Our Strange Mental World
Identity and Typicality

Long History of Discovering
What is Normatively Correct
- In the 17th century, Italian gamblers bet on the total number of “spots” rolled with three dice.
 - What are the chances of rolling a total of 9 spots?
 - What are the chances of rolling a total of 10 spots?
- Italian gamblers reasoned that there are 6 combinations that produce a 9:
 1 2 6
 2 3 4
 1 3 5
 2 2 5
 1 4 4
 3 3 3
- Likewise, they reasoned that there are 6 combinations that produce a 10:
 1 4 5
 2 3 5
 1 3 6
 2 4 4
 2 2 6
 3 3 4

Figuring out What is Normative
- However, experience showed that gamblers were more likely to win if they bet on 10 than 9
- But, they couldn’t figure out why.
- So, they asked Galileo for help. His strategy:
 - Color the dice: one white, one grey, one black.
 - 6 ways for white to fall
 - 6 ways for grey to fall
 - 6 ways for black to fall
 - So 6 x 6 x 6 = 216 combinations
 - Galileo wrote down all possibilities and counted them
New Normative Discovery

- Outcome = 9
 - 1 3 6
 - 1 3 5
 - 1 4 4
 - 2 2 5
 - 3 1 3
 6
 6
 1
 3
 1
 Total: 25 out of 216 or .116

- Outcome = 10
 - 1 4 5
 - 1 3 6
 - 2 2 6
 - 2 1 5
 - 3 1 4
 6
 6
 3
 3
 1
 Total: 27 out of 216 or .125

Attempts to Secure Certainty

- 19th Century Strategy: Secure the certainty of arithmetic by deriving it from logic via set theory
- Russell and the discovery of paradoxes:
 - Liar Paradox: This sentence is false
 - The set consisting of items which are not a member of the set
 - Still aspired to the reduction of arithmetic to logic
- Gödel and incompleteness:
 - Given any consistent set of axioms, there will be a true statement of arithmetic that is not derivable from those axioms
- Objective limitations to our quest for certainty

Cognitive Limitations

- The limitations established by Russell and Gödel are objective limitations
 - They apply to the formal systems themselves, not to our cognition
- Piattelli-Palmarini focuses instead on limitations due to our cognitive system
 - We operate in ways that differ from the norms set in our formal systems
 - Our concepts do not operate like sets
 - May not respect the principle of identity
Concepts and Sets

- Gottlob Frege:
 - Intension determines extension
 - Meaning determines reference
- Classical theory: categories and concepts defined by conditions for category membership
- A bachelor is, by definition, an unmarried male human being

Who is a bachelor?

- Alfred is an unmarried adult male. He has been living with his girlfriend for the past 23 years. Is Alfred a bachelor?
- Bernard is an unmarried adult male and does not have a partner. Bernard is a monk living in a monastery. Is Bernard a bachelor?
- Charles is a married adult male, but he has not seen his wife for many years. Charles is earnestly dating, hoping to find a new partner. Is he a bachelor?
- Donald is a married adult male, but he lives in a culture that encourages males to take two wives. Donald is earnestly dating, hoping to find a new partner. Is he a bachelor?

Typicality Judgments

- People happily judge typicality of members of categories
 - How typical a bird is chicken?
 - How typical a bird is blue jay
 - How typical a bird is a cocker spaniel?
 - How typical a bird is a Space Shuttle?
Problem with classical view
• Typicality effects
• Typicality Demo
 – will see X --- Y.
 – need to judge if X is a member of Y.
 • finger --- body part
 • pansy --- animal
 – If YES, clap your hands as FAST as you can!

turtle – precious stone
pants – furniture
robin – bird
dog – mammal
turquoise --- precious stone
ostrich -- bird
poem – reading materials
rose – mammal
whale – mammal
diamond – precious stone
book – reading material
opal – precious stone

Typicality Effects
• typical
 – robin-bird, dog-mammal, book-reading, diamond-precious stone
• atypical
 – ostrich-bird, whale-mammal, poem-reading, turquoise-precious stone
• Faster, more accurate with more typical members of a category
Typicality

- Rankings of fruits in terms of typicality on a 1 to 7, with 7 as highest typicality:
 - Apple 6.25
 - Peach 5.81
 - Strawberry 5.00
 - Watermelon 4.06
 - Fig 3.38
 - Olive 2.25

Prototype Theories

- Categories defined in terms of central tendency
- Learning involves abstracting a prototype from actual instances

Prototype Theories

- Prototype identifies a (usual non-real) entity that serves as the reference point for the category
- Seems to make the category representation an instance of the category
Exemplar Theories
- Exemplar = a specific remembered instance
- Your representation of “dog” consists of all the examples of dogs that you have encountered
- Typical items are encountered more frequently, so you will have many stored representations of them
- Exemplar theories can explain typicality effects
- Recognition task: typical items are more quickly recognized because memory search for a matching exemplar will be fast
- Production task: when asked to list items in a given category, typical items are more frequently represented in memory

Ad hoc categories
- It is easy to rate typicality for newly made up categories
 - Things to take with you when your house is on fire
 - Things to take on vacation
 - Things to see in Paris
- These are not likely to exist pre-structured in your mind
- Maybe all categories are constructed on the fly from more basic representations—Barsalou

Beyond Mere Similarity
- Similarity (or resemblance) is crucial to both prototype and exemplar theories of categorization
- Categorization by similarity is a useful heuristic
- However, we rely on more than similarity when judging category membership
 - A painted, flattened lemon is still a lemon
 - A well-done counterfeit bill is not a $20 bill
 - A raccoon with a strip painted on it is still a raccoon, not a skunk
- We seem to invoke theoretical knowledge: “genetics” determines animal categories
Categories in Other Cultures

BAYI: men, kangaroos, possums, bats, most snakes, most fish, some birds, most insects, the moon, storms, rainbows, boomerangs, some spears, etc.

BALAN: women, dogs, platypus, echidna, some snakes, some fish, fireflies, scorpions, crickets, the hair mary grub, anything connected with water or fire, sun and stars, shields, some spears, some trees, etc.

BALAM: all edible fruit and the plants that bear them, tubers, ferns, honey, cigarettes, wine, cake
Categories in Other Cultures

BALA: parts of the body, meat, bees, wind, yamsticks, some spears, most trees, grass, mud, stones, noises and language, etc.

Problems with Similarity Judgments

- Context Effects:
 - On a 5 point scale, how similar are Italy and Switzerland?
 - Comparing Italy, Switzerland, and Brazil
 - How similar are Italy and Switzerland?
 - In this context, people's similarity rating for Italy and Switzerland goes up

Similarity and Multi-dimensional spaces
Failure of Symmetry

- Symmetry Principle: \(d(x,y) = d(y,x) \).
- If symmetry held:
 - \(d(\text{Cuba, China}) = d(\text{China, Cuba}) \)
 - \(d(\text{butcher, surgeon}) = d(\text{surgeon, butcher}) \)
 - \(d(\text{FDR, W}) = d(W, \text{FDR}) \)
 - \(d(\text{pomegranate, apple}) = d(\text{apple, pomegranate}) \)
- But people judge:
 - Cuba is more like China than China is like Cuba
 - A butcher is more like a surgeon than a surgeon
 is like a butcher
 - W is more like FDR than FDR is like W
 - A pomegranate is more like an apple than an apple
 is like a pomegranate

Failure of Triangle Inequality

- Spatial representations predict that if A and B are similar, and B and C are similar, then A and C have to be somewhat similar as well (triangle inequality)
 \[
 d(a,b) + d(b,c) \geq d(a,c)
 \]
- However, you can find examples where A is similar to B, B is similar to C, but A is not at all similar to C
 - Violation of the triangle inequality
- Example:
 - Watch is similar to bracelet
 - Watch is similar to clock
 - Bracelet is not similar to clock
Failure of Identity

- Markman and Gentner—cross-mapping analogy
 - Man from food bank gives food to woman
 - Same woman gives food to squirrel
 - Woman in first picture maps to (more similar to) squirrel than herself