
diagram is static, it provides a basis for humans to reason about how the

whole mechanism generates a phenomenon (in this case, recognizing an

object or locating it in space) by performing the operations portrayed in the

order shown. In this manner, researchers can mentally simulate the operation

of the mechanism.

In thinking about the organization of a mechanism, humans start by

thinking sequentially. The edges in Figure 14(b) are thought to carry activity

from inputs at the bottom upward to higher processing areas. But the

researchers who developed the diagram were very much aware that in the

brain there are as many recurrent projections (neural projections from areas

viewed as later in a pathway to those viewed as earlier) and that each of these

areas sends and receives projections from regions of the thalamus and the

basal ganglia (see Section 5.4). One can add additional rectangles and arrows

to represent these, but it quickly becomes impossible to simulate the mech-

anism mentally. Instead, researchers often supplement a verbal and diagram-

matic representation of a mechanism with a mathematical one, developing

a computational model (Section 3.5). We will illustrate this in Section 6.3,

but first we turn to an account of explanation that proposes using computa-

tional models to supplant the need for mechanistic accounts.

6.2 Dynamical Systems Explanations

Researchers in the life sciences often compare their sciences to physics.

Explanations in many domains of physics appeal to laws that characterize

how variables describing a system will change over time (hence, dynamical

laws, often taking the form of differential equations). The explanation involves

a demonstration that from the law and a specification of conditions at one time,

one can derive what will happen at other times (Hempel, 1965). In many cases,

the application of laws is far from simple and requires computational simulation

to determine the consequences of the laws. Some cognitive and brain

researchers apply similar strategies to explain behavior, and some philosophers

have embraced these as fully legitimate explanations that do not require char-

acterizing a mechanism.

A common approach of these investigators is to characterize a state space –

a multidimensional space in which each dimension corresponds to a variable

that describes the system. Consider three dimensions on which a gas can vary:

pressure, volume, and temperature. Characterizing such a space would be of

little explanatory interest if in fact the system could evolve from any point in the

space to any other. What laws do is restrict the trajectory that the system can

take through the space. The gas law:
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Temperature x Gas constant x Moles of gas ¼ Volume x Pressure

ð6:1Þ

Imposes the restriction that when volume is held constant and temperature

increases, so must pressure. If the actual system is shown to be similarly limited

in its possible trajectories, then proponents of nomological explanations argue

that the laws characterizing the possible trajectories through the state space

explain why the system behaves as it does.

The gas law example (Eq. 6.1) does not specifically take time into account.

But other laws spell out how values of variables will change over time. These

give rise to what are termed dynamical systems explanations. Some dynamical

laws, such as xt+1 = xt + 1, are relatively simple: this law simply asserts that the

value of the variable x increases by 1 at each timestep. If that is what happens,

then the law explains why the variable follows this ascending trajectory. In

many cases, the law will involve a more complex equation and produce

surprising results. A mathematical function that is often employed to illustrate

complex behavior is the logistic map function, xt+1 = Axt(1 − xt). The reader is

invited to try various values of A between 3 and 4, picking an initial value of xt
between 0 and 1, and calculating the results for several steps. For example, with

A = 3.3, values will initially fluctuate (a period referred to as the transient) but

eventually begin to oscillate between two values (0.47943 and 0.82360). When

A is increased to about 3.5, the values, after the transient, will jump sequentially

between four values (approximately 0.49, 0.87, 0.38, and 0.83).11

These stable values are referred to as attractors – the idea is that values in

their proximity will move closer to (fall into) the attractor. Figure 16(a) shows

a two-dimensional state space in which there is just one fixed point attractor;

initial values anywhere in the state space will fall into the attractor at the center.

Sometimes attractors have a more complex structure, such as the cyclic attractor

shown with a dashed line in Figure 16(b). In this case, no matter where the

system starts, it arrives at a circle, around which it will progress indefinitely.

Sometimes a space may have multiple attractors so that, starting from different

points, the system may settle into different attractors. By representing a state

space and identifying attractors in it, researchers can determine how the system

will evolve from whatever point it currently occupies.

A much-cited dynamical model developed to explain animal behavior is the

Haken–Kelso–Bunz (HKB) model of coordination dynamics. It describes

11 The logistic map function is of interest because it can also demonstrate what is known as
deterministic chaos – for most values above A = 3.6, the function will trace out a continually
changing set of values without ever repeating, assuming one calculates the full real value of
x. For illustrations, go to www.youtube.com/watch?v=ovJcsL7vyrk.
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phenomena such as the coordination between one’s legs in walking (Haken,

Kelso, & Bunz, 1985). To experience what the model describes, place both

hands in front of you with the forefinger extended (Figure 17). Pretend your

fingers are windshield wipers on a car. In most cars, wipers move in parallel

(both tips move left, then both tips move right), but sometimes they move in an

antiparallel fashion (the tips come together and then move apart). Try each

pattern of movement, first slowly and then gradually faster. At slow-speeds

most individuals can maintain both patterns, but when they try to speed up, they

can only maintain the antiparallel pattern. The HKB model offers an explan-

ation. It starts by describing the movement with the equation:

Figure 16 Attractors in a two-dimensional state space. (a) A point attractor. (b)

A cyclic attractor.

Parallel Antiparallel

Figure 17 Parallel and antiparallel movement of fingers. Both can be

maintained at slow speeds, but at faster speeds, only the antiparallel movement

can be maintained. Figure by Hermann Haken released under the Creative

Commons Attribution-ShareAlike 3.0 License.
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V �ð Þ ¼ �a cos ’� b cos2 � ð6:2Þ

in which ϕ is the phase relation between the fingers (or limbs more generally)

and the ratio b/a is inversely related to the rate. In the state space described by

Eq. 6.2, when b/a is high, corresponding to a slow speed, there are two attract-

ors. However, when b/a is low, there is just one attractor. The loss of the attractor

at faster speeds, on the dynamical systems account, explains your inability to

maintain the parallel finger movement.

A notable feature of the HKB model is that the variable employed refers to

a feature of the phenomenon (the angle between limbs), not to any proposed

mechanism that is decomposed into components so as to account for the phe-

nomenon. Proponents of dynamical systems accounts maintain that one does not

need to enter into the nervous system to explain the inability to maintain the

asymmetric movement. The phenomenon itself has structure that provides

explanation (Chemero, 2000; Chemero & Silberstein, 2008). There are other

examples where, merely from the characterization of the structure of phenomena,

one can determine specific (and often unexpected) features of it. For example,

from knowing the structure of tides around the ocean, one can determine that

there must be a point in the ocean in which there is no tide. Likewise, from

understanding how the circadian clock, discussed in Section 5.1, responds to light

stimuli, one can infer that in some organisms, there is a time at which exposure to

light will cause the amplitude of the oscillations to become 0 (which is to say, the

clock will stop, as there is no longer an oscillation to represent time). This

necessity was in fact demonstrated before the mechanism of circadian oscillation

was known and does not depend on any details about the mechanism (Winfree,

1987; for discusssion, see Bechtel, 2021).

6.3 Dynamic Mechanistic Explanations

As we noted in discussing mechanistic explanations in Section 6.1, when

mechanisms depart from sequential organization, it becomes challenging to

simulate their behavior mentally. Even a simple feedback loop can present

a challenge. As many people are aware from examples like thermostat control-

ling furnaces, feedback loops can generate oscillations (the temperature will rise

after the thermostat turns the furnace on and fall after it turns it off).

Accordingly, when an intracellular feedback mechanism was proposed to

explain circadian rhythms (Section 5.1), it was expected to generate oscilla-

tions. But the question was whether the oscillations would be sustained indefin-

itely or dampen over time. To address that question, Goldbeter (1995) created

a computational model that showed that under biologically plausible conditions,
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the mechanism would instantiate a cyclic attractor (Figure 16(b)). He therefore

concluded that the biological mechanism implementing feedback could oscil-

late indefinitely. This explanation is much like that provided by the HBKmodel

in Section 6.2, but here the variables refer to hypothesized operations of the

components of the mechanism. Since in this case the explanation is a hybrid,

drawing upon both mechanistic decompositions and the use of computational

models to characterize the dynamical behavior of the mechanism, Bechtel and

Abrahamsen (2010) refer to them as dynamic mechanistic explanations.

Perhaps the best-known dynamical computational model in neuroscience is

the Hodgkin–Huxley model of the action potential. Hodgkin and Huxley (1952)

decomposed the current across the neuron membrane into components for

sodium, potassium, and other ions and developed an equation for how each

contributed to the currentIacross the membrane (Figure 18). From this they

produced an overall equation that described how the current changes as the

electrical potential changes:

Im ¼ Cm
dVm

dt
þ gKn

4 Vm � VKð Þ þ gNam
3h Vm � VNað Þ þ gl Vm � Vlð Þ:

ð6:3Þ

Outside

Inside

CM

INa IK

I

RK

EK

IL

RL

EL

RNa

ENa

E

–

– –+

+ +

Figure 18 Hodgkin and Huxley’s (1952) representation of the current I across

the membrane in terms of the currents for sodium (Na), potassium (K), and

leakage (l) due to other ions. E represents the membrane potential and R the

resistance for each ion.
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In Eq. 6.3, I is the current, Cm is the capacitance due to the membrane, Vm the

electrical potential across the membrane, VK, VNa, and Vl represent the potential

due to potassium, sodium, and leakage (other ions), and gK, gNa, and gl the

conductance for the various ions. n,m, and h are parameters used to fit the model

to data. From Eq. 6.3, one can generate the pattern of the action potential

(Figure 2).

Hodgkin and Huxley’s accomplishment, which earned them the Nobel Prize

for Physiology and Medicine, has been the focus of considerable philosoph-

ical controversy. Weber (2005) treated it as an instance of an explanation that

derives a phenomenon from a law. In the nomological tradition, laws are

typically distinguished from causal claims, and Weber (2008) subsequently

offered a revised account, according to which Hodgkin and Huxley offered

a causal explanation in which the ion currents caused the action potential.

While granting the usefulness of the model as a description of the action

potential, Craver (2006, 2008) has argued that it is not explanatory since it

does not include, let alone characterize, what he takes to be the critical parts of

the mechanism generating the action potential, the gates on the channels

through which ions are allowed to enter or leave the neuron. It turns out that

the coefficients of the parameters n, m, and h correspond to features of these

gates, but this was only discovered years later. At best, Craver allows,

Hodgkin and Huxley offered a sketch of an explanation that was only provided

later. More recently, Levy (2013) has argued that the model does in fact

provide a mechanistic explanation in so far as it presents the whole current

as arising from the aggregate activity of each of the types of ions. The second,

third, and fourth summed terms in the equation represent the current generated

by each ion as a result of the difference between its current potential and the

membrane potential. Levy contends that the Hodgkin–Huxley model captures

the crucial activities in the mechanism. As a result, it offers a dynamical

mechanistic explanation of how the changing concentrations of the ions give

rise to an action potential. This debate illustrates different stances philo-

sophers take on the nature of explanation and what is required to explain

a phenomenon.

6.4 Network and Connectomic Explanations

As we have seen in various sections of this Element, the nervous system, and its

various subparts, are often characterized as networks. The crucial idea of

a network is that it consists of entities (represented as nodes) and connections

between them (represented as edges). Networks are ubiquitous – any time

entities are connected, they can be represented as a network. But some networks
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have distinctive properties that are sometimes viewed as explaining aspects of

the behavior of the system instantiating the network.

One of the earliest examples of a network analysis was Leonhard Euler’s

solution to a problem posed by the bridges crossing the Pregel river in the

Prussian town of Konigsberg (Figure 19(a)): Can one cross each bridge just

once on a walk? He represented the different landmasses with a node and the

bridges with an edge (Figure 19(b)). From this abstract representation, Euler

proved no route is possible. For it to be possible to cross each bridge just

once, each node other than the ones representing the starting and ending

locations must connect to an even number of bridges. In this case, all four

nodes connect to an odd number of bridges; accordingly, such a walk is not

possible.

Starting in the mid–twentieth century, investigators identified a number of

important features of networks that determine the properties of any actual

system instantiating the network. Here we introduce just two concepts that

turn out to be extremely important for understanding the brain: small worlds

and hubs. To introduce these, we need to introduce some of the measures used to

describe networks. One is the average of the shortest paths between each two

nodes. A second is how clustered a network is: to how many of its neighbors

a node is connected. In a randomly connected network, the average shortest path

is short but clustering is low. In a regular lattice (a structure in which every node

is connected to each of its neighbors), clustering is high (since a node is

connected to all its neighbors) but the average shortest path is long. Watts and

Strogratz (1998) showed that many networks in the real world are more like the

Figure 19 (a) Map of Konigsberg with the river and seven bridges highlighted

by Bogdan Giuşcă and distributed under the Creative Commons Attribution-

Share Alike 3.0 Unported license. (b) Network graph, in which nodes represent

different landmasses and edges the bridges between them.
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one in Figure 20, in which the average shortest path is relatively short but nodes

are also highly connected to their neighbors (collections of nodes that are highly

connected to each other are often called modules). They call these networks

small world networks.

A third measure is how the degree, that is, the number of connections from

each node, is distributed. If degree is distributed normally (i.e., if values are

equally distributed about the mean and decrease with distance from the mean),

no node will be especially highly connected. But in many real world networks,

Barabási and Bonabeau (2003) showed the degree is not distributed normally

but according to a power law (a mathematical relation of the form y = ax−k). This

results in a few nodes being highly connected while most have few connections.

As illustrated in Figure 20, those highly connected nodes can be the basis for

a local module (provincial hubs) or can serve to integrate modules (connector

hubs).

A number of researchers have analyzed nervous systems in network terms. In

Section 4.2, we described how researchers produced a complete connectome for

the nematode worm C. elegans. This network turns out to have small world

properties. Developing connectome representations for other species at the level

of individual neurons is extraordinarily challenging, although researchers are

getting very close to having such a map for the fruit fly (which has about

100,000 neurons). Instead, researchers concerned with connectivity in the

Provincial hub

Connector hub

Figure 20A network with relatively short average path between any two nodes,

relatively high clustering, with some nodes having many more connections than

others and hence serving as hubs.
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neocortex of mammals have focused on connections between brain areas (e.g.,

BAs) and are analyzing these for their properties (Sporns, 2010, 2012). The

principles of short average path length, high clustering, and hubs all appear to

apply. Van den Heuvel and Sporns (2011) have further shown that the human

brain instantiates a rich club structure – a set of regions, each of which serves as

a hub, are more connected than would be expected even given their high degree.

Given their network properties, these brain regions are thought to serve as

a communication backbone for the whole brain.

Given the potency of concepts such as these to explain activity in networks,

Huneman (2010) argues for treating topological explanation as a distinct form

of explanation. In particular, he distinguishes it from mechanistic explanation

since it does not focus on the contribution of parts but only on how they are

connected. In more recent work, Huneman (2018) has addressed how topo-

logical andmechanistic explanations can be integrated. The basis for integrating

them is that topological principles provide a basis for understanding the conse-

quences of different modes of organization in biological mechanisms. When

topological principles such as small world organization suffice to account for

the phenomenon, it is the organization, not features of the individual compo-

nents, that explain the behavior of the mechanism (Levy & Bechtel, 2013).

6.5 Control Mechanistic Explanations

In philosophical discussions, mechanisms are often portrayed as ready to oper-

ate whenever their start or setup conditions are realized (Machamer, Darden, &

Craver, 2000). To experiment on mechanisms using techniques such as those

introduced in Section 3, researchers try to set up conditions in which they do

operate in a regular manner. However, in an organism, the continuous operation

of a mechanism is often not needed and can in fact be harmful (just consider

continually contracting the muscles in your legs). Instead, mechanisms need to

be activated and deactivated as needed by the organism. The same is true of the

machines human make. We do not desire a furnace to produce heat all the time.

Accordingly, we employ thermostats that turn the furnace on when the tempera-

ture drops too low and off when it is warm enough. The thermostat represents

a secondmachine that operates on the primary one, changing some of its parts so

that it operates in different ways at different times. Biological organisms are

replete with mechanisms that operate on other mechanisms. That is, in fact,

what neurons and neural mechanisms do: they control the operation of other

mechanisms such as muscles and glands.

There is an important difference between biological mechanisms and human-

built machines. We design machines to be controlled by us. We turn our car
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engine on or off, and when on, we control the fuel supplied to it through

depressing the accelerator. Who controls biological mechanisms? The short

answer is the organism itself. Recognizing this, Maturana and Varela (1980)

introduced the crucial idea that organisms are autopoietic: they build them-

selves by procuring matter and energy from their environments and directing it

into the synthesis of their own bodies. This requires control over procurement

and construction mechanisms. In addition, the tissues that make up organisms

are prone to break down, requiring organisms to detect failures and deploy

repair mechanisms (Rosen, 1972). In virtue of constructing and repairing

themselves, organisms are sometimes referred to as autonomous systems

(Moreno & Mossio, 2015).

Organisms are not agents over and above the mechanisms that constitute

them. Autonomy results from the actions of the mechanisms constituting an

organism. More specifically, it results from the deployment of control mechan-

isms. Like a thermostat, control mechanisms act on and change the configur-

ation of other mechanisms in light of conditions either in the organism or its

environment (Winning & Bechtel, 2018). To do this, control mechanisms must

make measurements (or utilize measurements made by other control mechan-

isms upstream of them). The measurement component of the control mechan-

ism results in the state of the control mechanism being determined by the value

of the variable being measured. Again, the thermostat provides a model –

a component internal to the thermostat is altered by the temperature in the

environment. Given the measurement, the control mechanism produces

a specific action on the controlled mechanism. This means that control mech-

anisms must be properly configured so that the changes that they make in other

mechanisms are appropriate to the circumstances that the organism faces.

The word autonomy includes the Greek words for self (autos) and law

(nomos), and thus signifies that an autonomous system sets laws for itself.

Civil laws set norms for behavior. In determining the behavior of other mech-

anisms, control mechanism likewise impose laws or norms that govern that

behavior (Winning, 2020). In the case of the thermostat, these norms ultimately

derive from the humans who build and set the thermostat. Biological control

mechanisms are not designed by humans. Rather, they are the product of

evolution. In the course of evolution, those control mechanisms are retained

that apply norms that enable organisms to maintain themselves and reproduce.

Those that do not disappear over the course of evolution.

One reason control mechanisms are so crucial to living organisms is that

organisms regularly confront different circumstances that require different

responses. They need to be able to adapt to these. Some circumstances repeat

and, like a thermostat, control mechanisms can direct the same response on each
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occasion. But organisms often confront novel situations that require tailoring

their basic mechanisms in new ways. To deal with these situations, control

mechanisms must exhibit a degree of flexibility, directing basic mechanisms to

operate in novel ways. In Section 10, we will explore ways in which control

mechanisms are organized so as to support creating effective responses to novel

situations.

6.6 Summary

We have introduced several different perspectives on explanation: mechanistic,

dynamic, and topological. Each appeals to different factors and seems applic-

able to specific phenomena. This suggests a pluralistic perspective, recognizing

different types of explanation. It also suggests that different perspectives might

be integrated, and we offered dynamic mechanistic explanations as one inte-

grated perspective. Lastly, we noted the importance of control in biological

organisms and described how the mechanistic perspective can be extended to

characterize control mechanisms.

7 What Are Levels in Neuroscience and Are They Reducible?

The term level is widely invoked in neuroscience, and researchers and com-

mentators often debate whether some levels should be reduced to others.

Unfortunately, the term level is used in a wide variety of senses. In this section,

we differentiate three notions of level that are prominent in discussions about

neuroscience and identify the implications of each for reduction.

7.1 Marr’s Levels (Perspectives)

David Marr, a pioneer in the development of computational modeling in

neuroscience (Section 3.5), began his book Vision (1982) with a critical

assessment of what he saw as the current state of the discipline.

Neuroscientists were accumulating many findings about how various parts

of the nervous system operate using techniques such as those discussed in

Section 3. But they were making little progress in providing an understanding

of how the brain works. On his analysis, this was due to focusing on just one

level, which he termed the hardware implementation level. Accounts at this

level focus on parts of the brain and how each operates. To make progress in

understanding the brain, he argued for the need for two other levels: those of

representation and algorithm and of computational theory. At the representa-

tion and algorithm level, he argued that researchers should treat the parts of the

brain as representing content and applying rules to manipulate those represen-

tations. Much of Marr’s own work was focused on the representation and
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