

SYSTEMS BIOLOGY

- Starting around 2000 a number of biologists started adopting the term systems biology for an approach to biology that emphasized the systems-character of biology: how multiple parts are integrated together in biological organisms
- In part, this reflected a growing frustration with reductionistic
- approaches to biology, especially molecular biology
- While they generated lots of valuable information, reductionists couldn't answer fundamental questions about how organisms function
- Systems biologists adopted a more holistic perspective—how are the various components of living organisms organized into systems
- Invoking network analyses to represent the integrated nature of biological organisms
- Invoking computational modeling to understand the dynamical behavior of biological organisms

MAPPING GENOMES

- In October, 1990, a project was launched to map the human genome: to determine the sequence of the three billion base pairs making up the 23 chromosomes found in human beings
- Two groups, one university based, one industry based, competed but on February 12, 2001 together published the first draft of the total human genome
- Expectations were high that knowing the sequence of base pairs would lead to major breakthroughs in both basic science and medicine, but the results have been far less overwhelming
- One thing the project did accomplish was to reduce the estimate of number of genes in humans from >100,000 to 20,000 to 25,000
- leading to a change in focus from genes coding for traits to understanding how their expression is coordinated in us and other organisms

THE OMICS

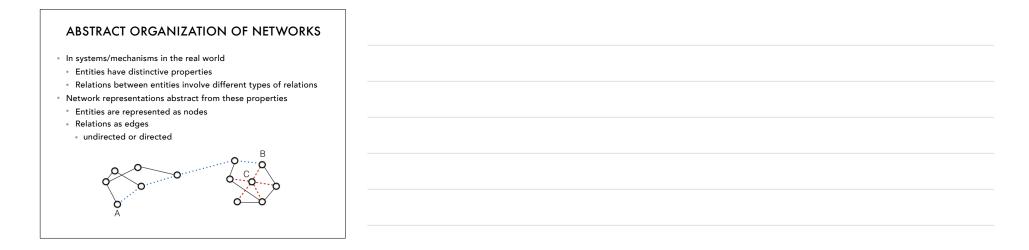
- Genome mapping gave rise to the field of genomics
- It involves more than gene mapping: focus on gene function, expression, etc. Goal of guantifying the class of molecules, specifying their structure and function, and characterizing their dynamic behavior
- It was soon complemented by other fields that focused on characterized the large numbers of entities that figure in living systems
- Proteomics: focused on proteins
- · Lipidomics: focused on lipids
- Metabolomics: focused on the small molecules that figure in metabolism

HIGH-THROUGHPUT DATA COLLECTION

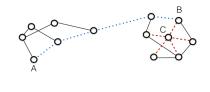
- In traditional biology
- Individual researchers or labs conducted experiments, collected data, and interpreted their findings
- Review articles brought multiple studies together to provide a view on the current state of inquiry
- Identifying large numbers of genes, proteins, small molecules, etc. involved in living organisms has required development of automated techniques that execute experiments, collect data, and perform analyses of it
- Employing novel methods: microarrays, yeast two-hybrid screens, etc.
- Pooling the data in large databases (sometimes curated by individual scientists)
- Deploying automated techniques to interpret (or aid interpretation) of the data

NETWORK SCIENCE

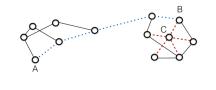
- Similar networks found across a vast range of disciplines, raising the prospect of universal laws of organization
- whole network level
- small sub-graph level
- meso-level (mechanism)



network

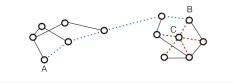

and edges represent binding

Protein interaction network from yeast-nodes are proteins


NETWORK MEASURES

- Path-length measures
- Shortest path length between two nodes is the minimum number of links that need to be followed to traverse from one to the other
- Efficiency: Inversely related to shortest path length
- Diameter: longest shortest path length
- Average or characteristic path length

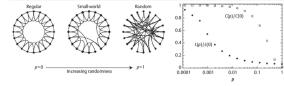
NETWORK MEASURES


- Clustering measures
- Clustering coefficient of a node: proportion of the possible linkages between nearest neighbors that are realized
- Clustering coefficient of a graph: average of clustering coefficients of nodes
- Clusters or communities: subgraphs whose nodes are highly interconnected

NETWORK MEASURES

Connectivity Measures:

- Degree or connectivity of a node k: the number of links between the node and other nodes
- Degree distribution P(k): probability that a randomly chosen node has degree k
- · Assortativity: correlation between degrees of connected nodes. Positive value indicates high-degree nodes tend to connect with each other
- Betweenness Measures
- · Centrality: Percentage of shortest paths going through a node (or link)


CLASSICAL FOCI: LATTICES AND RANDOM GRAPHS

- The 20th century pioneers of graph theory focused primarily on totally connected networks, random networks or regular lattices
- Characteristic path length (L): mean of the shortest paths (d) between all pairs of nodes
- In a totally connected graph L=1
- Regular lattice: L is very large
- Random graph: L can be very small
- Clustering Coefficient (C)
- For regular lattice: C is very high
- For random graph: C is very low
- Apparent tradeoff between keeping path length short and maintaining high clustering

SMALL-WORLDS: BETWEEN LATTICES AND RANDOM GRAPHS

- Watts and Strogatz (1998) identified a class of networks referred to as small worlds
- They start with a regular lattice and gradually replace a local connection with a longer-distance one
- Very quickly the characteristic path length drops to close to that for a random graph
- The clustering coefficient remains high through many replacements
- This identifies the range of small worlds

SMALL WORLDS

- Watts and Strogatz called these networks in the middle range small-worlds
- Showed that they occur widely in real world networks

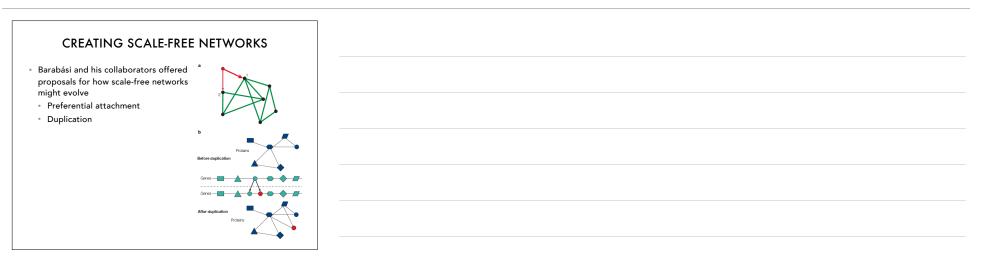
Table 1 Empirical examples of small-world networks Lactual Lnindom Cactual Crandom Film actors 3.85 2.99 0.79 0.00027 Power grid 18.7 12.4 0.080 0.006 C. elegans 2.65 2.25 0.28 0.05

E. ELEGANS NEURAL NETWORK	
 Based on serial electron micrographs, White et al. (1986) reconstructed the entire neural network of the 	
hermaphrodite nematode worm C. elegans • 302 neurons	
 approx. 5000 chemical synapses approx. 600 gap junctions Chemoreception circuit 	
 approx. 2000 neuromuscular junctions Watts and Strogatz showed that the C. elegans network constitute a small- 	
world	
Other sensory neurons	

THE FUNCTIONALITY OF SMALL-WORLDS

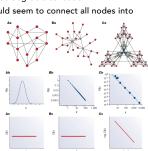
 "Models of dynamical systems with small-world coupling display enhanced signal-propagation speed, computational power, and synchronizability. In particular, infectious diseases spread more easily in small-world networks than in regular lattices." (Watts and Strogatz)

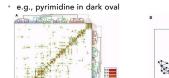
NODE DEGREE: FROM GAUSSIAN TO POWER LAW DISTRIBUTIONS
 Plausible assumption: node degree is distributed in a Gaussian fashion Exponential because "the probability that a node is connected
to k other sites decreases exponentially for large k." * Surveying webpages at U. of Notre Dame, Barabási and his
 colleagues were surprise to find a few nodes that had far higher degree than expected Rather than exponential, they fit a power law: probability of the degree of a node was 1/kⁿ
 No peak to the distribution When plotted on log-log coordinates it forms a straight line

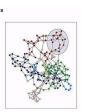

ROBUSTNESS AND VULNERABILITY

- Nodes with few connections can often be lost without compromising the integrity of the network
- "as many as 80 percent of randomly selected Internet routers can fail and the remaining ones will still form a compact cluster in which there will still be a path between any two nodes. It is equally difficult to disrupt a cell's protein-interaction network: our measurements indicate that even after a high level of random mutations are introduced, the selection terms.

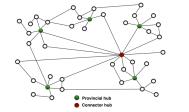
unaffected proteins will continue to work together."


 But loss of just a few highlyconnected nodes (hubs) can be catastrophic
 Networks fractionate

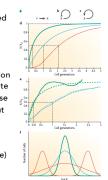

HIERARCHICAL NETWORKS


- On the surface, there seems to be a tension between high clustered modules and scale-free degree distribution
- Highly connected nodes would seem to connect all nodes into one common cluster
- Ravasz et al. (2002) introduced a procedure for constructing modular networks with scale-free degree by serially making three copies of modules and appropriately connecting them

MODULAR HIERARCHICAL NETWORKS: HIGH CLUSTERING AND SCALE-FREE


- To identify modules in the metabolic network of *E. coli*, Ravasz et al. develop an overlap matrix
- Indicating the percentage of additional nodes to which two connected nodes share connections
- Modules correspond to known metabolic grouping

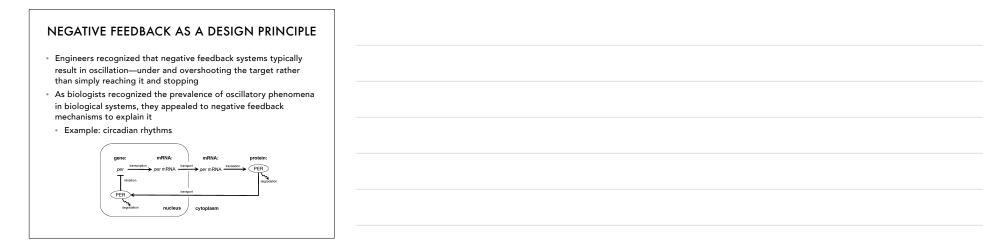
HUBS


- Nodes with particularly high degree are labeled hubs
- Some hubs form the core of clusters or modules: provincial hubs
- These hubs have most connections to other nodes in the module
- Some hubs connect the larger network but are not members of a common cluster: connector hubs

	WORKS TO SUBGRAPHS: ERY OF MOTIFS	
number of nodes) that occur r	 Uri Alon and collaborators identified subgraphs (consisting of a small number of nodes) that occur repeatedly within networks such as the transcription regulation networks in E. coli 	
 They dubbed those subgrap would be expected by chan 	phs that occur far more frequently than nee motifs	
 Raises important question about what counts as chance Major claims for motifs: They are building blocks of larger networks They carry out specific information processing functions 		

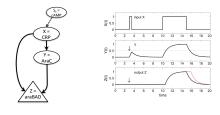
SIMPLE REGULATION

- Alon begins his analysis with single directed edges either between two nodes or from one node back onto itself
- In a transcription network, a single directed edge between two nodes will allow the first to increase the transcription of the second until it reaches steady-state
- Negative feedback allow for a faster raise in the concentration of the transcript but then leveling off due to the feedback. It can also reduce variability
- Positive feedback can yield slower rise followed by an inflection (s-shaped curve) and greater variability

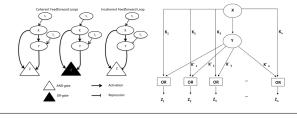


NEGATIVE FEEDBACK AS A DESIGN PRINCIPLE

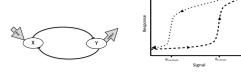
- A gene regulating its own transcription is a pretty simple idea that might not be thought to have much significance
- but it came to be recognized as a primary tool for regulating systems
- and applied in a wide variety of contexts from biology to social systems to engineering


hosphoen	olpyruvate
2ADP	Pyruvate kinase
Pyruvi	c acid
CO2 - COA SH	~ 2NAD+ `* 2NADH + H+
Acety	-CoA

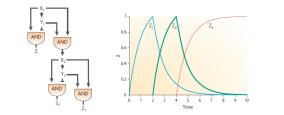
FEED-FORWAR	d looi	PS		
 Three node subgraphs containing a direct route from X to Z and indirect route through Y 	a Coherent FFL Coherent type 1 X	Coherent type 2	Coherent type 3	Coherent type 4
 Either route can produce activation or repression Coherent if both routes have the 	Z Incoherent FFL	L Z		T Z
same sign • Incoherent if opposite sign		type 2	type 3	type 4
 Treats Z as executing a Boolean function on its inputs Either an AND or an OR gate 	ہے م	L I _r s _x	L↓ ¢	لم z
 In E. coli and yeast transcription networks two of these appear more frequently than by chance 		r Sy	AN	- x [−] ↓ r [−] S _v ↓


PERSISTENCE DETECTOR

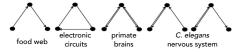
- Sign-sensitive delay element: input X must persist long enough for Y to be expressed in a sufficient amount before transcription of Z begins
- Prevents transcribing Z in response to random perturbations
- Also stops transcribing Z promptly when X is inactivated


OTHER FEED-FORWARD LOOPS

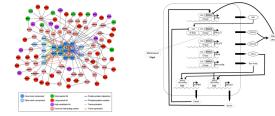
- When the AND-gate is replaced by an OR-gate in a coherent feedforward loop, transcription of Z starts immediately when X is activated, but continues in the face of short disruptions due to Y
- Multiple outputs with time delays enables sequential synthesis (e.g., of a flagellum in bacteria)
- With an incoherent loop, X will initially cause transcription of Z, but as Y builds up, transcription will stop, resulting in a pulse
- enables rapid generation of Z without the risk of generating too much

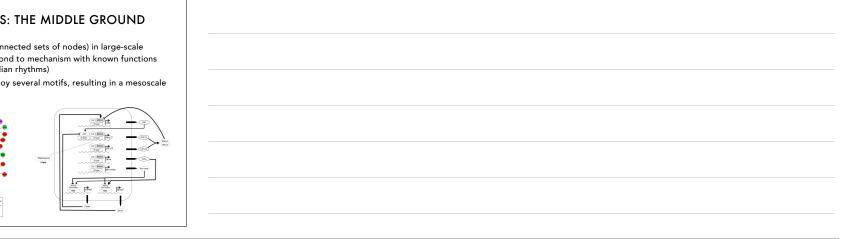

BI-STABLE SWITCH

- With appropriate parameters, a double negative feedback loop generates an especially useful property
- With increased input to one unit, it will switch off the other unit
- But the input to that unit must drop to a much lower value for the that unit to become active again turn it off
- The switch will remain stable in either position, not easily reverted to the other
- Useful in context in which it is important to maintain the sequential order of processes


COMBINING MOTIFS

- Network that governs spore development in Bacillus subtiles
- A process that bacteria undertake only in desperate circumstances
- The outputs Z_1 , Z_2 , and Z_3 each represent large numbers of genes
- The network combines two incoherent FFLs that each produce pulses and two coherent FFLs that generates a steady output


- In E. coli transcription network only variants of the feedforward loop qualify as motifs (>10 SD above freq. in random networks)
- In other networks, other subgraphs meet the condition for being a motif
- Alon is inclined to see motifs as adaptations—specifically selected for the roles they play in specific networks
- This has elicited considerable controversy
- One can, however, analyze the information processing role motifs play independently of the question of their origin



MECHANISMS: THE MIDDLE GROUND

- Modules (highly interconnected sets of nodes) in large-scale networks often correspond to mechanism with known functions (e.g., maintaining circadian rhythms)
- Mechanisms often employ several motifs, resulting in a mesoscale integrate system

