dynamics, in the respects and at the system scales at which they occur,
the two concepts coincide.

11. One way to do this, perhaps the only way, is to allow the non-programming
dynamical plasticity of the material computer to actively modify programmes, i.e.
to seriously embody the computer intelligence - see e.g. [7, 26].

12. It is sometimes possible to provide sufficient ordered energy in the specification
of initial conditions that the system will proceed with the organising process as a
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matter of moving toward equilibrium, e.g. by having the bodies in the latter case
initially moving on collision courses at above-threshold energies, but this is just to
replace one kind of ordered input by another.

13. We call symmetry-breaking through fixation of uncontrolled variations via
internal system dynamics spontencous for the reason that, although the order
implied by the symmetry-breaking arises immediately out of the system dynamics,
it is not wholly controlled by the system dynamics, much as a person’s spontaneous
outburst is not in itself deliberate, but ncnetheless arises out of their underlying
intentions and personality.

14. In the reorganising cases the cost to system organisation through unavoidable
dissipative losses in these processes arc typically assumed sufficiently small and
ignored because they do not disrupt the reorganising process. They may occa-
sion disruption elsewhere, when one part of a system is sacrificed to supply order
to another, or they may be negligible or non-existent and the systems be guasi-
or strictly conservative, as in reversible computations (see note 17 and Section 5
below). A careful exposition would also distinguish systems whose organising pro-
cesses are eguilibrium-forming, as in the crystal case, and those that occur in
far-from-equilibrium dissipative systems, such as living and AAA systems (see
below). The perfect crystal is a very simple organisation, its structure does not
allow new possibilities of self-interaction without breaking cohesion (cf. note 66
and text), so there is no order increase (in the sense of [89]); both equilibrium and
exothermic formation may be sufficient conditions for this organisalional simplic-
ity. Certainly, all living systems and complexly organised designed devices require
endothermic formation, and the crystal quickly goes to an equilibrium state thus
reducing intropy (system variability, see Section 4) almost immediately, suggest-
ing that equilibrium, in contrast to far-from-equilibrium steady state, systems are
degenerate.

There are no reversible organising processes proper since there is no increase
in system order, hence there is no new organisation without dissipation. In the
reversible case there may be shifts of order from one part of a system to another and
these may mimic an organising of one part, but such processes can only ever have
a misleadingly derivative status with respect to organising processes proper.

15. Note that there is no restriction on the size of the initiating fluctuations in
relation to initial system scales, although fluctuations which are too small may be
impotent and fluctuations which are too large may so disrupt the system thal no
ordered outcome eventuates. Typically, but not necessarily, the variation will be
initially on some microscopic scale relative to system cohesion scale, which will
explain why it is not controlled by the system. Water flowing over a stony river
bed, for example, forms and re-forms standing waves as small flow fluctuations are
amplified and fixed by the flow.
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16. Thus in the terms of Section 4 below, self-organisation creates a cusp in the
Hyax curve rather than the incremental increase of re-organisation. At the same
time Hacr will also increase, though more slowly, providing for an increase in
order and crganisation.

17. This process is dissipative, though only described formally; in any physically
realised version physical information must be lost to the system in the process.
Similarly, any physically realised version of the first, standard net case would also
be dissipative, although this is ignored in the standard description given (cf. note
14). If the learning process is reversible in the firsl case the order can only be
transferred from, not copied from, the environment. Technically, copying is not
necessarily irreversible because of the logical possibility of reversible computation
[54], but it requires the production of waste memory, required to be kept in reserve
to perform the reversal. When the memory is erased, the reversal becomes impossi-
ble to perform. In real cases, there is no significant memory. On the other hand, the
possibility of reversible copying and then memory crasure that eliminates the con-
nections required to make the original order shows that order transfer is possible
through irreversible change as well.

18, Although the distinction between re- and self-organisation seems clear-cut,
subtle issues arise in its application because of the internal complicatedness of liv-
ing systems. Some of these have been initially explored in Collier [33]. Consider,
c.g., a change which allows merely molecular DNA information to become genetic
information by acquiring a control or expressive role (or, more variably, old genetic
information to acquire a new control role), or which allows genes that are not phe-
notypically expressed for developmental reasons to become capable of phenotypic
expression, their information thus being “promoted” from genetic information to
phenotypic information. If these changes are anzlogous to the addition of new
like molecules to the established crystal structure in the crystal-forming case they
cannot be claimed to create a new cohesive level with new macro filtering, and
hence not be sell-organisation, but il they are analogous to the addition of impu-
rities whose consequence is to change the crystal structure radically enough (say,
introduce new modular regional sub-structures) then they can claim to be sell-
organisation. How much genetic and phenotypic change is enough to make good a
claim for self-organisation? Though we believe that priacipled answers are always
available for such questions - - answers which illuminate precisely where cohesion
operates, how autonomy is organised, and so on — each case must be carefully
analysed before a decision can be reached.

Note also that while self-organisation creates new kinds of organisation in a
system because of the level-formation involved, which particular kinds of organisa-
tionai changes are created depends on the detailed dynamical nature of the system
in which the self-organising process is occuring (how highly organised already, how
energetic its bondings, how hot, etc.). Both crystals and embryos may self-organise,
but the organisational results are very different.
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19. This last characteristic has been called downward causation [18, 130]. See also
note 24 and text. For an introduction to far-from-equilibrivm dissipative systems
see [113, 114, 105], and for self-organising systems see ¢.g. [115].

20. And moreover must have an autonomous organisational design. This organisa-
tion could be of the sort found in type 3 systems, i.e. effectively pre-programmed
matching and selection using huge “lookup tables”, so to speak; however for clear,
if deep, reasons in our evolutionary world it is essentially absent short of human
technological design and, as we remarked of computers above, it can only appear
there in a very limited way. [7] reinforces our conception of AAA systems with
their recent study of formalised versus rcal dynamical metabolisms. They empha-
sise that actual dynamical metabolisms are thermodynamic processes which cannot
be fully captured in formal notions like process closure and that AAA dynamical
possibilities, such as sclf-organisation, thercby clude formal capture. Strong artifi-
cial intelligerce models are similar to the coin-sorting case, they only reorganise,
not produce new (amounts of ) organisation.

21. Cf. e.g. {69, 70] on Piaget. From this perspective it is an empirical question
how distinct evolution and development processes are and some contemporary
evolutionary theorists see evolution and development as only conceptually distinct.
There are many real world cases that have elements of both, and in many of these
self-organisation evidently plays an important role (note 71 and [13, 80, 119, 41]).
Intellectual development need not be under either genetic or environmental control,
nor need it be a simple sum of the two [30], something Piaget constantly emphasised
[69] but is still a matter of controversy (e.g. [131]).

22. See also notes 34 and 41. Of course, which system aspects we choose to model on
any given occasion is our choice — but the model’s domain of empirical adequacy
is not.

23. In the casc of Bénard cell formation, e.g., we only have models which will predict
the existence of the process because of the breakdown of stability conditions (see
[41], for exposition) and [55], provides a detailed and insightful analysis of the com-
parable modelling problems arising in the case of slime mould aggregation. Herfel
and Hooker [65] generalise this analysis, in particular seeing in it an explanation of
why understanding scientific revolutions, modelled as seif-organising commitment
phase changes, are impossible to understand in terms of simple rational rules.

24. Seth Lloyd has compiled 31 ways to define complexity [74].

25. The label “computational complexity” is somewhat misleading since there are
other notions of computational difficulty that might be called complexity, in par-
ticular the space, l.e. memory, and time resources, required for a computation. In
any event, on the original definition

length (o,) = min{|p| : pe {0,1}" & M(p) = o}
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= min{|p| : pe{0,1}" & f(p) = s},

|p! being the length of p, which is a binary string (i.e. p € {0,1}*, the set of all
strings formed from the elements 1 and 0), and M being a specific Turing machine,
and f being the decoding function to recover o, from p and then s from o,. This
definition requires an O{logn) correction for a number of standard information
theoretic functions. A newer definition, now standard, sets length(o,) to be the
input of the shortest program to produce o, for a self-delimited reference universal
Turing machine. This approach avoids O(logn) corrections in most cases, and also
makes the relation between complexity and randomness more direct.

26. For a technical review of the logic of algorithmic complexity and related con-
cepts, see [93]. The complexity of a program is itsell a matter for algerithmic
complexity theory. Since a universal Turing machine can duplicate each program
on any other Turing machine, there s a partial recursive function f5 for which the
algorithmic complexity is less than or equal to the algorithmic complexity, plus a
constant involving the computational overhead of duplicating the particular M,
calculated using any other f. This is called the Invariance Theorem, a fundamental
result of algorithmic complexity theory. Since there is a clear sense in which f;
is optimal, the Invariance Theorem justifies ignoring the language dependence of
tength{e;) (but see previous footnote). String maps of highly complex structures
can be computed, in general, with the same computational overhead as those of
simple structures (the computational overhead is nearly constant}, so for com-
plex structures (Jarge C) the negative component of informational complexity is
negligible. Furthermore, in comparisons of algorithmic complexity, the overhead
drops out except for a very small part required to make comparisons of complexity
(even this drops out in comparisons of compartisons of complexity), so the relative
algorithmic complexity is almost a direct measure of the relative informational
complexity.

27. This is in contrast to its only being comparable via correspondence in the
infinite limit, which is the only case in which the computational overhead, being
a constant, is infinitesimal in proportion, [84, 93], and is therefore strictly negligi-
ble.

28. The converse is not true. Arbitrarily long substrings of non-computable strings
{and, for that matter, incompressible finite strings) can be highly ordered, and
therefore computable, but the location and length of these highly ordered sub-
strings cannot be predicted from earlier or later elements in the string. In gen-
eral, the incompressibility of a string does not imply the incompressibility of its
substrings. Since it is possible to change an effectively random string into a com-
pressible string with the change of one digit and yet, intuitively, the change of one
digit should not affect whether a string is random, randomness of finite strings of
length n is loosely defined as incompressibility within O(logn) [93, p.201]. By far
the greatest proportion of strings are random and in the infinite case the set of
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random strings has measure 1. [t ig also worth noting that there are infinite binary
strings whose frequency of 1s in the long run is .5, even though the strings are
compressible, c.g. an alternation of 1s and 0s. These strings fail the unpredictabili-
ty test (see above). If probability requires randomuness, probability is not identical
to frequency in the long run. It seems unreasonable, e.g. to assign .5 to probability
of a 1 at a given point in the sequence because the frequency of 1s in the long run
is .5, if the chance of getting a 1 at any point in the sequence can be determined
exactly to be 1 or 0.

29. Shannon entropy can be reduced by a passive filter; this is impossible for the
entropy used in physics [11, p.161]. Shannon’s use of “entropy” has caused more
confusion for students in the field than any event since Clausius’ victory over
Tait. Sce, however, [78, p.18], for a different view of the relation between Shannon
entropy and physical entropy.

30. The confusions and resulting disputes are over definitions of terms, but to view
them ag merely definitional obscures the substantive issues involved, namely, the
relation of information theory to physical theory, and all that it implies about the
nature of computation and physical dynamics.

31. A different, but still conservative approach, is to compare the budgets qualita-
tively, but to avoid directly unifying the concepts or extending the concepts in any
way [138, 123]. Tom Schneider’s [124] quantitative unification of the information
and entropy budgets is conservative in its rejection of conceptual unification and
any consequent possibility of conceptual extension.

32. This definition is more specific than the standard definition of work in equi-
librium thermodynamics, in which work is a force applied through a distance.
Requiring & vector is reasonable, since undirected force can not really do work.
However, this changes the units of work, since energy is not a vector. Interesting-
ly, Schrodinger [125] says that he would have used erergy, the measure of energy
available in a system to do work, to ground NPI, except that energy already had
specific associations that might be confusing, so he used negentropy instead. This
is remarkable, since exergy and entropy do not have the same dimensions.

33. Our statement here involves some stylistically sensitive matters. Brillouin {11,
p.152] refers to physical information as bound information but, in the light of the
later distinction between intropy and enformation {see below), we will avoid this
term (since in one obvious sense intropy, being unconstrained by the system, is
not bound). Brillouin defines bound information as a special case of free informa-
tion, which is abstract, and takes no regard of the physical significance of possible
cases. By contrast, we would say that bound information occurs when the pos-
sible cases can be regarded as the complexions of a single physical system. We
may consider algorithmic bound information as an extension of this idea requiring
that the strings of binary digits representing the infoermation are isomorphic map-
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pings of physical structures, where aiternate physically permissible structures are
the relevant complexions. This definition also has the consequence that the phys-
ical interpretation of the two formulations of physical information are not only
mathematically, but also physically, equivalent. The basis of the mathematical
equivalence was proposed by Kolmogorov, but given by Ingarden, [78]. Although
physical entropy and physical information are complementary, and hence opposite
in sign, they measure the same fundamental physical notion, hence our apparent
difference with Ingarden et al is a matter of presentation rather than a substantive
difference. This stylistic difference has caused some confusion in the past about the
interpretation of NPI, especially as used by Brillouin. It is important to recognise
that there is no underlying difference of fact.

34. With respect to the need to interpret the principle in relation to the system
and environment under consideration, the situation is exactly parallelled by that
for energy and momentum. Energy forms are specific to each system — electrical
circuits store and conduct electrical energy but radiation and thermal energy are
typically ignored, unless the system includes light bulbs, electrolysis and the like,
while the potential energy in spring extension is of a quite different character
to that in chemical density and capacitance voltage, and so on. Potential energy
is determined relative to a specific environment, e.g the poteatial encrgy of an
object at temperature T' depends on the temperature ol its surrounds, the kinetic
energy of a particle is a function of its velocity which must be specified relative toa
frame of reference. In our case, by referring information to the system environment
we avoid the need to define some absolute reference point where all constraints
of any kind are relaxed, which is not obviously a well defined condition. {While
conservative systems might support some such notion as energy of separation of
system components to infinity, this is not obviously well defined when non-linear
intra- and inter-interactions are involved.) And just as there are very different
formulae for ali these forms of potential energy in diflerent systems, so too are
there for forms of entropy and information. But whereas all these formulations
can be uniquely connected through the principles of energy conservation (and
similarly for momentum), there is currently no equivalent uniqueness achievable
with formalisms for entropy and information. Perhaps a canonical version of NPT
that can be applied more or less mechanically will emerge some day, and Ingarden
[78] represents progress here, but with the proliferation of disparate “entropies”
and versions of information currently aloot, this is unlikely to happen soon.

35. There are strong reasons to believe that this is logically impossible in a physi-
calist world [37].

36. This is not quite as simple as Szillard’s case (see [11, pp.176ff]), which uses
only one molecule!
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37. NPI is assumed throughout, as is the impossibility of a Maxwellian demon
[11, 4, 37]. Szillard’s original argument makes the connection to work more obvious
by using a molecule pushing on a cylinder in a piston, but more general arguments
by Bennett and Collier examine (in different ways) the computational problem the
demon is supposed to solve. The connection to work is implied by thermodynamics
and NPI. Szillard used thermodynamics explicitly, but NPT only implicitly, which
meant that his exorcism of the demon could not be general. Denbigh [48] argue
that information is not required for the exorcism, since thermodynamics can be
used in each instance. It seems to have escaped them that proving this requires
something at least as strong as NPI. The problem of Maxwell’s demon is especially
important because it forces us to be explicit about the relations between mental
and physical activity. A demon that could store information in some non-physical
form could perform its sorting job [34].

38. See [36]. For endothermically produced systems S (e.g. smelted steel objects)
when enformation decays additional energy will be obtained from § as the cohesive
constraints on S are relaxed or disrupted. This process can be accelerated through
the addition of triggering cnergy (c.g. ignition in chemical or nuclear processes),
but will occur eventually if we wait long enough, and the temperature is above
absolute zero. The reieased energy will be [ T'A¢, and will eventually degrade into
heat, indicating that decaying enformation is a form of intropy. There may be cases
in which enformation remains even at equilibrium, such as enformation produced
by an exothermic process; in such cases the enformation cannot decay, and is
energetically inaccessible. A possible example is the enformation in all the protons
of the universe, assuming protons do not decay spontaneously, and that there is
an insufficient supply of antiprotons or potential antiprotens to annihilate all of
them. This would seem to include there remaining enformation even at absclute
zero, raising interesting, unresolved issues about the status of the so-called Zeroth
Law ol thermodynamics, which we do not pursue here.

39. Since one obvious information basis to consider is a compleie microscopic
description of a system, we note that behind this statement lies the vexed issue
of a principled resolution of the relations between statistical mechanics and ther-
modynamics that respects the irreversibility of the latter despite the reversibility
ol the former. While we think that the analyses offered here represent a small
step toward greater clarity about this complex issue, we do not pursue this issue
here.

40. Archimedes lever with which he could move the world, like any other machine,
must have a specific form: it must be rigid, it must be long encugh, there must
be a fixed fulcrum, and there must be a force applied in the right direction. If
any of these are lacking, the lever would not work. No amount of energy applied
without regard to the form in which it is applied can do work, except by accident.
Collier [36] who introduced the intropy/enformation distinction, did not provide
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a differential form for enformation, unlike intropy and entropy. There seems no
principled reason why a differential form could not be introduced but it would be
of dubicus relevance since, unlike the latter, it is not intrinsically a thermodynamic
property of an ensemble. It has been noted [36] that the stalistical measure is most
suited to situations where the information is specified over an ensemble, while the
complexity measure is best suited to single cases. We can access the intropy only
by measuring changes of state (since we cannot directly measure the components
of the ensembles, most being imaginary), but we can determine the enformation
directly from the state.

41. Therc is nothirg arbitrary about these system-relative distinctions, each is
grounded in ihe system dynamics. Relational properties, like intropy, entropy and
enformation, necessarily produce relativised applications across relationally dis-
tinct contexts, e.g. S and S’ here, and it is an error (albeit a common one) to
equale this to relativism, which is the absence of any principled basis for distin-
guishing conflicting claims across contexts. Also, in the presence of system-relative
distinctions, some mistake our free choice of which system to model, e.g. § or 5,
for an idealist or subjectivist component to system dynamics itself, neglecting the
objective dynamical grounds for relative attributions. Salthe [118, 119] and Kamp-
is [79], for example, both seem to make this mistake. Possibly it can be traced back
to Ashby. Finally, one can change a relational property of a system by re-relating
system components, i.e. without bringing anything new into the system, but one
cannot do this with non-relational properties, a change in those alters at least the
quantity of their kind of “stuff”. For this reason it can be misleading to speak
of creating or transforming relational properties, but where system-relative dis-
tinctions are grounded in the system dynamics the usage is a principled one and
where context is clear no ambiguity should result. Thus we say, for example, that
connecting .5 to P creates the S’ intropy expressed by (' because there is a prin-
cipled dynamical difference between S, P> mutually isolated and 5, P? physically
connected in a way that allows heat transfer (and the particular way connected
also matters for the resulting process dynamics).

42. All enformation except perhaps the enformation in some fundamental particles,
like protons, will eventually decay, which means that at some temporal scale all, or
at least most, enformation behaves as intropy (note 38). The scale is set by natural
properties of the system in question. Specifically, the extent of the cohesion of the
system 1mplies a natural scale.

43. A complete physical specification would amount to a maximally efficient phys-
ical procedure for preparing the system, S, in the macrostate in question from raw
resources, R [36]. Furthermore, the procedure should be self-delimiting (it halts
when S is assembled, and only when § is assembled). The information content of
this specification is just Ip plus any intropy that must be dissipated in the pro-
cess. The latter is called the thermodynamic depth of the state of the system, and
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is equal to Haom(R) — HaeT(5) if there are no practical restrictions on possible
physical processes. The algorithmic complexity analogue of thermodynamic depth
is the complexity decrease between the initial and final states of a computation
{through memory erasure). This quantity is often ignored in algorithmic complex-
ity theory, but see [5, 37, 54], where the authors would hold that the analogy is
physical identity.

44. There is one further terminological issue concerning physical information that
should be noted. By NPI, the disordered part of the system does not contain
information (because it cannot contribute to work), but the information required
to specify the complete microstate of the system is equal to the information in
the macrostate plus the information required to specify the disordered part. Layz-
er [90, 91] speaks of the information required to specify the disordered part as
the “microinformation” of microstates, as if the information were actually in the
microstate. This information can do work only if it is somehow ezpressed macro-
scopically. For this reason, we prefer to regard unexpressed microinformation as
a form of potential information [56, 33, 13]. Expressed information in the form of
enformation is sometimes called stored information [56, 13]. Potential information
can also be directly ezpressed as intropy, e.g. in the Brownian motion of a par-
ticle, as opposed to at the expense of enformation, e.g. when micro fluctuations
disrupt structure. Although expression as intropy is physically possible, it cannot
be physically controlled [37]. Control of this process would imply the existence of
a Maxwellian demon.

45. Ulanowicz [133] refers to this quantity as system overhead €, but an overhead
is a cost of some kind and we do not follow this terminology. There is already
defined a very different quantity, and genuine cost, computational overhead, which
is a technical nuisance to be worked around. The intropy is a measure of the
variability of the unconstrained part of the system, and is better refered to simply
as the vartability.

46. An autonomous system may use its self-organisation potential to compensate
for assaults on its integrity, though this would typically be achieved through re-
organisation, but must use it to achieve genuinely new higher order organisation
than it currently possesses — see Section 7.

47. Note that if NPI is not assumed, further argument is required to establish
that the large (5 of a gas cannot be used to control its behaviour. The argument
would have to be on a case by case basis, similar to the situation if we accepted
the Denbighs’ [48] rejection of the relevance of information theory to Maxwell’s
demon. It might seem obvious that type 2 systems cannot support autonomy or
anticipation, but the reasons why are non-trivial.

48. Assuming a protein can ckange from a denatured, linear form to an active,
folded form reversibly, the folded form contains more conformational information
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than the lincar form. For /p to remain constant, the additional conformational
information would have to be implicit in the dynamical information of the linear
form, and vice versa. In practice, protein folding is not reversible.

49. For a metaphysical argument for the same result, not restricted to conservative
syslems, see [38].

50. Despite this, all of the early applications of modern physics were to linear or
approximately linear systems, essentially type 2 or type 1 systems. The fact that
these early applications have served as Kuhnian exemplars for later applications
[85] has led to an overly simplified view of dynamics. This is ironic, since Kuhn’s
own theory of science uses a highly simplified dynamics that misleads as it informs
(64, 65], see note 23).

51. Ironically, even relatively minor dissipation, like tidal dissipation, can lead to
phase spaces with multiple point attractors (see helow) in which the boundaries
between attractors are chaotic. In systems in which the trajectory enters chaotic
regions in phase space (the Sun-Mercury system is likely one of these) the method
of linear approximations can give only probabilities of capture by one attractor or
another.

52. It does not. DNA almost certainly exhibits high order subtle redundancies (see
below) imposed by developmental, environmental and self-organised constraints
throngh the process of evolution [33, 13].

33. For a review of nonlinear systems and chaos, see [132].

54. See Section 6 below. Penrose sometimes talks in The Emperor’s New Mind
ag if the tilings were not effectively computable. If not, then the argument in the
previous paragraph concerning the capacities of aperiodic crystals implies that
they cannot control in any interesting way. If the tilings are non-computable, then
they are immediately irrelevant to the control aspects of mind unless somehow we
can non-computably identify suitable partial functions that are computable, and
are relevant to control problems. We do not see how this is supposed to work. More
likely, Penrose thinks thatl finding a tiling, given a set of tiles, is non-computable,
but we can somehow do it, and that finding aperiodic “patterns” like tilings is
useful for control problems. The last is at least plausible, since the possible tilings
are a very specific subset of a myriad of possible combinations, vet they inlegrate
local and global constraints. As we have previously noted, this sort of integration
is a characteristic of organic systems. If, on the other hand, evolution has selected
effectively computable physiological and behavioural tiling procedure analogues
from the myriad possibilities mutation and self-organisation put forth so as to
“solve” specific global/local inlegration problems, we need not assume any mental
capacities Lhat are not representable as computations.
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55. Cf. note 47 and text. A common case is condensation after rapid expansion of
the volume containing a gas. The treatment of gravitational condensation may be
more complicated, sce [91].

56. In practice, dissipation will set in much faster than organisation forms, espe-
cially since there is nothing like minimisation of entropy production to guide the
formation of physical information. Even in a non-expanding system, ordered struc-
tures could appear spontaneously. However, there would be nothing to drive their
formation, and chance interactions are more likely to disorganise the system rather
than organise it {cf. also [53, appendices]. Any new organisation appearing in a
conservative system, then, could only be attributed to chance or supernatural caus-
es [37]. For all practical purposes, self-organisation requires dissipation. See also
notes 14 and 17.

57.This is a strictly mathematical decomposition. Physical decomposability is not
required, It is important not to confuse orders with levels (see below).

58. So complex organisation neither requires, nor is required by, chaos and the
organisation of living systems is typically not chaotic. While the role of chaos in liv-
ing processes is an empirical and open issuc at the present time, that chaos derives
from the extreme sensitivity of its dynamical trajectories to initial conditions pro-
vides a good reason why it will probably not be common in adaptable creatures
where resources are limited and adaptation typically must be fast and accurate
(though it may be used selectively to achieve sensitive control, {127, 38]).

59. Some adjustments are required to the definition to get a reasonable value of
depth for finite strings. We want to rule out cases in which the most compressed
program to produce a string is slow, but a slightly longer program can produce
the string much more quickly. To accommodate this problem, the depth is defined
relative to a significance level s, so that the depth of a string at significance level
s is the time required to compute the string by a program no more than s bits
longer than the minimal program.

60. Since computalion is a formal concept, while time is a dynamical concept,
il is not completely clear how we can get a dynamical measure of computation
time, Jonathan Smith [128] has shown that the formal analogue of temperature
in informational systems has the dimensions of inverse time (i.e. a rate). Together
with NI’[, this may give us a quantitative measure for the physical rates involved
in the informational dynamics of systems. Generally, the minimal assembly time
of a system will be less than the expected assembly time [or assembly through
random collisions, which we can compute from physical and chemical principles.
Maximally complex systems are an exception, since they can be produced only
by comparing randomly produced structures with a non-compressible template.
Becaunse of their compressibility, organised systems can be produced by finding a
compressed form, and producing the structure from that. This is more efficient
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than checking randomly produced structures, and has clear implications for the
relevance of evolutionary processes as effective search-and-construction processes.
CI. note 43.

61. The relative logical depth construction captures something important to these
systems. Too much organisation is detrimental to living systems because it is too
constraining and/or too costly to maintain (cf. below) and, for the same reasons,
s¢ also is too much redundancy. It is also worth noting that it appears to take less
time to assemble something from modules than to create functionally equivalent
organisation unimoduiarly. We should then expect intermediate organisation in
AAAR systems, irrespective of type. Nonetheless, while the relative logical depth
construction is a major move in the direction of specifying organisation, it Is unclear
whether it will be sufficient. In any case, it needs a clear dynamical interpretation
to be applied to hierarchial and control organisation.

62. For example, computer programs using a serial von Neumann architecture can
be implemented conservatively, at least in principle [54, 3]. Such a computer could
control another conservative system, or could control states of its own subsystems.
DNA is neither formed nor maintained under conservative conditions, but, suppos-
ing it could be, DNA could control the growth and development of an organism in
much the way that the conlemporarily popular computer program analogy of DNA
suggests. The linear and modular structure of the DNA molecule lends support
to the program metaphor, and much of cur present practical understanding of the
dynamics of DNA transcription and protein interactions depends only on confor-
mational information, further supporting the computational model. Whether or
not this model is ultimately workable, conservative systems with enough logical
depth arc capable of anticipation as Bickhard has characterised it [8, 9].

63. Depth may increase spontaneously relative to initial conditions in many con-
servative systems. In an ideal gas at equilibrium, for example, correlations among
molecules resulting from collisions increases the depth of the microstate relative
to the initial conditions, but there is no increase in the absolute depth, since the
initial condition is random [53]. In a non-equilibrium gas, the absolute depth can
increase by a similar process, if the increase is not obliterated by noise, since the
initial condition is not random. The no-noise assumption is not usually realistic,
since it implies no dissipation under non-equilibrinm conditions. Therefore we are
unlikely to find conservative systems that increase their absolute depth.

64. More widely affirmed than argued, the argument to this general conclusion
runs roughly as follows (see especially [122, 123]: The local time rate of entropy
production — dissipation rate — local thermodynatnic potential, so the spatial gra-
dient of the potential = the spatial gradient of the time rate of entropy preduction,
s0 total time rate of entropy production = spatial integration of thermodynamic
potential == total potential difference across the system; but the spatial gradient
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of the potential = generalised force and, by generalised laws of motion, systems
re-arrange until force is minimised, so systems rearrange until the spatial potential
gradient is minimised, so systems rearrange until the total potential difference is
minimised; but all possible potential distributions for a given system have the same
minimum eniropy production rate, so systems rearrange until the total entropy
production is minimised. An equivalent principle is that exergy less is minimised
= minimisation of input work to maintain the system in a steady state. In the
case of Bénard cells, for example, less work is needed to maintain convection than
conduction. This argument has a more precise version for near-to-equilibrium sys-
tems, but is claimed to extend to all systems. Though this reasoning is plausible,
we do not find it transparent (especially at the last step above) and look forward to
future improvements in foundations and rigour. Nonetheless, the principles seem
well founded empirically thus far, and are widely accepted.

65. For a detailed treatment of the dynamics underlying the transition, see [41]. A
number of other examples have been studied with varying degrees of detail, but
the general pattern has been well verified, both in theory and fact.

66. Near-to-equilibrium systems are cnes in which the local statistical luctuations
are larger than or equal ta the local gradient of intensive state variables. They
can be treated pretty much like equilibrium systems, but they exhibit some novel
properties. These properties result from the entropy production from dissipation,
characterised by the specific (local) rate of entropy production. In particular, they
can self-organise.

67. Compare here to the fixed stoney bed/bank river system a river running
through mud; the river reconstructs its muddy boundaries, its bed and bank, as a
resuft of its own dynamics, and so alters its own flow patterns, which in turn alter
its subsequent impact on its bed and banks, and so on.

68. This is connected to our reservation aboul the adequacy of relative logical
depth o capture a full concept of dynamical organisation, see Section 6 above.
There are interesting further questions as to whether there are additional or differ-
ent. resoutces intrinsically required for cognition and to what extent all cognitive
systems, living and artificial, have the same requirements. [t is our view that at
least all biologically based cognitive systems are essentially similar in these sys-
tem tespects, and that the basic requirements are met by AAA systems — see
Conclusion.

69. This is 2 complex relationship, much of which is implicit for the adaptive
systems concerned. Roughly, the meaning of a signal for such a system Is what
they do with it, its anticipative content. [ for system § signal [ initiates action
a then the meaning of [ for § is “This is an e-appropriate environment”. Note
that on this account the information in a signal is a function of its downstream
modulation of response, as opposed to the traditional upstream sender state, a shift
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which solves many problems while arising naturally from systems operation. The
achievement of a detached characterisation of sender states is a sophistication that
only arises with the co-ordinated extension of higher order anticipative control.
This notion satisfies the Shannon/Weaver definition of signal information since
signals appropriately reduce uncertainty of system response and to that extent
can be used to control response. For a more detailed treatment of infermation in a
signal as a function of its downstream modulation of response {as opposed to the
traditional upstream sender state) see [8, 26, 30]. For a treatment of information
as a sign, following suggestions by Carl von Weisacker, see [86].

70. In this way we provide a principled basis in our analysis {for the (Ghiselin/Hull
notion of species as individuals, [57, 58, 75, 76, 77]. However, in one crucial respect
they cannot have the full autonomy that individual phenotypes enjoy, namely to
receive feedback from their (temporally extended and variegated) environment
which can be evaluated for its effectiveness in supporting autonomy. By contrast
with reproductive capacity, there is at best a very partial equivalent to individual
regenerative capacity for lineages because the internally organised parts of them-
selves are temporally separated. Environmental feedback can only be evaluated by
individual phenotypes and only derivatively by lineages, it cannot be evaluated by
the lineage acting as an integrated individual.

71. Such self-organising forces may include speciation under segregation of gene
flow in a population resulting from geographical isolation and/or social differen-
tiation, other forms of population isolation permitting group selection, fixation of
group level properties, ete. [103, 104] on isolating mechanisms; [13, p.208,pp.215-
218], [14, 119, 61]. Of course, there may also be selection for speciation, as when
hybrids are selectively removed in favour of the pure forms (homozygotes), whether
the selection is internal (e.g. hybrids refuse to mate, or cannot produce offspring),
social (e.g. hybrids killed by pures) or environmental (e.g. hybrid predation high-
er). At present, there has been little empirical work to quantify the strength of
selection in relation to sell-organisation; it is merely presumed to be dominant.
It is intriguing, though, that members of several ancient, long-lived, widely and
homogenously distributed pine species do not seem to be oplimally adapted to
lacal conditions [100, 101, 102].

72. A vartant on vicariant selection is the neural selection of Edelman [50}. If, as
with concepts and principles, we consider the gene type, rather than the individual
gene instances or tokens, then we may regard phenotypes as vicariant life forms on
which selection acts as the gene types search for better vicariants; then vicariance
is not unique to psychological adaptation, but the use of neural resources for
constructing vicariants, e.g. logical constructions, is.

73. But putting together a coherent, well founded account of intentionality focused
on system organisational design is a complex task; its beginnings can be found in
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marrying system-constructed signal semiotics or significance (see note 69} with
system organisation as discussed here and in [21, 22, 24] and applying to il an
analysis of system heuristics [26], [27]-[30]).
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