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PREFACE 

Connectionism is what happened when certain cogn1ttve scientists began using 
neural networks as a means of modeling cognition. This was probably the first strong 
indicator that cognitive science is a shape-changer that can endure by repeatedly 
incorporating new ideas and techniques. In the 1970s cognitive science received its 
name and a distinct identity as the intellectual home of researchers who produced 
new symbolic models of cognition by blending key developments of the 1950s and 
1960s: the cognitive revolution in psychology, the Chomskian revolution in linguist
ics, and the heady early days of artificial intelligence. By the 1980s what is now 
called "classic cognitive science" became more diverse in its disciplinary influences 
(e.g., certain philosophers, anthropologists, and sociologists became involved), but 
cognitive scientists continued to find unity in their allegiance to core assumptions of 
the symbolic approach and their commitment to interdisciplinary work. At the same 
time, a challenge to this unity was mounted by researchers who reached back to a 
slightly earlier era (the 1940s and 1950s) in which crosstalk between neuroscience 
and an emerging science of computation had yielded neurally inspired networks of 
units which achieved computation by propagating activation. The cognitive scientists 
who revived them in the early 1980s pressed the case that such networks should be 
embraced as a subsymbolic alternative to symbolic models of cognition, and referred 
to them as connectionist, neural network, artificial neural network (ANN), or parallel 
distributed processing (PDP) models. 

The first edition of Connectionism and the Mind appeared in 1991, approximately 
one decade after connectionism made its entrance. Battle for dominance between 
symbolic and connectionist modeling was at a peak. The first edition provided a 
primer on the computational basics of networks, then reviewed the battle, and in a 
final chapter discussed how a variety of disciplines might be affected by the rise of 
connectionism. Another decade has passed as this second edition goes to press, and 
the landscape has again been considerably altered. What is now sometimes called 
"classic connectionism" has become more established within cognitive science and 
some of its contributing disciplines, but it has faced new external challenges from 
transdisciplinary trends towards dynamical systems, artificial life research, and cog
nitive neuroscience. Some network modelers have been inspired to incorporate these 
trends into their work, resulting in less classic varieties of connectionism to which 
we give ample attention in this new edition. 
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Comt«timtim and tJu Mirtd (2002), like its predecessor, is written primarily for 
thoac who are curious but not yet knowledgeable about connectionism. For indi
vidual• who simply want to know what all the fuss is about and to navigate occa
sional encounters with networks, this book should serve as a one•stop shopping 
emporium. We envisage such readers to include advanced undergraduates with 
above-average interest in cognitive science, graduate students and faculty whose 
interests intenect those of connectionists, and individuals outside the academic 
world who have been hooked by a casual encounter with networks and want to know 
more. We also have kept in mind those graduate students in the cognitive sciences 
for whom this book may be among their first entry points into a field they intend to 
explore in much greater depth and perhaps make their career. The boxes and appen· 
dices offer them a little more detail than the text alone, and the cross-references to 
specific modeling software as well as the "Sources and Suggested Readings" at the 
end of each chapter should help guide their next steps. Finally, large portions of the 
book are relevant to those who want to update knowledge that is no longer current. 
We worked especially hard at finding the best avenues of explanation and examples 
of research for such challenging topics as dynamical systems theory. We hope we 
came close to meeting the goal that every reader find these topics both accessible and 
exciting. 

Both editions are distinctive in the extent to which they cover conceptual issues 
and philosophical inquiry into the mind while also introducing the nuts and bolts of 
connectionist modeling. This new edition of Connectionism and the Mind retains and 
updates the first three chapters of the first edition, in which the stage is set and a 
variety of connectionist architectures and teaming procedures are described (includ
ing worked-out examples of basic computations). As before, the next few chapters 
focus on theoretical claims and counterclaims. Certain well-known network models 
provided the original context for these arguments, but a number of proposals and 
models from the 1990s have been added in this new edition. Specifically, chapter 4 
(on pattern recognition) combines parts of the original chapters 4 and S and adds a 
new network model of logical derivation. Chapter S (on using networks rather than 
rules to perform such tasks as past-tense acquisition) combines parts of the original 
chapters 6 and 7 and adds more recent past· tense simulations. Chapter 6 (on issues 
of representation) combines parts of the original chapter 6 with a variety of new 
material. The final four chapters are entirely new. Each focuses on a different con
text in which network research moved beyond classical connectionism in the 1990s: 
modular networks and feature maps in chapter 7, dynamical systems in chapter 8, 
artificial life research in chapter 9, and cognitive neuroscience in chapter 10. 

The final chapter of the first edition was eliminated. Its predictions of the impact 
of connectionism on various disciplines now read more like postdictions (or in a few 
instances, misses) and need not be repeated. However, we regret that limitations of 
time and space prevented us from retaining and updating that chapter's coverage of 
enduring issues involving linguistics, philosophy, developmental psychology, eco
logical psychology, cognitive psychology, AI, and the structure of disciplines (in
cluding reductionism and the appropriate level for connectionist accounts). Readers 
interested in these issues should consult the first edition. (However, the implications 
of connectionism for developmental theory have more extensive treatments else
where now, e.g., Chapter 10 of McLeod, Plunkett, and Rolls, 1998.) Neuroscience is 
the one topic that was retained and expanded into a separate chapter in the new 
edition. A few key advances involving the eliminated topics found a place within 
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sections of the new edition: first, the entry of Optimality Theory into linguistics 
(section 1.5); second, progress on connectionist approaches to concerns in develop
mental psychology regarding past-tense acquisition (section 5.4), the nativism issue 
(section 3.3), and maturation (section 6.4); and third, network controllers for robots 
(sections 9.4-9.6). This last development (embodying interactive networks as the 
brains of robots) delighted us as an unexpected answer to our concern that in 
connectionism's first decade, "the network is dynamic, but the input is not." We had 
noted the potential of networks to model "the functioning of the mental system in 
dynamic articulation with the environment" and thereby "become increasingly eco
logical" (Bechtel and Abrahamsen, 1991 , p . 267). Network-controlled robots realize 
that hope, but we must leave to a later time any extended discussion of underlying or 
explicit relationships to ecological psychology. 

There are a few practical matters to address. The only mathematical background 
assumed for most of the material is basic familiarity with algebra, although more 
would be required to pursue networks or dynamics beyond the level presented here. 
To make the equations governing activity and learning in networks as accessible as 
possible, we use a mnemonic notational system and minimize the amount of detail 
presented. To provide concrete experience with the functioning of connectionist 
networks, we provide a step-by-step guided tour of several simulations. These origin
ally were run using the PDP software provided with McClelland and Rumelhart's 
Explorations in Ptualkl Distributed Procming: A Handbook of Models, Programs, and 
Exercises (1988). However, readers can get hands-on experience with almost all of 
the simulations by downloading updated software and user manuals from the web: 
PDP++ at www.cnbc.cmu.edu/PDP++/PDP-t+.html and tlearn at crl.ucsd.edu/in· 
nate/tleam.html. These simulation software packages also are supplied on disk and 
discussed at length in certain textbooks, as indicated in the suggested readings for 
chapter 2 and in the cross-references we supply with each particular simulation. 

The PDP books by David Rumelhart and James McClelland are still a touchstone 
for a wide variety of work on networks and we retain our coverage and conventions 
for referring to these books. The two 1986 volumes entitled Parallel Distributed 
Processing: Explorations in the Microstnlcture of Cognition are composed of 26 chap
ters, each of which was written by some combination of Rumelhart, McClelland, 
and the members of the PDP Research Group at UCSD. We refer to these chapters 
by their authors, date of publication (1986), and chapter number. For example, 
chapter t 4 (which happens to be in volume 2) is referred to as Rumelhart, Smolensky, 
McClelland, and Hinton (1986, in PDP:14). The third volume, which is the 1988 
book described in the preceding paragraph, is referred to as the Handbook. The PDP 
books use more than one notation, and it is somewhat different from ours. Appendix 
A compares our notation to that of PDP:2 and PDP:8, and also shows schematically 
at what point in processing each equation is applied. 
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j 
I· NETWORKS VERSUS SYMBOL 

SYsTEMs: Two APPROACHES TO 

MoDELING CoGNITION 

1.1 A Revolution in the Making? 

The rise of cognitivism in psychology, which, by the 1970s, had successfully estab
lished itself as a succeBBor to behaviorism, has been characterized as a Kuhnian 
revolution (Baars, 1986). Using Kuhn's (1962/1970) term, the emerging cognitivism 
offered its own paradigm, that is, its research strategies and its way of construing 
psychological phenomena, both of which clearly distinguished it from behaviorism 
(for overviews, see Neisser , 1967; Lindsay and Norman, 1972). This change was 
part of a broader cognitive revolution that not only transformed a number of dis
ciplines such as cognitive and developmental psychology, artificial intelligence, lin
guistics, and parts of anthropology, philosophy, and neuroscience; it also led to an 
active cross-disciplinary research cluster known as cognitive science (see Bechtel, 
Abrahamsen, and Graham, 1998). Its domain of inquiry centrally included reason
ing, memory, and language but also extended to perception and motor control. As 
the cognitive paradigm developed, the idea that cognition involved the manipulation 
of symbols became increasingly central. These symbols could refer to external phe
nomena and so have a semantics. They were enduring entities which could be stored 
in and retrieved from memory and transformed according to rules. The rules that 
specified how symbols could be composed (syntax) and how they could be trans
formed were taken to govern cognitive performance. Given the centrality of symbols 
in this approach, we will refer to it as the symbolic paradigm. 

In the 1980s, however, an alternative framework for understanding cognition 
emerged in cognitive science, and a case can be made that it is a new Kuhnian para
digm (Schneider, 1987}. This new class of models are variously known as conn«twnist, 
parallel distributed processing (PDP), or neural network models. The "bible" of the 
connectionist enterprise, Rumelhart and McClelland's two volumes entitled Parallel 
Distributed Processing (1986), sold out its first printing prior to publication and sold 
30,000 copies in its first year. The years since have seen a steady stream of additional 
research as well as a number oftextbooks (J . A. Anderson, 1995; Ballard, 1997; Elman 
et al., 1996; McLeod, Plunkett, and Rolls, 1998; O'Reilly and Munakata, 2000; Quinlan, 
1991) and new journals (e.g., Connection Science, Neural Computation , and Neural 
Networks). Clearly connectionism has continued to attract a great deal of attention. 

Connectionism can be distinguished from the traditional symbolic paradigm by 
the fact that it does not construe cognition as involving symbol manipulation. It 
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offers a radically different conception of the basic processing system of the mind
brain, one inspired by our knowledge of the nervous system. The basic idea is that 
there is a network of elementary units or nodes, each of which has some degree of 
activation. These units are connecud to each other so that active units excite or 
inhibit other units. The network is a dynamical system which, once supplied with 
initial input, spreads excitations and inhibitions among its units. In some types of 
network, this process does not stop until a stable state is achieved.1 To understand a 
connectionist system as performing a cognitive task, it is necessary to supply an 
interpretation. This is typically done by viewing the initial activations supplied to 
the system as specifying a problem, and the resulting stable configuration as the 
system's solution to the problem. 

Both connectionist and symbolic systems can be viewed as computational systems. 
But they advance quite different conceptions of what computation involves. In the 
symbolic approach, computation involves the transformation of symbols according 
to rules. This is the way we teach computation in arithmetic: we teach rules for 
performing operations specified by particular symbols (e.g., + and+) on other sym
bols which refer to numbers. When we treat a traditional computer as a symbolic 
device, we view it as performing symbolic manipulations specified by rules which 
typically are written in a special data-structure called the program. The connectionist 
view of computation is quite different. It focuses on causal processes by which units 
excite and inhibit each other and does not provide either for stored symbols or rules 
that govern their manipulations. (For further discussion of the notion of computa
tion, and whether it extends to the type of processing exhibited by connectionist 
networks, see B. C. Smith, 1996; van Gelder, 1995; and chapter 8, below.) 

While connectionism has achieved widespread attention only since the 1980s, it is 
not a newcomer. The predecessors of contemporary connectionist models were 
developed in the mid-twentieth century and were still being widely discussed during 
the early years of the cognitive revolution in the 1960s. The establishment of the 
symbolic paradigm as virtually synonymous with cognitive science (at least for 
researchers in artificial intelligence and computational modeling in psychology) only 
occurred at the end of the 1960s, when the symbolic approach promised great 
success in accounting for cognition and the predecessors of connectionism seemed 
inadequate to the task. A brief recounting of this early history of network models 
will provide an introduction to the connectionist approach and to the difficulties 
which it is thought to encounter. The issues that figured in this early controversy 
still loom large in contemporary discussions of connectionism and will be discussed 
extensively in subsequent chapters. For additional detail see Cowan and Sharp 
(1988), from which we have largely drawn our historical account, and Anderson and 
Rosenfeld (1988) and Anderson, Pellionisz, and Rosenfeld (1990), which gather 
together many of the seminal papers and offer illuminating commentary. 

1.2 Forerunners of Connectionism: 
Pandemonium and Perceptrons 

The initial impetus for developing network models of cognitive performance was the 
recognition that the brain is a network. Obviously, given the complexity of the brain 
and the limited knowledge available then or now of actual brain functioning, the 
goal was not to model brain activity in complete detail. Rather, it was to model 
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cognitive phenomena in systems that exhibited some of the same basic properties as 
networks of neurons in the brain. The foundation was laid by Warren McCulloch 
and Walter Pitts in a paper published in 1943. They proposed a simple model of 
neuron-like computational units and then demonstrated how these units could per
form logical computations. Their "formal neurons" were binary units (i.e. , they 
could either be on or off). Each unit would receive excitatory and inhibitory inputs 
from certain other units. If a unit received just one inhibitory input, it was forced 
into the off position. If there were no inhibitory inputs, the unit would tum on if the 
sum of the excitatory inputs exceeded its threshold. McCulloch and Pitts showed 
how configurations of these units could perform the logical operations of and, OT, 

and not. McCulloch and Pitts further demonstrated that any process that could be 
performed with a finite number of these logical operations could be performed by a 
network of such units, and that, if provided with indefinitely large memory capacity, 
such networks would have the same power as a universal Turing machine. 

The idea captured by McCulloch-Pitts neurons was elaborated in a variety of 
research endeavors in succeeding decades. john von Neumann (1956) showed how 
networks of such units could be made more reliable by sienificantly increasing the 
number of inputs to each particular unit and determining each unit's activation from 
the statistical pattern of activations over its input units (for example, by having a 
unit tum on if more than half of its inputs were active). In von Neumann's networks 
each individual unit could be unreliable without sacrificing the reliability of the 
overall system. Building such redundancy into a network seems to require vastly 
increasing the number of units, but Winograd and Cowan (1963) developed a pro
cedure whereby a given unit would contribute to the activation decision of several 
units as well as being affected by several units. This constitutes an early version of 
what is now referred to as "distributed representation" (see section 2.2.4). 

In addition to formal characterizations of the behavior of these networks, research 
was also directed to the potential applications of these networks for performing 
cognitive functions. The first paper by McCulloch and Pitts was devoted to deter
mining the logical power of networks, but a subsequent paper (Pitts and McCulloch, 
194 7) explored how a network could perform pattern recognition tasks. They were 
intrigued by the ability of animals and humans to recognize different versions of the 
same entity even when quite different in appearance. They construed this task as 
requiring multiple transformations of the input image until a canonical representa
tion was produced, and they proposed two networks that could perform some of the 
required transformations. Each network received as input a pattern of activation on 
some of its units. The first network was designed to identify invariant properties of 
a pattern (properties possessed by a pattern no matter how it was presented), while 
the second transformed a variant into a standard representation. Because their inspira
tion came from knowledge of the brain, they presented evidence that the first type 

of network captured properties of the auditory and visual cortex, while the second 
captured properties of the superior colliculus in controlling eye movements. 

Frank Rosenblatt was one of the major researchers to pursue the problem of pattern 
recognition in networks. In his elementary peruptron, a single layer of McCulloch
Pitts units (shown as triangles in figure 1.1) received input from sensory units. Each 
McCulloch-Pitts unit was influenced in its own way by the input activations, as 
determined by a modifiable connection with each input that could range from strongly 
inhibitory to strongly excitatory. Whether the resulting activation was sufficient for 
the McCulloch-Pitts unit to fire depended upon its threshold (t). In this example, 
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Ftf!ure 1. / An dt>menrary (>t"H'eptrnn, as inn:stil(ated lw R<>S<.'nhlatt ( I 958). Inputs are 
supplied on tht" four sensury umt:> on the left and C>utpurs art- produc~:d on the two mnror 
units at the bottom. The network's computauunal units an: the two :\kCulloch-Pttts 
neurons (lar~e trian~:les). t'llch of wh1ch has an inhtbitorv conne<·tion to a threshold unit 
(small dark ctrcles). Each omersection between horizontal und n·rrtc:al ltnes reprt"st"nts 
the ~ynapse of one sen:<<>r~· unit em one uf the :\Ic<.:ullm·h-Pitts neurons. This wa~ of 
diagramming a n.:twork armng"~ th" 5~ napses such that, if th<·ir mudili.tbl.: weights w.-r.
shnwn, they would be m tabular format. Rcprint.-d with p<·rmission from J. 0 . Ccm.tn and 
D. II. Shdrp (l9R8) :"'lieumlowt:o. 1111d olrtilkial intdlil(.:ncc, /)o~dalttt , 117, p. 9\J. 

the output was sent to a motor unit (not an essentiJl pclrt of the nn.:hitecture). 
Rosenblatt also explott:d net\\orks \\ith multiple layers of McCulloch-Pitts units, 
including ~orne in \\ hich later layers might send excitations or mhibitions hack to 
earlier layers. 

Roscnblnn differed from :\'lcCulloch and Pins in makin~ the strengths (c.·om
monly referred to as the tvl'~J?hls) of the connections ,·ontinuous rather than binary 
and in introduc ing procedures for changin){ these \\eights so that perceptrons could 
learn. For elementary pe::rceptrons, Rosenblatt's procedure was to have the network 
generate, usin~ existin~ weights, an Clutput for a gh en input pattern. The \\eights on 
connections feeding into <tny unit that ga\'e what was judg-ed to be an i11rorrert 

response were changed; those feeding into units gi,·ing the correct response were 
not. If the unit was off when it should ha\'e heen on, the weight on the connection 
from each ani\'e input unit was increased. Conn:rsdy, if the: unit was on when it 
:<hould ha\'e heen off, the weight from each actin: input unit \\llS reduced. Rosenblatt 
offered a proof of his important Perccptron Con\'ergenct' Theorem with respC<'t to 
thts trainmg procedure. The theorem holds th.u if a set of weights extsted that 
would produce the correct rt·sponscs to ' ' set of p.ttterns, then through a tinttc 
number of repetit ions of this trnining procedure the net\\ork would in fact learn to 
respond wrr~·ctly (Rosen hiatt, I \161; sec also Block, llJ62). 

Rosenblatt emphasir.ed how the perecptron ditft•rcd from a symho.lic processing 
system. Like 'on "<eumann, he focused on statistical patterns on:r multiple units 
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(t•.g., tht: proportion of units activateJ by an input), and \ icwcd noi~e and , ~triation 
as essl'ntial. He contended that b)• building a system o n smtisttcal rather than logical 
(Boolean) principks . he had achie\'ed a new type of information prm:essing system: 

It ~c..-ms <'k ar thm the d as' I l><''<'eptron imrndun·s .t "'-'" kind of infnrlll.ttinn prnt·o::.o<
lll)( automaton: Fc•r th<· ti r~t lime , we h;l\·.- u m;whinc which is c.:up<thlc uf h,l\ 11111 .. ri
l.(ill<ll ><1<-ns. As an annlugtll' ol' tht: hiulo,l(tcal b:ram, tht" P<' '<'l'ptron, mnr•· pr,·cisd y, tlw 
thc . .'J:fr~ l>f ,.,r-aristh:ttl ~l·p,,rahi1 i ty, sl~crns to conll~ do.scr co tnt.·t• ting thl' n·quirLn'lcnts uf ~~ 

fl•nt·tion,ll cxplunatu>n of th<· ncn·nu~ S \ Sll'm than any system pn·,·iuusl} proposed. , , . 
:\$ a <ctn«pt. it would S<'elll th,1t th<· P<'H'eptron has <'Stnbl i~hld, heynnd duuht, th•· 
fe: l~>ht l ity nnd princtplc nf nnn-hum.tn lo\'>~t<·tn.« "hidt ma) ,•mhudy hum.m <'<>gmtiH· 
fum· t iun~ at alt:,·d far h<•yond thnt wluch c:tn be a~hic\·cd thwugh pn-s..·nt d.ty autnmatun~ 
Th .. futurt: <>I tnf•>rmdtion pr<>C<'ssin.l( d~vin·s which <1pcratc on ~tnttsti<-:l l, rather th;m 
lol!tC.tl pnnciples seems tn be clearh indtrat<•d , (Rosenblatt, Jl)$!!, p. ·H9: quutcd m 
Humdhart <tnd Zipsc:r, 19Sb, tn PDP::i , pp. 156-7) 

Oli\'er !;elfndge {I \159) \\as another of the early in\'estigators ()f the pattern recognt
tunt ~·dpahilit ies of network models. Unlike Rosenblatt, he assign•:d u p<~rtkular 
mterpret:ltton to each of the units in his network. One uf the p.ltt(:rn rel·ognitum 
t:t~ks he explored was recognition of l~:tters, a task that i!' made difficult l>y the fact 
thdt diffcrt·nt people \\rite thetr lt:tters <hfferently. He calh:d hts modd pmulemon
tum, t:.lpturing its reliance upon mgnitn:t' df!mom that performed computations in 
parallel "tthout attcntum 10 one another, e11ch of them "shouting out" its judgmu1t 
of what lc:ttcr had hccn presented (figure 1.2). These cognittvc demons t:ach special
o;.:ed m gathering t'\ iden<.e for one particular letter; the gre.uer tht· evidence the 
louder they shouted. The detision demon then made the tdentification of the letter on 
the ba::.is of~~ hich untt shouted the loudest. The evidence gathered by each c.:ognith e 
derntm was supplied hy a lower layer of jf!at11re demom. EaLh feuture demon rc
~pondt>d tf 1ts leature (e.g., a horizontal bar) was present m the tmage. The f<'ature 
d<:mon \\as connected to JUSt those cognitive dt·mons \\hose letters contained its 
ft•atu re. Thus, a ,:ognitive demon would respond most loudly if all of irs feature$ 
were present in the tma~e. and less loudly if some but not all of its feiltures were 
pn.:scnt. One ot the \ trtues of this type of network is thdt it \\ ould !'till tnake a correc t 
or pldusiblc judgment 11hout a letter e\·en if some of tts features \1 e re missing or 
at ypt<' <~l {see Selfridge, 1959; Selfn dge and ::\eisser, 1960). 

Early researchers recognized that, in addition to modeling pattern ret·ognition, 
networks might be useful as models of how memorit:s were established . In p<trticu
lar, resl'a rcho:rs were atrrat.:ted to tho:: pmhlem of how networks might store associ
ations between different pattern:-. An extremely influential proposal \\<IS den?l<~pcJ 

by Donald Hebb (I 9+'J), who suggested that when two neurons in the brain were 
jointly active, the strength of the connection mtght be increased. This idea was 
further den-loped by \\'ilfrid Taylor (1\156), who explored networks of analog unots 
th.n took acti\'ations \\ ithin a continuous range (e.g., 1 to+ I) . In the network hl· 
proposed, a single set of motor units was connected to two Jifferl·nt :;ets o f sensory 
units (which w..- will call the base units and the lenmwg units). The network was set 
up such that each p.lttern on the base units was associated with a pattern on the 
motor units. A Jifft·rcnt set of patterns was defined tor thc learninR units. !\"o 
associations to the motor units were specified, but each learning unit pattern was 
assigned an a~sociatwn wtth "nc base unit pattern. \Vhen the network was run, the 
assodatcd Sl·nsor)' patterns were :ll'ttvated at tht: same time. The C \ entual outcome 
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was that the learning units al·quircd the ability to Renerntc the same motor patterns 
as the base units with which they wen: associated. 

Another researcher who pursued this type of associati,·e memory network was 
David Marr ( 1969), \\ho proposed that the cercbdlum is such a network which <.~dn 
be trained by the cerebrum to mntrol ,·oluntary mm·ements. The cerebellum con
Sists of fh e different kinds of cell or unit, With the modifidble connections lyin~ot 
between the granule cells and Purkinje cells. The l)thcr c.-ell types sene to set the 
lirin~e thresholds on these two cell types. The development of connections between 
the granule cells Jnd PurkinJe cells, he proposed, underlay the learning of sequencc.-s 
of \'uluntary mm·ements m nctl\·ities like playing the piano. l\Jarr ~ubsequcntly 
proposed models for the operation of the hippocampus (Marr, 1971 ) and neocortex 
(M11rr. 1970). 

The early history of nct\\nrk models we ha\'c summarized in this section indicates 
that then• was an active research program de\'oted to exploring the rognifit•e signifi<.·
ance of such net\\orks. It is important to emphasize that while some of this research 
was ell.plicitly directed at modeling the brain, for Rosenblatt and some other re
searchers the goal \\8S to understand cogniti,·e performance more generally. The 
relative prominence of research de,·oted to network models diminished in the late 
1960s and early 19i0s, as the alternative approach of symbolic modeling be<.,ame 
dommant. In section 1.3 we will examine what made the symbolic approach so 
attractive to cngnitive rel>earchers, and in section 1 .~ we will see that interest in 
networks declined until re\'ived by connectionism in the 198{k Finally, in section 
1.5 we will get an overview of connectionism's continued development in the I 990s 
\'ia alliances with other new approaches to cognition and end by raising the prospect 
of a rapprOt·hemenf w1th the symbolic approach. 

1.3 The Allure of Symbol Manipulation 

1.3.1 From logic to artificial intelligence 

The symbol manipulation v1ew of cognition has sevl.'ral roots. One of these lies in 
philosophy, in the study of logic. A log1cal system consists of procedures for mani
pulating symbols. In propositionallogtc the symbols are taken to represent proposi
tions (i .e ., sentences) and connecti\ts (e.g., and, or, if-then). Generally there is a 
clear goal in such mampulation. For example, m d'ductive logic we seek a set of rules 
thdt \\ill enable us to generate only true propositions as long as we start with true 
propos1tions. A system of such rules is spoken of as fruth prestrt •ing. The simple 
inference rule modus po11ms is an example of a truth-prest:rving rule. From one 
propos1t1on of the form If p, then q and another of the form p, we can infer a 
proposttion of the fMm q (where p and q are placeholders for spedfic propositions, 
c.j!., "If I think, then I exist"). 

\Ve ha\'C actually adopted two perspectives in the pre\'ious p<tragraph, and it is the 
relation between them that makes logic, and systems designed to implement logic, so 
po>werful. From one pcr~:pective, we treat the S} mbols for propositions as repn:s
t:ntational devices. For example, \\e conceive of a proposition as depicting a ~tate of 
uffairs that m1ght or mil{ht not hold in the world. From this perspective, we speak of 
a proposition as etther true (if the proposition wrresponds to the way the \~odd is) or 
falu (if it docs not mrrcspond). This perspecti\'e is ~enernlly kno\\ n in logic as a 
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11wdeltht'uretic pcr!:pl.-ctin~ . \Vt! think of a model as ..1 ~et uf ~nti(ies and propertle!: 
and idcnttf~ those prupos1t1ons as tme whose .1scripwms corn.'Spnnd to the proper
tics that the entities in the model al"tually posses:;. \\'ithin thts framc;:work we;: clln 
c\·alu.1rc whether a J)llttcrn of infcrt>ncc 1s such thm for an~ mudd in which the 
p rcrm,:es arc true. the condusion will also be;: true. Thl s~:cond pcrspc1.tt\'C, kn<}\\.n 
;1~ rhc proof theort:lic perspl!cth·e , focuses not on the rclatums between the prupost
tions and the cntiries thcr rcpn:senr, hut simply on rhc relations among rhc proposi
tions thcm:;eh·l.-s, construed liS formal entities. \\"hen we specify infen·nce ruks in a 
)u~ll.'al sysrem, we focus only on the syntax of tlw s~ mbols and d1:m:gard \\hat they 
tdcr to . \\'har ~-th es logic its power is, in parr, the possihiliry of intcl(rJting these two 
perspc1.·tivcs by designing proof procedures rhat nrc complete, that is. th:~t will 
enahk us to derive any proposition that \\ill be tru~: in all modds in which the 
premises arc true. 

The rclatton between proof theory and modl•l theorv gh cs rise to a n:ry pc)\n~rful 
1dea. If mtelligence depended only upon logical rcasonm~o:. for which the g-onl was 
truth prescn·atinn, then it would be possible to set up tormal proof procedure~ "h11.h 
will achieve intelligent perform;~nce. However, intelligence does not depend solely 
on ~ing able to make: truth-preserYtng inferences. Somet•mes we need to make judg
ments as to \\'hat is probably (but not neces.<;anly) true. This is the domain of indut"t
ifJe lnl(ic. The goal of inductive logic is to establish formal rules, analogous to the 
proof theoretic procedures of deducth·e logic, that lead from propositions rhat are true 
to those that are likely to be true . If such rules can be identified. then we may still be 
able to set up formal mference procedures that produce intelhgent performance. 

The crucial asl\umption in both deductive and mducuvl! lo£ic is that in making 
inft·rcnces mvolving a symbolic expressiOn, we constder only its form. We can 
dt~re~arJ the exprcssum's representational function , that is, \\ ht:ther it is true or 

not, and if true, \\hat state of affairs it describes. For example, the form of the 
l'Xpressit)n (p and (q orr)) is that of a particular connective (and) with two urgumcnts; 
one is a propositum (p) and th~: other is composed from :mother connecti\e (or) \"ith 
two propositional arguments ( q, r), Based just on the form c)f the exprest-wn, without 
km)\\ing anything ubout p or the other propositions, we infer p. If ( p and (q orr)) 

is in fact true this is a sound inference, but if it is false then p rna} or may not be 
true and inferring it risks error. Thus, it is important to take care that rhe initial 
expressions (premises) are true before undertakintc mfcrencc in a formal sy:.tcm 
Ont: ad\-antage gamed is the efficiency of attendmg only to form; another IS thilt the 
symbols may be reinterpreted (i.e., assi~oTOed new representational roles) without 
affecting the validity of the inferences made usin~o: them. 

The idea that intdligent ~:ognittve processes arc essentially pro~:esses of logical 
rcascmtn~ has a long history, captured in the long-hcld \ iew that the rules of lugtc 
constitute rules of thought. It is found in :luthttrs s uch as Hobbes, \\ho treated 
reasoning as ttself comparable to mathematical I.'Omputation and su~;:!(ested that 
thinking was simply il process of formal computatic>n : 

\\'hen a man rromurth, he docs nothinJ.: c•b:e hut cunc,•in: a J<u m h>t.ll. from odditirm of 
p:trccl~; or cnnu~in· a remamc.ler, from whtractirmof on•· ~um from another: \\hich, tf it 
lw done bv words, is cnncdvin~: of the .:•m~cqucncc <•f the namt'• of all the p~~rts. IC> the 
name of the \\hole; or from the name; nf the 11 holo: and one p:trt, 10 the nume of th<:' 
mhe r part. . . Thl·se ~>pemtions are nut incidomt to numbers onlv. hut ro .til rn:mner nf 
tlungs that can he added tog-ether. and taken from om· out of anoth•·r. Fnr as anthm•·u-
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c1m1s t•·ach tu add and subtract m nmnhas; S(l th.- g-comctridam< t•·ach tht· s.tme in (;,,., 
ftg11us. solid .md supc: rficHll, ang/n, pmpnrtimts, timrs, tlcl(re•·s nf sr~ifturss,foru. pmc-~r. 
.onJ thl· like; the l<>g-ictans teach the s;Ullt: in r.onuquc•nces u/ t~ords; :tdding- tog-ether two 
1111111es 1<1 rnakc an afjirmatimt, and two uffirmations to make a syllu~:ism; and mcwy 

>I ((,;:t.<ms tu mak•· n ,,,,,,,_, fwtum; .md frnm the Sl/111 or mudu.<tclll t>f a >yllogism, the~ 
' tthtr.tt'l one /Jffl/lfl.liii•lllln nne.! thl other. (Hohl)<'~ (lh51j, 191>2, p. 41) 
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Th~· 1deltof th ink in!-! as lo~~:ical manipuhuion of symbols w.ts further d1.·vdoped in th1. 
\\orks of r.uion.tliM~ sul.'h as Dl•sc.:artcs and Ldhniz and cmpiricillts su~·h lAx·k~ ,md 
Hume, all of \\hom ~.·on~.·ci\·cd of the s~ mhols as ideas, and formulated ruk-s for 
prupt·rly putting to~ethcr or taking apart id1.·as. 

\r irh the development of automata theur~ and physical computers in the mid
twentieth .:~ntury, there was a burgeoning of more ~ubtle ;tnd nried \'icws of sym
bol~ and symbol manipulation. From one pcrspcc.:ti\'C: (well charactcrii\cd in 
Haugdand, 198\ ), the: digiral computer is simply a device for implementing formal 
lol!ic:ul systems. Symbols are stored in memory regi~tcrs (these: symbols may simply 
bt' s.·quenc:es of Is and Os, implemented by 011 and nff settin~-ts of switch1.-s). The 
basic operntions of the computer allow recall of the symbols from memory and 
execution of <'hangcs in thc symbol!< according tel rules. In the earliest computers, 
the rul~s for transforming symbols had to be spel·ially wired into the machine, but 
one of the major br~akthroughs in early computer science was the de,·elopment of 
the swred program. The stored program is simply a :;equencc of symbols that 
dircl tly detc:nnines what operations the computer will perform on other symbols. 
The relation between the stored program and rhose other symbols is much like the 
relation ~tween the fom1ally written rule modus pu11cns and the symbol strings to 
which it ~.·an be applied. Like the formal rules of logk, the rules in the computer 
program do nut consider the semantics of the symbols being manipulated, but only 
th~ir form. This perspective has been given n \ anety of renderings by such theorists 
as D~nnett (19i8), Fodor (\980), and Pyl~shyn (1984). 

An alternative way to construe the semantics of computational systems \\aS of
fered by ~ewell and Simon (1981). For them, a computer is a physical symbol system 
lonsisttng of symbols (physical patterns), c:xprc:ssions (symbol structures obtained 
by placing symbol tokens in a physical rdation such as adjacency), and processes 
that operate on expressions. They pointed out that then: is a semantics (designation 
and intt"rprc:tation) within the system irsdf; specifically, expressions in stored list
processinl!( programs designatt- locations in computer memory, and these expres
sions can be interpreted by accessing those locations. They n·garded this internal 
~emantil·S as a major ad\-;\ncc over fonnal symbol systems such as those of logic, and 
;trgucc.l that tntt'lligt:nl.'c cannot be attdined wtthout tt: 

Th.- Pln·siral Svml.ol S t•s/<'111 l/yp111hesis. A phy>ical ~ymbt•l S\ ~tern ha~ the rn.·n-ss:try 
and ~uffici,•nt ~IO::ln~ fn~ g-eneral intclli~.:nt action . 

s, "nen:~s:tr>" we ml''tn that an~ syc,t<:"m th:11 exhibit~ u~m·r:~l intelli~tncc will pro,-c 
urn~ annl~··i~ w be a physic>1l symbol system. By "suftictent" Wl' mean th:u ;~ny phys
ical s\·mhol ·~ stt'm of ~ufficicnt size can he nr~::tnizcd further tu .-xhihit J.:<"Ocral 
Jntclhl!cnc·r. ('••well :tnd Stmon , 19SI, p. 41) 

:-.:cwdl ;md Simon rhus disagreed \\lth those •osznttive scientists who, in emphasizing 
the conrinuit\' hctwecn ~:ompurcrs and formal logic, retained the assumption that 
~~ ntax should be autonomous from scmanrics. They s11W cornputers as providing an 
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advantageous don!tailing of syntax and semantics that was not a\·ailable within 
ahstract formal logic. A similar difference in perspective arose with respect to what 
work the computer is regarded as carrying out. From a continuity pcrspcctin!, 
computers are pO\\erful devices for implementing logical operations: programs can 
be written to serve the same function as inference rules in a logical system. From the 
alternative perspective (Simon, 1967), it took work in artificial intelligence to show 
us that heuristics (procedures that might obtain the desired result, often by means of 
an intelligent shortcut such as pruning unpromising sean.:h paths) are often more 
ustful than algorithms (procedures that are guaranteed to succeed in a fin ite number 
of steps hut may be inefficient in a large system). 

Hence, work in artificial intelligence is rooted in formal logic, but has achieved 
distinctive perspectives by pursuing the idea that computers arc de\'il·es for symbol 
manipulation more generally. AI programs have replaced formal logic as the closest 
external approximation to human cognition; programs exist, for t:xample, not only 
for pro,·ing logical theorems or performing logical inference, but also for playing 
chess at a grandmaster's level and diagnosing diseases. The (partial) success of these 
programs has suggested to many researchers that human cognitive performance also 
consists in symbol manipulation. Indeed, until recently this analogy provided a 
locus of unity among cognitive scientists. 

1.3.2 From lintuistics to information processing 

Yet another root of the symbolic approach is found in Noam Chomsky's program 
in linguistics. In his rc\iew of B. F. Skinner's Verbal B~lun:ior, Chomsky (1959) 
argued that a behavioristic account was inadequate to account for the ability of 
humans to learn and use languages. Part of his argument focused on the creativity 
of language: Chomsky contended that any natural language has an infinite number 
of syntactically well-formed sentences, and that its speakers can understand and 
produce sentences that they had not previously encountered (Chomsky, 1957, 1968). 
This ability did not seem explicable in terms of leurned associations bet~een envir
onmental stimuli and linguistic responses, even if these were augmented by such 
processes as generalization and analogy. In Chomsky's view, Skinner had not suc
ceeded in adapting the constructs of behaviorism to the precise requiremt:nts of a 
linguistic account, and a quite different approach \\as needed. 

In particular, Chomsky de\·eloped the notion of generatit'e grammar: to write a 
grammar was to specify an automaton that could generate sentences. (which could 
comprise an infinite set if at least one recursive rule ~as included). One way to 
evaluate such a grammar was 10 ask whether it could generate all of the \~ell-formed 
sentences of the target language, and only those sentences. Chomsky described and 
evaluated several different classes of generative grammars with respect to naturo~l 
languages. Of particular importance, he argued that finite state grammars (those 
most conststent with a behaviorist account) were too weak even when they included 
recursi,·e rules. Tht:y could generate an infinite set of sentt!nces, but not the corr~ct 
set. Specifically, they were unable to handle dependencies across indefinitely lonj{ 
strings (e.g., the dependency between rf and then in sentences of the form "If A, th~n 
B" where A is indefinitely long) . T o handle such dependencies, at least a phrase 
structure grammar (and preferably a transformational grammar) was required. These 
grammars produce phrase structure trees by applying a succession of rewntc rules 
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(rules which expand one symbol into a string of subordinate symbols, each of which 
can itself be expanded, and so forth). I ndefinitcly long constitut:nts can be embedded 
within such a tree without affecting the surrounding dependencies. Transforma
tional rule~ (rules that modify one phrase structure tree to obtain a related, or 
transformed, tree) prodde additional power, bur the most important and enduring 
part uf Chomsky'~ argument is the rejection of finite stare grammars. 

Chomsky dewcd generative grammar as a model of linguistic comp('ttnce; that is, 
a model of the kno\\ kdge of their language that speakers actually possess in their 
minds. Although he pi•meered the use of (.tbstral~t) automata for specifying gram
mars, he did not intend to model linguistic perfornumre (the cxpressinn of com
petcncl! in specific, real-time acts such as the production and comprehension of 
utterances), nor did he implement his grammars on physical computers. Hence, 
his vers1on of cognitivism is somewhat more abstract than that of information~ 
processing psyl·hology. 1\'c\·erthelt:ss, many psychologists were inftuenced by 
Chomsky as they mo,·ed from behaviorism to information proces~ing because his 
~otrammars suggested ways to model human knO\\ ledge using linguistic-style rules 
(that is, formally spenfied operations on strings of s~mbols). 

Although Chomsky focused on linguistic compt:tencc, he did make some general, 
controversial claims about linguistic performance. One of these claims, that a pro
l~l'SS of hypothesis testing is involved in languag.: acquisition, bore implications that 
were fruitfully developed by jerry Fodor (1975). Before we can test a hypothesis, 
such as that the word dog refers to dogs, we must be able to state it. Fodor reasoned 
that this requires a language-like medium, which he called the language of thought. 
Further, since there is no way for a child to learn this language, it must be innate. 
Thus, Fodor contended that procedures for formal symbol manipulation must be 
part of our native cognitive apparatus. Fodor's argument represents a minority 
position within psychology, but virtually all researchers in the majority tradition of 
information processing assume some weaker version of a symbolic approach to 
CO!,'Tlition. 

1.3.3 Using artificial intelligence to simulate 
human information processing 

We have brieRy reviewed two strands of the symbolic approach: a strand leading 
from formal logic ro artificial intelligence, in which computers came to be viewed as 
symbol manipulation devices, and a strand leading from linguistics to psychology, in 
\\ hich human cognition came to be viewed likewise as consisting in symbol mani
pulation. In cognitive science, these two strands are often brought together in a coop
eratr,·e enterprise: the design of computer programs to serve as models or simulations 
of human {'Ognition. This raises a number of interesting issues that we can only 
briefly mention here (a number of penetrating discussions are available, e.g., 
Haugeland. 1985). Does a successful computer simulation closely approximate men
tal symbol processing at some appropriate level of abstraction, so that both the 
human and the computer arc properly construed as symbol processors? Or should 
true symbol manipulation be attributed to only one of the two types of system; and 
if so, to the human or the computer? On one view, the human is the true symbol 
manipulator (because, for example, the human's symbols are meaningful), and the 
computer is merely a lur~;e calculator or scratchpad that can facilitate the process of 
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dcrr,·ing predictions from modds of human performance (similar to the meteorolo
gist's usc of computers to calculate equations that describe the fluid d\·nami<"s of the 
arnwsphcn:, fur example). A contrasting \·iew holds that the comp~tcr is the true 
symhnl manipulator, and that human cognition is carrit"d our lJUite differently (in 
less brittle fa~hion, as might be modeled in a network, for cxampl4.!). Thl:'sc issues, 
"hilh ha,·c hl!cn troublesome for some rime, gamed increased salience with the 
rc,·mert-:ellCl' of network models in the J9ROs. \Ve turn now to a bncf history of 
m:rworks al' an altcrnath·e to the symbolic tradition. 

1.4 The Decline and Re-emergence of Network Models 

1.4.1 Problems with perceptrons 

By the 1960s substantial progress had been m:rde w1th both net\\ork .rnd ~vmholic 
:1pproad1es to machine intelligence. But this parity \\'as snon lost. Seymou; Papert 
pro,·iJed a whimsical account: 

Once upon a rime two dau~hter ~<· i .. nn·~ \\t're born to the n~w ~ci<'nc~ of cvbernet1cs. 
One sister was natural, with features rnhl·rited from the ~rudy of tho: brnin, from th~: 
way ll&ture uocs thin~$. The otht'r was aruficial, rdnt~d from the ht-l{rnnrng ro the trse 
of t·omputers. Eu.:h of tho: soster scienc.:s trot'd to burld mod..Js of mtellil(enct>, but from 
very differ~nt m.llerials. The L'lfltural sist~:r built models (called neural networks' out ut 
mathematically purified n~ur<tnl'$. The urtiticml sister built her muuds out of computt'r 
pro~,:r.tms . 

In th~ir lirst bloom of youth the two were ... qually successful and equ .. lly pur1<ued by 
suitors from other odds ot knuwl .. dge . The~ got on very wdl tngether. Therr rel.ttion
ship ,,hanl(eu in th~ "arly sixtit:s when a new monarch appeared, one with tho: larl(est 
coffers eve r s..·en in the kinydom of the scio:nc<"~: L<•nl DARPA, the Deftmse Depart
m•·nt's Advanced R.,senr<:h Proje<.t$ Al(t:ncy. The artoficoal sister grew Jealo)U$ and was 
dttermincd to keep for h..-rself th<· access to Lnrd DARPA's rese:m:h funds. The 
natur.tl sister would ha,·e to be slain. 

Tht- bloour work was attempted bv two staunch follower!\ of the arutic.:ral ~istl'f. 
:\larvrn .\Iinsky and Seymour Papert, cast m the role of the huntsman st•nt to slay Snow 
\\'hit" .mu brinl( back her heart as proof of the dt·cd Their weapon was not the dagger 
but tbt: mightier pen, from which came: a book - Pun•plr<~ns.. . . ( 19~8. p. J) 

C!t:;:~rly the public;ltion of Perc<•ptrmls in 1969 represented a watershed. Thereaftt'r 
research on nt!tWork models, such as perceprrons ;md pandemonium, no lon~er 

progn:sst•d apace with work on svmbolic models. Some researchers did continue to 
pursue and dc,·c::lop network models and in fact ~stablished some important prin
t:iplcs l{on rning network systems ($ce J. A. Anderson, I 972; Kohonen, I 972; 
Urossbcr~-: , 1976). But their work attracted only limited attention and funding. \\'hat 
is less dear is whether Minsky anJ Papcrt's hook precipitated the decline, or whether 
it \\as onlv a symptom. 

:\Iinsky and Papert's ohjcctivc in P .. rrf!ptrons was to study both the potential and 
limirati<ms of nct\\ork modds . They used the tool of mathematics to anah-/.e what 
kinds of compumtion l:ou ld or <:ould not hl' pc rfe~rmed with an ckmcntary p;n.:eptron 
(one in "hi..:h input units are l'onnectcd 111 a single: layer of :\kCulloch-Pitts units). 
The ccnt\·rpie<.:c o f their crrtu.jue ''as; therr dcmonstmtion that there are functwns, 
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such 3S thollt! detcrmin111g \\hethcr a ngure ts connected or whether the numher of 
dements is odd or even. which cannot be e \·,rlu.!tcd by such a network. An ex;tmple 
is the logical connective exdusit·e or (usually abbreviated as "XOR"). Tht! expres
sion P XOR q is ddined as true if p is true and q is not , or q is true and p i~ not. In 
order for a percept ron to compute XOR. it is necessarY to include: an additional l;n-cr 
llf ~lcCulluch-Pms units (now known as hidden 1111it;) betwc:en the input units ,;nd 
the original layer of McCulloch-Pitts units (nuw known as output tmits). While 
;\Iinsky and Papert re<·ngnizcd that XOR could ~ computed by such a multi
layen•d network. they raised an additional problem: there were no training proced
ures for multi-layered networks that could be: shown to com·erge on a solution. A~ 
we will discu;;s in section 3.2.2, an adaptation of Rosenblatt's train ing procedure for 
two-layer networks has now been devdope<.l for multi-layered networks. Hut Minsky 
and Pnpert raised further doubts about the usefulness of network models. En:n if 
the problem \\ere 0\ercome, would it be possible to increase the size of nct\\orks to 
handle: larger problems? In more technical terms, this is a question as to whetht:r 
networks will scale well. !\Iinsky and Papert offered tht! intuitive judgment that 
research un multi-layered networks would be "sterile.'' · 

The inability of networks to solve particular problems was, for many investigators, 
only S} mpromatic of a more fundamental pruhlem: the only kind of ~:ogniti\·e pro
cesses of which networks seemed capable wen! those mvolving associations. Vl.'ithin 
limits, a network could be trained to produce a desired output from a given input, 
but that merely meant that it had developed procedures for associating that input 
with the desirc:d output. Associationism was exactly what many of the founders of 
modern cognitivism were crusading agamst . Chomsky contended, for example, that 
finite automata or simple as."ociatlontsti~: mechanisms were inadequate to generate 
all the well-formed sentenl·es of the language. One needed a more powerful auto
maton capable of recursive operations for generating trees and manipulating them. The 
identiticatron of network models with associationism thus undercut their credibility 
and supported the pursuit of symbolic programs as the major research strategy in 
t:ognitive science. As we will see in chapters 5 and 6, man)' advocates of the symhoh~: 
tradition continue to fault modern comte~:tionism on precisely this ground. 

1.4.2 Re·emergence: The new connectionism 

In the early I 9!$0s the type of network res~.m:h pioneered b) Rosenblatt bt:g3n once 
again ro attract attention and to gain adherents within what had now become known 
as cognrri,·e science. Geoffrey Hinton and james A. Anders•m's ( \91! I) Para/Jel .lJodels 
t;j Arsociath·e .\!emory was. a harbinger, based on a \1)79 conference that brought 
together UCSD's core group of cognitive scientists (especially Oa\'id Rumclhart 
and Donald l'Oorman) with some ke y researchers who had never abandoned networks 
(e .g., Anderson,l·limon, Teu,·o Kohunen. and David \Villshaw) and others who were 
newly attracted to them (e .g .• Terrc:nce Sc:jnowskt from computational neuroscience 
and Jcrome Feldman from ~rtiticial intdligcrw e). Papers that employed networks 
to model \·arious cognitive performances began to appear 111 cognitin! journals. At 
the 1 9/l~ mel'ting of the Cognitiw St.il·ncc Sot:icty, two symposr<1 presented tht! net
work approach <lnd debated its role in co.l(nitive scit·nce. One, entitled "Connection
ism versus Rules: Thl! ::--.:ature of Tht:ory on Cognitive Science," featured Da,·id 
Rumt.'!hart and (jt:offrev Hinton advocatmg network modeling (connectiontsm) and 
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~enon Pylyshyn and Kurt \"an Lehn arguing that networks wc::rc inadequate de,·ices 
for achieving cognitive performance. Debate at that session and others durin~ the 
.:onference occasionally became acrimonious as these "new connectionists"! be!jdn 
to press their alternative and challenged the supremacy of the symbolic approach. 
Cnnnc.:tionil't research increased dramatically across the 1980s and became part of 
the established order in the 1990s, as departments hired young connectionists and 
many senior researchers added connectionist modeling techniques to their reper
tmre as tools to be employed for at least some purposes. 

An intriguing question is wh} connectionism should have re-emerged so ~trongly 
''hen it did. Probably there '~as a confluence:: of factors. First, powerful ne\\ ap
proaches to network modeling were developed around the c::arly 1980s, including 
new architectures, new techniques for training multi-layered networks, and ad
\'anccs in the mathematical dt$Cription of the hehav10r of nonlinear systems. 1\lany 
of rhese innovations could be applied directly to the task of modding cogniti\·e 
processes. S~:cond, the credibility and persuasiveness of some of the key innovators 
helped their message to get a hearing within cogniti\'e science. For example, in chap
ters 2 and 3 we discuss an important mathematical insight into network beha\'ior that 
was proposed by John Hopfield, a distinguished physicist. Anderson and Ros~:nfdd 
commented: 

John Hoptidd is a distinguished physicist . When he talks, pt'Ople hsten. Theory in his 
hands becomes respectable. l'\~ural networks becnme instantly legitimate, whereas be
fore, most developments m networks had been m the province of somewhat suspect 
psychologbns and neurobiologists, or by those removed from the hot centers nf SCI · 

entific acti\'ity. ( 1988, p. 457) 

Third, a related factor that was probably not essential hut helped jump-start the new 
developments was that certain people were in the right place at the right time (e.g ., 
Hinton and Anderson were visitors at tiCSD, a leading center of symbolic cognitive 
science that became a leading center of network modeling, especially parallel distrib
uted processing)- Fourth, cognith·e sdence had remained, either intentionally or 
unintentionally, somewhat isolated from neuroscience through the 1970s. In large 
part this was because there was no clear framework to suggest how work in the 
neurosd ences might bc::ar on cognitive models. But by the 1980s cognitive scientists 
began to see advantages in the neural-like architecture of connectionist models. 
Fifth, this attraction to networks was one reflection of a more general interest in 
finding a fundamental explanation for the character of COI>(nition. Rule systems, as 
they became more adequate, also became more complex. The desir~ for parsimony, 
which earlier had characterized behaviorism, re-emerged. S ixth, a number of investig. 
ators began to confront the limitations of symbolic models. While initially the ta~k 
of\\ riting rule systems capable of accounting for human behavior seemed tractable, 
intense pursuit of the endeavor raised doubts. Rule systems were hampered by 
their "brittleness," infiexibility, difficulty in learning from experience, inadequate 
generalization, domain spec1ficity, and tnefficiencies due to serial search. Human cog
nition, \\<hieh the rule systems were supposed to be modeling, seemed to be relam·dy 
free of such limitations. 

Cn$>!nitive scientists who were moti\'ated bv se\'eral of these factors became con
nectionists, and quite a battle ensued with ad\.;Jcates of the classic symbolic approach 
beginning in the mid-1980s. At the same time, though , de\·elopmcnrs within both 
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symbolic and network approaches often had the effect of softening the boundary 
berween them. Some symbohc modelers, focusing on the fifth and sixth factors listed 
above, sought unified frameworks for cognitive modeling that shared some attributes 
with nt'twork model~. ACT- R (juhn R. Anderson, 1')93; And~:rson and Leb1ere, 
1998) uses a localist network an·hitecture for its long-term memory and a production 
system architecture for operating on what is rt'trieved. The Soar architecture (Laird, 
Newell, and R()senbloom, 19~7) makes a production system do both jobs. However, 
as described in Newell's (1990) master work, Uttifit!d 1'heories uf Cog11ition, it seems 
to approximate the spirit of connectionist models in its simplicity {e.g., tine-grained 
rules compete in parallel with no conflict resolution attempted). 

On the connectionist side, some designers made hybrid modl'ls by implementing 
spcl·itic rule-bdsed accounts in connectionist architectures so as to gain advantages 
of both approaches (e.g .• Touretzky and Hinton, 1988; see section 6.2.1, below). 
Connectionists also found more general inspiration in certain approaches that emerged 
from the symbolic tradition shortly before connectionism itself emerged, and never 
fully resided in either the symbolic or connectionist camp; examples include schema 
theory and story grammars (Rumelhart, 1975), probabilistic feature models (Smith 
and !'vlcdin, 1981 ), symbol-based semantic networks with spreading activation (J. R. 
Anderson, 1983), prototype theory (Rosch, 1975), and scripts (Schank and Abelson, 
1977). Some of these can be given a connectionist implementation, arguably super
ior to the original theory. For example, schemata should be tlexible and easy to 
modify, but this is much harder to achieve in a symbolic than in a connectionist 
implementation (Rumelhart, Smulensky, McClelland, and Hinton, 1986, in PDP: 14). 
Also, a major effort to implement scripts in networks is the focus of chapter 7. Work 
that combined aspects of the symbolic and connectiomst approaches helped lay the 
groundwork for the more plural!stic, if not always less contentious, cognitive science 
that opc::ned the twenty-first century. 

1.5 New Alliances and Unfinished Business 

The big story of recent years, however, 1s not the softenmg of the boundary between 
symbolic and connectionist approaches. It is the ne\~ alliances that specialized sub
!!roups of connectionists ha,-e formed with other emergmg frameworks for under
standing cognitive and sensorimotor abiliti~:s. In this second edition we examine 
three such alliances. · 

• Dynamical approaches to cognition give long-overdue priority to the dimension 
of time, and the mathematical and visual tools of dynamical systems theory 
illuminate how certain types of connectionist networks achie\'e their success. 

• Embodied cognitio11 is the idea that mind cannot be understood only by modeling 
internal acti\·ity; it is crucial to extend inquiry outwards to the mind 's interactive 
couplings with the body and environment. Creating network controllers for 
robots provides a way of pursuing this idea, and usmg simulated evolution as the 
method makes them especially re)c\'ant to a new research field called "artificial 
life." 

• Cogrritive neuroscit!nce is a field that has thri\'ed recently due to the availability of 
new ways to m~:asure and form images of the activity of the brain during cog
nitive acti,·ity. Net\\ork modelers increasin~o1lY arc movmg their focus down into 
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th"' brain, tailoring the an :hitectun: and tasks JXrformed by nt:tworks to kno\\ 
lcdgl' ;~hour particular brain areas that has been gained not only from neuroima~ing 
but also from such trad itional methods <lS lesion studies. ERP. and single-~·cll 
rccurdin~ in animals. 

The~c new alliances will product· some uf the most exciting work of tht: first decade 
of the menty-tirst Cl'ntury. \Vhakwr their succeslo, though, they will leave some 
untinished business. For reasons that we still do not understand, systems with 
cnouf.!h parallel. di:mihutcd, dynamical, embodied and neurally grounded acti\"ity to 

uo just about anythin~ - perhaps e\·t:n achie,·in~ Turing equivalence - repeated!~ 

lind themselves in the same groon:s. Th.tt is, they beha,·e in '' ays th•lt c.m be closely 
approximated by symbolic models, and fo r many purposes it 1s the symbol it: models 
that arc most cnnvenient to usc. Th1s is especially dear in the case of language: 
net\\ Ork models of the brain's acti,·iues in processing J.mguage, however good they 
jlct, will not displace linguistics. The real challenl(e for connectionists w1ll not be to 
dt:feat symbolic theonsts, hut rather to come to terms w1th the on~oing rele\'ance of 
the symbolic level of analysis . That is, the ult imate new alliant:e may be as simple, 
and as difficult, as forming a new relationship with the long-time opponent. 

In most circles this ide<1 currently has little priority and few adherent!\. If the 
future of connectionism lies in yet <lnother alliance - one with the symbolic approach 
it has been opposing vigorously for years- a glimpse of that future is available now 
in Optimality Theory (OT ; see Prince and Smolensky, 1993). Th1s new linguis tic 
framework originated in an alliance between two people: Paul Smolensky. who was 
a major contributor to connectionism in the 1 980s, and Alan Prince, who was a 
majur opponent during that same period. Th~·y found t•ommon ground in the dis
con:ry that various phonological phenomena can be described using a uni\·ersal set 
of soft constraints to select the optimill output amnng a large number of <·andidates. 
.-\ given language has its own ngid rank orderin~ of these ,·onstraints, which settlt•s 
the numerous conH1cts between them. 

As a ,·cry simple example (see Tesar. Gnmshaw, and Prince, 1999, for the tl\'e
constrmnt \ersion from '' hich this is dra'h n). the constraint ='oCooA is , ·iolated hy 
any syllable ending in a consonant (the coda) and the l ... >nstraint Nol,..;sV is violated 
if a ,·owel is inserted in the process of forming syllables (the output) from a phoneme 
string (the input) . If these \\ere the only two constraints to cons1der (m fact there 
always are more), the input string {apot/ would be syllah1tled as .a.pot m a language 
that ranks Nol,..;sV higher (e g., English). but as .a.po.to. or some other ,·owd-final 
form in a language that ranks NoCooA hl!(her (e .g., Japanese). 'Working \\ith tal· 
enred collaborators, Smolensky and Prince de"eloped Optimality Theory into 'such 
an elegant an·ount that in just a few ) ears it came to dominate work in phonology. 

One unfinished task for opt1mality theorists i~ to ach1eve an equally compelling 
OT account of syntax. Another is to aehicw a wdl-moti\·ated intcrfare between OT 
nnd the network- like level that is assumed to be its substrate (see Prince and 
S molensky, 19()7, for the recent s tatus of this effort). As \\e will see in chapter 2, 
networks can he viewed as devices for constrnint satisfaction and hcn~:e should 
pnn·ide a fairly natural implementation of OT. In Smulcnsky's h,•rmonic grnmmar, 
for example, weighted connections can he uscu to optinuJh· ~.nisf) ., set of l in~tuistic 
constraints ( in accord w ith Smolcnsky's m«lrc ucncrdl H armony Theory; sec 
Smolensky, 19H6. in PDP:fl) . The problem is that the networks of harmonic ~ram· 
mar cng,JI-fC in competition qunntitari\·cl) - varioul' input piltterns and the "ei~hts of 
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'arious nmnectiuns can yield many different outcomes - hut a st ric t ranking of 
const raints always emerges at the higher level of descriptiun providl·d by OT. \\' hv? 
Nobody knows. Until that problem is soh·ed , the netwo rk lt:vel of description is ~~f 
J.mitcd explanatory ut ility with respect to OT. But the solution , when <~nd if it is 
found . mar create a mpprvdtt·mntt between network models and srmholic ill"counts 
that triggers an t>ra of dramatic progress in which ali1-:nmcnts arc found and used all 
the way from the nl·ural Jc,·el to the cogniti,·eflinguistic level. 

\Ve mention this future possibility in order to now put it aside. Class ic con
nectionism and irs battle" ith the classic symbulic approach till the next six chapters 
of this hook, <lnd the alliances that art' currently most inHucntial within connectionism 
.ue the fm:us of the last three chapters. Specifically, we introduce network <~rchitt•c
tures in t•hapter 2 and learning pro~..·cdures in c..h<tpter 3. Then some specific network 
m odels are presented in the conte:-ct of philosophical positions: some that are nm
l'urdant with cunnet·rionism in chapter 4, follu\n•d by hattlcs o\·cr rules in chapterS, 
and b!!ttles U\'er representations in chapter 6. A modular network implementation 
uf a quasi-symbolic framework, scripts, is pn::>ented in some detail in chapter 7. \Vc 
then mo\'e to alliances\\ ith the dynamical appruach in chapter 8 (a prickly alliance, 
it "ill be seen), artiticial life and embodied cognition in chapter 9, and cogniti\·e 
nc:um~cience in l·haptc:r I 0. It will become mcreasingly apparent in these later chap
ters that classic connectioni:~m is just one way of "doing networks" and that an era of 
pluralism is alrc:ady well under way. 

Nons 

If <>nc." 1.\c:rt• lrytng to nwdl'l 1he ongo1ing life u f tht: mind, AS nppo<ed to its n:sponse to a 
spe<"ifk mput, nne mit.:ht not want tht: network to really stabilize but only to achieve 
t<'mp<orarily ~tahlf' •rates, wh1ch mtght th"n b., di.rupt .. d by new input~ or other 1nrern:d 
prol't'SSes. 

2 The <'nrlle~t cnnncctiomsts Wt:n· not nt:ural net"ork modcl.rs of tht· nud-twenrieth t•en. 
tun· likl· Rn~l·nblatt , but .ts~ocoanomsts "ho nc\\ed hll(her-urder competen(ie~ as artsin~: 
!rom c:om>c:o..uon" amonJt ~impler demenls. For 'Wernicke m the l:llt: nmett:enth c"utur)' 
thl· dt'nlt'nt~ wert' neur>~lly realized sensory and motor .. ne.ldings: for Thorndike in the 
<'arl~· twen tieth cc:nrury thc:y wen: stimuli and responses. Each .:ailed h1s ;lpproach 
"l·onnc:c.:tu,nisnt. ·· 
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CONNECTIONIST ARCHITECTURES 

Cunnc:ctionist ncrworks are intncate systems of simple units which dynamically aJapr 
to thetr environments. Some have thousands of un1ts, but e\'t:n those with only a few 
unit>. <.:dn behave "ath surprising complexity and subtlety. This is because processing 
is occurring in parallel and inreractivdy, in marked contrast with the serial proct:Ssing 
to "htch we are a<.customed. To apprt:ciate the charactt:r of these networks it is 
necessary to nhserve them in operation. Thus, in the first section of th1s chapter we 
w11l descnhe a s1mple network that Illustrates several features of connectionist process-
in~. In the second se<.tion we will examine 10 some deta1l the various design principles 
that an~ emplo)ed in devdoping networks. In the final section we will discuss several 
appealing properties of networks that have rekmdled interest in using them for 
cognitive modding: the1r neural plaustbtlity, satisfaction of "soft constraints," graceful 
degradation, content-addressable memory, and capacity to learn from experience. 
Connectionists maintain that the investment in a new architecture is amply rewarded / 
by these gams but, as we will also note, tht:y must oven:ome some serious challenges. 

2.1 The Flavor of Connectionist Processing: 
A Simulation of Memory Retrieval 

We wtll begin b} descnbing a connectiomst model which McCidland (\981) de
~igned for the purpose of illustrating how a network can function··as a content
addressable memnry system. Its simple architecture convt:ys the Aavor of 
connectionist processing in an intuitive manner. The information to be encoded 
concerns the members of two gangs, the jets and the Sharks, and some of tht:ir 
demographic characteristics (figure 2. I). Figure 2.2 shows how this information 
is represented in a network, focusing on just five of the 27 gang members for read
ability. These figures are redrawn (including corrections) from McClelland and 
Rumelhart's HandbtJQk (1988, pp. 39, 41), which uses the ~an~ database for several 
exercises; there is related discussion by Rumelhart, Hinton, and McClelland (1986) 
in PDP:1 (pp. 25-31 ). In this section we present the results of several different runs 
which we performed on the jets and Sharks network usmg the iac (interactive 
activ.uion and compt:tttion) program in chapter 2 of the Ha,dbook. It will be seen 
that th1s stmple network could retrieve names of individuals from properties, re
trieve properties from names, generalize, and produce typicality effects. 
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The Jets and the Sharks 

Name Gang Age Education Marital Occupation 
5t.ltus 

Art Jets 40s J.H. Sing. Pusher 

AI Jets 30s J.H. Mar. Burglar 

Sam Jets 20s COL. Sing. Bookie 

Clyde Jets 40s J H. Sing. Bookie 

Mike Jets 30s J.H. Stng. Bookie 

Jim Jets 20s JH Div. Burglar 

Greg Jets 20s HS. Mar. Pusher 

John Jets 20s J H. Mar Burglar 

Doug Jets 30s H.S. Sing. Bookie 

Lance Jets 20s J.H Mar. Burglar 

George Jets 20s J.H Div. Burglar 

Pete Jets 20s H S. Stng Bookte 

Fred Jets 20s H S. Sing. Pusher 

Gene Jets 20s COL. Sing. Pusher 

Ralph Jets 30s J H. Sing. Pusher 

Phil Sharks 30s COL Mar Pusher 

Ike Sharks 30s JH Sing. Bookie 

Nick Sharks 30s H S. Sing. Pusher 

Don Sharks 30s COl. Mar. Burglar 

Ned Sharks 30s COL Mar. Book~e 

Kart Sharks 40s H.S. Mar. Bookte 

Ken Sharks 20s H S. Sing. Burglar 

Ear1 Sharks 40s H.S. Mar. Burglar 

Rick Sharks 30s H.S. Oiv. Burglar 

01 Sharks 30s COL. Mar. Pusher 

Neal Sharks 30s H.S. Sing. Boollie 

Dave Sharks 30s H.S. Div. Pusher 

Information ;~bout members of two g>~ngs, the Jer~ ;md Sharks. Reprinr.:d Figr~re ]. I 
hy pcrmtssion of author from J. L. .\ !cCidland (I 9H I) Rdrie,·inK g.-ner>ll and sp.-citk 
knowledge from storcd knowledge of spt·cific~ , Pmur·ditlf!S of til~ Tlurd Arrmwl ('rmfPTrtm• 

of tire' ( 'oJ!IItiWt' s.·it'IIU Sorit'ly C'opvrighr 1981 h~ J . L .\lcCielland. 

2.1.1 Components of the model 

Th~ most ~alu:nt components of a c:onnt:cnonil>t architecture art~ : (a) simple dements 
called rmtiS , (b) equa tions that determme .m attit.utirm value for each unit at t'.lch 
point in time; (c) ''eighted connectiom betwel·n untts which permit the activity of one 
unit to influence the activity of other umt~;; and {d) leaming rul<'s \\hich ~:hange the 
network's bcha\'lor by chan~;ting the weights of its connectwns. The Jets and Sharks 
model exhibits components (a)-( c), we dder the important topic of learning until later. 

(;1) Tire units There are ()g units m the ~·omplete m11del: a umr for "ach ).tang 
mcmbt·r (27 umts); a unit for each gan~ot member's n.lmt: (27 units); and a unit for 
each of the properties members can exhibit (I~ umts). The units are grouped mto 
seven clusters (the "douds" in figure 2.2); "1thin each cluster the units o<~re mutuall~ 
exd ust\e ' In addition to t\\u clusters for the members .tnd thc1r rlaml·s, there are 
fi, o: d ul-.ters for prnpcrt1es th<H distmgursh the member~ (age, occupation, mllriral 
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Fi~rrrr :!.:! .\lcCiclland's (1981) Jcrs and Shurks nerwork . Each KDnt,~ m .. mber is 
reprcsenred by on.- person unit (<·t'nt~r) that is connect.-d w rh.- appropriate name and 
prn!><'rty units. On!) 5 of the 27 mdidduals from figur.- 2.1 11re included in this tllu:;tratiun. 

Adapt"d (" ith wrrections) from J. L. \lc<.:ldland (I WII) Retrtevtng general and specific 
knowledge from stor~d kno\\ 1.-dge of :<pectlics, Prorurlitrgs •1! th; Third Am111al \rmJercr1u 
of tlrr• Cngmth'~ Scienu Soriel.\'. Copi'Til,(ht 1981 hy j. L. :\kCiell.md 

status, c:ducatiunal levd, and gang membership). Note that rhe names are regarded 
as a spec1al kind of property; the nllme duster is just one cluster among others 
around the peripher} . Each individual gang member is represented, not by his 
name, but hy a person unit in the center cluster that IS connected to the appropriate 
name and property units. As a notatiOnal convention in the equatiOns that follow, 
any of these units can be r.-ferem:ed by the \'ariables u (the unit of interest) and i 
(a unit that prm ides input to u). 

(b) At·tit·atious Associated With e;u:h unit is >1n acuvation \Ndlue, adit:ativn •. lni
rially ec~ch unit is set at a "rc~ting activation" of- 0.10. When a simulation is run, the 
activations vary dynamically between the values -0.20 and + 1.00, reflecting the 
effects of external input, the propagation of activation from other units in the system, 
and decay over time. External input is the activation of certain units by the environ
ment (in practice, the invcstigator, \vho wishes to observe the cffects). It is only the 
property and name units, howe\·er, that can recci\'c external input; for this reason 
they are referred to as the t ·isihle units, The person units cannot be directly accessed 
from outsidt: the network, and arc therefore rcf.-rred to as invisible or hidden units. 
Thdr only sourct: of change in m:tivlltion, hesides decay, is the propa~otation of 
acti\·auon from other units to which they arc connccrc:d. 

(c) ll'l'l/(/rt<•d comrections In this particular network, all connections are bidircctionul 
.md are assi!(ncd a binary w~·ight. \\'hcre,·er thcrt: is a r.:onncction from unit ito unit 
u \\ ith r~t'i)!hr • • there is a r.:om erse connection from unit 11 to unit i with z,·.,iJ:Irt,. of 
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folder until we find a student who took the class in question and received the 
specified grade. If we had known in advance that there might be different ways in 
which we would want to access the information in our filing cabinet, we could have 
developed an indexing system that would have told us where information satisfying 
certain descriptions would be found. For example, we might have constructed an 
index identifying by name the students in each class. But then it is necessary to 
identify in advance all the ways we might want to access the file. Furthermore, if we 
make errors in recalling the contents that are indexed (e.g., confusing our course on 
research methods with our course on statistics), the index is of little or no use. 

The disadvantages of the filing cabinet system are exhibited in a variety of memory 
systems. In computer systems, for example, information is stored at register locations, 
and the only way to access information directly is by means of the address of the 
location. Symbolic systems that are implemented on such computers often (although 
not necessarily) make some of the same assumptions about storage and retrieval. 
Serial search through separate items therefore figures prominently in memory re
trieval. Some such systems attain superior performance by means of intelligent 
search procedures that mitigate this difficulty. 

Connectionist networks offer a relatively natural alternative means of achieving 
content-addressable, fault-tolerant memory. The Jets and Sharks network provides 
a simple illustration. Properties could be retrieved from names, names from proper
ties, and so forth. We might even make a mistake on one property and still retrieve 
the right person. For example, we gave the network the task of remembering George's 
name and we described him as a Jet, in his thirties, junior high educated, and 
divorced. As an experiment, we deliberately made a mistake about one of George's 
properties (he is in fact still in his twenties). No one, in fact, precisely fits this 
description. But, since the connections only constitute soft constraints, the network 
proceeds to find the best match. The units for Jim and George become most active 
(0.31 after 70 cycles), while AI is slightly less active (0.30). Jim and George actually 
have identical properties and match on three out of four cued properties, while AI 
has different properties, but also matches on three out of four. Thus, even with erro
neous cues, the network has recalled the persons who best match what cues were given. 

The advantages of content-addressable memory are particularly evident in systems 
employing distributed representations; in such systems it is often possible, given 
part of a pattern, to reconstruct the whole pattern. A question arises, however, as to 
how we should characterize this sort of memory. Within symbolic systems remem
bering is a process of retrieving a symbol that has been stored away. But in 
connectionist networks, remembering is carried out by the same means as making 
inferences; the system fills in missing pieces of information. As far as the system's 
processing is concerned, there is no difference between reconstructing a previous 
state, and constructing a totally new state (confabulating): 

One way of thinking about distributed memories is in terms of a very large set of 
plausible inference rules. Each active unit represents a "microfeature" of an item, and 
the connection strengths stand for plausible "microinferences" between microfeatures. 
Any particular pattern of activity of the units will satisfy some of the microinferences 
and violate others. A stable pattern of activity is one that violates the plausible 
microinferences less than any of the neighboring patterns. A new stable pattern can be 
created by changing the inference rules so that the new pattern violates them less than 
its neighbors. Tlus view of memory makes it clear that there is no sharp distinction 
between genuine memory and plausible reconstruction. A genuine memory is a pattern 
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that is stable because the inference rules were modified when it occurred before. A 
"confabulation" is a pattern that is stable because of the way the inference rules have 
been modified to store several different previous patterns. So far as the subject is con
cerned, this may be indistinguishable from the real thing. (Hinton, McClelland, and 
Rumelhart, 1986, PDP:J, pp. 80-1) 

2.3.5 Capacity to learn from experience and generalize 

51 

A final feature of networks that makes them attractive is their capacity to learn from 
experience by changing the weights of connections. In addition to the Hebbian 
approach introduced in section 2.2.3, network researchers have developed a variety 
of procedures for gradually adjusting the weights of a network so that, if an adequate 
set of weights exists, the network will find them. One advantage of these approaches 
is that they generally allow networks to generalize beyond the training sets to give 
correct responses to new inputs. These learning procedures are the focus of the next 
chapter. They give connectionism a resource that may enable it to explain such 
things as learning a language or learning to do arithmetic, kinds of learning which 
are awkward to model symbolically. 

2.4 Challenges Facing Connectionist Networks 

In the previous section we have examined some of the touted advantages of 
connectionist networks. But there are, as well, some well-known challenges facing 
connectionist researchers. Some of these, such as catastrophic interference, we have 
already noted. Others, such as accounting for the productivity and systematicity of 
thought, are discussed in detail in subsequent chapters. A few others, though, should 
be noted here. One is that there are a large number of parameters connectionist 
researchers can manipulate, explicitly or implicitly, in setting up their networks. 
These reflect numerous decisions involving the architecture of the network, the 
activation and learning functions, and the means of encoding tasks to be performed. 
While manipulating this range of parameters may enable connectionist modelers to 
account for a wide diversity of cognitive performances, it also represents a potential 
weakness of connectionist modeling. If a given simulation succeeds in accounting 
for behavior with a fortuitous set of parameters, this may not be very informative as 
to how humans generate the behavior. 

Of particular note in this respect is the manner in which researchers encode the 
inputs and desired outputs for their simulations. By carefully crafting these, a re
searcher may simplify the challenge to the network and the resulting simulation may 
not significantly advance our understanding of human performance. Even if the 
simulation accurately characterized human performance, our explanation of the per
formance would then require us to determine how it is that the inputs and desired 
outputs for the cognitive system came to have that form. A greater risk is that the 
encoding used by humans is very different from that supplied by the researcher to 
the network and as a result the simulation does not correspond to the way humans 
perform the task. 

A final challenge facing connectionism concerns learning. As we will see in the 
next chapter, to overcome the limitations with Hebbian learning, connectionists 
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frequently adopt a form of gradient descent learning in which a repetitive process of 
changing weights ultimately enables networks to perform their task. But not all 
teaming is so gradual. At least in the case of human beings, some information can be 
teamed rapidly in one or two encounters. Also, some information is encoded in 
relative isolation rather than as part of a highly connected system. In illustration of 
both of these points, suppose that I am told verbally, "To make this thing work, 
push a candy bar through the slot in the center." I am highly likely to remember that 
rather bizarre instruction. This kind of learning is relatively easy to model in sym. 
bolic models, since it only requires encoding a new rule, but not in networks that 
learn by gradient descent. The Hebbian procedure we introduced in this chapter 
provides one way networks can achieve one-trial acquisition of idiosyncratic re
sponses. There are other approaches to connectionist learning, such as Kohonen's 
procedure for self-organizing feature maps which we discuss in section 7.5, that 
enable one-trial learning of distinctive information. However, it is not obvious how 
to integrate these approaches with the more frequent use of gradual learning. Since 
humans are capable of both sorts of teaming, one would hope that a unified account 
will eventually be· attained. 

2.5 Summary 

In this chapter we have presented a simple connectionist network (the jets and 
Sharks network), and examined some of the basic architectural features that can be 
employed in connectionist networks more generally. We have also examined some of 
the features of connectionist systems that have served to attract interest in them. In 
the next chapter we will examine in more detail the ability of connectionist systems 
to learn; then in chapter 4 we will tum to a cognitive task, pattern recognition, for 
which connectionist networks appear particularly adept. 

NoTEs 

Usually the word "cluster" is used for sets of items that are similar in some way, whereas 
here the items in each cluster form a contrast set. 

2 In fact , as processine continues, the activation of the person unit MIKE befins to drop 
again. The reason is that as ART and the penon units for gang membera most similar to 
Art grow in activation, they send increasingly inhibitory inputs to MIKE. 

3 The activation pattern across a layer of n units can be treated as a vector (directed line 
segment) in an n·dimensional space. 

4 The hidden units did not receive external input, so that term would always have a zero 
value for those units. 

5 Hopfield's E should not be confused with the measure of mean squared error that is used 
in deriving the delta rule. In boxes t and 2 of chapter 3 we call this measure Error, but it 
is often called E. 

6 When equation (9) is applied to a feedforward network, temperarure does not affect the 
time to reach a solution (because each output unit's activation is calculated just one 
time). If a learning rule is also being applied, however, high variability of response across 
different presentations of the same anput will make learning slower (which often is 
desirable). 
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LEARNING 

One of the features of connectionist systems that has been most attractive to re
searchers is the capacity of these systems to learn. In this chapter we first discuss 
alternative approaches to learning that were developed earlier than, and compete 
with, connectionism. Second, we describe and illustrate some of the principal learn
ing strategies that have been developed for connectionist networks. Third, we discuss 
two essentially philosophical issues that are raised by connectionist learning strategies. 

3.1 Traditional and Contemporary Approaches to Learning 

Treatments of learning generally divide along a major philosophical distinction, that 
between empiricism and rationalism. Empiricism and rationalism represent two 
major intellectual traditions that can be traced back at least to Plato and Aristotle. 
They were developed most systematically in the wake of the Scientific Revolution in 
the seventeenth century, which overthrew the then current Aristotelian theories of 
the natural world (according to which objects behaved in accord with their natural 
forms or essences) and of the human capacity for knowledge (which involved inter
nalizing the forms of objects). The distinctive claims of these two traditions have 
continued to divide contemporary disciplines such as psychology and linguistics. 

3.1.1 Empiricism 

The tradition of philosophical empiricism emerged in Britain and is associated with 
such theorists as Bacon, Locke, Berkeley, and Hume. The empiricists faulted the 
Aristotelian tradition for excessive dependence on established principles of reason
ing and for insufficient attention to our sensory experience of the world. For the 
empiricists, such sensory experience provided the only authority that we could 
employ if we sought truth. The empiricists' primary concern was thus epistemolo
gical: knowledge must be grounded in sensory experience. Also incorporated within 
their framework, however, was an account of psychological processes that became 
known as associationism. In this account, sensory experience gave rise to simple ideas 
(e.g., red, round), which then became composed into more complex ideas (e.g., 
apple). In this example, it is spatial contiguity that produces the association. For 
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Hume and others, temporal contiguity was also important, because it was viewed as 
giving rise to our idea of causation. Once associated, the idea of a cause could elicit 
the idea of its effect. Similarity was an additional principle governing the formation 
of associations in most treatments. The associationist approach was further de
veloped by psychological theorists such as David Hartley in the eighteenth century 
and James Mill, John Stuart Mill, Alexander Bain, and Herbert Spencer in the 
nineteenth century. J . R. Anderson and Bower (1973) offers a useful review that 
suggests four defining features of associationism: the notion that mental elements 
become associated through experience; that complex ideas can be reduced to a set of 
simple ideas; that the simple ideas are sensations; and that simple additive rules are 
sufficient to predict properties of complex ideas from simple ideas. 

A kind of associationism found expression in the behaviorist models of classical 
and operant conditioning, which were developed in the United States in the twentieth 
century. Here, the strategy was to limit the entities involved in the posited associ
ations to what could be observed by an investigator: environmental events (stimuli, 
reinforcements) and the behavioral responses of the organism. During the era 
when behaviorism dominated psychology, learning was the central topic of concern. 
Researchers actively investigated the efficacy of different ways of arranging the 
environment (by varying the timing and degree of reinforcement, punishment, contigu
ity, and the like). Some used the tool of mathematical modeling to develop general 
theories of learning. Learning was operationally defined as chanaes in the frequency 
of a particular response. The major limitation of this work was the lack of an 
adequate means of modeling what occurred insith the system as it learned. In fact, 
this limitation was regarded as a virtue: learning theorists preferred to regard the 
organism as a black box. Some investigators developed notions of mediated learning 
that referred to internal stimuli and responses, but had no way of actually building 
models of the internal events. They were intrigued, for example, by the ability of 
older children (but not younger children or animals) quickly to reverse the responses 
made to two kinds of stimuli when the experimenter suddenly reversed the contin
gencies. "Reversal learning" was regarded as a phenomenon that presented a challenge 
for learning theory. Although no solution was directly forthcoming, the limitations of 
behaviorism made some of its practitioners receptive to the information-processing 
approach that emerged in the 1960s. Hence, behaviorism has lost its pre-eminence but 
endures as a research tradition within psychology. 

3.1.2 Rationalism 

The other major intellectual tradition that the cognitive sciences have inherited 
is rationalism, represented by philosophers on the European continent such as 
Descartes, Spinoza, and Leibniz. Rationalism rejected empiricism's strong reliance 
on sensory experience and offered a different diagnosis of the problems with 
Aristotelianism (in particular, the fact that it had not achieved true knowledge). 
Rationalists did not seek to restrict ideas to those grounded in experience. Ideas, for 
the rationalist, were innate; what was critical in arriving at true beliefs was the way 
we reasoned using these ideas. Rationalists did not reject reliance on sensory experi
ence altogether. They proposed that it could tell us which of several possible coher
ent arrangements of ideas were actually instantiated in this world. But they insisted 
that far more basic than experience was careful reasoning using our native ideas. 
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The rationalist tradition has had its major contemporary impact in the discipline 
of linguistics. As discussed in section 1.3, Noam Chomsky (1957, 1965) moved away 
from the behaviorist foundations of structural linguistics and came to view his own 
generative grammars as essentially cognitive theories - models of human linguistic 
competence. The crucial core of that competence, Universal Grammar, is innate. 
Chomsky took a distinctly rationalist position with respect to learning as well . As 
early as his review of B. F. Skinner's Verbal Behavior, Chomsky (1959) countered 
Skinner's claim that a behaviorist theory could account for language learning, and 
by the time he presented the Beckman lectures at Berkeley (Chomsky, 1968), he had 
developed a mentalistic account grounded in Descartes' seventeenth-century ration
alism. One of Chomsky's main arguments, which came to be known as the poverty of 
the stimulus argument, contended that the sentences in a child's environment provide 
too impoverished a database to make it credible that ordinary learning can account 
for the child's competence; instead, the innate Universal Grammar must guide the 
child's inductions from input. 

In fact, two issues are combined in Chomsky's attack on behaviorist models of 
language acquisition. First, what role is played by innate knowledge in language 
acquisition? Second, for those aspects of a language that must be learned (e.g., 
particulars of the inflectional system), by what process does that learning occur? 
Language acquisition researchers within the Chomskian tradition initially put for~ 
ward the little linguist model: that the child formulates hypotheses and tests them 
against data (typically not consciously). With changes in linguistic theory, this became 
refined into the claim that the child is born with parameters that can be set to one of 
a small number of predetermined values; the incoming data are used to determine 
which setting is appropriate. In one version, the parameters are initially set to 
unmarked (default) values that can be reset on the basis of experience. For example, 
pro drop specifies that subject pronouns can be omitted, and is assumed unless the 
child encounters disconfirming evidence (as in English; see Hyams, 1986). There 
has been an ongoing tension in developmental psychology between those adopting 
the Chomskian approach, and those preferring an empiricist framework. Neither 
group has been able to offer a detailed model of the mechanisms involved in lan
guage acquisition. 

3.1.3 Contemporary coanitive sc:ience 

Chomskian linguists have continued into the 1990s as the contemporary representa
tives of a rationalist view of learning. Cognitive psychologists and artificial intelligence 
researchers, in contrast, initially tended to ignore learning. In formulating an altern
ative to behaviorism, they addressed questions on which immediate progress could 
be made using rule-based symbolic models: how information is represented in the 
mind, what kinds of memory systems are involved, and what processes operate on 
mental representations. Several factors resulted in increased attention to learning 
beginning in the 1980s; prominent among these was the rise of connectionist ap
proaches to learning. Some researchers in the symbolic tradition also exhibited a 
new interest in learning, but expressed that interest by designing rule-based systems 
that can learn. For instance, by the 1980s there was new work on learning by analogy 
and inductive procedures (e.g., j. R. Anderson, 1981; Holland, Holyoak, Nisbett, 
and Thagard, 1986). 
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Within artificial intelligence, an active research area known as machine learning 
has emerged, which pursues strategies for getting machines to learn from experience 
(see Mitchell, 1997, and Thagard, 1998, for overviews). Since rules are the major 
determinant of behavior in symbolic systems, the strategies focus on modifying or 
adding rules. One of the factors that makes this work challenging is that altering 
rules can have fairly global effects on behavior; hence, a rule modification designed 
to deal with one circumstance may inadvertently result in new, incorrect behavior in 
certain other circumstances. A more general problem is that modifying or adding 
rules can be too crude a technique to capture the gradualness and subtlety of team
ing. As research has proceeded, techniques have emerged to make much finer adjust
ments to rule systems that overcome these difficulties and result in performance that 
is more human-like (see, for example, Holland et al., 1986). 

Hence, a researcher interested in learning has a choice of approaches. The empiric
ist branch of the symbolic approach (e.g., cognitive psychology and AI) offers in
creasingly sophisticated methods for modifying rules and symbolic representations. 
The rationalist branch of the symbolic approach (e.g., lineuistics and Chomskian 
language-acquisition research) offers new interpretations of how adjustments are 
made to an innate grammar in order to acquire a specific language. And connectionism 
offers powerful learning algorithms that have revived interest in subsymbolic net
work architectures as a vehicle for an essentially empiricist program. We tum now to 
a more detailed consideration of how connectionist networks learn. 

3.2 Connectionist Models of learning 

In section 2.2.3 we have already provided an introduction to learning in connectionist 
systems. Learning consists in changing the weights of connections between units, so 
as to alter the way in which the network will process inputs on subsequent occasions. 
When a network is run in training mode, both activations and weights change on 
each learning trial; after training, the network can be tested by presenting inputs and 
observing their effect on the activations alone. It is important to understand that 
although both weights and activations can change in response to inputs, their roles 
are distinct. Activation values are the vehicle for temporary state changes in a net
work that should tell us which one of a set of possible input patterns has just been 
processed. Weights are the vehicle for more enduring changes in a network that 
make it capable of processing all of the various input patterns on which it has been 
trained. In fact, some training procedures make the weight changes only after the 
entire batch of input patterns has been processed rather than on every trial; in the 
end, the results are very similar. In contrast, it would not make any sense to change 
activations less frequently than every trial (that is, every presentation of an input 
pattern). 

One similarity between activations and weights is that their changes are determined 
locally; that is, they are based solely on information that is directly available to a 
particular unit or connection. In the case of a weight change, the outputs (which are 
often simply the activations) of each of the two units between which the connection 
is being adjusted count as local. Any units other than those indexed in the weight's 
subscripts are remote, not local. In a multi-layered or interactive network these 
remote units can affect the activation of the local units by means of unit-to-unit 
(local) propagation of activity through the network; hence they can affect the changes 
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3.3.2 Possible roles for innate knowledge 

3.3.2. J N~tworks and tlu rationalist-empiricist continuum In discussing Chomsky's 
criticism of Skinner's account of language learning in section 3.1, we noted that one 
of Chomsky's major arauments, the argument from the poverty of the stimulus, was 
directed against the ability of the organism to learn everything it needed from 
experience. It is now time to return to this question of nativism. There is no doubt 
that, historically, nativism has been more closely connected with the rationalist view 
of learning than with the empiricist approach that is generally assumed to charac
terize connectionists. But, as many have noted, empiricists need not be entirely 
opposed to nativism. In fact, if associations are to be based on similarity, empiricism 
requires some criterion for similarity that precedes learning. Thus, contemporary 
empiricists like Quine (1969a) postulate innate quality spaces as a basis for sub
sequent associationist learning. (Quality spaces are multi-dimensional spaces in which 
sensory inputs can be located so as to be able to compare them.) Since all learning 
theorists require some pre-existing structure within which learning is to occur, the 
nativism controversy should not be construed as a conflict over whether anything is 
innate, in the sense of being present in the organism before the organism has sensory 
experiences. Rather, the conflict concerns what is native. In the symbolic approach, 
since the operations performed by the system all involve manipulating symbols, it 
seems that at least some symbols and initial ways to manipulate symbols must be 
innate (and possibly compositions of symbols, such as rules, as well). For approaches 
that do not rely on symbol manipulation, the capacities that are taken to be native 
can be specified in other ways. 

In the 1980s most connectionists did not view the nativism issue as highly salient. 
To the extent that connectionism is a descendant of associationism, this represented 
a considerable shift in focus away from that issue. Possible reasons include: (1) 
research in genetics and developmental neurophysiology had revealed a very com
plex picture that does not easily reduce to empiricism or nativism in their original 
forms (see Wimsatt, 1986); and (2) for most connectionists in the 1980s, the interest
ing problems were computational and mathematical; many were in academic fields, 
such as computer science, in which nativism has not been a focal issue. Nonetheless, 
there were a few published discussions of this issue in the 1 980s and an entire book 
in 1996, which we will discuss in tum. 

First, Rumelhan and McClelland (1986) devoted a few pages of their discussion 
of general issues in PDP:4 to the question of nativism versus empiricism. It strikes 
us as a very sensible di$Cussion; they suggested that either extreme position could be 
implemented within a connectionist model but they focus on integrating the positions. 
For example, they posited an organism whose initial state is determined by genetics, 
but for which all connections are modifiable by experience. Two such organisms 
provided with similar genetics and environments would show similar trajectories 
through a space of possible networks as they develop. 

A more extensive treatment of this question was provided by Shepard ( 1 989). He 
conjectured that "in systems that have evolved through natural selection, the features 
of the world that are both biologically significant and absolutely invariant in the 
world have tended to become genetically internalized" (p. 104). That is, the species 
has evolved internal structures that are adapted to these features of the world, so 
individual members of the species need not learn them. How might such adaptations 
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be incorporated in the initial connectivity of a network, providing a base from which 
learning may proceed to add its own contributions? Shepard suggested that evolu
tion does not supply individuals with innate knowledge of which features charac
terize specific objects and events. Rather, it supplies knowledge of the structure 
of the features themselves. For example, the psychological space for colors is three
dimensional (hue, lightness, saturation) and is approximately Euclidean. Generally, 
psychological spaces incorporate abstract constraints that are not arbitrary but 
rather reflect evolutionary accommodation to the environment in which we live. For 
example, a rigid object moving in three-dimensional literal space has exactly six 
degrees of freedom of position (three of location and three of orientation); these con
straints may be incorporated in the initial structure of the mental system that is respons
ible for recognizing objects regardless of their position in space. If so, translation 
invariance need not be learned. 

3.3.2.2 R~thinking innateness: Conn~ctionism and erMrgmc~ We alluded above to 
the complexity of contemporary thought and findings relevant to the nativism issue. 
Articulating a connectionist perspective on this issue required an entire book, pub
lished in 1996: /Uthinkirag Innateness.: A Connectionist PerspectifJ~ on DnJ~lop1Mtlt. In 
an unusual international collaboration, Jeffrey Elman, Elizabeth Bates, Mark H . 
Johnson, Annette Karmiloff-Smith, Domenico Parisi, and Kim Plunkett worked out 
an account that was both connectionist and interactionist. They emphasized emergmce 
-the idea that it is the dynamic interaction of an organism's genetic endowment and 
encounters with an environment that produces the adult organism. From this per
spective, one cannot simply parcel out its features as due to nature or nurture. 

At any given stage of development, as a result of the organism's genetic constitution 
and what has already occurred in the development of the organism, there are only a 
limited number of steps that can be taken next. The biologist C. H. Waddington 
(1975) introduced the notion of an epigenetic landscape to characterize the range of 
possibilities for an organism and the path it would take. In diagramming an epigenetic 
landscape, Waddington used a three-dimensional surface to ponray the possibilities 
for an organism. The possible paths for development are those leading downhill 
from where the organism is currently situated. In R~thinlcing InnaUness, it was noted 
that Waddington's epigenetic landscape is similar to a typical connectionist repres
entation of an error surface in weight space and that his developmental paths are 
comparable to gradient descent learning. Figure 3.3 shows such an error surface for 
two weights, which is a simplification relative to the number of weights in a real net
work but much more complex than the plot of error against the possible values of a 
single weight in figure 3.1. The line from a to dis a path of gradient descent that a 
hypothetical network might follow as it adjusts its weights. The authors then sug~ 
gested that connectionist implementations of gradient descent and tools for analysis 
of gradient descent learning could contribute to the understanding of development 
in this context. 

Despite the view that features of the adult cannot be parceled out between nature 
and nunure, nascent organisms are assumed to have a native constitution that can be 
characterized by developmental theorists. Rethinking Innateness identified three dif
ferent classes of constraints which theorists sometimes claim are native: representa
tions, architecture, and timing. Traditional nativists such as Chomsky and Fodor 
have emphasized innate representations. The representations of a connectionist net
work, in contrast, are generated from its connection weights, and these are the least 
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FiJ:IlTl' .1.3 A h\'pt>theucal ... rmr surface fur a neurnl network w11h rwo WI i.:hts whil·h 
rt·prt•sent~ l(radient de5cent as downward path~ on th ... error surface The I me from a to d 
shows one path of l{radit:nt d~:sct:nt to rhc l!l lobal minimum, d. There is also a luc.tl 
minimum at e. R ... prmted with pcrmissi<m trom Elman (1993). 

likely aspect of a network to be innately tixt:d. The authors of Rl!thinking lnnatent'SS 
emphasized recent discoveries of neural plasticity (the llbi!Jty of the brain to develop 
alternative ''iring patterns ''hen one pattern is d isrupted) as e\ idence against de
r,tiled microcircuitry as a J,!cnetic endowment. 

A mort plaustblt locus of mnate specification b tht· an:hitectural lc:vel. The hasic 
types of neurons in an organism seem to be fixed . At :1 ~liS!:htly htgher lt:vcl, one can 
focus on such characteristics as the type of connectivity (cxcltawry , ·ersus inhibitory) 
and the nature of the intercunnectivity (e .g., how much f<tn-m or fan-out there is 
f rom a given unit). At an even higher level , then~ is tht question of how specific 
net,,urks are connected to on~ another. Most connectionist simulations ha\'e assumed 
that the architecture is fixed at all of these lt:\'ds, and ha,•e focused on the development 
nf representations "ithin that fixed architecture. Howe\'t~r. in chapter 9 we will 
examine research pro~trams that allo\\ some ltspects of the nrt:hitccture to develop as 
a consequence of indi\'1dual experience or of simulated e\'ulutum . Sut·h work gives 
connectionists a franu:work for exploring hm\ nati,·c endo\\ ment .md experience m01y 
dmamicdll} interact. 

The th1rd ~,.·lass of constraints, thost hanng to do\\ ith timm~Z. are perhaps the most 
mtriguing m the Rethinking bmareness taxonomy. Learning m JWtworks rna} pronde 
:.t useful modeling medium for lluch phenomena as critil~.sl periods and de,·elopmental 
sta~es. Even the s1mple XOR network discussed in section 3.2.2 dc\'clopcd its solution 
m·cr se\eral stages. Of greater interest , in sc{·tion 6.-l- we \\ill discuss !\\'1) m(•thods 
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suggested hy Elman ( 191H) hy which "!ltarting small" can enahle networks to t•ven
tually solve large problt:ms. In his second method (illustrated in section 6.4 usmg 
the work of Christiansen. 1994) simulatin~Z maturational change - by innca!'ing 
working memory capacit} - has the effect that a network \\ill achie\'e success \\ ith 
dependencies hem cen adjacent elements (e.g., subject-\'erb agreement) when the 
span is low and then can build on that to muster dependencies between nunadjacent 
dements (e .g . . subjet·t-\·crh :tgreement when an embedded clause intervenes) when 
span bct·omt•s greater. Starting uut with a large span forces the system to pay atten
tion to the more <·vmplcx sentences before it is ready, and it fails e\'er to develop 
adequate wei~.thts. 

It is not always necessary to manipulate memory span in order to obtain stage-like 
dcwlupmenral trajectories. Connectionist models han• been constructed which, in 
th{• cour~c of repeated training on a corpus and with no changes in the network 
itself, t'xhibit stages roughly similar to those observed by developmental psycholo
gists. In particular, MareschJI, Plunkett, and Harris (1995) simulatt•d two stages uf 
object permanence that differ in the conditions under which an infant will reach for 
an nhject (visihlt objects versus both visible and occluded objects). McClelland 
( 19H9) simulattd st11ges nf performance in a task in which objects are placed on the 
tVI.O ends of a balance beam (attending only to weight; attending to distance if weight 
is equal; coordinating weight and distance). In both cases, interpretation is difficult. 
Stages emerged despite no ('hanges in the structure of the network, contrary to 
Piaget's intt'ractionist claims. But that structure, built into the network before the 
first training trial, already encoded 5ome key aspects of the task . Such simulations 
an~ an early step towards using networks to grapple with controversies that have 
resisted resolution for years 

In summ.ary. although connectionism has roots in associationism, it is not inher
ently anti-nativist . Perspccti\'es as rationalist as Shepard '!!> can be incorporated at 
least as re<tdily as empiricist perspectives, and a rich set of possibilities for an 
interactionist connectioni:;m w~re opened up in Rethinking lnnntmess. By providing 
a tlexible but powerful framework for exploring the interaction betwetn native 
endowment and experience, connectionism may significantly contribute to over
coming the classical dichotom} of nature versus nurture . However, any connectionist 
\\ ho chooses a purer empiridsm or rationalism will find that connectionism provides 
a language and tools to pursue those positions as well. 

NOTES 

If the weil<(hts are updated .tt e1·er) tro;ll , on a given trial both the activauons and the 
\Wights wuuld be changi"O. Alternatively, weights may be updated at the end of each 
cpo.:h. Durmg t<•sting. only the :1cti1·arions change in order to evaluate the wc1gbts; on 
•·ach triltl thl" wei~hts are applied to the input p<Ottt·rn to obtain an actual output pattern. 

2 :\ simpl .. \\'ay w dl'tt·rmint• if two patterns art· corrclHtcd is to compurl' the tW<l patterns 
position by position. and scnre + I every time the m·o patterns have the same ' 'alue in a 
pnsitiun, and - I cvay time they differ. If the tntal scorc- after comparin!{ all positions is 0, 
the pattern~ arc uncurrdated (ortho~onal); if not, the paltcrns are currdatt•d (non
orth<>l!onal). In the example which follows, there arc four positions. The score fnr case A 
\'crsus t•a:<<" B is II (the sum of+ I, - I, + I, - I ·~htamcd by companng lht: four pusitiuns). 
but the st·orl for case :\ vo:rsus t·asc C i ~ 2 (the sum of+ I, + I, + I,- I). 
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3 A two-layer network can compute the XOR function if the input patterns are recoded 
across an enlarged input layer so u to yield linearly uparable inputs. The problem itself 
has then been altered, however; the relation between the two sets of values is no longer an 
XOR relation. 

4 If a linear rule is used for both hidden and output layers, then one can construct from the 
sets of weights used in the multi-layered network a set that will work for a two-layer 
network. Thus, a multi-layered network with linear activations cannot overcome the 
limitations of a two-layer network. 

5 The initialization procedure utilizes a pseudo-random number aenerator. The particular 
set of initial weights used for the XOR exercise happened to be rather favorable to 
teaming XOR. Startina with the same weights and training the network on if and only if 
(IFF), the negation of XOR, required 540 training epochs, almost twice as many as 
required to teach the network XOR. This is the case even though the solutions the 
network aenerated to the two problems are easenttally isomorphic. 
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4 

PATIERN RECOGNITION 

AND COGNITION 

This book has three general groupings of chapters, and we are now at the transition 
from the first group to the second. The previous three chapters provided an over
view of connectionist systems and their capacity to learn. We worked through the 
operations of one interactive and one feedforward network step by step in order to 
get an initial grasp of the nuts and bolts of connectionism. We also initiated discus
sion of some interpretive and philosophical issues. In the next group of chapters we 
pursue these two inquiries jointly and in greater depth. For each of four issues, dis
cussion of the issue is advanced by considering one or more connectionist models of 
human performance in some detail. These chapters need not be read in order; you may 
wish to be guided by which issues or models most interest you. The four issues are: 

• Chapter 4: Is pattern recognition, a core capability of networks, adequate to the 
whole range of cognitive as well as perceptual abilities? 

• Chapter 5: Or, as classicists claim, are rules needed to account for such phenom
ena as children's stage-like acquisition of the past tense? 

• Chapter 6: What about the corresponding classicist claim that syntactically struc
tured representations must be produced within the system in order to support 
processing (e.g., of embedded sentences)? 

• Chapter 7: Can networks successfully simulate higher cognitive capabilities, 
such as paraphrasing stories and answering questions? 

In the last three chapters we discuss the intersection between connectionism and 
certain other intellectual streams that captured attention during in the 1990s: dynam
ical systems theory, artificial life research, and cognitive neuroscience. 

Turning now to the current chapter, we have seen that networks are devices for 
mapping one class of patterns on to another class of patterns, and that they do so by 
encoding statistical regularities in weighted connections that can be modified in 
accord with experience. This has led to a claim that connectionist networks are a 
highly suitable medium for modeling human cognition. Since what networks do is 
map patterns, this claim would entail that (a) pattern mapping is fundamental to a 
variety of human capabilities; and (b) connectionist networks perform pattern map
ping in a particularly advantageous manner. 
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Pattern mapping is actually a very broad concept, and it is useful to distinguish 
among types of mappings. Pattern recognition is the mapping of specific patterns on 
to a more general pattern (that is, the identification of individuals as exemplars of a 
class). Pattern completion is the mapping of an incomplete pattern on to a completed 
version of the same pattern. Pattern transformation is the mapping of one pattern on 
to a different, related pattern (for example, a verb stem such as come can be trans
formed into a past tense form such as came). Pattern association is the arbitrary 
mapping of one pattern on to another, unrelated pattern (as in the paired-associate 
task that was a mainstay of the traditional psychology of learning). Finally, auto
association is the mapping of a pattern on to itself. 

All five types of pattern mapping have proven useful in connectionist models of 
human cognitive performance, but in this chapter we will focus on pattern recogni
tion. In humans, the most obvious venue in which pattern recognition plays a major 
role is sensation and perception. When you look at a scene, the pattern of light is 
encoded on the retina and then re-encoded in various ways in the nervous system. In 
the simplest cases, you might see a vertical line or a square: you have recognized 
(perceived) a form. In a slightly more complex case, the square may be connected to 
four vertical lines, one extending down from each comer; combining these along 
with color, texture, and size, you see an oak table: you have recognized (perceived) a 
table. But this already brings you beyond perception to a more cognitive level of 
concepts and categories, and from there it is a short additional step to label the visually 
recognized table linguistically as a "table." Advancing yet further, you can compare 
this table to the one you remember from your last apartment, make deductive 
inferences involving it, and even spin a story about it. 

In the first section of this chapter we illustrate how connectionist networks oper
ate as pattern recognition devices by describing the performance of two networks in 
some detail and then focusing on their ability to generalize to new cases. Then we 
address the cases that go beyond perception. Specifically, in section 4.2 we discuss 
a proposal by Margolis (1987) that higher-level cognition may simply consist in 
sequences of acts of pattern recognition, and in section 4.3 we show that networks 
implementing this idea can perform certain tasks offonnallogic. Finally, in section 
4.4 we ask whether networks must be made to exhibit additional capabilities to 
account for what is known about how people develop and learn. 

4.1 Networks as Pattern Recognition Devices 

4.1.1 Pattern recognition in tw~layer networks 

To credit a system with pattern recognition, it must be observed to respond with the 
appropriate pattern for each instance it encounters. For example, a system that 
recognizes letters of the English alphabet should respond to each of the hundreds of 
elements in a page of text with one of 26 patterns. This is exactly what a two-layer, 
feedforward network can do quite well (if the patterns meet certain constraints 
already discussed). Moreover, adding a learning procedure enables the network 
itself to arrive at an appropriate set of weights for a particular task. To illustrate, we 
will employ a network like the one displayed in chapter 2 as figure 2.7 but with eight 
rather than four input units and output units. Each input unit has a modifiable 
connection to each output unit. We set up this network to run under the pa (pattern 
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Table4.1 Input and output patterns for the two-layer pattern recognition networtc 

Case Prototypical input pattern Desired output pattern 

A -1 -1 -1 - 1 +1 +1 - 1 - 1 -1-1-1-1-1 -1 -1 -1 

B -1 - 1 +1 +1 +1 -1 -1-1 -1-1 - 1 - 1 +1 +1 +1 +1 

c - 1 +1 +1 + 1 -1 +1 -1 + 1 -1 +1 - 1 +1 -1 +1 -1 +1 
0 +1 + 1 +1 +1 +1 +1+1+1 +1+1+1+1 +1 +1 +1 +1 

associator) program in the Handbook (McClelland and Rumelhart, 1988, chapter 4); 
to run it as a new project using PDP++ see sections 5.3 through 5.5 and part Ill of 
O'Reilly and Munakata (2000), or using tlearn see chapter 3 of Plunkett and Elman 
(1997) or appendix 3 (and chapters 3 and 4; see the footnote on page 74) of McLeod, 
Plunkett, and Rolls (1998); or download a simulator and its manual and experiment 
with it (web sites are listed on p . 53). In specifying the program options in pa we 
selected the delta rule with a learning rate of 0.0125 and the linear activation rule: 

a» .. netinput. "' I, weight., a, 

For this illustration, we specified four input~utput cases using binary values of 
+ 1 and - 1 (although the network itself will take continuous activation values). For 
example, table 4.1 shows that the input pattern for case A is(- 1 - 1 - t - t + t 
+1 -1 -1),andthedesiredoutputpattemis(-1 -1-1-1-1-1-1 -1). 
(For convenience, we will often refer to these simple as input A or output A, or in 
context as the input and output.) To make the illustration concrete, we can loosely 
think of each input as a distributed representation for a prototypical exemplar of each 
offour categories (e.g. , a prototypical table) and of each output as a distributed repre
sentation of a conventional name for each category (e.g., the spoken word "table").1 

In the simplest possible simulation, we could train the network by presenting it 
with each of the four input~utput cases repeatedly across a number of training 
epochs. On each trial the network would produce an actual output for the input, 
compare it to the desired output, and adjust its weights according to the delta rule. 
Eventually it would learn to produce the appropriate output for each input. As a 
bonus, by this time it would also do a good job of generalizing. That is, if we 
presented it with the following input that it had never seen before 

-1 - 1-1-1 +1 -1-1 -t-1 

(which differs from the standard input A in position 6), it would produce an output 
closely resembling output A. Thus, without any additional training, the network 
would recognize a new pattern as similar to the one on which it was trained. But this 
is a somewhat unrealistic model of how we Jearn to identify the categories to which 
exemplars belong. Typically, our exposure is not limited to ideal or prototypical 
exemplars. Rather, we confront a variety of exemplars that more or less resemble 
each other. Likewise, when we hear the names, they will be pronounced somewhat 
differently each time. We simulated this situation by distorting each input and 
(desired) output pattern: a randomly chosen quantity in the range 0 .5 and- 0.5 was 
generated independently for each unit and added to its original value. Thus, instead 
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of the original input A (which we will refer to as the prototype) on a given trial we 
presented the network with a distort~d input A' such as: 

-0.76 -0.89 -1. 21 -1.01 1.33 0 .99 - 0.65 -0.92 

Similar distortions were imposed on the desired output so that the network's actual 
output would now be compared with a distorted output A'. 

The network was trained with randomly distorted input-output cases across 50 
epochs; during each epoch it received a new randomly distorted version of each of 
the four inputs and a new randomly distorted version of each corresponding output. 
After just a few epochs the network responded in a qualitatively correct manner: by 
epoch 4 the activations of all output units were on the correct side of 0 (i.e., positive 
or negative as appropriate). The additional training was required to refine the out
puts across epochs (bringing them closer to- 1 or+ t , i.e., the base values from 
which the distorted values were obtained). 

After training, the network was tested on three different types of input for each 
case; these test inputs and the actual outputs that the network produced are shown 
in table 4.2. First, when presented with the prototype (which had never been en
countered during training), the network produced an actual activation value for each 
output unit that was within 0.2 of the desired value. Second, when presented with a 
new exemplar obtained by randomly distorting the prototype in the way described 
above, the actual values on the output units were all within 0.5 of the desired values. 
Third, even when presented with a new exemplar obtained by revtrsi"' the sign of 
one of the prototype's input units (making the pattern in that respect closer to the 
prototype of a different category},2 the network produced outputs that were usually 
within 0.5 of the target. All except one of these output values (boldface) were on the 
correct side of 0. 

The fact that there is variability in the output may be disconcerting. Can we really 
say that the network has recognized the pattern on the basis of this kind of outcome? 
If this is thought to be a problem, however, it is one that is easily remedied. Instead 
of using a linear activation function for the output units, we could employ a thresh
old function that would make the value of the output unit + 1 if the net input to 
it was greater than 0, and make it - 1 otherwise. In many contexts this sort of 
digitalization is useful. One advantage is that the activations on the output units 
would have more of the character of symbolic representations (that is, a given class 
of output could always have the same representation; e.g., "table" could always be 
- 1 -1 -1 - 1 -1 -1 -1 - 1). However, for some purposes the variability pro
duced by a continuous activation function may be preferable. For example, if a dis
torted input produces a distorted output, other processing components that utilize 
that output will be able to compute the degree of distortion. Having that informa
tion available may be useful, e.g., in suggesting a degree of uncertainty which may 
be due to context effects or other factors. 

Even though this is a very simple network, it does a credible job of learning to 
recognize several categories of input patterns. It is worth emphasizing the fact that 
the network can handle distorted patterns and readily classifies new patterns that are 
similar to the training inputs. Hence, it can deal in a natural way with some of the 
variability that is encountered in the real world (e.g., people identify various tables 
as "table"). On the other hand, there are definite limitations to this capability for two
layer networks, as we discussed in section 3. 2. 1 . Overcoming these limitations requires 
multi-layered networks, whose pattern recognition capacities we consider next. 
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Table 4.2 Activation of units in the two-layer pattern recognition network after 
50 training epochs 

Units 1-8 in input or output layer 

Case Layer 1 2 3 4 5 6 7 

(A) Tested with prototypes of four cateaortes as Inputs 

A Input -1 .00 -1 .00 -1.00 -1 .00 1.00 1.00 -1 .00 
Output -1 .12 -0.98 -1 .02 -0.92 -1.10 -0.84 -0.94 

8 Input -1 .00 -1.00 1.00 1.00 1.00 -1.00 -1 .00 
Output -0.99 -1 .06 -0.98 -0.96 0.91 0.94 0.99 

c Input -1.00 1.00 1.00 1.00 -1.00 1.00 -1 .00 
Output -0.91 0.96 -0.87 1.05 -0.84 1.06 -0.90 

D Input 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
Output 0.99 0.94 1.05 1.07 0.93 1.03 0.92 

(B) Tested with distorted Instances of four categortes as Inputs 

A' Input -0.76 -0.51 -0.82 -1 .11 1.47 0.82 -0.83 
Output -0.81 -0.90 -0.71 -0.83 -o.n -0.72 -0.62 

B' Input -1.00 -0.54 1.34 0.63 0.98 -0.59 -1 .24 
Output - 1.06 -0.81 -1.03 -0.68 0.63 1.00 0.70 

C' Input -1.18 0.62 1.20 0.87 - 1.21 1.38 -1 .02 
Output -1 .07 1.11 -1.01 1.22 -1.12 1.10 -1 .18 

D' Input 1.42 1.44 0.64 1.31 0.72 1.24 1.03 
Output 1.20 1.28 1.25 1.39 0 .81 1.00 o.n 
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-1.00 
-1.06 
-1.00 

0.88 
1.00 
0.92 
1.00 
1.15 

-0.90 
-0.89 
-0.81 

0.88 
1.48 
0.92 
1.19 
1.15 

(C) Tested with one of the Input features (ltaltcs) of a prototype replaced by a feature of 
reverse sign. One output response has the wrong sign (boldface) 

A" Input - 1.00 - 1.00 - 1.00 - 1.00 1.00 - 1.00 - 1.00 - 1.00 
Output - 0.86 - 1.39 - 0.85 - 1.41 - 0.26 - 0.78 - 0.16 - 0.89 

8" Input - 1.00 - 1.00 - 1.00 1.00 1.00 - 1.00 -1.00 - 1.00 
Output -0.98 -1 .24 -0.96 -1 .22 0.30 0.06 0.39 -0.03 

C" Input -1 .00 -1.00 1.00 1.00 -1 .00 1.00 -1 .00 1.00 
Output -1 .20 0.38 -1 .14 0.49 -0.74 0.87 -0.75 0.68 

D" Input -1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
Output 0.13 0.75 0.21 0.85 0.38 1.18 0 .41 1.15 

4.1.2 Pattern recognition io multi-layered networks 

4.1.2.1 McClelland and Rumelhart's intnactive activation model of WOTd r~cogmtion 
To recognize some patterns it is not sufficient to map input patterns d irectly on to 
output patterns. Rather, one or more intermediate layers of units are needed to exttact 
information that is then passed to units in higher layers. McClelland and Rumelhart 
( 1981) and Rumelhart and McClelland (1982) offered an interactive activation model 
that illustrates how a multi-layered network can recognize visual patterns, specific
ally, four-letter words presented in a particular font. They constructed an interact
ive network with an input layer of feature units (e.g., top horizontal bar), a middle 
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layer of lcner units (e .g ., E), and .m output layl·r of units for four-letter words (e.g., 
li/:.'/,D. BOTH). (nteractivity was achie\'ed by includmJ.( conm•ctions m hoth direc
tions between the middle and output layers. This multi-layered ncmurk differs 
from later ones in that irs middle Ia) cr of units is not actually a hidden layer: (a) the 
l'Onncctinn wci!(hts ;md interpretations of its unrrs \\ere specified by the desigm:rs 
r.Hht:r than lt>arned hy the nt>twork; (h) the acti\'ation patterns on the middle layer 
(,ts \\ell as thl! top layer) an: "n sihle." That IS, when the nctwnrk rccognizl!s a word 
(rop layer ), tt also rcl'OJ.(nizes letters (middfe layer) and can report either Je,·el de
pendin~ upon the task. :-.:ore that there would be little rea~nn t<> rl!porr the middle 
layer if it were 11ctuall) a hidden l11yer, because mdi,·iduul hiddl!n units Jll!ncrally arc 
mterprctablc only as complex mt.:rofeatures that are not edsily labeled . 

All of the units and connectton weiuhts in the word reco!(niunn network were 
hand-l·raftcd <ttound 1980 - before the backpropagation learning procedure was 
n,·ailablc - and It 1s best re~ardl·d as a transitional t) pe of multi l.tye-red network. 
Ne\'ertheless, it pruduces human-like responses under a vanety of conditions, in
cluding low contrast (dim lighting) and mtssmg features (Js would on:ur if ink blots 
were spilled acro~s the word) . It is able to eJo.hibit fault-tolerant processing because, 
like any interactive network, it opcrates to satisfy multiple soft constraints. 

Then: are some more subtle phenomena of human pattern rcl·ognition that were 
also addressed by l\lc<.:Jelland and Rumtlhart. In particular, they \\ere ablc to 

simulate the word suptrinrity 4/rrt. The baste effect is that ' er\ brtefty displayed 
letters are hl!tter recognized when they are presemed in the <.'Ontext of a word (or a 
pronounceable nonword). Hdpful effects of context are ubiquitou!' in human m
formution processing; that is. doing more often cost~ lesli dfort. It m1ght be thought 
that this is because context narrows the posstbilities, but Retcher ( 1969) showed that 
there is more to the effect than that (see ;~ lso Wheeler, I ()70). Rcic:her constructed 
pairs of words that differed m JUSt one letter pos1tion, e.g., TOLLJJCOLD. On each 
rnal he bridiy presented one word from the pair (e.~ .• TOL,D), then a masking 
stimulus to stop visual processing, and then a test dtsplay that had the corrt:<:t letter 
(T) c1bove or below the letter from the contrastin~ word(('), with d.u;hes placed in 
the positions of the three shared lt'tters to orient the chmces. Subjects' ab1lity to 
choose the correct letter w11s better in this word context condition than m contml con
ditions of scrambled strings of letters or isolated letters. Sincc t:ither test letter 
would produce a word, something must occur in the course of processing that makes 
use of the actual wurd that is displayed. Exactly tvhat occurs is the question that has 
challc:n!(ed rt:searcher!.; the McClelland and Rumelhart model opens up one good 
avenue for answering that challenge. We will not discuss McClelland and Rumelhart's 
full simulation of the word s uperiority effect (which involves present:ttion of a word, 
then of a mask, and then a forced choice response), but rather we will discuss only 
the critical part of the model in which recognition of words affects tht: recognition of 
component letters. 

As noted abuve, the network is built from three kinds of units, \\ hich encode 
features of letters ( 14 units), 1 letters (26 units), and words ( 1,179 units). The system 
is desi~:ned to hundle words of four letters ustnl( st:parate ensembles of units for each 
letter; su four copies of the feature and lettt:r units arc pro,·ide<.l (one copy for the 
tirst lette r of the word, one for the second letter, etc.; this is known as positional 
<~'rlroding). Each of the feature units i~ posltl\'ely connected to unit!l for letters that 
possess the feature and negatin:ly Cl>nttected to units for letters that do not. Sim
ilarly. the letter units arc positi,'d) connected to units for words th<~t contain the 
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lcuer in the appropriate position, and negati\'cly conneckd 111 words that do not . 
lmport11ntly, there are also h•p-down conn~:ctions: the word units are positively con
nected tu the units for tht: letters they contain. Finally, word units and letter units 
arc e<~ch ncgati,·dy mnnected tu all competitors within the same cnsl!mble. Figure 4.1 
~hows all of the f""aturcs and letters, and a few of the words and .:onnt:ctiuns. Simu
lations can he run with this network under a \'aricty of cunditions and parameter 
\'alues using the ia (interactive: acti\'ation) progr11m in McClelland and Rumclhart's 
lfandbc)IJR ( 19RR, chapter 7). 

An input is provided to this network hy acti\•ating the appropriate features in each 
of the four letter positions. Fur a word with an E in position 2, live of the units in the 
second ensemble of feature units will be activated. Figure 4.2 shows how 11n E is 
l'onstructed in the Rumdhart-Siple font that was used in this study (Rumelhart and 
Siple, 1 t>74). The features that arc activated llrt: top horizontal bar, bottom hori
zontal bar, top left \'ertical bar, bottom left ,·ertical bar, and leftmost center hori
zontal bar. (Note that the usc: of a lixed set of straight-line features has the result that 
a f«!w letters look somewhat odd, e.g., 8 and V, but this is of no consequence for thl· 
simulation. Also note that st"ts of fcaturc:s cun be supplied that do not correspond to 
actual ll!tters, or that are incompll!tt: and therefore ambiguous; e.g., the top and 
bottom horizontal bars and bottom lefr \'crtical bar alone are consistent with C, E, 
G, 0 , and Q.) Each of the active feature units then sl!nds activation to all of the letter 
units in the sel·ond c:nsemble of letter units with which it is consistent. For exam pit:, 
the top horizontal bar sends activation to such letters as C, E, and F; the bottom 
horizontal bar sends activation to such letters as C, E, and/; and so forth. Almost 
every letter will rt:ceive some activation in this manner, but E will receive the most 
because it is consistent with all of the activated features. Finally, as the letter units 
become active, they in turn excite those word units with which they are consistent. 
These word units will then send further excitations back in the reverse direction to 
those same letter units. (Note that the backward connections are unrelated to 

backpropag<~tion, which is a learning procedure for fudforward networks; ht:re we 
have an activation route in an interactive network that is not set up for learning.) 
Because this is an interactive netwurk, the propagation of activation will continue 
across a large number of processing crdes, during which a winner gradually emerges 
withm cal·h ensemble of letters (e.g., E in the second ensemble) and HJ::LD s•mul
tl:IOCI)U~I> bUilds activation as the winner at the word level. The equations used for 
the output from umts, the net mput to units, and the change in activatton are \'Cry 
Mmtlar to those for the Jets .md Sharks s imulation dtseussed tn se<.tion 2. 1. For letter 
and word units the only differences are in the v.tlues used for paraml!toers such as 
connection strength and decay (and that they lack external input); feature un its, 
howe\'er, re.:ei\'e nnly external input (in the form of binary \'a lues). 

The fact that information ftnws both from lt:tter units to word units and from 
word units to letter units is critical in determining the behavior of this network. The: 
letter un1ts receh·c top-down input from the word units, and bottom-up input from 
the feature units. If the feature units do not correspond to 11n actual word, the word 
unit that is most con:;istent with those features c11n O\'erride some of the featural 
derail hy strengthening the a.:tivations of its letters (i .e . the ll!tters that should be 
fa\'ored because they form a word). To illustrate the override capacity. we presented 
:\Ic<.:lelland .md Rumclhart's ia network with the features corresponding to BOTJ 
instead of BOTH, and obtained the results s hO\\n in table 4.3 . Despite the mis~pl!ll
ing, the \\ord unit BOTH qutckly rcac:hed" hi~h acti,·ation ntlue. At the letter l~:vcl, 
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0000 
Fi1111r<' .J.J The fcatural t•m·mlin!! of the lt:ttcr F. in th.- Rumelh,,rr- Siplc f11nt u~t:d hy 
:\t~Cldl~nd .md Runwlht~rt'~ (19!!1) wnrd recognition n.-rwurk. 

Table 4.3 Activations of output units in the word re<:ognition network when presented 
with BOTJ 

Umt 

B 
0 
T 
J 
BOTH 

10 

0.51 
0.51 
0 .51 
0.38 
0.29 

Activation for unit H never reached zero. 

Processmg cycle 

20 

0.75 
0.75 
0.75 
0.47 
0.60 

JO 

0.79 
0.79 
0.79 
0.49 
0.66 

97 

40 

0.79 
0.79 
0.79 
0.49 
0 .67 

tht: lett~rs B, 0, and T quickly became more actin! than 1. Hcnce, the higher-le,·el 

(word) unit was abl~ to respond and O\'(' rride th~ lowcr-Je,·el (letter 1) unit in order 
to arri,·e at an actual four-l~tter word. 

Gi\'t:n that tht: input scrYed to acti,·are tht: fourth-position J unit and tn inhibit 
an) othcr responsc, the top-down rcspl)nsc from the word unit BOTH \\as not .tble 
to suppress the .I unit cumpktcly and at.:ti\'atc tlw H unit. Bur in another simulation, 
in '' hich the mput \\as s tmpl)' the features for ROT• (that is, the fourth letter 
pos ttion was lt:ft blank), the If unit became almost ;1s acti\·c .ts the units fo r the 
letters that \\ere actually presented (table 4-..t). \\'hat is of particuht r interest is that 
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Table 4. 4 Activations of letter and word units when the word recognition network is 
presented with Bor. 

Umt 2 3 4 

Letter units In four positions (I.PI-LP4) 

LPI: B 6 13 18 24 
LP2: 0 6 13 18 24 
LP3: T 6 13 18 23 

LP4: B. D 
E 
H 
L 
N,T 
K,Y 

Word units 

BOMB 
BOND 
BATH BONE 
BORE, BOWL 
BOAT, VOTE 
BORN, NOTE 
BOOK 
BODY 
BOTH 0 

0 

0 
0 
0 
0 
3 

0 

0 
0 

0 
0 
0 
0 
0 
0 
1 
1 
6 

5 

30 
30 
29 

0 
0 
3 
0 
0 
0 

0 
0 

0 
0 
0 
1 
9 

Prcx.essing cycle 

6 7 8 9 10 

35 41 45 50 55 
35 41 46 51 55 
34 39 44 49 53 

0 0 0 0 0 
1 1 1 1 1 
5 8 13 18 24 
0 0 0 0 0 
0 0 0 0 0 
0 1 

0 

0 0 
0 0 0 

0 0 0 
1 0 0 

13 18 23 29 35 

Blanks should not be confused with OS. A blank indicates that the activation was below zero. 

20 

78 
78 
78 

0 
0 

69 
0 
0 
0 

71 

30 

80 
80 
80 

0 
0 

76 
0 
0 
0 

75 

along the way the system partially acti\ atcd sen:ral other word unrts (e.g., BOOK and 
BODY). As a result, se\'crallettcr units other than 11 were brought above zero (c .g., 
K and Y). ~ute that the partially actl\·atcd \\Ords agn:ed with the input 111 only two 
positions, \\-hcreas BOTH \\as consistent in all three of the positions that had input. 
Hence BOOK and BODY were suppressed eventually b} BOTH. Its acti\'ation in 
turn had the effect of acti\'ating the fourth-position H unit, and interacti\'e process
ing further strengthened these units: after BOTH actl\·ated H, H acm·ated BOTH, 
and so it went back and forth across cycles. This mutual buildup in excitation 
continued until a stable state was achic\'cd, m which both un1ts were nearly as acti\'c 
as they would have been if BOTH had been pres<·nted to the S}');tt:m to begin with. 

In the case just described only one four-letter word was consistent\\ ith the input 
in the first three positions. The behavior of the system becomes e\'en more interest
lOg \\·hen more than one match is a\ ailablc. In a tina I s imulation. we presented the 
system \\ ith the features for: 

DIS!-

In the Rumclhart-Siple font, tht: partial letter rn the fourth position \\<iS comp.11iblc 
'' ith an A, F, H, K , P, or R lmn,tlly the units for all stx letters became equally 

.... ...., 
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.... h 90 
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- ·- 01$1< 
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80 
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50 
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f'i~:urt .J.J Chan~~:" in activutiun across cycles of th<' mo~t llt:tive units in !\okCl..Jiand and 
Rumdhart's (19~1) word Tl"C<>gnition nl"twurk when pre~ntcd with DIS~ . 

a.:ti\'e (through cyde 5). As shown in figure 4 .3, in cycle 3 the units DISH and 
DISK both started to bt·cume active. As the!;e word activations increased anoss 
c:-"cles, H and K becume most active, although the other candidates for the fourth 
letter position l-"Ontinued to grow in acti\'ation at a slower rate. Through cycle 30 the 
units for both words grt:w in activation at roughly equal ratc:s, pushing the ll and K 
units to much higher acti,·atiun lc:vels than the other four letters. After cycle 30 
DISH gradually iost out to DISK until it dropped below 0 activation after cycle 
120. As a result, H began to lose acti\'ation after cycle 50, c\·entually settling back to 
the ~arne level of actl\'ation as the other four letter units. The reason for this is that 
DISK is more frequent in English than DISH, and this fact \\'as incorporated in the 
simulation by assigning a higher resting activation ro its unit . As a result, the activa
tion was ah\ays slightly greater for DISK than DISH, and so it was able to exert a 
greater inhibitor~ effect on its competitor, as well as a greater exdtatory input to its 
tourth-posillon letter unit (K). Here, then, is an example in which higher-le\'el 
mformat1on about '' hich word is more likdy in Enghsh intluenct!s the behav1or of the 
lower-level letter umts. Ch::arly, th1s effect could be extended. For example, an e\cn 
higher levd could be added for relating words in a context. lf the context were a 
discussion of food, that might be sufficient to O\erride the O\erall frequency differ
ence and therefore to actl\·ate DISH O\'er DISK and H O\er K. 

Th1s last simuluuon illustrated two important characteristics of networks. In addt
tion to rerogni=ing patterns, they can also complete patterns by filling m what \\as 
nut preso:nt m the input. This capac•t> IS a )o!eneral feature of connectiOnist networks. 
In nddltion, this simulation showed how h1gher le\ cis of information (e.g., informa
tion about what four-letter \\ords exist rn Enl{lish and their rclati\'c frequency) 
can afft•ct the recognttion of lower-lc\'cl entitleS (c.,~t., the letters that comprise the 
words). It is relatt\·el~ easy w see, in prrnc1ple, how one might employ a model of 
th1s sort w simulate theory-laden perception wherein h•ghcr-lc\'el kno\\ kdge. such 
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as knowledge of scientific theories, was construed by philosophers of science such as 
Kuhn (1962/1970) and Hanson (1958) as influencing what scientists would observe. 
The higher-level units would encode the information that constitutes the "theory," 
and could influence the responsiveness of lower-level perceptual units that recognize 
objects. If a learning procedure were incorporated into such a network, it would be 
possible for the higher-level units to serve as training units, leading to the revision of 
weights at the lower level, and subsequently generating different recognition behavior 
at the lower level. 

4.1.2.2 Evaluating the interactive activation model of word recognition Though de
signed around 1980, McClelland and Rumelhart's word recognition network pro
vides a still-impressive demonstration. It can handle distorted sensory information 
and makes reasonable inferences about what it is seeing. It does this without using 
rules to manipulate symbols, employing instead a set of weights and an activation 
function . However, this network has some nontrivial limitations. First, it cannot 
learn. Later in the 1980s, this limitation was overcome by the development of new 
learning procedures (such as backpropagation) that enable multi-layered networks 
to use their intermediate layers to extract microfeatures. Examples of tasks for which 
such networks have been designed include forming compressed representations of 
gray-scale images of visual scenes (Cottrell, Munro, and Zipser, 1989); sonar detec
tion of rocks versus mines (Gorman and Sejnowski, 1988); identification of phon
emes (Hampshire and Waibel, 1989); recognition of complex objects (e.g., houses) 
from digitalized television images (Honavar and Uhr, 1988); and recognition of 
handwritten characters (Skrzypek and Hoffman, 1989). 

Second, in the real world letters can appear in different parts of the visual field 
and in different fonts, and may undergo orientation transformations in two or three 
dimensions. The invariants of shape that determine that a letter is R rather than S 
must somehow be recovered, for example, even if the R is rotated counterclockwise 
90 degrees to obtain a logo for the "Lazy R Ranch" or is spun on its axis to make a 
cute name for a toy store. For a limited domain such as letters, a traditional approach 
is to pre-process sensory input to obtain standardized letters in canonical orienta
tion. The McClelland and Rumelhart simulations set aside the problem of getting a 
network to do this by letting the investigator activate the appropriate features for 
each letter. Recognition of complex invariants under three-dimensional transforma
tions of objects in real environments (Gibson, 1966) poses even more of a challenge 
and has been addressed by only a few investigators; see Hinton (1987); Zemel, 
Mozer, and Hinton (1988); Hummel and Biederman (1992); and Biederman (1995). 

Third, the word recognition network is limited to four-letter words. Each letter 
position has its own dedicated ensemble of feature and letter units; there are four 
positions and hence four ensembles of units. There is literally no place to put a fifth 
letter. One can imagine constructing separate networks for each word length, start
ing with one-ensemble networks for the article a and pronoun I and moving on up to 
a 28-ensemble network for antidisestablishmentarianism. Understandably, no one has 
taken that path. Other potential solutions include Wickelfearures (see section 5.2.1) 
and recurrent networks (see section 6.4), but Wickelfeatures have been largely aban
doned (for reasons noted in section 10.2.3.3) and recurrent networks are best suited 
to tasks other than pattern recognition. Hence, word recognition models in the 
1990s still generally made the simplifying assumption of a fixed word length (e.g., 
Hinton and Shallice, 1991 ; Plaut, McClelland, Seidenberg, and Patterson, 1996). 
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4.1.3 Generalization and similarity 

Before leaving our general discussion of how networks perform pattern recognition 
and completion tasks, we need to note that one of the important characteri.stics of a 
pattern recognition network is its capacity to generalize. We _ha~e seen evtden~ of 
this capacity already: once our networks were trained to classtfy tnput patterns mto 
particular classes, they responded to novel patterns in ~ way tha~ t~k adv~~t~ge of 
that training.4 The ability of a network to generalize tS rooted 10 us sens1t1V1ty to 
similarities between the inputs on which it has been trained and the new inputs. 
This, however, raises a fundamental question: what is the basis for determining 
similarity? Similarity poses a notorious philosophical problem. One commonsense 
approach is to state that object A is more similar to ~ t~~ C if it shar~s more 
properties with B than with C. But this only forces us to andtvtduate properties, and 
in attempting this we encounter the sorts of difficulty identified by Nelson Goodman 
(1955). He argued that any two objects are alike in an infinite number of respects . 
For example, you share with a pine tree the properties of being less that 2,000 feet 
tall, being approximately 93,000,000 miles from the sun, etc. This suggests that 
assessing similarity in terms of numbers of properties held in common is inadequate 
unless we can provide a plausible restriction on what counts as a property or what 

properties are relevant. . . . . 
Despite these philosophical difficulties, we all make Judgments about stm1lar~ty . 

Moreover there is a fairly clear sense in which connectionist networks are makmg 
similarity Judgments: the similarity structure of the inputs is implicit in the wei~ht 
matrix. The weights are the means of treating similar inputs similarly. One quest1on 
that arises is whether this approach to similarity is sufficient. Often we assume that 
similarity is a matter of fact, and that it has an objective basis. When we ~ev~lop a 
network that generalizes in the way we do, we tend to be pleased an~ thmk 1t has 
found the correct solution to the task we posed. When the network 1s tested and 
generalizes in a different manner, there is a sense in which we have f~iled. But we 
might do well to remember Wittgenstein's (1953) example of extra~lat1on and rul~
following in which he imagines a student who has teamed, by followmg the teacher_s 
example to write a series of numbers by incrementing by two. The teacher IS 

pleased ~s the student gets as far as 996, 998, 1 ,000, but then is puzzled to see the 
student write 1 ,004, 1,008, 1,012. When queried, the student claims to have gone on 
in the same way. Wittgenstein comments: 

In such a case we might say, perhaps: It comes natural to this person to understand our 
order with our explanations as we should understand the order: "Add 2 up to 1000, 4 up 
to 2000, 6 up to 3000 and so on." 

Such a case would present similarities with one in which a person naturally reacted to 
the gesture of pointing with the hand by looking in the direction of the line from finger
tip to wriat, not from wrist to finaer-tip. (Wittgenstein, 1953, §185) 

Wittgenstein's point seems to be that the only framework for evaluating the correct 
way to follow a rule, such as adding by twos, is the practice of a gr~up and th~t 
someone who behaves differently is simply following a different pract1ce. There IS 

no independent criterion for correct performance. Likewise, the network ~hat gen
eralizes as we do may recognize similarity as we do, and one that does so d1fferently 
may simply have a different way of determining similarity. 
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What is necessary to get a network to determine similarities as humans do and so 
generalize in the same way? In part, this may require having much the same archi. 
tecture as humans. In so far as the architecture of current networks is very simple 
and general compared to the mind·brain, then it should not be surprising if current 
networks will frequently generalize in different ways from humans. But we also need 
to consider the fact that how a network generalizes is partly determined by the 
particular set of input-output cases on which it is trained, as has been demonstrated 
for human generalization. For example, Nelson and Bonvillian (1978) showed that 
children at age 2f years produce (and comprehend) invented names for unfamiliar 
objects much more successfully if they have been exposed to two or four different 
exemplars, rather than just one exemplar, during informal teaching sessions. More· 
over, our experience does not consist simply in processing discrete pieces of informa· 
tion. We live in a body, interact with an environment, and play roles in various social 
structures. Dreyfus and Dreyfus ( 1986) have argued that these factors may all figure 
importantly in determining human cognition. This may mean that networks cannot 
completely share our sense of similarity and generalize as we do unless they share 
these other features of human existence as well. 

Overall, then, one of the attractive characteristics of networks is that they general· 
ize by means of the same mechanism that recognizes explicitly trained patterns; 
generalization comes "for free." Important questions remain, however. Exactly how 
well do networks generalize? Specifically, how does network generalization compare 
to that of the best rule· based models, particularly those that implement (in their 
own way) such properties as satisfaction of soft constraints? A different question is 
whether their generalization is similar to that of humans. Pavel, Gluck, and Henkle 
(1988) raised the concern that if a network does not show the same profile of relative 
difficulty across different kinds of generalizations as humans, its status as a model 
of human performance is compromised. Gluck and Bower (1988) found that net
works mirrored the human difficulty with multidimensional categories like BLACK 
TRIANGLE OR WHITE SQUARE only after they added configura! features like 
black & triangle to the input patterns. Other attempts to make rigorous compar
isons among people, networks, and rule· based models will be discussed in section 6.6. 

4.2 Extending Pattern Recognition to Higher Cognition 

Having demonstrated how networks carry out pattern recognition, we now tum to 
questions concerning the broader role of pattern recognition in human cognition. 
Within a connectionist framework, pattern recognition plays a fundamental role at 
all levels of processing, from sensation through reasoning. This was not obvious at 
the outset: networks in the mid-twentieth century were originally conceived as 
simple devices for connecting sensory patterns to motor patterns. Network modelers 
became more ambitious and capable over time, however, and the connectionists of 
the 1980s were especially quick to use networks to model linguistic, conceptual, and 
other higher cognitive processes. This contrasts with the classic symbolic frame
work, which expanded its reach in the opposite direction. Information-processing 
psychologists, artificial-intelligence researchers, and other symbolic modelers had in 
common the use of rules operating on representations. It was most natural to build 
such models for higher cognitive processes; early examples can be found in Norman 
(1970) for memory models, Minsky (1968) for semantics and question answering, 
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and Newell and Simon (1972) for problem solving. However, rules and representa
tions also were extended to accounts of sensory and perceptual processes (e.g., Marr, 
1 982), where it became most evident how they could achieve an alternative imple
mentation of pattern recognition. In this section we will mostly leave aside the 
question of how pattern recognition is specifically implemented, and focus on the 
fundamental question of what it might mean to view cognition as pattern recogni
tion. Then in section 4.3 we will describe an initial assessment of the feasibility of 
such a construal by reporting two network models for tasks in formal logic. 

4.2.1 Smolensky's proposal: Reasoning in harmony networks 

The basic strategy of generalizing pattern recognition to account for higher cognitive 
capacities was suggested by Smolensky in PDP:6 when he spoke of "an abstraction 
of the task of perception": 

This abstraction includes many cognitive tasks that are customarily regarded as much 
''higher level" than perception (e.g., intuiting answers to physics problema) .... The 
abstract task I analyze captures a common part of the tasks of passing from an intens· 
ity pattern to a set of objects in three-dimensional space, from a sound pattern to a 
sequence of words, from a sequence of words to a semantic description, from a set of 
patient symptoms to a set of disease states, from a set of givens in a physics problem to 
a set of unknowns. Each of these processes is viewed as completi"ll an intUI'UI/ representa
tion of a static state of an external world. By suitably abstracting the task of interpreting 
a static sensory input, we can arrive at a thwry of interpretation of static input gener
ally ... that applies to many cognitive phenomena in the gulf between perception and 
logical reasoning. (Smolensky, 1986, pp. 197-8) 

Smolensky also developed a more detailed model of how pattern recognition might 
suffice for reasoning. He used the connection weights in a harmony nttwork (an 
interactive network that behaves in many respects like a Boltzmann machine) to 
encode basic laws relating voltage, resistance, and current in electrical circuits (spe
cifically, Ohm's Law and Kirchoffs Law). He then presented problems to the 
network by activating units to partially specify a situation, for example, that one 
resistance in the circuit increases and the voltage and other resistance remain the 
same. The network must determine what happens to the remaining variables, in this 
example by specifying the current and the two voltage drops. The process is one of 
completing a pattern. Smolensky's simulation generated the correct answer 93 per
cent of the time. Thus, he was able to demonstrate high levels of performance on 
physics problems when these problems were treated as pattern recognition problems 
in a network rather than as logical reasoning problems in a symbolic system. 

4.2.2 Margolis's proposal: Cognition as sequential 
pattern recognition 

One apparent shortcoming of the suggestion that cognitive tasks such as reasoning 
might actually be achieved by means of pattern recognition is that pattern recogni
tion seems to be a one-step process- the system receives a static pattern as input and 
delivers an identification as output. Reasoning, on the other hand, seems to involve 
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multiple steps. Howard Margolis (1987) suggested a solution: reasoning might simply 
consist in a sequence of acts of pattern recognition. In his theory, the recognition of 
one pattern constitutes an internal cue which, together with the external cues avail
able from outside the system, facilitates yet another recognition. Thus, we work our 
way through a complex problem by recognizing something, and with the help of that 
result, recognizing something further, and so on until it the problem is solved. 

Margolis contended that even in unfamiliar contexts we function by pattern recog
nition, invoking the pattern template that best matches the situation until we are 
able to generate a better one. Learning then involves modification of the template to 
better accommodate the new scenario. In Margolis's account, a few species are 
capable not only of recognizing that something is the case, but also of reasoning why 
they have made that judgment. Reasoning why does not involve introspection into 
the process of recognition, but rather is itself a process of pattern recognition - one 
that proceeds through smaller steps to justify the judgment. Reasoning why also 
facilitates a kind of critical evaluation, which can challenge the more global pattern 
recognition response and lead to a second kind of learning, a revision of basic pattern 
recognition tendencies on the basis of the critical review. 

To support the view that higher-level cognition is fundamentally pattern recogni
tion, Margolis offered two major types of evidence. First, he advanced an account of 
some of the striking results of research on human reasoning that have been used to 
suggest that people have limited logical and statistical acumen. For example, he 
offered the following analysis of Tversky and Kahneman's (1982) "Lind~" problem 
(Margolis, 1987, p. 163): 

Linda is 31 years old, outspoken, and very bright. She majored in philosophy. As a 
student, she was active in civil rights and in the environmental movement. Which is 
more probable: 
(a) Linda is a bank teller. 
(b) Linda is a bank teller and is active in the feminist movement? 

Approximately 90 percent of subjects select (b), although according to the laws of 
probability, the probability of a conjunct is never greater than the probability of one 
of its parts. One obvious source of difficulty is that subjects may understand option 
(a) as "Linda is a bank teller and is not active in the feminist movement." Even when 
the directions are clarified to avoid this ambiguity, however, a majority still answer 
in a manner that Tversky and Kahneman took to be incorrect. Margolis proposed 
that what happens is that this problem triggers a different scenario than the one the 
researchers intended: people understand the word probable as meaning plausible 
rather than statistically likely. If this were a problem in statistical probabilities, then 
the subjects would be making an error. However, if they understand the task as one 
of recognizing plausible construals, then they are performing that task correctly. 
Hence, according to Margolis, the difficulty has to do with what kind of pattern 
recognition the problem elicits, not with a failure of logical acumen. 

Subsequently, Margolis's approach to the problem received support from the in
vestigations of Gigerenzer, Hell, and Blank (1988; see also Gigerenzer, 1991). They 
contended that if probability is understood as relative frequency (known as the 
fr«JUentist position), a question about a single event cannot be treated as a question 
about probability. To answer, subjects must supply some other construal of the pro
blem, such as Margolis's suggestion that pattern recognition procedures are used to 
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determine which outcome seems most plausible. To encourage subjects to construe 
the Linda question as a probability question, Gigerenzer et al. recast it in terms of 
frequency: "Out of 100 people who fit Linda's description, how many are: (a) bank 
tellers (b) bank tellers and active in the feminist movement?" As expected, many 
more subjects construed this as a question about probability and answered correctly. 

Margolis's other main strategy was to analyze developments in the history of science 
in terms of pattern recognition. In particular, he focused on major transformations 
in science, such as those Kuhn termed scientific rftJOiutions, and sought to explain the 
difference between those practitioners of the science who succeeded in developing 
and using a new paradigm and those who resisted the new perspective (sometimes 
bitterly). Developing and learning a new paradigm involves, on Margolis's analysis, 
learning to recognize new patterns and guide behavior accordingly. Those who fail 
to understand the new paradigm are those who do not learn the new patterns. Often 
this results from dependency on old pattern recognition capacities, which cannot be 
surrendered without temporarily undergoing significant deterioration in performance. 

Margolis filled out this account in part by examining the endeavors of scientists
including Darwin and Copernicus - who accomplished major revolutions. In the 
case of Darwin, most pre-Darwinian biologists regarded each species as having its 
own essence, and therefore sharply distinguished from other species. Hence, they 
lacked the concept of gradual transition between species that was needed to grasp 
the notion of transmutation from one species to another. Darwin, as a result of being 
trained by Lyell to recognize gradual transitions in geology, was cued by his observa
tions on the voyage of the Beagle to recognize gradual change in life-forms as well. 
This pattern was at odds, however, with biology's pattern of recognizing species as 
distinct. The tension between an old pattern and a new one requires the expenditure 
of cognitive energy. Gradual change is effected in one's pattern recognition system 
until the new pattern is seen as the one that clearly fits. For Darwin, this effort 
involved, in part, recalling the Malthusian pattern from economics and recognizing 
its applicability to the transmutation of species in the form of natural selection. After 
the new pattern recognition capacity was clearly developed, on Margolis's account, 
Darwin returned to the reasoning why mode. By tilling in constituent steps of pattern 
recognition, he could build up in other individuals the ability to recognize the new 
overall pattern. 

Margolis did not ground his view that cognition consists solely in different forms 
of pattern recognition on any underlying theory of how pattern recognition is accom
plished, although he briefly noted that connectionism provides one possible mech
anism. Nor did he offer a preCise, verifiable account; he deliberately painted a general 
view of cognition with a broad brush. To pursue the question of how Margolis's 
ideas might be actualized, one might begin with one of the existing cognitive science 
theories that incorporates pattern matching. 

The localist network component of J. R. Anderson's (1993) ACT-R theory does 
pattern matching as a means of selecting rules to be used in the production compon
ent. Other uses of pattern matching are discussed in Holland, Holyoak, Nisbett, 
and Thagard (1986) and Schank (1982). However, connectionism suggests a more 
radical possibility: that recognizing patterns (matching current patterns to the cog
nitive residue of previous patterns) is not only a broadly applicable process, but is 
one that is carried out without the use of symbols as such. Hence, connectionism 
provides one avenue for emp1rically exploring Margolis's argument that pattern 
recognition is the fundamental cognitive capacity. 
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A connectionist implementation of Margolis's sequential pattern recognition might 
involve designing linked networks in which the product of one network's pattern 
recognition activity could serve as the input to another network's pattern recogni
tion activity. That is, the output units that have been activated in recognizing a 
pattern would themselves send activations and inhibitions to the input layer of a 
network to which it is linked (see chapter 1 for an extended example). Or the same 
layer may serve both output and input functions, as is routine for the hidden layers 
of a multi-layer network. Yet a further idea is to recycle the output of a network as 
input to the same network in subsequent epochs. The network for developing logical 
derivations in section 4.3.4 employs this strategy. All of these proposals have in 
common that they provide a way to build complex sequences of pattern recognition 
activity, so that what look to be steps of reasoning might consist ultimately in pat
tern elicitations organized across time. 

Setting up networks to perform sequential pattern recognition has implications 
beyond Margolis's proposal. As we will discuss in section 10.2.2, many cognitive 
scientists make a major distinction between procedural and declarative knowledge 
(Cohen and Squire, 1980). Definitions of procedural knowledge vary, but basically 
it involves skills rather than facts or episodic memories. A precursor is the distinction 
between knowing how and knowing that that was proposed by philosopher Gilbert Ryle 
(1949). Procedural knowledge (e.g.,/mowing how to cook a frittata) generally involves 
multiple steps; for example, steps in cooking a frittata include boiling, peeling, and 
slicing the potatoes; cutting other vegetables, stirring while heating them in a pan; 
cracking open, beating, and adding the eggs; and cooking until done. Sequential pattern 
recognition by networks arguably provides a new way of thinking about procedural 
knowledge. The important innovation is not in the sequential aspect (all construals 
of procedures involve steps taken across time) but rather in the nature of the element
ary acts that comprise the sequences: the propagation of activity through a network 
so as to move from one pattern to another in a way that honors statistical regularities 
in the network's experience. In the next section we explore the possibility that 
logical inference (both simple and sequential) can be construed as pattern recogni
tion in networks. 

4.3 logical Inference as Pattern Recognition 

Logical inference is often taken as a prime exemplar of high-level reasoning. If pattern 
recognition is to account for higher-level reasoning, then it needs to be able to 
account for logical inference. But there is another reason to focus on logical infer
ence: it has constituted a forte of classical, symbolic approaches. The first running 
AI program was called Logic Theorist (Newell and Simon, 1956). If connectionist 
pattern recognition systems, including ones configured to implement Margolis's 
suggestion of sequential pattern recognition, can succeed in this domain, there is 
reason to be optimistic as to their ability to compete successfully with symbolic 
approaches even with respect to higher-level cognition. 

4.3.1 What is it to learn logic? 

One reason that higher-level reasoning has been relatively easy to model in a sym
bolic system is that the ability to make logical inferences is taken to be a primitive 
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cognitive ability. Rules for manipulating symbols have been developed by logicians, 
and adapted by cognitive scientists. For example, the logical inference rule of modus 
ponens, 

If p, then q 
p 
:.q, 

is the basis for the format of rules in a production system. A production (If p, then q) 
fires when the antecedent (p) is satisfied, with the result that the specified action (q) 
is carried out. If our minds are symbolic systems, then when we learn modut ponens 
in a logic class, we are learning to express and apply consciously a principle that our 
mind already has encoded within it, albeit in a different format. (Sometimes this is 
referred to as expiidt versus tacit knowledge.) According to this account, when we 
learn rules our mind may not yet have encoded, such as the alternative syllogism: 

porq 
Notp 
:.q, 

these rules are encoded into the symbolic reasoning system as new productions that 
may fire when their conditions are satisfied. 

The question is whether this is a really plausible account of how we learn formal 
logic. One of us (Bechtel) has considerable experience teaching both informal and 
formal logic, and reflection on that experience is quite revealing. Consider first 
informal logic, where the goal is to teach students not to prove theorems, but only to 
evaluate and construct arguments in natural language using basic valid forms such 
as the sentential forms noted above. To do this, instructors typically begin by 
presenting students with valid argument forms and demonstrating that these forms 
are indeed valid (e.g., using truth tables). We contrast these valid forms with invalid 
forms such as affirming the consequent: 

If p, then q 
q 

: .p, 

which we demonstrate to be invalid. The next step is to present students with a set 
of problems consisting of arguments presented either in abstract symbols (as above) 
or in natural language, and to ask them to identify 'which form is used and judge 
whether or not the argument is valid. As experienced instructors recognize, at this 
point students require practice, usually in the form of homework. Homework per
formed after having simply read the material in a textbook, or heard it in lectures, 
often contains numerous errors; but after the instructor points these out, many 
students come to perform quite well. They seem to have learned the rules governing 
basic logical forms and know how to apply them. 

But what have the students really learned? Have they simply entered additional 
rules into their inventory of rules, so that they can now employ them in various 
tasks? If so, why is the process of learning so gradual and error-prone? Moreover, 
most students do not ever achieve flawless levels of performance; even on fairly 
straightforward tests, error rates of 25 percent are not unusual. 

Why is this? A symbolic approach, in which students posit mental rules to accord 
with the external rules, offers at least two avenues of explanation. First, some of the 
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posited rules may have been partly incorrect. For example, the difference between 
modus ponms and affirming the consequent is a subtle one, and it is plausible that 
students had collapsed them into a more general mental rule that would later be split 
into two correct rules. Siegler's (1976) rule-assessment technique for characterizing 
cognitive development in children is an elegant, well-developed example of this kind 
of account. Second, the same problem might elicit the use of different mental rules 
on different occasions. For example, the overly general rule that was just mentioned 
may still be utilized on some proportion of trials during a transition period towards 
replacement by the correct rules. Siegler's more recent work emphasizes variation and 
adaptive selection of rules (Siegler, 1996). Also, several older models have attached 
quantitative parameters to rules which determine their probability of being utilized. 
Examples include the fixed probabilities of Suppes (1970), and the experience
sensitive strength parameters used in Anderson's (1983) ACT• model and in models 
proposed by Holland (1975) and Thagard (1988). In these last three models, learning 
is accomplished most simply by functions that change the strength parameters, but 
additional mechanisms are also explored. These include knowledge compilation and 
production tuning (Anderson, 1983) as well as algorithms for positing and evaluating 
new rules, as described in Holland et al. (1986) and in Anderson and Thompson (1989). 
Do any of these models provide the best way to understand what is happening with 
the logic students? Perhaps; but further observation of the students has led us to view 
logic learning as an appropriate domain in which to explore the connectionist alternative 
that emphasizes pattern recognition. 

We made these further observations as we pursued the goal of enhancing stu
dents' learning rather than settling for 70 percent or 80 percent accuracy. One of our 
first steps was to allow students to correct their homework answers during class 
review, and then still collect and grade the homework (with their self-corrected 
answers counting for their grade) to make sure that students recognized their errors 
and could learn from them. We were greatly surprised to note that many students 
who made errors did not realize that they had done so when the correct answer 
was presented in class, and that sometimes students changed correct answers to 
incorrect ones. (Typically, these errors were between similar forms such as modus 
ponens and affirming the consequent.) Clearly, these students had failed to recognize 
what made an answer correct when it was discussed in class. To try to draw their 
attention to what distinguished the various forms, we then introduced computer
aided instruction, in which students were informed immediately when they had an 
incorrect answer and could not proceed until they had corrected it. For a given type 
of problem, the instructional logic program continued to provide new instances until 
the student met a criterion, such as 14 out of the last 15 correct. 

The use of the instructional program did generate substantial improvement on 
subsequent tests, but it also provided an opportunity to observe students in the 
process of learning. The observations revealed that some students were quite sur
prised when the computer told them that their answer was incorrect after they 
thought they had mastered the material from reading. They now had to look more 
carefully to detennine what was expected in a correct answer. After a short time, many 
of the students who were having difficulty would copy out a template for each of the 
fonns on which they were working, and then explicitly compare the fonn of the 
questions to the templates. (When students worked in pairs at a terminal, one would 
often point out to the other where a particular form deviated from a template.) Even 
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Table 4.5 Twelve argument forms 

Name and abbreviation Valid forms Invalid forms 

Modus ponens (MP) lfp, thenq lfp, then q 
p q 
:.q :.p 

Modus tollens CMn lfp, thenq If p, then q 
notq notp 
:. notp :.not q 

Alternative syllogism (AS) porq porq 
notp p 
:.q :.not q 

porq porq 
notq q 
:.p :.notp 

Disjunctive syllogism (OS) Not both p and q Not both p and q 
p notp 
:.notq :.q 

Not both p and q Not both p and q 
q notq 
:.notp :.p 

then some errors were made, but over time, performance improved and students 
came to rely less on their templates. 

The experiences related above strongly suggested to us that students were learn
ing to recognize patterns of inference. As we noted earlier, many rule-based models 
have been designed in a way that incorporates pattern recognition or matching, 
including those of Anderson, Holland, Newell, Schank, and Thagard. Here we raise 
the possibility that the rules can be eliminated entirely in the modeling medium, 
letting networks do all the work. Specifically, we report our initial attempts to build 
connectionist networks that would learn to respond to valid and invalid logical forms 
as patterns to be recognized. (We report here only on this pattern recognition task, 
but we also simulated pattern completion; see Bechtel and Abrahamsen, 1991.) 

4.3.2 A network for evaluating validity of arguments 

For this exercise we developed 12 argument forms from the variables p and q and the 
connectives 1/, then, or, and not both; six of the forms were valid and six were invalid, 
as shown in table 4.5. (Note that we encoded arguments that affirm the consequent 
as invalid instances of modus ponens and arguments that deny the antecedent as 
invalid instances of modus tollens. This is somewhat arbitrary in that these assign
ments could have been reversed.) Specific problems were generated by substituting 
any two of the atomic sentences A, B. C, and D for the variables p and q; either order 
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MP 
MT 
AS 
OS 

0 1 
1 0 
1 1 

0 0 
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Figurt' .J.-J A network for t:\'aluaung simple argument forms from St'ntcntial logi..: . 
The intt'rprt:tation of t'Hch unit in the input and output layers is shown in one of the boxes. 
The: rwtwurk inchuic:~ full Sl'IS of .:onnections bt·twecn rldjoinm~ layers; on!\ sonw of thest· 
arc sho" n. 

could be used k.g., p ,. A and q - B. or p • Band q = A}; and eac.:h atomrc sentence 
could be either negated or J)(>Siti\'e. Altogether, this gener.ued a problem set of 576 
different arguments. The network w;ts pre~nted with a complete argument; its task \vas 
to identify the argument form employed and toe\ aluate the \'aliJity of the argument. 

In dc\'cloping a simulation model to soln: such a problem one of the challenges is 
to identify what featurt:S are employed in recognizmg the various argument forms. 
Sinc.:e we did not ha\'C a wcll-de\'doped theory as to what inf(lrmation students were 
actually usin~ to recognize argument forms, we could not engineer a network spe
cifically to simulate student performance. Rather, we proceeded srmply by con
structing a network that we thought might be able to perform the task. As shown in 
figure 4A, it is composed of 14 input units (which encode the two premises and the 
conclusion), three output units (which gi\'e the network '~ jud~ement of which argu
ment form was used and whether or not it was ,·alid), and two l.-1ye rs of ten hidden 
unit~ each. (The number nf units in the input and output layt<rs "as the minimum 
numhcr ,1\.lequate to encode the prohk-m nnd the answer; the numhcr of hidden 
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units was determined t:xperimcntally.) By way ()f example, considt:r this im·alid 
mndus {>OIII'IIS problem: 

If A, then not C 
;\;ot C 
:.A 

.-\!'>shown at the bottom of fi~rc 4.4 and more spccifice~lly just ~low, this problem 
is encoded on the 14 input units as follows: the first eight units encode Premise I (if 
A, then not C, someumes written as A:::> - C); the next three units encode Premise 
2 (not C); and the final three units encode the conclusion (A). Within each premise, 
an atomic sentence (A, B, C, or D) requires two units and the negation indicator 
n:quin:s one unit (I if ncgativt:; 0 if positive). In Premise 1 there is .m additional 
~ltnmic sentence and a connective that requires two units (if, thm; or; or 11nt lmth). 
Hence, the input encoding for this problem is: 

Premise 1 
((:'\egl Prop!) Conn (l':eg2 Prop2H 

+ A :::> C 
0 0 I II 1 I 

Premise 2 
(~eg3 Prop2) 

c 
1 1 

Conclusion 
(:-.oeg4 Prop!} 

+ A 
() 01 

At the top of figure 4 .4, it can be seen that the first two unit!! of the output layer 
mdtcate wh ic.:h of the four argument forms is instantillted in the input pattern, and 
the third unit indiLatcs whether it is the valid or invalid version of that form; alto
l't~'ther, the three units distinguish the eight forms shown in table 4.5. Our example 
problem should be labeled modus ponms. invalid· 

MP INV 
I I 0 

To cea1..h the netY.ork to make accuratt:" J udgment!- of this kind, we trained tt usinR 
the bp (baekpropagatwnl program dts~.:ussed m chapter 5 of McClelland and 
Rumelhart's (1988) Handbook. (Alternatively, tlearn uses backpropagation when 
any multi· layer network is specified a~ a new lcarnin~ project; for guidance in ~tting 
up a network such as the one sho\\n m figure 4.4, see ~.:hapter 3 in Plunkett and 
Elman, 199i, or appendix 3 in McLeod, Plunkett, and Rolls, 1998.) Activation 
values were constrained to range between 0 and I by using the logistic activation 
function, and weights tend~d to fall in the range- 10 to+ 10 after training. We 
di\'ided the 576 problems into three sets of 192 problems by a method that ensured 
that ea<.h ~t would contain at least one valid and one invalid example of each basic 
problem type (e g .. would have at lea!lt one modus ponens argument \\ ith A or not-A 
as the antc1..edent uf the conditionnl, and B or not-Bas the consequent}. Set I was 
used for the initial training period, whit-h wnsrsted of 3,000 epochs. An epoch 
consisted of 192 trials. during which each problem was presentt:d once in random 
order. \Vhen tested on the training set (Set I), the network answered all problems 
correctly. Its ability to generalize was then tested by presenting the 192 patterns of 
Set 2 in test mcx.le. Since activations on output units could ran~te from 0 to I, an 
answer WH!l jud~et.l to be correct if the value on all three output units was on the 
correct side of the neutral value 0.5.5 On this test the network was correct on 139 
patterns (th~tt is, 76 percent of the test trials, where chance would be 12.5 percent). 
Thus, the network h.td generalized to a suhsta·ntial extent, but there remained a 
~o~oot.l Je.sl of room for impro\"emcnt. \V" then trained the network for 5,000 epochs 
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on the 384 problems produced by combining Set 1 and Set 2, after which it was 
correct on all but four of the trainsng problems.6 Finally, the network's ability to 
generalize was tested using Set 3. The network was correct on 161 patterns in Set 3 
(84 percent of the trials). 

The network did a credible job of learning to recognize argument forms and 
evaluate the validity of arguments. This is not a trivial accomplishment, since there 
were many featUres of the input that the network had to check in order to generate 
the correct answer on the output units. Without a detailed analysis of the activities of 
the hidden units (which we have not performed), we cannot determine exactly how 
the network solved this problem. But dearly the network exhibited one of the 
prominent characteristics of stUdent performance: it required a good deal of practice 
and error correction before it could solve most of the problems. By the end of 
training, its overall performance was similar to that of our average students. 

.f.3.3 AoalyzinJ how a network evaluates arguments 

While we did not attempt an analysis of the hidden units of our network, Berkeley et 
al. {1995; see also Dawson, Medler, and Berkeley, 1997) ran the same simulations in 
a different architecture that lent itself more readily to such analysis. The key differ
ence was their use of value units, which employ a Gaussian instead of a sigmoidal 
activation function . A Gaussian activation function is bell-shaped so that the activa
tion will be greatest for a specific net input value, and will be less both for lower and 
higher net input values. Using a nonmonotonic activation function enables the net
work to get by with fewer hidden units. Accordingly, Berkeley et al. used only a single 
layer of 10 hidden units. 

A more important consequence of using value units in the hidden layer is that 
training tends to result in each unit taking activations in just a few discontinuous 
ranges (bands). For example, the values taken by their hidden unit 7 eventually 
became clustered in narrow bands around 0.06, 0.54, and 0.99 and did not take 
values elsewhere in the 0.00 to 1.00 range. The particular band into which activation 
fell on a given test trial depended on characteristics of the problem. Thus, the full 
set of problems could be divided into three subsets in accord with unit 7's activation 
on each problem, and the subsets could be examined to determine those character
istics. For example, the activation of unit 7 was in the band around: 

• 0.06 when the connective was not both and/or the second proposition was negated; 
• 0.99 when the connective was not both and/or the second proposition was positive; 
• 0.54 when the connective was if, then or the connective was or. 

This was the only unit that was sensitive to the negation value of the second proposi
tion, but eight of the ten units were sensitive to which connective was presented. 
(The activation bands of the other two units were uninterpretable.) 

Taking advantage of the fact that the activation bands are discrete and most are 
interpretable, Berkeley et al. viewed their network as using rules. Among the rules 
they identified, some turned out to be classical rules of logic, but others were novel 
default rules (e.g., "if the connective is or and there are no other salient features, the 
argument is a valid alternative syllogism"). Dawson, Medler, and Berkeley (1997) 
construed this ability to analyze the network in terms of rules as reducing the 
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difference between classical symbolic accounts and connectionist approaches. How
ever, what is most distinctive and quite useful in their network is the relative trans
parency of the sensitivity profiles of its units. Its actual performance, like that of 
many other networks, exemplifies the idea that networks can approximate rules but 
generally do so in an advantageous fashion. Among the advantages are: 

• the network encodings are less brittle than rules; 
• the network could discover nonstandard rules (even Dawson et al. found this 

noteworthy); 
• the uninterpretable activity bands may have promoted successful performance in 

ways too nuanced to capture in a few simple rules. 

There is some justification for regarding the more interpretable aspects of the know
ledge encoded in the network as rules. However, the network implementation of 
such rules is not itself symbolic or propositional. Like hidden units in other 
simulations, each hidden unit here tends to be sensitive to multiple aspects of the 
input, and multiple hidden units tend to be sensitive to each aspect of the input. 
This many-many mapping is typical of the propagation of activation in networks; it 
may (in part) be viewed as implementing rules but is not itself a set of rules. F inally, 
it should be noted that the activation bands were induced by the use of the Gaussian 
activation function; how to relate the results to those from networks with more 
traditional sigmoidal activation functions remains to be determined. Further work 
on both types of networks and how to relate and interpret their results should be of 
considerable interest in a variety of problem domains. 

The larger question is how to relate the performance of the networks to that of 
humans. While the networks did well, there are obviously substantial differences 
between networks and humans in the way they achieve success. Clearly the large 
number of training cycles is a major difference, since even quite slow humans learn 
to identify argument forms correctly with only a few hundred practice trials, not the 
576,000 trials which were used to train our network on Set 1. Why might this be? 
First, humans do not confront a problem like this as a tabula rasa. They already 
possess a great deal of information, such as the distinction between sentences and 
connectives, and have some idea of what each connective means in ordinary speech. 
Moreover, it is likely that humans do not treat the whole problem as a sifgle 
undifferentiated string, but rather use their prior knowledge to partition the ifaput 
patterns into meaningful parts (e.g., the conclusion). The network, in contrast, must 
make the effort to discover these partitionings. However, the point of developing 
these simple models is not to attain a precise simulation of human performance. 
Rather, it is to show that logic problems, when viewed as tasks of pattern recognition, 
can be solved by networks which, like humans, seem to be capable of learning from 
errors and tuning their performance. 

The finding that networks can perform pattern recognition on logical argument 
forms, and thereby evaluate the validity of arguments, buttresses the suggestion that 
human competency in formal reasoning might be based on processes of pattern 
recognition that are learned gradually as by a network. This ability to apply pattern 
recognition to linguistic symbol strings may be an extremely useful capacity for 
organisms that encounter linguistic symbols in their environment and need to mani
pulate them in a truth-preserving manner (see section 6.5) The crucial suggestion 
that emanates from a connectionist perspective is that the ability to manipulate 
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('.\'ll!mal symbols in accordance with the principles of logic need not depend upon a 
mental nwchanism that itself manipulates internal symbols. In the next section the 
plausibility of this idea is exhibited in the context of a more challenging task in Iogie: 
the construction of proofs. 

4.3.4 A network for constructing derivations 

Consider what is invoh·cd in to.:aching stuc.lt:nts in a symbolic logic course to dcn:lop 
proofs in a natural deduction system. The task in constructing a pruof is to proceed 
from initial premises to the conclusion, proceeding only by licensed steps. Valid 
argumt:nt forms such as those we have considered so far are rules of natural deduc
tiOn (external symbol strings) that license adding new statements to a scl.juencc of 
prt.>mist:s .and alread~ -est;~blished statcmt!nts. After reaching the rules, instructors 
typical!~ do some model proofs; then students arc sent off to construct proofs of 
their own. \Vhat they need to discover arc tho:: conditions under which 11 is ust>ful to 
appl)' rhc ,·arious rules of naruml deduction; that 1s, they must de\ clop their patrern 
rewgmtion c..-.apabilities. This generally reQUires practice.' 

Frequently, as studt>nts are trying to master this procedure, the instructor ''ill 
,·ominue to do model proofs in front of the students and explain why one step \\as 
taken rarher than another . When the one of us v. ho teaches symbolic logic (Bechtel) 
offers such explanations, h!mever, he often has the uncomfortable feeling that he is 
confabulating. It is simp!} obvious, when one has done enough proofs, what steps 
are useful in which drcum~tances. The explanations seem to be developed after the 
tact. Th1s 1s n::vealcd most clearly v.hen, after giving a reason that seems plaus1ble in 
the context of a particular problem, one does another problem that presents a similar 
Situation, but where another step seems more appropriate. A particularly attentive 
student may notice th1s fact and ask: "Why?" Again, one <.'an usually come up with a 
reason. but ir is not at all clear that these reasons capture what actually governed the 
beh1Wior. What seems more plausible is th.lt after much practice more complex 
pattern- recognizing capacities have developed . Instead of simply recognizing the 
~reps licensed by the basic argument forms, one recognizes situations in \Vhich 
application of particular rules of natural deduction should be useful. 

A natural way of describing what happens when someone who kl)0\1.-S logic con
~tructs proofs IS that he or she simply rerugrlizes or sees what to cfo in particular 
situatmns. The expert solves a problem by recognizing what to do on the basis of 
extt:nsive t:Xperiencc. If connectionists are able to provide accounts of how thest: 
pattuns arc recognized, as seems quite plaus1ble, then we will not have to try to 
formulate logical expertise in terms of a set of mental rules; rather, we can treat it as 
invoh ing mental acth·1ty that is more akin ro pattern recognition than to rule applica
rion. Since the procedures used in constructing logical proofs are a means of 
manipulating formal symbols, this raist:s the prospect that the very ability to engage 
in formal symbol manipulation may not be a hasac cognitive capacity; rather, we may 
de,·clop and leam /row to use nonsymbolic internal procedures that arc cffecti\'e at 
dealing" ith external symbols and tasks (a pomt dt:\'eloped below and in section 6.5) . 

As a tirst test of the feasib1hty of this approach, Bechtel ( 199-tb) designed a 
nl:twork to ~·onstruct simple formal proofs. As shown in figure ~.5, it was de~igncd 
~o that at each step the desired conclusion and the inferences that had already bct:n 
completed were r rcscnted on the mput units, and the network's task wa$ to Aeneratc 
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the next inference on the output units. By the final step, all except the last inference 
had to fit within the eight ensembles of input units. Thus, the derivation of each 
proof was limited to the desired conclusion, three premises, and the four inferential 
steps preceding the final one (which should match the desired conclusion). Some 
arguments had four premises and hence were limited to one less inferential step. 

The network was initially trained on proofs that exemplified 14 different deriva
tional patterns, which were constructed using a pool of five different inference rules 
(or-introduction, or-elimination, and-introduction, and-elimination, and conditional
elimination). Employing common symbols for logical connectives(&: and; v: or; - : 
not; and ::::>: if, then), one of the derivational patterns was as follows: 

To derive s & q: 
1. p & q 
2. p ::::> -r 
3. r v s 
4. p 
5. -r 
6. s 
7. q 
8. $ & q 

:premise 
:premise 
:premise 
: 1, &-elimination 
:2,4 ::>-elimination 
:3,5 v-elimination 
:1, &-elimination 
:6,7 &-introduction 

Twenty-four actual exemplars were constructed from each of the 14 derivation 
patterns by different substitutions of the constants A, B, C, and D for the variables 
p, q, etc., and by varying the order of the first three premises; the resulting 1,008 
derivations provided ample variety for an initial feasibility simulation of natural 
deduction. The justifications in the right-hand column were not explicitly encoded, 
but the expression on the left in each line of the derivation was given a localist 
encoding on one of the input ensembles (requiring 13 units, in contrast to the 
maximum of 8 units per premise for the distributed encodings in figure 4.4 above). 
For example, if the second premise (line 2) was instantiated as C ::::> -A, it was 
encoded on the third ensemble as follows: five units for the first argument (the C 
unit turned on, and the units for negation, A, B, and D turned off), three units for 
the connective (::::> unit turned on; & unit and v unit turned off); and five units for the 
second argument (the negation and A units turned on, and the units forB, C, and D 
turned off). The first inference (line 4) required just one unit to be turned on (the 
first C unit in the fifth ensemble). Three-fourths of the derivations were selected for 
the training set; the rest were withheld for testing generalization. 

An epoch of training consisted of one complete pass through each of the 7 56 
derivations in the training set. The network began to get most of the steps correct 
after only a few epochs of training (again by backpropagation using the bp program). 
By epoch 500 it had mastered the training set. The 252 derivations reserved for 
testing generalization involved a total of 936 inferences; the network was judged to 
have made these correctly if all units that had target values of I had activations 
greater than 0.5 and all units that had target activations of 0 had activations Jess than 
0.5. The network was correct on 767 of these inferences (81.9 percent). Some of the 
errors involved either no unit or two units encoding propositions having an activa
tion above 0.5. If a competitive activation procedure had been incorporated to 
ensure that one unit would become active (A, B, C, or D), performance would have 
risen to 90.5 percent correct. The errors generally were not random but systematic: 
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if the network got a step wrong on one problem, it tended to make an error on the 
same step in similar problems. 

A significant question is whether the network has learned how to construct natural 
deductions, or only ones that conform to the 14 derivational patterns. This question 
was partially answered by developing 6 new derivational patterns, from which 72 
exemplars were constructed, yielding 252 inferences on which to test for generaliza
tion. The network was correct on 198 (78.6 percent). Again, the errors were mostly 
systematic. (For additional details, reports of other tests with this network, and 
discussion of how this approach to logical inference compares with more traditional 
psychological models of natural deduction such as those of Braine, Reiser, and 
Rumain, 1984, and Rips, 1994, see Bechtel, 1994b.) 

While these networks are clearly limited to dealing with only a subset of formal 
logic, they do offer some support for the hypothesis advanced above that logical 
reasoning relies on pattern recognition, and that more sophisticated reasoning, such 
as constructing proofs in a natural deduction system, can be realized by sequences of 
pattern recognition steps. A key element in achieving this sort of success is that the 
network always has access on its input units to the premises, the target conclusion, 
and the steps completed so far. This is comparable in many ways to a human having 
this information written on paper, and only having to fill in one piece at a t ime. By 
storing all the propositional structures on paper, the person only has to recognize the 
next step in the inference, not build up representations of the propositional struc
tures. Accordingly, one can speak of the person or network working with external 
symbols. We pursue the implications of this idea in section 6.5. 

4.4 Beyond Pattern Recognition 

In this chapter we have examined one kind of cognitive performance at which connec
tionist networks seem to excel: pattern recognition. After illustrating this ability in 
simple networks, we asked how important it is to human cognition. We suggested 
that higher-level cognitive tasks, which would seem to require reasoning about 
propositionally encoded knowledge, might instead be achievable by pattern recogni
tion. We then explored this idea by presenting network simulations of two logical 
inference tasks: evaluation of logical forms (which vrs within the capabilities of a 
multi-layered feedforward network) and simple natlfral deduction (which could be 
performed by a network configured for recurrent acts of pattern recognition). 

Although this approach seems very promising, we conclude by introducing a 
caveat: connectionists may find it necessary to learn how to make networks carry out 
other processes in addition to pattern recognition (albeit with pattern recognition as 
an elementary process by which more elaborate processes are carried out). For 
example, humans do not have to learn each new task de novo. Often they can make 
use of their knowledge in an analogous domain to help deal with a current domain. 
Perhaps that knowledge is copied and used as an initial sketch for the new task, so 
that weights need only be tuned rather than constructed from an initially random 
matrix. In fact, the tabula rasa approach to learning that is currently adopted in 
most connectionist models may be quite rare or even nonexistent in actual develop
ment and knowledge acquisition. (Cf. Piaget's developmental theory, in which aU 
development germinates outward from a few initial schemes, such as sucking, and 
the processes of accommodation and assimilation that operate on them.) Exploring 
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alternatives within a connectionist framework may require the incorporation of 
new mechanisms that go beyond the existing, basic capabilities for constraint satisfac
tion and generalization which currently enable simple pattern recognition. Examples 
include: the mechanism (just mentioned) of copying and adapting an existing net
work for new uses; mechanisms for coordinating multiple networks in a semi-modular 
architecture; and mechanisms by which existing relevant networks are identified, 
copied, combined, and expanded upon to carry out new tasks.• 

Some interesting suggestions along these lines have been offered by Karmiloff
Smith (1992; see also Clark and Karmiloff-Smith, 1993, and Abrahamsen, 1993}. 
She proposes, for example, that networks must be enhanced so as to enable them to 
re-represent the knowledge they have encoded in their weights; the knowle~ge could 
then be further manipulated and applied to other problems. If current versions of 
connectionism must be extended, one challenge is to figure out a way of getting a 
network to generate such mechanisms itself and, more generally, to exhibit such 
pervasive attributes of human thought as creativity and initiative. That is, can a 
network that readily accomplishes pattern recognition develop emergent capabil
ities? Can it learn not just new patterns, but more complex procedures, as an out
come of applying its current capabilities to increasingly challenging tasks? If not, the 
same jumble of ad hoc mechanisms, which have too frequently characterized sym
bolic modeling, will need to be brought in. This would compromise the simplicity 
of the basic connectionist mechanisms of propagating activations and modifying 
weights; it would be so much more interesting to find that networks can truly behave 
adaptively instead. (For a related view, see Gluck and Bower, 1988.) 

No rEs 

Note that a full-scale stmulation of the task of naming the categories of exemplars would 
use a more principled way of representing the input and output; typically, the binary 
values would encode features based on a systematic characteri:tation of the domain. For 
example, the input units might encode visual and other features that specify exemplars of 
basic-level categories, and the output units might provide a phonemic or articulatory 
encodin&' of cate&'ory names such as "table." Specifying encodings of this sort presents 
some difficulties that we need not address; for our illustration, arbitrarily chosen strings of 
eight values are adequate. Furthermore, most investigators would want separate layers or 
networks for encoding the category as a mental concept and for generating a conventional 
name in a lansuage such as English. Again, we can ignore this source of added complexity 
in carrying out our illustration. 

2 This models the situation in which an instance of one category (e.g., a hat) has a feature 
(e.g., a strap that looks rather like a handle on a bucket) that makes the hat, in that respect, 
look more like a bucket than a typical hat. 

3 Actually, for each feature there is one unit that is activated when the feature is present, 
and a different unit that is activated when it is absent, making a total of 28 units; absence 
can therefore be distinguished from lack of information. For simplicity, we do not discuss 
the units that encode absence. 

4 If the new cases are intermediate with respect to those on which it has been trained, then 
the generali:tation is a form of interpolation. lf, on the other hand, the new cases are 
outstde that range, the generali:tation may have the form of extrapolation - for example, 
applying the same procedure or rule to new cases. Extrapolation is significantly more 
difficult than interpolation, but, as we will show in discusstn&' networks that have learned 
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to produce the English past tense in chapter 5, an ability that is at least partially within the 
range of connectionist networks. 

5 When errors were made, they were usually large errors (e.g., when 0 was the target, the 
output would be 0.98). Conversely, correct answers were typically very close to the target 
(e.g., when 1 was the target, the output would be 0.98). Thus, the very relaxed criterion 
for correctness played only a small role in determining the overall level of correct answers. 

6 The error that remained at this point could not be ehminated by further training with 
backpropagation. The reason has to do with a peculiarity of the backpropagation algo
rithm. If the network generates an answer that is completely reversed from the target (e.g., 
a 1 instead of a 0), the delta value becomes 0 since the equation for determining the delta 
value includes the product a. (1- a.). Since the weight change equation involves multiply
ing by delta, there will be no change to weights in such a situation and the network will 
continue to produce the error. 

7 At a given step of the proof, there often are rules that are licensed (locally) but do not 
contribute to the proof (globally). To select an appropriate rule, the student must attend 
to the larger pattern that is formed by the premises, conclusion, and steps already taken. 
Althou~~th this larger pattern is produced by a serial process (e.g., working backwards from 
the conclusion), the whole pattern {or parts of it) must be available at each step. It takes a 
good deal of experience to become aware of these patterns and to become efficient at 
recognizing them. 

8 Symbolic approaches have not reached this point of sophistication yet, either. For interim, 
partial solutions see Schank's {1982) armory of MOPS, TOPS, and other high-level 
devices for dealing with the complexity of cognition, J. R. Anderson and Thompson's 
(1989) analogy-based PUPS system (see also J. R. Anderson, 1989), and Newell's (1989) 
chunking in the SOAR system. 
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ARE RULES REQUIRED TO 

PROCESS REPRESENTATIONS? 

5.1 Is Language Use Governed by Rules? 

Classical systems are often characterized as systems of rules and representations. Both 
are composed of (possibly structured) sequences of symbols, the difference being 
that rules specify operations upon representations (possibly referencing them with 
variables) and representations get operated upon by rules. Some instantiations of the 
contrast are program vs. data in a computer system, production rule vs. expression 
in production systems, and phrase-structure rule vs. symbol string in linguistics. 
Operations can include creating a representation, moving it into working memory, 
transforming it into another representation, and so forth. Representations can be 
simple symbol strings, but the symbols in classical cognitive models arc hierarchic
ally structured. An important way in which connectionist systems are often distin
guished from classical systems is that they do away with rules and structured symbolic 
representations. We examine the arguments regarding rules in this chapter and 
those regarding structured representations in chapter 6. Both chapters emphasize 
arguments and simulations developed during connectionism's first decade, when 
controversy was strongest. The last part of each chapter gives a sampling of more 
recent work, and disagreements about rules and representations punctuate the work 
discussed in chapters 7-10 as well. 

Findings suggesting that rules are needed to account for cognitive processes played 
a major role in directing many psychologists away from behaviorism and toward a 
cognitive approach in the 1960s . Most connectionists are not behaviorists, but they 
have reopened the debate by seeking to model some of the same phenomena as 
classical cognitivists by means of networks rather than rule systems. 1 To the extent 
that these attempts are successful, the plausibility of connectionism is enhanced and 
the choice between the traditional and connectionist approaches must be made on 
other grounds. 

The domain of language provides a good context in which to examine the role that 
rules might play in a cognitive model.2 A central task of linguistics is to provide a 
systematic description of languages. Grammars generally include recursive rules 
that are capable of generating any of an infinite number of grammatical sentences in 
a natural language such as English (Chomsky, 1957). Some psychologists have been 
attracted to the view that people produce and comprehend sentences by utilizing a 
mental grammar. Within this psycholinguistic tradition, two assumptions are often 
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made regarding how these rules could be acquired: (a) children possess innate know
ledge of Universal Grammar, which constrains the possible rules that can be em
ployed in language; and (b) in learning a specific language children create hypotheses 
about which of these rules apply to it, and then test these hypotheses against their 
linguistic experiences. In contemporary versions, Universal Grammar includes 
parameters with a limited set of values that constrain which rules may occur in that 
language. For example, Italian allows the subject of some sentences to be omitted; 
English does not. From experience hearing the language, children can set the para
meters to their appropriate values. Whether rules are constrained by parameters 
or in some other way, the important assumption here is that a system of rules is 
represented in people's minds. Often this is referred to as tacit knowledge, because 
people are presumed to mentally represent and use the rules without being able to 
state them. 

One particular linguistic activity, the formation of the past tense in English, has 
become the focus of an intense, ongoing debate between those connectionists who 
would like to eliminate rules and classicists who insist that such attempts would be 
either unsuccessful or vacuous. The linguistic facts are not in dispute. For regular 
verbs, the past tense can be formed by adding an inflectional morpheme (which we 
will write as -ed) to the basic verb form (the stem); examples of this regular stem+ ed 
form are looked and needed. There are, however, a number of irregular verbs which 
constitute exceptions, such as give -+gave, and many of these occur frequently in 
daily conversation. Thus, most classical accounts of past-tense formation identify 
both a general rule for the regular cases, and a set of exceptions which are stated 
separately. Rumelhart and McClelland (1986a; PDP:/8) developed a connectionist 
model which challenged both the need for separate treatment of regular and irregu
lar verbs and the claim that rules are involved. They proposed that 

lawful behavior and judgments may be produced by a mechanism in which there is no 
explicit representation of the rule. Instead, we suggest that the mechanisms that pro
cess language and make judgments of grammaticality are constructed in suc:h a way that 
their performance is characterizable by rules, but that the rules themselves are not 
written in explicit form anywhere in the mechanism. (1986a, p. 217) 

In addition to their claim that a single network was sufficient to form the past tense 
of both regular and irregular verbs, Rumelhart and McClelland proposed that train
ing such a network. would replicate aspects of children's emerging mastery. The 
available data indicated that thlre are three (overlapping) stages of acquisition, as 
summarized in Brown (1973) and Kuczaj (1977). In stage 1 (ages 1-2 years), children 
tend to use the same basic verb form, the stem, whether talking about present or 
past events. However, for a handful of verbs they know and sometimes use the correct 
past-tense form instead; most of these are irregulars such as ca1fU!, got, and went, but 
regulars such as looked are possible as well. In stage 2 (ages 2-5 years), children 
know the past-tense forms of a much larger number of irregular verbs and show 
evidence of acquiring a general rule for forming the past tense of regular verbs -
informally stated, add -ed to the verb stem. They quickly overgeneralizc this rule to 
some of the irregular verbs for which they had previously used the stem alone and, 
more interesting, some of those for which they knew the correct irregular form in 
stage I (Ervin, I 964). Usage is often inconsistent as this lengthy stage unfolds. For 
example, a child who starts overregularizing come as comed might also continue to 



122 ARE RUlES REQUIRED TO PROCESS REPRESENTATIONS? 

U SC' rht.> cnrrt..:t .rrt>l(ular form cmnl' on other occasll)n8 <tnll leliprt'iiilly later in !';f i!Jlt" 

2) sometimes blend the two forms to get camed (KuczaJ, 1977). By about .IJIC S 
children can often add -ed to nonsense verbs such as ,.ick on reque:lt (Bcrko, 195!1), 
hut nmv almost always rcfr.1in from on:rgeneralizing this s uffix to familiar irregular 
,·crhs. Children of thill age have tra\·crscd most of the slow tmnsition to l'tage 3, in 
which the corn:ct forms are generally produced for both regular and irregul<lr ,-erbs. 
The most t:ye-catching aspect of this developmental course is the { ' -shaped function 
exhibited hy some of the e<1rliest irregular ,·erbs: correct, then often regularized 
inappropridtely, then corn:ct again. This suggested to pionet.>ring symbolic theorists 
in the 1960s (ag:tinst the prnailing behaviorism) that stage 1 children have memor
ized a few past-tense forms, stage 2 children have also ac4uin:d a rule, and stage 3 
l·hildren ha\'e learned the exceptions to the rult:. On one account, these stage 3 
children (and adults) use the rule for regular ,·erbs and louk up memorized forms in 
a lexicon for irre~ular ~·erbs:' 

Rumelhart and McClelland wanted to demonstrllte that mental rules (;~u~,rmented 
by lexical look-up for exceptions) did not necessarily prm·ide the best interpretation 
of this e ,·idence. They did this by showing that a connectioni~t network could 
exhtbit many of the same lea min~ phenomena as children: the three stages of ac4uisi
tion, the gmdual transition between stages, and error patterns that are distinctive 
to certain phonology-based subclasses. They did not <~ttcmpt to show how past
tense formation would be carried out as part of an overall lan" uage produetion 
~>ystem, and they set hmits on the extent to '"hich they tned to capture the manr 
details in empirical data sets or in theoretical linguistic accounts of the English past 
tense. Their model and accompanying claims clu.:1ted a storm of controversy that has 
~till not abated . We begin b~ presenting their model .1ntl then explore more fu lly the 
cnsumg contrmersy and alternatives. 

5.2 Rumelhart and McClelland's Model of Past-tense Acquisition 

5.2.1 A pattern associator with Wickel(eature encodings 

Rumelhart and McClelland ''ere able to substantially accomplish their goal Uliing a 
model with a rather simple structure, as shuwn m figure 5.1. The heart of their model 
1s a two-layer pattern associator network m whi<.h the tnput units represent a \'erb stem 
m terms of context-sen:sitive phonolog~eal features called Rl il'kt'l/ eatllrt's (ddined 
below) and the output untts represem the pa!lt-tens.: form of th~;: sam.; verb. again in 
terms of Wickelfeatures. Superficially it appears that tht'Se two \\'ickelfe::ature layers 
are the hidden layers in a four-layer network, hut this is not the case. Figure 5.1 
actually collapses the reprt:sentatinn of three separdte networks, each of which passes 
information from its input layer to its output layer in a different way. The encoding 
network at the front end uses a fixed (nonstatistical) procedure to tran~latc a phono
logical representation of the stem into the Wickt:lfeature representation used by the 
pattern associator. The decoding/binding network ut the:: back end, which tran~latcs 
the:: \\' ic:kclfcature outputs into a phunological rcprcscnt;ttion of the p;lst- tcnse form, 
is more complex. Roughly described, it is a dynamic network in which phonological 
representations on the output layer compete to account for incoming \Vickelfcatures. 
\\·hen processing is terminated, each phonological representation has attained a 
different level of activation, and this is used to determine the model's response. 
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Fi~uu S.t Tho: haste 'tructun: of Rumdhart and :\1cCil'llantl's motlcl for past-tense 
form,ltiun. Reprinted Wtth pt:mlissiun from D. E. Rumdhart and j . L . ~kCidland (19liba) 
On lt~trntnl<( 1he pa~t tens.:- of En~tlish n:rhs. In j . L. :\1cCielland, D . E. Rumt:lhart, and 
lhc PDP Hesearch Group, Pur,llll'l Distrihrtt"l Prorrssin[!: E,, ploratums 111 the 1'.-Tirrmtructure 
of toJ!IIIIm ll . volume 2· Psy<'holu~irnl nnd BwlfJ/llrtll .'W(J(/f'fs. C:unbri<.lgt', :\·1:\. MIT 
Pr.,~5/Br:tdfurd Rooks, p. 222 

The pattern assocldtor m between the encoding and decoding networks was the 
part of the model cmphas1zetl by Rumdhart and \-lcC:Jelland. Its task was to trans
form the Wickdfeature encoding of the sound pattern of each verb stem (which they 
~· allt.>d the bast f orm) on its input layer into the appwpriate past-tense form on its 
output layer. The units in both layers were binary. acttvations were propagated 
using the stochastic n : rsion of the logistic activation function (equation (9) in chap
ter 2) , and it learned by using the delta rule to adjust its wei.l(hts. 

\Ve will see below that \Vickclfeature encodings arc no lonl(cr in use. Nont:theless, 
they <Itt' not .t mere historical curiosity. \\lickelfeatures provided an tnnovative solu
tion to a problem that still has not been adequately addressed: networks cannot 
din~cdy encode order information. In hngu1stics - a quintessentially symbolic sci
ence - the phonem1c representation of a verb stem is composed of an ordered 
sL•qucncc:: (strmg) of phonemes. For example, the past-tense form came can be rep
n·sented as /kAm/ (usmg Rumdhart and :\llcCidland's notanon, m which upper vs. 
lmH·r case matte"l .'kam/ 1s the first syllable of ramcorder m contrast to JkAm/ for 
r ame). lf this stnnA is presentt'd to a nemork, unleSl> special mc::asures are taken, the 
order of the phonemes w11l be lost. For example, consider a localist network in wh1ch 
ont' mput unit ~·ncodes each possible phoneme, y,Jth un1t 1 dcsi~~:nated for /A/ , unit 2 
for /k/ , untt 3 for /mj , and so forth. Pr<"sentm~ the stnng /kAm/ \\·til activate unit 2, 
unit I , and unit 3. Rut 1t does not matter whether they arc activated in sequence or 
simultan~·ously; the resulting acti\ation pattern (units 1- 3 active and the rest inactive) 
is indistin!{uishable from that of {mAk/ or {Akm/ . T he input layer and its represcnt
.ttions can be thought of as havin~t one rigid order (unit 1, then 2. then 3, etc.), hut 
the numbers .1re arbitrary labels. It is perhaps more appropriate to think of the input 
la\'er as an unordered collection of units that are distinct due to what they encode 
(as reflected tn their different weight matrices). 
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Connectionists have devised only a few special measures to make networks pre
serve order information. We will see in section 6.4 that simple recurrent networks 
provide a solution that is appropriate to certain tasks and is in common use today. 
Rumelhart and McClelland took a very different approach. Their starting point was 
a type of phonological representation invented by Wickelgren (1969), in which 
phoneme units are made context-sensitive by indicating the phonemes that precede 
and follow the phoneme of interest (which we will call the target phoneme). Hence, 
each representational element is sensitive to a target phoneme and its immediate 
context. Using # to mark word boundaries, the verb came would be encoded using 
three elements: .kA• .A.,, Am.-Rumelhart and McClelland called these Wickelphones. 
lt is generally possible to reconstruct the sequence of phonemes in a word from the 
unordered collection of Wickelphones; hence a distinctive representation of came can 
be obtained using three Wickelphones. 

Wickelphones carry a high cost, however: an enormous number of units would be 
needed to handle a full set of sounds. Specifically, the number of Wickelphones is 
the cube of the number of phonemes (about 35 in English) plus the number of units 
that include word boundary markers. Rumelhart and McClelland calculated that 
more than 42,000 units would be needed for their set of phonemes, only three of 
which would be active for a three-phoneme word (an uneconomical use of units). 
Also, this representation is so specific that special steps would be needed to obtain 
generalization to words with similar phonemes (e.g., generalizing from sing/sang to 
ring/rang and, to a lesser extext, to drink/drank). Rumelhart and McClell~tnd's solu
tion was to obtain a coarse coding (a concept that we introduced in section 2.2.4) of 
the Wickelphones across the pattern associator layers by making each unit cor
respond to a Wickelfeature. Wickelfeatures were generated by analyzing the target 
and context phonemes in the Wickelphone according to four featural dimensions. 
(For example, /A/ is a Low Long Vowel that has a Front place of articulation.) Two 
dimensions were binary and two trinary, yielding ten different features plus an 
additional feature(#) to indicate word boundaries. A particular Wickelfeature con· 
sisted of an ordered triplet of features, one each from the preceding context phon
eme, the target phoneme, and the following context phoneme. Altogether there is a 
pool of 1,210 different Wickelfeatures (11 x 10 x 11). A given Wickelphone for a 
target phoneme that is not at a word boundary corresponds to 64 different Wickel
features (4 x 4 X 4). By disregarding Wickelfeatures for which the two context 
features are from different dimensions, these figures can be reduced to a pool of 460 
Wickelfeatures, with 16 different Wickelfeatures per Wickelphone. This makes the 
number of units quite manageable, and reduces unneeded redundancy. 

By way of example, the Wickelphone .A... (targeting the vowel in came) has the 
Wickelfeatures (Interrupted, Low, Interrupted), (Back, Low, Front), (Stop, Low, 
Nasal), (Unvoiced, Low, Voiced), plus 12 other Wickelfeatures obtained by sub
stituting for Low, in tum, the three other features of the target phoneme: Long, 
Vowel, and Front. Only that particular Wickelphone has that particular set of 16 
Wickelfeatures, but each individual Wickelfeature is associated with a number of 
different Wickelphones. For example, (Interrupted, Low, Interrupted) is a Wickel
feature for .e., J., and a number of other Wickelphones. Generalization is fostered 
by this arrangement. To use an example from the preceding paragraph, the first 
Wickelphone for the verb sing, phonemically /siN/, is .s.; that for ring, phonemically 
/riN/, is ,r,. Since the target phonemes /s/ and /r/ differ in two of their four features, 
and the context phonemes are identical, half of the Wickelfeatures for the first 
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Wickelphone in each word are the same. Since the same phonemes are context 
phonemes for the second Wickelphone (and the other two phonemes are identical), 
half of the Wickelfeatures are identical for the second Wickelphone as well. Finally, 
the third Wickelphone is identical for the two words (1N,.), so all 1 6 Wickelfeatures 
are identical. Because the degree of overlap for each of the three Wickelphones is 
considerable, the network will show a relatively high degree of generalization across 
the verbs sing and ring. 

The result of these choices concerning representation is that the input and output 
layers of the pattern associator part of the network each have identical sets of 460 
units, one for each Wickelfeature. A verb stem is presented to the network by 
simultaneously activating all of the input units that correspond to its Wickel
features. To present the stem come (/kum/), for example, 16 Wickelfeatures would 
be activated for each its three phonemes, yielding a total of 48 activated Wickel
features. These would be propagated across the weighted connections, resulting in a 
somewhat different pattern of activation on the output units which, for a network at 
learning stage 3, should be translatable by the decoding/binding network into the 
past-tense form came (/kAm/). Note that neither layer has any direct way of keeping 
track of which Wickelfeatures correspond to which target phonemes; also, in longer 
words there typically would be some overlap in Wickelfeatures from different phon
emes (to that extent, fewer units than 16 times the number of phonemes would be 
activated). 

It turned out that this novel approach works surprisingly well. The representa
tions are distinctive enough that different words can be distinguished, but they 
overlap enough to support generalization on the basis of the similarity structure of 
the verb stems. Hence, the network can usually generate the correct past-tense 
forms for verbs on which it has not been trained by generalizing from the verbs on 
which it has been trained. Having learned that sing produces sang, for example, the 
network can be presented with ring and produce rang (retaining the distinctive first 
consonant and the shared final consonant, and appropriately changing the vowel). 
Knowing sing would not be as helpful for generalizing to a less similar new verb, 
such as say. (Of course, the network is not operating on the verb pairs as such, but 
rather on their distributed encoding across the Wickelfeature units; these encodings 
overlap quite a bit for sing and ring and much less for sing and say.) 

The same weight matrix that enables the network to form the past tense of regu
lars is also used to determine which verbs require a regular past tense. There are 
three variants of the regular past tense morpheme -ed, based upon the phonological 
characteristics of the stem. Specifically,/~d/ (also written as /"d/ or /id/) is added to 
stems that endJn alveolar stops /d/ or /t/; otherwise, /d/ is added to stems that end in . 
a voiced obstruent, and /t/ is added to stems that end in a voiceless obstruent. By 
stage 3 the network does a good job of using a regular past-tense form where 
required and of using,the correct variant. It can even generalize fairly well to un
trained stems, as discussed later in section 5.2.5. 

To encourage generalization, Rumelhart and McClelland used an additional strat
egy for increasing the coarseness, or "blurring," of the representations across the 
Wickelfeature units. When a particular Wickelfeature was activated, they also activ
ated a subset of similar Wickelfeatures (specifically, 90 percent of the Wickelfeatures 
that were identical except for one of the two context features). 

The goal of the Wickelfeature encoding is thus to capture the phonological sim
ilarity among verbs for which a similar past tense is required so that the network 
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could make the generalization. Rumelhart and McClelland made this point explicit 
in explaining their use of Wickelphones, from which Wickelfeatures are derived: 

One nice property of Wickelphones is that they capture enough of the context in which 
a phoneme occurs to provide a sufficient basis for differentiating between the different 
cues of the past tense rule and for characterizing the contextual variables that deter
mine the subregularities among the irregular past-tense verbs. For example, [it is] the 
word-final phoneme that determines whether we should add /d/, /t/, or /"d/ in forming 
the regular past. And it is the sequence 1N. which is transformed to .N. in the ing ~ 
ang pattern found in words like sing. (1986a, p. 234} 

The encoding of inputs and outputs in terms of Wickelfeatures has been one of the 
most criticized aspects of Rumelhart and McClelland's simulation. One criticism 
exemplifies a generic objection that the performance of connectionist models is 
dependent upon particular ways of encoding inputs which are borrowed from other 
theories, usually symbolic theories. As applied here (see Lachter and Bever, 1 988), 
the objection is that much of the model's work is actually accomplished by the 
Wickelfeature representation, which is a context-sensitive adaptation of standard 
linguistic featural analyses, leaving in doubt the contribution of the network's archi
tecture as such. The usual connectionist response is that much processing remains 
to be done once an encoding scheme is decided upon, and the connectionist contribu
tion is in offering a non-rule-based means of accounting for this processing. 

More specific criticisms of Wickelfeature encodings were raised in Pinker and 
Prince's (1988) critique, as discussed in section 5.3.2. Ultimately, though, Wickel
features were abandoned because connectionists themselves had problems getting 
adequate generalization using them in a network model of reading aloud (Seidenberg 
and McClelland, 1989) - a task which involves more arbitrary associations than 
modifying a verb to get its past-tense form. Current connectionist models of past
tense acquisition (section 5.4.3) and reading aloud (sections 8.3.2.2 and 10.2.3.3) 
retain the idea of distributed encodings of phonemes but no longer use coarse coding 
across context-sensitive features to implement it; instead they rely on an interim 
strategy of position-specific ensembles of units. We still do not know how the 
human mind itself solves the long-vexing "problem of serial order in behavior" 
(Lashley, 1951) nor how the networks often or twenty years hence will do so. 

5.2.2 Activation function and learning procedure 

Other aspects of the model also exemplify the early excitement of experimenting 
with parallel distributed processing as an approach to cognitive modeling prior 
to the discovery of backpropagation. To run their simulations, Rumelhart and 
McClelland presented the Wickelfeature encoding of each verb stem as an input 
pattern to the pattern associator, which is a two-layer feedforward network. The 
network would then compute the past~tense form by applying the stochastic version 
of the logistic activation function (presented in the context of Boltzmann machines 
as equation (9) in section 2.2.2.2): 
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The parameter 9. is a threshold that is individualized for each unit during training. 
Input and output units are binary (active or inactive); whether or not a particular 
output unit is active on a particular trial is stochastically determined. As the equation 
shows, the probability of activation is a continuous function of the extent to which 
the net input from the input units exceeds the output unit's threshold. A stochastic 
function was chosen for two reasons: it enabled the network to give different responses 
on different occasions without change in the weights (the degree of variability being 
determined by the temperature parameter T), and it slowed the learning, allowing 
the effects of overregularization to endure for some time. (Contemporary connec
tionists still use the logistic function to obtain nonlinear behavior, but usually prefer 
the efficiency of the nonstochastic version.) 

Once a pattern of activation had been obtained on the output layer by means of 
the stochastic function, the network could learn by means of an error correction 
procedure. That is, the obtained pattern was compared to the target output pattern 
(the correct Wickelfeature encoding of the past~tense form). For any output unit 
that had an activation of 0 when its target value was 1, the weights feeding into it 
were decreased by a small amount and the threshold was increased by the same 
amount. If the activation was 1 when the target value was 0, weights were increased 
and the threshold decreased. Note that this is simply the perceptron convergence 
procedure (Rosenblatt, 1 962), a discrete version of the delta rule that is suitable for 
stochastic as well as nonstochastic units. Although Minsky and Papert (1969) demon· 
strated that there are serious limitations on what input-output functions can be 
computed and learned by perceptrons, Rumelhart and McClelland (p. 226) noted 
that those functions that can be learned by a perceptron can also be learned (to an 
arbitrarily low probability of error) by a stochastic variation such as their past-tense 
network. In fact, their particular input-output pairs were learned rather well. 

5.2.3 Overregularization in a simpler network: The rule or 78 

Rumelhart and McClelland's pattern associator network was large by any standard, 
and the coarse coding scheme made it even more difficult to examine the detailed 
behavior of the network. These characteristics followed from their desire to show 
that past-tense formation could be substantially carried out by a network (rather 
than a rule system) utilizing distributed representations at the phonological level. 
Another objective, however, was to simulate the stage-like sequence by which ex
ceptional forms are correct, then overregularized, and finally correct again. They 
were ab11 to illustrate this particular phenomenon by teaching a simple, invented 
rule and xceptions to that rule to a much simpler network. The number of weights 
was small enough to inspect them individually to see how the stage-like behavior 
emerged. This simulation could therefore be used to clarify what was happening in 
the more complex past-tense simulation. 

The rule of 78 specifies a transformation that applies to certain binary patterns. 
Rumelhart and McClelland wrote the rule and used it to construct a set of input
output cases which were presented as teaching patterns to a pattern associator net
work with eight units per layer. If the network learned to transform the input 
sequences into the appropriate output sequences, it could be said to have learned to 
behave in accordance with (but not by means of) the rule. In the more interesting 
condition, one of the cases was distorted by changing its transformation into one 
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that violated the rule. To handle that condition, the network had to learn a rule with 

an exception. 
Specifically, the rule first specifies input patterns in which one of the first three, 

one of the second three, and one of the last two units must be on (1) and all other 
units must be off (0). Thus, 

01001001 

is a permissible input pattern, but 

11100000 

is not. It is convenient to refer to these patterns by identifying which of the units 1-
8 are active. Thus, the first pattern above is (258). The rule specifies a mapping from 
the permissible input patterns to output patterns according to which units 1-6 are 
identical and units 7 and 8 reverse their activation values (hence, the name rule of 
78). For example, the output for (258) is (257): 

01001010 

Any other output for this pattern would be an exception to the rule. There are 18 
input-output cases that exemplify the rule. 

Rumelhart and McClelland taught the rule of 78 to the network using the same 
kind of binary stochastic units, activation rule, and learning rule as they used for the 
past-tense simulation (however, 8. was set at zero, and Thad a lower value). The 
first thing to notice is that the set of 18 input patterns is considerably larger than the 
number of linearly independent patterns for which the network could learn an 
arbitrary mapping to outputs (which is equal to the number of input units, here, 
eight). The fact that the mappings between input and output patterns are in fact not 
arbitrary, but rather are completely systematic, allowed the network to achieve 
perfect performance in learning these 1 8 cases. 

McClelland and Rumelhart (1988, pp. 114- 19) made this rule of 78 problem 
available as an exercise for the pa (pattern associator) program in their Handbook. 
To run it as a new project using PDP++ see sections 5.3 through 5.5 and part Ill of 
O'Reilly and Munakata (2000) or using tlearn see chapter 3 of Plunkett and Elman 
( 1997) or appendix 3 (and chapters 3 and 4; see the footnote on page 74) of McLeod, 
Plunkett, and Rolls (1998). 

We trained the 18 pairs of patterns that exemplify the rule of 78 for 30 epoch& 
using pa. At this point the network was making sporadic errors, generally attribut
able to the fact that a stochastic unit has a small probability of firing even when net 
input is negative. An examination of the weight matrix for this network shows the 
exact mechanism by which the network behaves in accord with the rule of 78. The 
three outlined boxes in table 5.1 indicate the regions with the largest weights (recall 
that each weight specifies the strength of the connection between the two indicated 
units). The weights in the upper left box ensure that whichever unit is active among 
units 1-3, the corresponding output unit will get the greatest net input. Specifically, 
the connection from an input unit to the corresponding output unit has a positive 
weight whereas the noncorresponding connection& have negative weights. Hence, 
the states of input units 1, 2, and 3 will be replicated on the corresponding output 
units . The weights in the central box do the same job for units 4, 5, and 6. The 
weights in the lower right box, however, are reversed in sign: if input unit 7 is active, 
the positive connection to output unit 8 will ensure that it becomes active as well, 
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Table 5.1 Network weights for the rule of 78 with no exceptions 

Output unit 

Input 
unit 1 2 3 4 5 6 7 8 

58 -36 -38 -4 -6 -10 -2 2 
2 - 34 62 -38 -2 -6 -8 4 -2 
3 -40 -44 54 -6 -4 -4 0 -2 
4 -6 -4 -4 62 -34 -44 2 6 
5 0 -6 -6 -36 60 -36 4 -4 
6 -10 -8 -12 -38 -42 58 -4 -4 
7 -6 -16 -10 -10 -6 -14 -60 52 
8 -10 -2 -12 -2 -10 -8 62 -54 

and the same holds for the connection from 8 to 7 .• By means of its weights, the 
network has encoded information necessary to perform in accord with the rule of 78 
without ever explicitly encoding it. 

The important question is: what happens when some specific instances do not 
follow the general rule? Rumelhart and McClelland wished to see if they could simu
late the three learning stages described for the past tense. To do this, they converted 
one of the 18 cases into an exception. The exceptional case was (147)-+ (147), in 
place of (147)-+ (148). Since, for children, a substantial percentage of the earliest
learned verbs are irregular, Rumelhart and McClelland started the network with just 
the exceptional case and one regular case, (258) -+ (257}. After 20 epochs of training, 
the network showed good item-specific learning, but it had no way of extracting a 
rule from just two inputs (stage 1 ). When the remaining 16 rule-generated cases were 
added, the network quickly exhibited rule-based learning with over-regularization 
of the exception (stage 2), and then slowly learned to incorporate the exception 
across hundreds of trials before achieving excellent performance (stage 3). 

To observe this ourselves, we again ran the rule of 78 exercise in the Handbook, 
this time using the version that included the exceptional case, (147) -+ (147). As 
expected, after 20 epochs of training on the first two cases, the network had learned 
these as separate cases. We then added the remaining 16 (rule-following) input
output cases. During the next ten epochs of training, the network essentially learned 
the .gularity that is expressed in the rule of 78. In the process, though, it began to 
pro<luce substantially more errors on the exceptional case. At this point the prob
ability that input pattern (147) would activate output unit 7· was only 0.28, while the 
probability of activating unit 8 was 0.60. Thus, there was a tendency to overregular
ize and produce (148). Forty epochs later this tendency was still in evidence but 
reduced: the probability for unit 7 was now 0.50 and for unit 8 was 0.53.5 Across 
a great many more training epochs, however, the weights gradually adjusted until 
the network almost always dealt correctly with the exceptional case. Table 5.2 shows 
the weights after epoch 520. From this it can be calculated that the probability 
of activation given input (147) was 0.92 for unit 7 and 0.08 for unit 8, making the 
network fairly reliable at producing the exceptional mapping (147) -+ (147).6 

Rumelhart and McClelland (p. 233) characterized this result as follows: 
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Table 5.2 Network weights for the rule of 78 with one exception 

Output unit 

Input 
uni t 1 2 3 4 5 6 7 8 

1 108 -66 -74 -08 -14 - 14 68 -76 
2 -72 112 -70 -10 -06 -08 -20 34 
3 -66 -68 116 -12 -06 -08 -24 22 

4 - 14 -08 -08 116 - 70 -74 70 68 
5 -10 -04 -08 - 78 110 -72 -24 24 
6 -06 - 10 - 12 - 68 66 116 -22 24 
7 -08 - 12 - 10 - 18 - 16 - 16 - 100 108 
8 -22 - 10 - 18 -12 -10 -14 124 -128 

Weights shown In boldface provtde the mechanism for producing the correct output for the exceptional 
ca~ 147 In that case the net input to un1t 7 is 68 + 70 + (- 100)"' 38, giv1ng unit 7 a probability of 0.926 
of becoming 4ctJve. 

if thcrc: is a predomin:mt r<·gularity in a set of p<~tterns, this can s"amp exceptional 
puttt"ms until the s.-r of conn..-crions ha~ been a~-quir..-d thur captures the pr..-dominanr 
regularity. Then furtho:r, gmdual tuning can occur that adjusts these connt:ctiuns to 
u~commod~tt: both the regular patto:ms and the exc..-ption. 11tu..- basic properttc:s of the 
pattern assuciator model lie at the heart of the three-srn..:e ;~cquisition proce~. <tnd 
account for the gradualnt-Ss of the transition frnm Stajlc 2 to Sta11e 3. 

5.2.4 Modeling U-shaped learnine 

For the actual simulation of English past-tense acquisition, Rumelhart and 
:VlcClclland st'le~:ted 506 English ,·erbs, which they divided into three sets: ten high
frequency verbs (eight of whtch were irregular), 410 medium-frequency verbs (76 
irre~otular), and 86 low-frequency verbs (14 trregular) . The n :rbs m the hlgh
fn:quency set, for example, included thc regular vt:rbs li'l:~ and look and the irregular 
\'erbs come, get, git:e, make, take,l[o, hat•e and feel. The Simulation began by training 
the network only on the ten high-frequency verbs, with each verb presented once 
per cpo~:h. By t:poch 10, tht: net'.'l-ork had learned a good deal about how to produce 
the proper past-tense forms from the stems for both the two regular and f'ight 
irregular verbs (between 80 and 85 percent of \\'i~:kelfenturt:S were correct). At this 
juncture the medium-frequen~:y Yerbs were added to the training set and 190 more 
training epochs ensued. Figure 5.2 (from PDP:/8) shows that early in this period 
the network exhibited the dip in performance on irregular verbs that is characteristic 
of children's stage 2. Thus, immediately after the additional verbs were added on 
epoch II (referred to as trial II in this figure), the ~rcentagc of features correct on the 
hiJ.!h-frequency irregular verbs dropped approximatdy 10 percent, whereas progress 
on the hil(h-frequency regular wrbs was hardly affected. After thc initial drop, 
however, the irregular n:rhs lkgan to impro,·c ngain by eP~><:h 20,1(radually increasing 
to approximately 95 percent of features correct by epoch I 60. The drop in accuracy 
\\liS due: to int~rfcrcnce from learning the rc~uhtr pattcrn: once that pattern \\as 
cstablishe<.l, the "cight!i could be tine-tuned so that the 1rn:gula r \'crh~ could be 
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relt:arned as exceptional cases, as in children's stage 3. Finally, it should be noted 
that performan~:e on the medium-frequency verbs became at least as good as per
forman~:c on the onginal set of ten high-frcqucnc}' verbs w1thin a few epochs of their 
mtroduction on epoch II (not shown in figure 5.2); m fat.t, performance was a b1t 
better for the new irregular verbs because on average they happened to involve: 
easier transformations (fe..., were as arbitrary as go/tllent) . 

Through further analysis, Rumelhart and 1\-kCielland were able to show that dur
in!!: the perit-.d when the nenvork was making errors on the irregular \"erbs, most errors 
were of tht: expected type; that is, in the direction of overregularixation. For example, 
f1r the stem. come, the corre~:t (irregular) past-tcnse form is came; errors that reflect 
oh rregularization are stem+ ed (comed) and past+ ed (camt'd ). ~ote that the past+ ed 
t:rror is actually a blend that combines the correct and incorrect way to form the pa~t 
ten~e; it \\:1>1 counted as an o\'crrt:gulari:aition o:rrur since that is the onlv nspect of 
tht: form that 1s in error. (For most ,-erbs , the past+ ed form was relati\'cly infn.oquent.) 

To examine the relative frequency of o\·errcgularizntion, Rumelhart and 
~lcClelland had to wnsider how the dccodin,ll/hindin~~: network would operate on 
the \\'ickdfeature reprt:slntation of the past tense tu generate a phonological rep· 
r~:scntatwn . This would most easily be done by inittally dccodmg the \\'ickclfcature 
rt;'prest·nt~\twn mto \\·ickelphones, from wh1ch context-free phoneme strings and 
hcncc words could be rt:covercd. En:n th1s would bt: a dauntinll task cumpl!tatiunally, 
howe' er, so" hat they ~ctualh- diu "as to set up a competition bctw~cn prc-<.ld!ncd 
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alternati\'e forms. In the C<lSe of unne, the alternati\'es were the phoneme strings 
corresponding to came, romed. mmed, and rome. Come is the error of making no 
change to the stem , 'h-hich was the onlv typt: of error explicitly considered in additiOn 
to m·erregularization. A response strength was calculated fur each of these lour altern
atin~s by having them compt:tc to account for the particular st:t of \VH:kclfeatures 
that Wl're acti\'e; t'ssentia lly. the res ponse stren~th uf an alternutive reflected the 
proportion of \Vickelfeaturcs that it could account for but the other alternatives 
could not. The response strength calculated in th1s way roughly captures the pro
pensit~· to produce one form rather than the others. Adding the strengths of all four 
alternatives together, the maximum "um Wlluld be one. (The sum would be less than 
one to the (~Xtent that some features are not accounted for hy anv of the alternatives.) 
It should be noted that this prm:edure is sensith·e to \\ hrch alternatiws are tn 

competition . For exampk, if ramt were added to the altt:rnatin:s (as a phonolugrcallr 
impermissible way to regulanze rnme), ramtd \\Ould presumably lose stnmgrh since 
the final phonemes shore many features. Also, the sum of response strengths would 
he largl'T since those \Vickelfcatures unique to /t/ would no'v be au:ounted for. 

Figure 5.3 shows hm' the error of o,·ern:gularization dominated during stage 2 
(approximutely epoch II, when thl· mid-frequency n·rbs were introduced, through 
epof..h 30) and then declined during a gradual transition to the reliably correct 
performance of stage 3. It does not, howe\'cr, show what other forms m1ght ha\'e had 
nontn' tal response strengths had rhcy been included; since the sum of the response 
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strengths tended to fall into the ll.65-0.iS range during stage 2 and the early transi
tion, ir would be of imt:rest to know whether anything systematic wus happening m 
the 0.25-0.35 gap. Ne\'ertheless, the ability to simulate th~· owrregul:1rization of the 
past ten~e without positing rules is a striking n:sult of this study. 

5.2.5 Modeling differences between different verb classes 

Ha\'ing simulated the stage-like uspect of children's acquisition data, Rumelhart and 
:\lcCielhmd went on to .:onsider more detailed aspect&. In particular, within each of 
the two major types of verbs- regular and irregular- there arc subtypt:s th.tt exhibit 
distincti\'C patrl·rns of past-tense formation . Bybl·c and Slobm ( 11)1!2), for example, 
described the Jis tincti\'e .:oursc of acquisition for each of nine different classes of 
irregular \'erbs. Rumelhart and i\IcClclland found that many of these class differ
ences showed up in the s1mulation results. For example, one dass of irregular ,·erbs 
ends in a linal ft/ and is left unchanged in the past tense (e.g., hit). In human 
a<.:lJUisition, this irrcgular form tends to be overextended to certain \ erbs in other 
classes that also end in / t/ (or /d/). Also, children pt:rform well on this class in a 
grammaucality judgment task (Kuczaj, 1978). As described in the next two para
graphs, the simulatton results wt:re consistent with these findings (and e\'en went 
beyond them to make a ne\\ prediction). 

Se\'en of Bybee and Slobin's classes tnvolved a vo,~<cl change; they found that 
these classes d tffered dramatically in tht:ir propensity for overregularization in 
preschoolers' spontaneous speech, from a low of 10 percent for class IV (e.g., bring/ 
bro11ght) to a htgh of 80 perct:nt for class VII I (e .~ .. fi.vlfieto). When Rumelhart and 
McCidland determined tht:ir network's propensity for O\'erregularization errors in 
these classes. they found less dramatic differences, but a similar ranking of the 
classes. However, class VI verbs were overregularized relati\·ely less often than 
expected. and dass VII ,·erbs more often than expected . Rumelhart and :\1~:Cie11and 
noted that their simulation did not incorporate more subtle word-frequency differ
t:nct:s \\ ithin the medium-frequency \'erb clasl>, and that this may have been respons
ible for the discrepancies . As fur thost: aspects of tht: ranking that were rephcated in 
the simulation, th~y made special note of the fact that Bybee and Slohin's own 
explanations focused on fa~:tors that were irrelevant in the simulation. They sug
gested that the actual explanations may ha\'e to do with other factors (ones that wert: 
incorporated in the simulation). For example, Bybee and Slobin had proposed that 
for certam classes of verb.s (e.g .• fiyffiro:) children have trouble matching up the 

~present-tense form with its past-tense form. However, the two forms were always 
explicitly paired when presented to the network , and Jt made the same errors as the 
children. Rumelhart and l\.JcCidland focused their alternutt\'e explanation un the 
degree of similarity of the irregular past tense to the form stem t ed (the form 
obtained by overregularizing). Here is a ..:ase, then, m which the model suglo(ests 
a hypothesis that cun~:eivably would prU\·ide a superior account of the human data . 
Finally, Rumelhart and :\1cCielland .:on~idered the time-course of the two types of 
m·erregulari;mtion errors: stem + ed (e.g., ronwd, singt'd) and past+ t'd (e.g., cmned, 
smrged). Kuczaj's ( 1977) study of I 5 children (2 at each six-month inter\'al from 2 
years 6 months to 5 years 6 months, plus I longitudinal) found that the latter error 
was most frl·qucnt in older children, ,md the model showed this effect as wdl. Early 
in ~tagc 2 (epoch II on), the respon~c strength for stem+ ed was much greater than 
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for past + ed. The response strength for stem + ed showed the steepest decline, 
however, so that in later epochs the error past+ ed became strongest. In examining 
their data in further detail, Rumelhart and McClelland also noted that the response 
strength for past + ed errors differed across the various classes of irregular verbs. 
Thus, they made a prediction, which had not yet been tested, that a similar result 
would be found in human learning of the past tense. 

As their last simulation, Rumelhart and McClelland tested the model on 86 low
frequency verbs on which it had not been trained in order to assess its ability to 
generalize. Overall, presenting these items to the input units resulted in act•vation of 
92 percent of the appropriate Wickelfeatures on the output units for regular verbs, and 
84 percent for irregular verbs. Rumelhart and McClelland wondered to what extent 
this good performance on Wickelfeatures could be carried through to Wickelphone 
representations and thence to production of the correct word (phoneme string). 
Therefore, on these items they tried out a version of their decoding/binding network 
which would freely generate responses. Instead of a competition among designated 
words, there was a competition among all relevant Wickelphones. To encourage 
production of actual words, pairs of Wickelphones that could be pieced together into 
phoneme strings received extra excitation from one another. (This procedure con
sumed considerable processing time, especially since it was run on computers of the 
early 1 980s, and this was cited as the reason for not using it earlier. Wickelphones 
not needed for any of the verbs were excluded for the same reason.) Translating the 
Wickelphone representations into phoneme strings, it was then possible to calculate 
the response strength of each phoneme string generated. Rumelhart and McClelland 
adopted as a rule of thumb that only response strengths above 0.2 be regarded as 
relevant. Six of the 86 new low-frequency verbs generated no phoneme string that 
exceeded this level. The level was exceeded by exactly one string for 64 verbs, and 
by more than one string for an additional 13 verbs. Examining the 14 irregular verbs 
separately, in just one case was the past tense correctly produced and in two cases 
the correct form was one of two phoneme sequences achieving threshold. The rest of 
these verbs were either regularized or unchanged from the present tense. As for the 
72 regular verbs, the correct response was generated to 48, and the correct response 
was one of two or three generated in 12 others. While this generalization is far from 
perfect, Rumelhart and McClelland took it as evidence that the basic principles for 
generating the past tense had been learned by the network. They noted that in a 
study with 5- and 6-year-o\ds, Berko (1958) found that they too were correct in 
generating the past tense of novel verbs 51 percent of the time and commented: 
"Thus, we see little reason to believe that our model's 'deficiencies' are significantly 
greater than those of native speakers of comparable experience" (Rumelhart and 
McClelland, 1986a, pp. 265-6 ). 

On the basis of these experiments with their model, Rumelhart and McClelland 
contended that with a rather simple network and no explicit encoding of rules it is pos
sible to simulate the important characteristics of the behavior of human children learn
ing the English past tense, and that this network shows both that rules are not needed 
and that separate procedures are not required for the regular and irregular cases: 

We have, we believe, provided a distinct alternative to the view that children learn the 
rules of English past-tense formation in any explicit sense. We have shown that a 
reasonable account of the acquisition of past tense can be provided without recourse to 
the notion of a urule" as anything more than a .Usu•ptio" of the lanifUage. We have 
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shown that, for this case, there is no i"ductio" probltm. The child need not figure out 
what the rules are, nor even that there are rules. The chtld need not decide whether a 
verb is regular or irregular. There is no q~stion as to whether the inftected form 
should be stored directly in the lexicon or derived from more general principles. There 
isn't even a question (as far as generating the past-tense form is concerned) as to 
whether a verb form is one encountered many times or one that is being generated for 
the first time. A uniform procedure is applied for producing the past-tense form in 
every case. The base form is supplied as input to the past-tense network and the 
resulting pattern of activation is interpreted as a phonological representation of the past 
form of that verb. This is the procedure whether the verb is regular or irregular, 
familiar or novel. (1986a, p . 267) 

5.3 Pinker and Prince's Arguments for Rules 

5.3.1 Overview of the critique of Rumelhart 
and McClelland's model 

Steven Pinker and Alan Prince (1 988) mounted an extensive critique of Rumelhart 
and McClelland's claims. They analyzed the past-tense model in detail "to determine 
whether the RM [Rumelhart and McClelland] model is viable as a theory of human 
language acquisition - there is no question that it is a valuable demonstration of some 
of the surprising things that PDP models are capable of, but our concern is whether it 
is an accurate model of children" (1988, p. 81). They concluded that it is not, and that 
rules indeed are necessary to give an adequate account of language and its acquisition. 

Pinker and Prince's crit ique is long and multifaceted. It deserves to be read in its 
entirety for at least two reasons. First, it is an outstanding exemplar of its genre (that 
is, defense of the symbolic approach against the challenge of connectionism). Sec
ond, Pinker and Prince marshaled and organized an impressively broad array of 
linguistic analyses and acquisition data on past-tense formation in order to provide a 
framework for criticism of the Rumelhart and McClelland model. Their own sum
mary of their objections is as follows: 

• Rumelhart and McClelland's actual explanation of children's stages of regular
ization of the past tense morpheme is demonstrably incorrect. 

• Their explanation for one striking type of childhood speech error is also incorrect. 
• Their other apparent successes in accounting for developmental phenomena 

either have nothing to do with the model's parallel distributed processing archi
tecture, and can easily be duplicated by symbolic models, or involve major con
founds and hence do not provide clear support for the model. 

• The model is incapable of representing certain kinds of words. 
• It is incapable of explaining patterns of psychological similarity among words. 
• It easily models many kinds of rules that are not found in any human language. 
• It fails to capture central generalizations about English sound patterns. 
• It makes false predictions about derivational morphology, compounding, and 

novel words. 
• It cannot handle the elementary problem of homophony. 
• It makes errors in computing the past tense forms of a large percentage of the 

words it is tested on. 
• It fails to generate any past tense form at all for certain words. 
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• It makes incorrect predictions about the reality of the distinction between regu
lar rules and exceptions in children and in languages. 

(1988, p. 81) 

Connectionists conceded many of the specific shortcomings identi.fied by Pinker and 
Prince and addressed some of them in later models (see section 5.4). To get their 
demonstration under way, Rumelhart and McClelland had made certain simplifica
tions and heuristic decisions which, while reasonable, were not immutable. As well, 
effective leamins algorithms existed only for two-layer networks at the time they 
designed the model. The number of developmental phenomena that they squeezed 
out of this architecture provided an impressive demonstration that rules are not the 
only viable avenue of explanation. They did not account for everything, and Pinker 
and Prince identified many of the gaps. 

Rumelhart and McClelland's original model and Pinker and Prince's critique have 
provided an enduring foundation for further work on past-tense acquisition. Each 
team in its own way raised the bar as to what would count as a successful model, and 
offered systematic accounts of past-tense formation that were unprecedented at the 
time in their scope and detail. What ensued was a highly polarized debate that has lasted 
longer, dug deeper, and ranged wider than anyone would have predicted at the outset. 

We cannot discuss all of Pinker and Prince's objections and analyses here nor 
follow the entire debate. In the remainder of section 5.3 we provide a brief portrayal 
of three dimensions of their argument and some of the ways connectionists could 
respond. We focus first on their argument that Rumelhart and McClelland failed to 
do justice to important linguistic facts, and second on their argument that the 
network's behavior failed to adequately simulate human behavior. Third, we con
sider their claim that the shortcomings of the past-tense network are not fixable, but 
rather are seneric failures that reflect intrinsic limitations of parallel distributed 
processing networks. (Particularly at the end of the paper they clarified that this 
gloomy assessment was limited to two-layer networks.) In section 5.4 we discuss 
recent models of past-tense acquisition, especially with respect to the issue of U
shaped learning and the role of input. 

5.3.2 Putative linguistic inadequacies 

In developing their contention that Rumelhart and McClelland failed to do justice to 

important aspects of linguistic analysis, Pinker and Prince began by noting the justifica
tion for positing rules in linguistic explanations: 

rules are generally invoked in linguistic explanations in order to factor a complex 
phi:nomenon into simpler components that feed representations into one another. Dif
ferent types of rules apply to these intermediate representations, fonning a cascade of 
structures and rule components. Rules are individuated not only because they comptte 
and mandate different transformations of the same input structure (such as lwtak
lwtalud/broltt) , but because they apply to different Jti"ds of structures, and thus impose 
a factoring of a phenomenon into distinct components, rather than generating the 
phenomena in a single step mapping inputs to outputs. (1988, p. 84) 

We should point out that the strategy of factoring complex phenomena into their 
components is not limited to linguistic theory or to rule-based theories in general. 
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Many advances in science, for example, have involved working out a particular 
decomposition, separately analyzing each component, and then figuring out how 
the components are assembled together into a functioning system. (Bechtel and 
Richardson, 1993, provided an extensive discussion of mechanistic models of bio
logical systems obtained in this way.) Within the domain of language, both linguistic 
theories and connectionist theories specify a decomposition but, by design, these 
decompositions are quite different. For example, the connectionist decomposition is 
intended to be mechanistic in the sense just described, whereas a linguistic decom
position is abstract. The fundamental question is not whether to decompose, but 
rather what sort of decomposition is needed for particular purposes. 

Many of Pinker and Prince's criticisms can be interpreted as arguments that 
Rumelhart and McClelland invoked the wrong decomposition. To begin with, 
Rumelhart and McClelland treated past-tense formation as though it were auto· 
nomous, whereas the same principles governing past-tense formation also figure in 
formation of the past perfect participle and the verbal adjective. Although there are 
different exceptions in each case, the similarities are sufficient to warrant a unified 
account. Moreover, there is a strong parallel between the three variants of the regu
lar past tense(/~/) after stems ending in alveolar stops /d/ or /t/, and elsewhere /d/ 
after a voiced obstruent, and /t/ after a voiceless one) and the three regular ways of 
forming plurals, third person singulars, and possessives (/3z/ after stems ending in 
sibilants like /s/ and /z/, elsewhere /z/ after voiced obstruent& and /s/ after voiceless 
ones). Pinker and Prince maintained that the similarity is due to general phonetic 
factors, a consideration that is lost when one develops a separate network to handle 
past-tense formation. Hence, in their view Rumelhart and McClelland made the 
wrong sort of decomposition of linguistic knowledge. 

Pinker and Prince argued that further linguistic injustice was perpetrated by the 
use of Wickelphones and Wickelfeatures. The first problem is that they work im
perfectly; specifically, they fail to give an unambiguous encoding of all phoneme 
sequences, they miss generalizations such as the similarity of slit and silt, and they do 
not exclude phonological rules that are alien to human languages (e.g., inverting the 
order of the phonemes in the verb). Pinker and Prince acknowledged that Rumelhart 
and McClelland had themselves noted that their coding scheme was adequate to 
their purpose, but imperfect; however, Pinker and Prince regarded this research 
strategy as somewhat alien from their own, more linguistic perspective.' 

The Wickelfeature structure is not some kind of approximation that can easily be 
sharpened and refined: it is categorically the wrong kind of thing for the jobs assiiflCd 
to it. At the same time, the Wickelphone or something similar is demanded by the most 
radically distributed forms of distributed representations, which resolve order rela
tions (like concatenation) into unordered sets of features. Without the Wickelphone, 
Rumelhart and McClelland have no account about how phonological strings are to be 

analyzed for significant patterning. (1988, p. 101) 

Pinker and Prince also pointed out a second problem with Wickelphones: these units 
are limited to encoding phonemic information, whereas the past-tense system must 
utilize syntactic, semantic, and morphological information as well. One particularly 
interesting example involves verbs that are derived from the nominalization of an 
existing verb (see Kim, Pinker, Prince, and Prasada, 1991). For example, the verb 
fly out as used in baseball is derived from the noun fly ball which in tum is derived 
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from the irregular verb fly. Because of the intermediate nominal form, fly out func
tions like other verbs derived from nouns in that it takes a regular past tense. Thus, 
just as we say he righted the boat, we say he flied out, not he flew out (although in 
performance errors do occur}. Pinker and Prince maintained that this is a regular 
feature of English grammar and thus that formation of the proper past tense re
quires knowledge of the lexical item, not just a phonemic representation. Moreover, 
the regularity itself must be expressed by a rule; they claimed that only via rules can 
we keep different bodies of information separate, and yet bring them to bear on one 
another when required. Rumelhart and McClelland's connectionist model is limited 
to encoding patterns of association between input and output representations, and 
therefore cannot utilize and coordinate the various kinds of abstract information that 
are necessary to account for linguistic competence. 

They cited a third failure to respect linguistic facts: the same network is used to 
learn variations within both the regular and the irregular past-tense forms, but lin
guistically these are quite different. The choice among the three forms of the regular 
past tense is based upon phonological principles, is predictable, and therefore can 
be expressed in general rules. The varieties of irregular stems, in contrast, exhibit a 
family resemblance structure at best. Their mappings on to past-tense forms are 
not sufficiently predictable to avoid having to memoril:e them. The Rumelhart and 
McClelland model, however, makes no such principled distinction; it applies a 
single mechanism to both regular and irregular verbs. 

To these specific linguistic objections, a connectionist might respond as follows. 
(1) The past tense was isolated because it was premature to include related phenom
ena in the same model. (Also, it is not obvious which linguistic generalil:Btions 
should, or should not, be accounted for within the same psychological mechanism or 
component.) (2) The decision to focus on phonological representations (at the levels 
of Wickelfeatures and Wickelphones) exemplified the subsymbolic approach to 
modeling: phenomena at one level (e.g., acquisition of past-tense morphology) are 
best understood in terms of mechanistic models at a lower level (here, phonological 
~eatures). The addition of lexical, syntactic, and other higher-level constraints might 
1mprove accuracy somewhat in a later model but is of secondary importance. (3) The 
particular kind of phonological representation that was chosen (context-sensitive 
Wickelfeatures) was a clever solution to the problem of representing order in a 
network, but more general solutions will need to be found if the connectionist 
program is to advance. As already noted, coarse coding across those features worked 
well enough to achieve appropriate generalil:ation in the past-tense task but not in a 
reading-aloud task. (4) The fact that regular and irregular past-tense formation were 
carried out by a single mechanism is at the heart of Rumelhart and McClelland's 
project. Instead of strictly d ividing verbs into regular and irregular classes that get 
treated quite differently in the grammar (but the same within each class), their 
network extracts whatever regularities are in its training set. These lie on a some
what lumpy continuum, ranging from those of broadest applicability (the three 
variations on adding -ed) through subregularities of various scope, to micro
subregularities, to a very small number of unique mappings like go -+ went. Lin
guistic accounts serve somewhat different purposes than mechanistic (processing) 
~ccounts, and each must be judged on criteria relevant to its purposes. Even assum
mg that a decomposition into two classes is most appropriate at the linguistic level, 
that should not be taken as an instruction to build two dissimilar mechanisms into 
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a model at the processing level. The connectionist model must be judged on such 
grounds as whether it generates behavior that is sufficiently similar to human data 
on acquisition or processing. We now tum to Pinker and Prince's second line of 
criticism, which addressed that question. 

5.3.3 Putative behavioral inadequacies 

Pinker and Prince's second line of criticism involved examining in detail the opera
tion of the Rumelhart and McClelland model and arguing that at just those crucial 
points where the model is thought to capture important elements of human behavior, 
it either fails or it succeeds for the wrong reason. One example is Rumelhart and 
McClelland's success in simulating a U~shaped acquisition function, in which verbs 
with correct past-tense forms during stage 1 were sometimes overreiUiarized during 
stage 2. Pinker and Prince attributed this result to characteristics of the input (in 
particular, discontinuities between stages 1 and 2) rather than the connectionist 
architecture. We will return to this point in the discussion of U -shaped learning 
functions in section 5.4. 

Another example emerged when Pinker and Prince assessed the ability of the model 
to generaliu to new cases, that is, the 72 test verbs that Rumelhart and McClelland 
presented to the model after it completed training on the initial set of 420 verbs. 
They interpreted the poor performance on some of these test cases as indicating the 
basic inadequacy of connectionist models. First , they focused on the fact that the 
network offered no above-threshold response to six verbs (jump, pump, soak, warm, 
trail, and glare), attributing this to the fact that the network had not been trained on 
any sufficiently similar verbs from which it could generalil:e. They argued that to 
generalize to any new verb, not just ones similar to the training set, requires a system 
of rules. Roughly, morphological rules would add the past·tense morpheme to the 
verb stem, and phonological rules would then determine which of the three phonetic 
variants was appropriate to the context. Second, they examined cases in which the 
network offered the incorrect past tense (although 91 percent of the verbs with at 
least one above-threshold response had the correct past-tense form as one response 
or the only response). They emphasized that a few of the errors were bil:Brre (e.g., 
tourftouretkr, mail/membled, and brown/browned). Pinker and Prince contended that 
a human, treating irregulars as specially learned exceptions, would initially form 
regular past tenses for all new cases, regular or irregular, and thus would not make 
these errors. But the Rumelhart and McClelland network seemed to be trying to use 
some of the regularities discovered in the already-learned exceptions to handle new 
cases as well. Thus, Pinker and Prince commented, 

Well before it has mastered the richly exemplified reaular rule, the pattern-associator 
appears to have gained considerable confidence in certain incorrectly-grasped, sparsely 
exemplified patterns of feature-change among the vowels. This implies that a major 
" mduction problem" - latching on to the product1ve patterns and bypassmg the spuri
ous ones - IS not being solved successfully ... . 

What we have here is not a model of the mature system. ( t 988, p . 125} 

Returning to their task of contrasting the model's behavior to that of children, 
Pinker and Prince also worked through the model's performance on subregularities 
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(such as different classes of irregular verbs) and its simulation of children's blends 
(the past + ed error, which blends a correct vowel change with a suffix added via 
overregularization, e.g., comt/camed). The discussion is too detailed to summarize 
here, but the general theme is the same: rather than focusing on the considerable 
extent to which the model reproduces phenomena observed in children, they fo
cused on the discrepancies that were duly reported by Rumelhart and McClelland as 
points to consider if an improved version of the model were to be designed. 

5.3... Do the inadequacies reflect inherent 
limitations of PDP networks? 

Pinker and Prince argued that, although some of the specific discrepancies between 
pr~d~cted and observed performance might be eliminated by tinkering with the 
ex1stmg past-tense network, for the most part they are due to inherent limitations of 
PDP networks (by which they meant two-layer networks for parallel distributed 
processing). Connectionists would agree that the work Pinker and Prince wanted the 
model to do, such as incorporating lexical constraints, would require a more elabor
ate architecture than the one that was available to Rumelhart and McClelland. 

Connectionist modeling was advancing rapidly around the time that Rumelhart and 
McClelland's past-tense model was published, yielding a variety of elaborations within 
5o~ ~0 years. Most. important, connectionists were quick to take advantage of the 
additional computauo_nal power of hidden layers when the backpropagation learning 
proc:=e.dure became ava1lable (Rumelhart, Hinton, and Williams, 1986a, 1986b). These 
add1taonallayers can be viewed as imposing particular factorings (decompositions) 
and transformations of the information in the input layer. Also, modular architectures 
offer subnetworks for specialized processing and pathways for combining their out
puts, an approach we will illustrate in chapters 7 and 10. In principle, this would 
be a g~ way to incorporate nonphonological sources of constraint in past-tense 
formation. The newer past-tense models discussed in section 5.4.3 incorporate hidden 
layers and backpropagation but not modular architecture. 

Other advances have had no direct connection to network architectures. For ex
am~le, .it is important to. know the actual input to the child's past-tense system, 
takmg. mto account possable roles for comprehension and filtering mechanisms. 
Early m the debate about the past tense no one had enough information to do this 
proper!~ (in.cluding Pi~ker an~ Prince, who relied solely on observed frequencies of 
produ~tlon m formulatmg cla1ms about input to the past-tense system). One benefit 
of the mtense debate over past-tense acquisition is that more adequate information 
about the input to children has been gathered. 

In the end, Pinker and Prince acknowledged that more powerful connectionist 
architectures might be adequate to produce a model that meets all of their criteria. 
However: they noted that no one had yet built such a model, so its success was 
hypothetac~l. A~so, they echoed Fodor and Pylyshyn (1988) in asserting that if 
someon_e d1d bu1ld the model, it "may be nothing more than an implementation of a 
symboh~ rule-based account" (1988, p . 182). They expressed doubt that the model 
woul~ d1verge enough from mere implementation of standard grammars to "call for 
a rev1sed understanding of language" (1988, p. 1 83), and exhibited little curiosity as 
to whether they were correct in this negative assessment. 
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In the 1980s, this difference in curiosity and excitement about networks was prob
ably what most fundamentally divided connectionists from their critics. Connec· 
tionists were drawn by a promising unknown territory, whereas symbolic theorists 
focused on the often elegant ways in which traditional theories had already addressed 
a considerable body of existing knowledge. In the 1990s debate continued, but some 
symbolic theorists made limited room for networks within their overall accounts. As 
noted in section 1 .5, Prince became more open to the idea that networks would pro
vide a useful level of analysis as implementations of symbolic accounts (eliminating 
the "mere" from Fodor and Pylyshyn's "mere implementation" characterization). 
Also, Pinker decided that associative mechanisms like networks provided a better 
account of the behavioral data on exceptions than did lexical look-up (section 5.4. 1 
and footnote 3). Coltheart, Rastle, Perry, Langdon, and Ziegler (2001) made a similar 
modification to their dual-route model for tasks like reading aloud (section 10.2.3.4). 
For their part, connectionists moved to less exotic architectures (eliminating Wicket
features and coarse coding but adding backpropagation). They used these new models 
to address criticisms regarding the role of input in producing aU-shaped develop
mental function for some irregular verbs. We now tum to this issue, which took center 
stage as the debate over past-tense formation continued into the 1990s and beyond. 

5.4 Accounting for the U-shaped Learning Function 

In presenting their past-tense model, Rumelhart and McClelland (1986a) acknow
ledged certain respects in which their training procedure departed from children's 
experience with verbs. First, the stem and the past-tense form were paired during 
training, whereas it might be expected that a child usually hears just one form of the 
verb at a time. Second, the transition from stage I to stage 2 was somewhat arti
ficially created by presentine the network first with a small number of verbs, mostly 
irregular, and then a much larger set of verbs, mostly regular. Rumelhart and 
McClelland tried to justify this last procedure by arguing that children learn the 
past tense of those verbs for which they have already mastered the present tense, and 
that the progression from a small set of verbs to a much larger set roughly corres
ponds in timing to the overall vocabulary growth spurt that is a typical develop
mental milestone. They commented that "the actual transition in a child's vocabulary 
of verbs would appear quite abrupt on a time-scale of years so that our assumptions 
about abruptness of onset may not be too far off the mark" (p. 241). 

In their critique, Pinker and Prince (1988) argued that the model's U-shaped 
acquisition curve for irregular verbs should be attributed to the discontinuity in its 
input, not to any intrinsic characteristic of learning in connectionist networks. The 
uncontested part of their argument is that the model's entry into stage 2 (in which 
irregulars are sometimes overregularized) was precipitated by the addition of the 
410 mediumfrequency verbs (82 percent of which were regular) to the original 
training set of ten high-frequency verbs (80 percent of which were irrtgt~lar) . The 
controversial part is what to make of this. Two separate issues are involved. First, 
are the input conditions under which children exhibit U-shaped learning so differ
ent as to undercut the usefulness of the existing simulation (section 5.4. 1 )? Second, 
under what range of input conditions can networks exhibit a U-shaped acquisition 
curve (sections 5.4.2 and 5.4.3)? 
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5.4.1 The role of input for children 

The onset of stage 2 is marked by several discontinuities (relatively sudden changes} 
in children's production of past-tense forms. The onset of overregularization errors 
on previously correct irregulars (the downwards part of the U-shaped function} is 
part of a new tendency towards marking the past tense when required; hence, 
correct formation of the past tense for both irregular and regular verbs is increasing 
as well. The question is whether this package of discontinuities in past-tense forma
tion is precipitated by discontinuities in the input to the past-tense mechanism, for 
example, the number of new verb stems or the proportion that are regular. Both 
adult and child corpora can be examined for discontinuities, with the caveat that it is 
unclear which of these best approJtimates the actual input getting submitted to the 
child's internal past-tense mechanism at a given point in time. 

There is considerably more quantitative information now than in 1986, but Pinker 
and Prince (1988, pp. 139-42) compiled what was known at the time. One key 
measure is the percentage of verbs in a corpus that are regular versus irregular. 
Slobin (1971) made this count for adult speech to children (the initial input to the 
overall language-acquisition mechanism), and Pinker and Prince themselves made a 
count for children's own speech (since this roughly indicates what part of the adult 
verb vocabulary has survived the child's filtering for salience, pronounceability, 
etc.). Both child and adult measures were obtained prior to and during overregu
larization using transcripts of Adam, Eve, and Sarah from Roger Brown ( 1973) and 
his collaborators. Counting vocabulary items (number of different verbs in a speech 
sample, sometimes called verb types), the percentage of verbs that were regular was 
very close to SO percent throughout the period eJtamined. However, individual regular 
verbs tend to be used less frequently than irregular verbs. Hence, when the count 
was made using verb tokens (each occurrence of any regular or irregular verb in a 
speech sample), far fewer than SO percent were regular. 

Marcus, Ullman, Pinker, Hollander, Rosen, and Xu (1992) provided an extensive 
review and new calculations on transcriptS that had been entered into the ChiLDES 
electronic database (longitudinal corpora for Adam, Eve, Sarah, and seven other 
children within an approximate age range of 2- 5 years plus samples from each of 
1 S children at 4 years 6 months to 5 years and aggregate data from 58 additional 
children in the range 1 year 6 months to 6 years 6 months). One point they made was 
that the proportion of children's verbs that were regular had been underestimated 
by Pinker and Prince's procedure of making direct counts on small samples. When a 
statistical technique used in biology to estimate population sizes from multiple 
samples was applied by Marcus et al. to the corpora from Adam and Sarah once 
cumulative vocabulary reached about 1SO verbs (at roughly 30 months), esti:nated 
regular verb types began to outnumber estimated irregular verb types, reaching 
about two-thirds regular within the next 12-18 months. (Eve showed a less dramatic 
increase beginning as early as 22 months.) Using cumulative verbs as a more direct 
(but more liberal) measure, the percentage of regulars grew to 73 (Adam) or 74 
percent (Sarah) at 62 months and was still increasing. There was no sudden spurt 
in this percentage nor in cumulative verb vocabulary preceding the onset of 
overregularization, however, nor was there any systematic change in the percentage 
of tokens that were regular (between 20 and 45 percent in most sessions, averaging 
31 percent before and 32 percent after overregularization for Adam and Sarah).1 
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Marcus et al. also calculated this last measure for parents and other adults speaking 
with Adam, Eve, and Sarah and found it to be quite stable: 2~30 percent in most 
sessions. Having found no discontinuities in any of these measures (the best avail
able approximations of the input to the past-tense mechanism), Marcus et al. in
ferred that input discontinuities cannot be what precipitate overregularization and 
other stage 2 changes in children. Therefore, they concluded, Rumelhart and 
McClelland's discontinuous input to their network model was an inappropriate way 
to achieve its U-shaped learning curve for irregular verbs. 

What, then, triggers stage 2? Within the symbolic tradition, the abruptness of the 
onset of regularization is explained by positing that a rule has been induced. Given 
the Jack of corresponding abrupt changes in input, along with the fact that the past
tense form of some irregular verbs is learned prior to stage 2, Pinker and Prince 
suggested that the mechanism that induces the rule is turned off during stage 1 and 
works efficiently enough to quickly trigger stage 2 once it is turned on. The memory 
system that learns individual forms would already be functioning during stage 1 and 
would continue to be responsible for correct irregular forms after stage 2 begins. To 
explain the quick onset of overregularization errors in stage 2, affecting even some of 
the previously correct irregular verbs (the downward part of the U-shaped func
tion), Marcus et al. suggested that memory retrieval of an irregular past-tense form 
blocks application of the rule, but that retrieval sometimes fails. The frequency with 
which retrieval failed for different words was ascribed to properties of IUISOCiative 
retrieval from a network-like memory, replacing the earlier notion of a simple lexical 
look-up. 

The retrieval failure explanation receives some of itS support from the fact that 
overregularizations are rare for high-frequency verbs, which presumably have the 
strongest memory encodings. Other support comes from Marcus et al. 's claim that 
overregularization continues for years at a low overall rate of occurrence. An often
cited figure from their study is that less than 5 percent of irregular tokens get 
regularized overall. Specifically, they averaged the individual overregularization rates 
of 25 children, obtaining a mean of 4.2 percent and median of 2.S percent. Even 
individual sessions rarely exceeded 30 percent. However, when certain questionable 
data were excluded (e.g., children with less than 100 past-tense tokens, sessions at 
the ends of the age range or pre-overregularization, and the verbs have, be, do, and 
get), the mean increased to 10 percent and the median to 9 percent (range 3.6 to 24.0 
percent, N = 6). The child with an overregularization rate of 24 percent, Abe, was 
from a larger study by Kuczaj (1977) for which the methodology apparently con
tributed to higher overregularization rates than other studies (e.g. , parents rather 
than researchers made the recordings and sometimes sought to encourage use of 
past-tense forms). 

One problem is that these two sources of support for the retrieval failure hypo
thesis are confounded. High-frequency verbs have disproportionate inftuence when 
overregularization rates are computed on tokens, but it is exactly those verbs that 
exhibit the lowest rates. For example, Adam's 7 highest-frequency irregular verbs 
(of 55 total) were each used correctly more than 100 times but overregularized only 
1.3 times on average. Hence, to judge the prevalence of overregularization it is 
important to count the number of different vocabulary items that get overre~larized 
in addition to calculating overregularization rates on tokens. Marcus et al. d1scussed 
some of the methodological issues involved and (in appendilt tables A~A 9) tabulated 
correct and overregularized tokens for each verb separately for Adam, Eve, Sarah, 
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and Abe, and provided summary data for the other 21 children. However, they 
focused their own analysis ofthese data on verbs with 10 or more tokens (histograms 
showing the number of these verbs at each overregularization rate are on pp. 48-9). 
Marchman and Bates (1994), in contrast, used all of the verbs in tables A5-A9 to 
calculate that on average 17 percent of a child's irregular verbs were regularized at 
least once. 

This figure is more suggestive of the scope of overregularization than the his
tograms or 4.2 percent figure based on tokens from Marcus et al. - but even it 
underestimates the role of overregularization during the prime preschool years. We 
have recalculated from the same appendix that for the 6 children remaining after 
exclusions, the average was 43 percent (or 34 percent if Abe is also excluded), in 
contrast to Marcus et al.'s average of 10 percent for these 6 children based on tokens. 
The average calculated by Marchman and Bates across 25 children was only 17 
percent because the 19 children excluded from our calculation overregularized very 
few of their verbs: 15 percent for the 4 youngest children (whose ages at the last 
session were in the range 2 years 8 months to 3 years 1 month) and 7 percent for the 
15 children at 4 years 6 months to 5 years. 

Among these overregularized verbs, our calculations indicated that mixed use was 
typical: approximately 70 percent were correct sometimes and overregularized at 
other times (across a median of about six tokens per verb for the six key children). 
Of the remaining 30 percent, most had just one token (and none more than four), so 
the lack of correct responses could reflect either limited opportunity or lack of 
knowledge. Information on whether use was mixed within sessions or across certain 
age ranges could not be obtained from the appendix. 

Marchman and Bates (1994) filled in some remaining gaps in the data and also 
contested some of Marcus et al. 's claims. Most important, they contributed their 
own new estimates based on cross-sectional parental report data from the MacArthur 
Communicative Development !mJentory (CD!) . Advantages of this method include 
parental access to much larger samples of the child's speech than in a taping session 
and a lower age range that extended from early stage 1 through early stage 2 (16-30 
months, with 51-261 children per month totalling I ,130 children). However, only 
vocabulary items (not tokens) could be tabulated, and these were limited to the 57 
regular and 46 irregular verbs on the vocabulary checklist. More detailed responses 
on past-tense formation were requested for only 16 of the 46 irregular verbs and 
even these were subject to imperfect recall by parents. Despite these limitations, 
when they focused on the ages that overlapped between the two studies (27-30 
months), Marchman and Bates got results similar to those of Marcus et al. Specific
ally, they obtained a similar percentage of verbs currently in the child's vocabulary 
that were regular (53-56 percent) and of irregular verb types that were overregularized 
(somewhere between I 7 and 21 percent, based on their figure 3, which is consistent 
with the four youngest children in Marcus et al.'s study).9 Thus, using parent report 
data permitted an independent confirmation of these two results from naturalistic 
data. 

However, Marchman and Bates were more interested in the nonlinearity of changes 
in the number of forms: beginning around 24 months the number of stem-only 
irregular verbs leveled off and declined while the number marked for past tense 
accelerated. They attributed this to attainment of a critical mass of verb types 
(approximately 70 verbs). Using data from their full age range (I 6-30 months) to 
plot past-tense form as a function of total number of verbs - a measure which itself 
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increases linearly - they found that both correct and overgeneralized irregulars 
increased slowly at vocabulary sizes of about 10-69 verbs and then more rapidly. 
This nonlinearity was important to their argument for a single-mechanism con
nectionist account (section 5.4.3). They also confirmed the general developmental 
trend of stem-only followed by gradual attainment of correct irregulars and (at some 
delay for most children) a smaller number of overgeneralized irregulars. 

Marchman and Bates also helped to fill an important gap in previous reports by 
showing that vocabulary tallies look different for children in early stage 1. Regular 
verbs were just 38 percent of the verbs reported for 16-month-olds and gradually 
increased until they leveled off around SO percent at 22 months; they did not rise 
above 50 percent until 27 months. The findings were even clearer when broken 
down by number of verbs rather than age: regular verbs were 38 percent of the verbs 
for children with fewer than 10 verbs, 48 percent at 10-19 verbs, 52 percent at 20-59 
verbs, and rose slowly thereafter to 55 percent (the ceiling using this checklist). 
Thus, at the time they learn their earliest verbs, children are especially attentive to 
irregulars, presumably due to a coalition of factors including high token frequency 
in adult speech, semantic salience, and phonological simplicity. This is generally 
consistent with our own calculation on a limited amount of published naturalistic 
data (Bechtel and Abrahamsen, 1991, p. 196): less than 50 percent of the verbs in 
their vocabularies were regular for (a) three of the four single-word speakers for 
whom Nelson (1973) reported SO-word vocabularies that included at least five verbs; 
and (b) both of the early multi-word speakers for whom Bloom (1970) listed vocabu
laries that included fewer than 60 verbs. (These were Allison and Peter, two of the 
four children excluded from Marcus et al. 's follow-up analysis and our calculation 
due to their young ages; they used 14 and 34 of the verb types included in appendix 
A9, respectively.) However, Bloom's third child already had 93 verbs, and consist
ent with Marchman and Bates, more than 50 percent were regular. 

If the mechanism that learns stem-past tense mappings has been turned on already 
during stage I (contrary to Marcus et al. 's suggestion), and if it attends primarily to 
pairs for which the child already produces the stem (or rarely, just the past-tense 
form), then the above results indicate that irregular verbs initially predominate in its 
input. In this scenario, the mechanism would not yet be involved in controlling the 
production of verbs; its learning would initially be receptive and perhaps Hebbian. 
That is, some other mechanism would control the child 's production of verbs. Some 
of the child's verbs could then serve as input to the mechanism (as could parental 
utterances of those verbs) on just those occasions when they are paired with the 
outputs needed for Hebbian learning. For example, if a child says "Dog eat bone" 
and the parent responds "Oh, it ate the bone!" the child's past-tense network may 
accept the pair and adjust its weights without producing any observable past-tense 
form . (See Bohannon and Stanowicz, I 988, for evidence that children frequently get 
these kinds of pairings within a child-parent exchange and Hirsh-Pasek and 
Golinkoff, 1996, for evidence that children can use grammatical devices in com
prehension that they do not yet produce, including sensitivity to certain functors by 
23-28 months.) Initially the stem-past tense pairs would be learned receptively as 
arbitrary mappings, but as larger numbers of regular verbs are included in the input 
during late stage 1 the network might begin to generalize the regular mappings. 
During this period, the child's overt verb productions increasingly would include 
regular verb stems. Because these would be uninflected forms, it would be clear that 
they were not yet under the control of the past-tense mechanism. 
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Again we meet the question of what pushes the child into stage 2. Within our 
speculative account, the maturing past·tense mechanism must now become involved 
in controlling verb production. What might cause this shift? Several developmental 
theorists have emphasized the idea that certain developmental advances involve the 
coordination of competencies that had previously developed separately (e.g., Acredolo 
and Goodwyn, 1990; Bates, Bretherton, and Snyder, 1988). This insight is readily 
applied to our problem. Producing past·tense forms in appropriate contexts would 
seem to require at least: (1) a variety of mechanisms for planning and producing 
utterances more generally; among these may be mechanisms for recruiting know
ledge that was gained receptively; (2) receptive knowledge of past·tense formation 
for some number of verbs; (3) ability to distinauish between past and present time; 
and (4) knowledge of the semantics and praamatics of the past tense. All of these 
would be incomplete and imperfect at the onset of stage 2. 

The available data do not tell us whether stage 2 awaits only the coordination of 
the imperfect parts, or whether the coordination itself is awaiting minimal attain· 
ment of one or more of those parts. The data do tell us, however, that the child's 
acquisition of additional verbs is rapidly progressing, and that regular verbs over
take irregular verbs before the onset of stage 2. Hence, Rumelhart and McClelland's 
claim that changes in these two factors determine the forms used for the past tense at 
each stage remains quite plausible. The stronger claim that these changes (and their 
effects on a single network) are the primary cause of transition from stage 1 to stage 
2 is harder to evaluate. Rurnelhart and McClelland's training regimen may best be 
viewed as a convenient way to set up initially correct performance on a few irregular 
verbs, so that a reversal could then be observed in stage 2. Their simplification 
would be justified by lack of knowledge about what really was happening, and by the 
inadvisability of building a more complete model at such an early staae of network 
research. More detailed analysis of child acquisition data is one avenue for assessing 
the alternatives; explorina the behavior of networks under a variety of input condi
tions is another. In particular, Pinker and Prince's critique of the discontinuity 
(abrupt change) in Rurnelhart and McClelland's input has been evaluated by pro
viding networks with continuous input and observing the outcome. The next two 
sections describe explorations of this type. 

5.4.2 The role of input for networks: The rule of 78 revisited 

McClelland and Rumelhart ( 1988, p. 118) suggested that the rule of 78 simulation 
set up for their pa (pattern associator) program could easily be modified to provide 
an exploratory look at input conditions under which U·shaped teaming curves can 
be obtained. In particular, learning curves for continuous input could be examined 
by presenting cases (pairs of input-output patterns) on an incremental schedule. We 
did this as follows. We began by training the network on just two cases (subset 
A), then added two more cases (subset B) so that training continued on four cases, 
then added two more cases (subset C), then four more cases (subset D), and fin
ally eight more cases (subset E). By this last interval, all 18 patterns were in the 
training schedule. For each subset, half of the cases were left unaltered (so that they 
followed the rule of 78) and half were transformed into exceptions by altering two or 
three of the eight binary digits. As is evident in table 5.3, the exceptions were quite 
varied. 
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Table 5.3 Regular and exceptional patterns added after certain epochs 

Subset Epoch case• Input Pattern Desired Output" 

A 0 •P147 10010010 10010012 
P258 01001001 01001010 

8 20 •p357 00101010 01i2Q1001 
P368 00100101 00100110 

c 40 •P248 01010001 01001110 
P148 10010001 10010010 

D 60 •P158 10001001 10001121. 
•p]67 00100110 00110001 
P347 00110010 00110001 
P157 10001010 10001001 

E 100 •P167 10000110 120100101 
•P247 01010010 010Q1001 
•P267 01000110 01000112 
•p348 00110001 10010010 
P168 10000101 10000110 
P257 01001010 01001001 
P268 01000101 01000110 
P358 00101001 00101010 

• Irregular patttms noted with ~-
• Irregularities are underlined. 

The weight matrices after learning subsets A-c (six cases) are shown in the top 
half of table 5.4. It can be seen that there was no systematic structure in the weights 
that would directly show that the regularities imposed by the rule had been ex
tracted; yet the network performed quite well on all six cases. This illustrates that 
when there are few enough cases relative to the size of the network, each case can be 
teamed separately as though it were an arbitrary mapping. The percentage of rule
following versus exceptional cases has no real impact, because the network is able to 
minimize error without extracting the regularities that the rule imposes. The behavior 
of the network at this point in training is comparable to that of the past-tense 
network during stage 1 (when it was learning to form the past tense for just eight 
irregular and two regUlar verbs). It is the small number of cases that matters, not the 
percentage that are exceptional. 

After subset D had been learned as well (making a total of five regular and five 
irregular patterns), the weights began to show evidence of systematic structure 
similar to that in the earlier simulation (cf. table 5.2). As can be seen by examining 
the weights, this structure became even clearer after all 18 patterns had been made 
available for learning. At this stage (epoch 140) the network also showed a strong 
tendency to overregularize. Rather than examining actual outputs, which were deter· 
mined by a stochastic function, we focused on the tendency of an output unit to 
be active as indicated by the net input to the unit. We classified as an error any case 
in which at least one output unit had a net input that would result in a probability of 
error greater than 0.40. Of the nine regular patterns, three had errors; just one had a 
probability greater than 0.50. All nine of the irregular patterns, however, produced 
errors; eight were overregularization errors. (Of these, the probability of error was 
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Table 5.4 Rule of 78 network trained with exceptions 

Input unit Outputumt 

2 3 4 5 6 7 8 

(A) Weights after 60 epochs 

1 32 -22 - 24 22 - 28 - 8 2 - 16 
2 - 20 26 4 - 8 32 - 14 2 8 
3 - 14 - 20 10 - 20 - 24 20 -24 0 

4 28 - 26 -20 16 -26 -8 4 -22 
5 - 26 36 -10 - 12 40 -28 -2 2 
6 -24 -2 10 0 -34 18 -22 6 

7 26 18 -12 26 -10 16 I -2 34 
8 -22 -26 16 -22 4 -14 8 -40 

(8) Weights after 140 epochs 

1 2 3 4 5 6 7 8 

1 64 -62 -28 28 -10 -44 -30 4 
2 -58 72 -24 -14 24 -20 10 -20 
3 -20 -52 42 -32 -26 28 -2 -28 

4 2 -68 30 52 -66 -22 - 8 28 
5 26 34 16 - 12 80 - 76 -4 -4 
6 14 12 - 44 - 34 -30 46 - 36 18 
7 8 12 - 8 28 42 26 I 36 48 
8 - 4 14 8 - 28 36 -18 32 - 42 

gr~ater than 0.50 for live patterns.) Thus, the network's tendency to extract and 
o\·ergeneralize a rule to exceptional cases seems to be robust, even ''hen only half of 
the cases fully exhibit the rule. This suggests that the past-tense network might have 
learned the regular past tense and on~rgeneralized 1t to irregulars in stage 2 evcm 
withnut an abrupt change in its input. Condusin~ evidence C<luld be obt:aincd only 
by experimenting with the past-tense network itself, of ~nurse. Plunkett and 
l\larchman targeted this ~oaf by expenmentmg with a d ifferent past tense network, 
.ts discussed in the next sect1on. (It is p lactd m the broader context of connectionist 
approaches to language acqUJsition by Plunkett, 1995. and McLeod, Plunkett. and 
Rolls, 1998, chapter 9.) 

5.4.3 Plunkett and Marchman's simulations of past-tense acquisition 

Plunkett and Marchman (1991) carried out <tn cxtcnsi\·e series of simulations of 
past-tense acquisition in which they presented a complete set of rraining cases across 
all 50 epochs of training (rather than "primrng·· the network wtth a high proportton 
of irregulars in the first few epochs). Hence, not only was there no abrupt chan,Clc 
in the input, there was no change lH all, crellting less fa\·orahle input conditions for 
U-!;hllpt'd learning than in fact are offered to children. ;"':ewnheless, they obtained 

~ 
t 
I 

I 

' I 

I 
I 
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OUTPUT lAYER: PHONOLOGICAL FEATURE REPRESENTATION OF PAST TENSE FORM 
First phoneme Second phoneme Third phoneme Suffix 

11,/v voi manner place Ill 

1
c/v voi manner place 

11
c/v voi manner place 

11
ctv voi manner place I L__j 

First phoneme Second phoneme Third phoneme Un~ed 

INPUT lAYER: PHONOLOGICAl FEATURE REPRESENTATION OF VERB STEM 

Figure ;i..J Plunkett and :\larchman's (1991) network for forming thc past tcnsc of 
artific~:tl ,·crb stems. The thrcc phoncmes in each stem art' t'flcodcd usinl!t position-specific 
phonological featur~ representations. lrrcgular verbs undergo an arbitrary, idt•ntity, or 
vowf'l change tran$formation. and regular verbs get a suffix added on omput un1ts 19-20. 
Laven of umts are fully connect,·d with c:ach other, hut only 2 of the: 20 hidden units >tnd 

their connection~ are ~hown. 

U-shapcd learning curves for individual verbs and for three classes of irn:gular 
"erbs. (These more localized micro U-s/taped areas of the learning curve occurred at 
multiple times and at different points in training for each class, so when results for 
all verbs were averaged no global U-shaped curve emerged .) 

All of Plunkett and Marchman's simulations used a backpropa!(ation learning 
procedure in a three-layer network of 20 units per layer, as shown in figure 5.4. It 
was trained on artificial "ve;:rb stems" that were three phonemes in length (two 
consonants and one vowel). All were phonologicallv poss1ble in Enulish and could 
have the vowel in any position (e.g., ferkf); some also happened to correspond to 
actual English verb stems (e.g., JmEt/). A phonological feature encoding of <"ach 
stem \\as provided usmg six bmary mput units per phoneme: one for consonant/ 
\ owd, one for \'otcedl um·oiced, two for manner of articulation, and two for place of 
articulation. Th1s reqUired 18 units on the input layer, so the two leftover untts "ere 
damped off. The output layer \\~.ss similarh• arranged, except that units 19 and 20 

were used for a nonphonologtcal encoding of the three forms of the regular past
tense suffix. Hence, on units l through 18 there w,ls a distributed encoding of the 
svmbols (artificial ' 'erhs) across subsymbols (phonological features). This encoding 
,~·as considerably less distributed than the coarse ending across Wickclfeatures used 
by Rumt'lhart and :\lcClclhtnd, but a hidden layer allowed for re-encoding the input 
patterns (an option not a\'aitahlc to Rumelhart and 1\lcCidland, who burlt and 
trained their pattern associator model before the de,·elopmcnt of backpropagation). 
Hence, they obtained good generalization with a much smaller network; this enabled 
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them to run a large number of simulations in order to compare the consequences of 
various input conditions. 

In almost all of Plunkett and Marchman's simulations, four different types of input
output cases were intermixed in training. They were designed to emulate classes of 
regular and irregular English verbs, and can be illustrated using English examples, 
The first type was the regular past tense (appropriate suffix is added to stem based 
on three classes of stem-final phonemes, as in add/added, play/played, and walk/ 
walked). The irregular types were: arbitrary mapping (unrelated stem and past
tense form , as in go/went or am/was); identity mapping (past tense is identical to 
stem, as in hit/ hit); and vowel change (vowel of stem is changed according to one of 
eleven patterns, as in blow/blew, meet/met, rise/rose, etc.). 

What differentiated among the large number of simulations was the type and 
token frequencies of each of the four classes of training cases. As a simplification, 
Rumelhart and McClelland had assumed a type-to-token ratio of one. This decision 
has been criticiud, because the type-to-token ratio is generally lower for irregular 
than for regular verbs. That is, each irregular vocabulary item (type) is used fre
quently (yields many tokens, so the type-to-token ratio is much lower than one), 
whereas many regular vocabulary items in a corpus appear just once (a type-to
token ratio of one). Bever (1991) speculated that the network would have learned 
only the irregulars if more realistic type-to-token ratios had been used, and Pinker 
and Prince wondered whether more extended training on the initial ten verbs would 
have "burned in the 8 irregulars so strongly that they would never be overregulariud 
in Phase 2" (1988, p. 142). Plunkett and Marchman (1991 ) sought to reply to these 
critics by providing their network with a steady d iet of verbs, varying the type-to· 
token ratios in that diet across a large number of simulations but not within the same 
simulation. (Hence, no single simulation had a realistic change in amount and com
position of input across time, as would a child's past-tense network.) 

Plunkett and Marchman's results are not easily summarized. In simulations for 
which 74 percent or more of the tokens were irregular, approximating stage 1 input, 
regular verbs were overwhelmed and not learned. (Performance on irregular verbs 
depended upon the type~to-token ratio that was used - few types with many tokens 
was best- and on whether phonologically marked subclasses were included.) In 
simulations for which 74 percent or more of the tokens were regular, regulars were 
learned well; now it was irregulars that were overwhelmed and not learned. Children 
are never exposed to this kind of input. However, the two sets of simulations to
gether demonstrate that networks are sensitive to their training regimens. If d issim
ilar responses (e.g., irregular vowel change versus regular suffixization) are required 
to rather similar input patterns (stems), the network will minimize error by learning 
the more frequent response. 

In several simulations (in what they called their Parent series), approximately 45 
to 50 percent of the tokens (but only 18 percent of the types) were irregular, a situ• 
ation that better approximates the input to children's past-tense learning mechanisms 
during stage 2 (but the 410 regular verbs each had just one token; it would be even 
more realistic to have more tokens of fewer regular types). In these simulations the 
class of arbitrary irregular verbs needed 15 or 20 tokens per type and the identity 
and vowel-change classes needed five tokens per type to obtain learning outcomes of 
75 percent correct or better. Regular verbs suffered somewhat but were always at 
least SO percent correct. Errors included blends (vowel change plus regular suffix), 
no change to stem, and (for irregulars) overregularization; relative frequencies of 

' 
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error types varied according to verb class and type-to-token ratio. Learning curves that 
averaged together all items of a type were noisy but generally negatively accelerated 
(i.e. , most improvement came early in training). The lack of an overall U -shaped 
learning curve is not surprising, because input conditions that would produce good 
initial learning of a small number of items were not included. Plunkett and Marchman 
emphasized, however, that the various classes of irreeular verbs each exhibited their 
own micro U-shaped learning curves. They also stressed that these micro U -shaped 
curves were obtained without the use of any discontinuity in the training set and 
simply as a consequence of the conflict between regular and irregular verbs. 

One feature of children's acquisition that Plunkett and Marchman's (1991) pro
cedure could not simulate is the tendency for children to be inconsistent on some verbs 
for a period of time; for example, a child might bounce between stem-only and the 
regular past-tense form for some of her regular verbs, or between overregularization 
and the correct vowel change for some of her irregular verbs. Although stochastic 
units can be used to make networks perform probabilistically, they preferred to 
focus their next simulations on capturing other aspects of children's performance. 
In particular, Plunkettand Marchman (1993) sought to simulate the acquisition of a 
few correct irregular past-tense forms in stage 1 prior to the onset of overregular
ization (along with additional correct forms) in stage 2. They employed an incre
mental training regime for 500 artificial verbs using a network like that in figure 5.4 
but with 30 hidden units. Rather than introduce all of the verbs at once, varying only 
the proportion of regular and irregular tokens, they first trained the network on a set 
of 10 regular and 10 irregular verbs (based on MacArthur CDI results reported by 
Fenson et al., 1994, and consistent with those of Marchman and Bates for 22-
month-olds). Then they added verbs one at a time with an 80 percent likelihood that 
each additional verb would be regular. New verbs were added once every S epochs 
until vocabulary size reached 100; subsequently, they were added once per epoch 
until all 500 verbs had been included. Comparing their network's learning curves 
with Marcus et al. 's reanalysis of child data, Plunkett and Marchman concluded that 
they were similar: the network initially made no errors on irregular verbs, began to 
make a few overregularization errors after 100 verbs had been learned, and stopped 
making overregularization errors after the last irregular verb had been learned. Also, 
high-frequency irregular verbs were rarely regularized. 

Marcus (1995), however, criticiud Plunkett and Marchman (1993) on a number 
of grounds, including the manner in which performance was graphed, the presence 
of discontinuities in the training regime, and the nature of the errors made. Plunkett 
and Marchman (1996) addressed all of these points, but here we will focus just on 
the question of the effect of discontinuity in the training regime. Marcus's concern 
was that overregularization in the network began after 100 verbs had been learned, 
which was also the point of the changeover from adding a new verb every five epochs 
to every epoch. Plunkett and Marchman responded first by calling attention to their 
1991 study showing that U -shaped learning can be found even when vocabulary size 
is held constant. Second, they reported new simulations that either introduced a new 
verb once every five epochs throughout training, or made the switchover to one verb 
pe.r epoch earlier (following acquisition of the fiftieth verb). In each case, there was 
a wide range in the timing of the onset of overregularization, and the patterns were 
roughly comparable. While Plunkett and Marchman acknowledged that discontinuit
ies in the training set may be a factor influencing the pattern of overregularization, they 
denied that it is either necessary or sufficient to induce overregularization. 
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On their view, the main cause of overregularization is the competition between 
regular and irregular ways of forming a past tense. This raised the question of 
whether regular verbs must make up a majority of the training set for the network to 
properly learn regularization. In the Arabic plural system, for example, the default 
procedure applies to only a minority of forms in the lexicon. Nonetheless, Plunkett 
and Nakisa (1997) developed a network model that succeeded in learning Arabic 
plurals; they argued that it performed better than an optimized dual-mechanism 
account that employed a rule to handle the default cases. There were also specific 
claims about the English plural (Marcus, 1995) to which Marchman, Plunkett, and 
Goodman (1997) replied by arguing that new tallies using the MacArthur CD I were 
consistent with how a network would learn plurals vs. past tense. 

To close this discussion with a very different approach than network modeling, 
Jaeger, Lockwood, Kemmerer, Van Valin, Murphy, and Khalak (1996) brought the 
methods of neuroscience to bear on the issue of whether a single mechanism produces 
both regular and irregular forms . They used positron emission tomography (PET) to 
determine which brain areas were most active as adults performed several related tasks 
involving five lists, each composed of 46 verb stems with no overlap between lists: 
(1) reading aloud a list of verb stems; (2) reading aloud a list of nonsense (artificial) 
stems; (3) producing the past-tense forms for regular verb stems; (4) producing the 
past-tense forms for irregular verb stems; (5) producing past-tense forms for non
sense stems. They found distinctive patterns of cortical activation, in particular for 
the regular versus irregular past-tense formation tasks (relative to a resting state 
or to simply reading the stems). They interpreted their results as supporting a 
linguistically-based account in which regular items and exceptions are handled dif
ferently. Other interpretations cannot yet be ruled out, however. To cite just one 
methodological concern, we do not normally form the past tense of long lists of iso
lated verbs; something like this version of the task was necessary given the requirements 
of PET, but it may conceivably have skewed the results.10 As additional neuroimaging 
studies of language tasks become available, taking advantage of the greater design 
flexibility of fMRI, the debate no doubt will continue in this new venue. Jaeger et al.'s 
publication had one immediate distinction, however: we believe it was the first paper 
in the premier linguistics journal, Languoge, that included color plates. 

5.5 Conclusion 

Rumelhart and McClelland offered a new proposal in 1986 about the kind of mental 
mechanism that produces linguistic performance. On their view, the linkage be
tween regular verb stems and their past-tense forms can be descri~d using just a few 
general rules, but is governed by a mechanism that does not use explicit rules. 
Rather, it distributes knowledge of how to form the past tense across connection 
~eights in a network. Furthermore, this mechanism is unified: the more complex 
hnkages between irregular verb stems and their exceptional past-tense forms are 
encoded in the same set of connection weights as for regular stems. ( In a rule-based 
ac~ount, by contrast, each exception must be listed separately.) In moving towards 
thts end-state, the network exhibits learning stages that are similar in important 
respects to those of human children. 

Perhaps because this model was so explicitly set forth as a direct challenge to rule
based accounts, it became a prime target of critics of connectionism. The most 
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extensive discussion was that of Pinker and Prince (1988), which we examined in 
some detail. We then focused on two issues. First, to what extent did the input to the 
network approximate the input to children's past-tense learning mechanism? We 
pointed to data which, combined with certain assumptions about when and how 
past-tense learning occurs, suggested that the network's input may indeed be pre
dominantly irregular early in the learning process. Second, under what range of 
input conditions can stages like those of children be obtained in networks? Plunkett 
and Marchman's simulations indicated that regularization, overregularization, blends, 
and other stage 2 phenomena can be exhibited by networks even when the higher 
token frequency of irregular verbs is taken into account. Furthermore, the transition 
to stage 3 was partly captured in the improvements in performance across training 
epochs. Their simulations had more limited applicability to stage 1 and the transi
tion to stage 2, but they did show that individual items (and classes of items) can 
exhibit U-shaped learning under constant input conditions involving a large number 
of items. The final rule of 78 simulation which we carried out indicated, however, 
that global stages of u . shaped learning can be observed in a very simple network if 
1t is fed a small (but increasingly large) training set in which exceptions are kept at a 
constant percentage of 50 percent. Hence, abrupt changes in the input are not the 
only way to anain U-shaped learning curves. 

Rumelhart and McClelland's past-tense model was an early feasibility study that 
presented complicated, innovative representations to a very simple kind of network 
(the pattern associator). It is certainly appropriate to probe at its limitations in 
pursuit of improved models, and the methodological points raised by critics have 
been a useful part of this process. The development of multi-layered networks has 
permitted more adequate simulations, but critics have kept the focus on whether 
systems without rules can really capture the behavior for which rule-based models 
have been introduced in cognitive science. Although dated in some respects, 
Rumelhart and McClelland's ( 1986) paper made it impossible to ignore their radical 
proposal: networks without reliance on rule structures can account for both the 
regular behavior which inspired the positing of rules and the exceptions that seemed 
to require rote memorization. This issue has implications far beyond the question of 
how to generate the English past tense, and we will grapple with it again in chapter 
10: first in the context of dual-route theories of reading (section 10.2.3) and then by 
suggesting how the cognitive science of the future might advance beyond it (at the 
end of section 10.3.2). 

Nom 

Any connectionist system includes an activation rule that operates on activation values 
and weights to transform input patterns into output patterns. In a broad sense such a 
system is computational and rule-based. When connectionists challenee (and classicists 
defend) the need for rules, what is in question is a particular notion of rule captured by 
the term "symbol manipulation." The activation rule m a network, in contrast, performs 
quantitative operations on numeric vectors at what •s sometimes called the subsymbolic 
level. 

2 Pinker and Prince remarked: "Language has been the domain most demanding of articu
lated symbol structures governed by rules and principles and it is also the domain where 
such structures have been explored in the greatest depth and sophistication, within a 
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range of theoretical frameworks and architectures, attaining a wide variety of significant 
empirical results. Any alternative model that either eschews symbolic mechanisms alto
aether, or that is strongly shaped by the restrictive nature of available elementary informa
tion processes and unresponsive to the demands of hish-level functions being computed, 
starts off at a seeming disadvantage. Many observers thus feel that connectionism, as 
a radical restructuring of cognitive theory, will stand or fall depending on its ability to 
account for human language" (1988, p . 78). 

3 Note, however, that the exceptional forms are not arbitrary: the exceptional verbs can be 
classified on the basis of phonological similarities, and verbs in the same class tend to 
form their past tense similarly. Some of the errors that children make can be interpreted 
in terms of these svhrtgulorities. For this reason, some rule theorists now ascribe the 
retrieval of irregulars to an associative process (as in a network) rather than lexical look
up; see Marcus et al. (1992). 

4 Learning to reverse the values of units 7 and 8 is no more difficult for the network than 
keepmg them in correspondence, for two reasons. First, although we number the units 
for convenience of reference, the network begins its learning with no part1cular align
ment between input and output units: every unit in one layer is connected to every unit 
in the other layer. Learning the input-output pairs gradually imposes a kind of align
ment. Second, it is no harder to train any output unit to take the opposite value of a given 
input unit than to make it take the same value. Humans manipulating external patterns 
do align them and do find reversals more difficult, but presumably our internal micro
mechanisms have characteristics more like those of networks. 

S Note that it was possible for units 7 and 8 to both become active or both become inactive 
on a given trial. Also, there was considerable variability in the probabilities observed 
over different runs of the simulation. What was common across the runs that we per
formed was that the probability of activation for units 7 and 8 varied around 0.50 for a 
considerable number of epochs. During this period , when exactly one of the two output 
units became active, it was about equally likely that it would be unit 7 (the correct output 
for this exception case) or unit 8 (overseneralization of the rule). 

6 Note that the results we report are quite similar to those reported on p. 231 of PDP: IS, 
but not identical. This is because PDP:I8 used only an approximation to the logistic 
function that was used in the Harulhoolc exercise, and because usmg any function 
stochastically yields slightly different results on every run. 

7 Generally, linguists strive to account for all of the relevant linguistic facts, and a single 
counterexample can lead to rejection of a theory. Psycholosists, in contrast, are accustomed 
to accounting for only a porti(m of the variability in a psychological data set; it is the failure 
to predict the central tendency or pattern of results that leads to rejection of a theory. 

8 Of the 25 children whose tranacripts were their primary data for examining over
resularization, Marcus et al. calculated type and token percentages of regular verbs only 
for Adam, Eve, and Sarah. However, they noted that Adam and Sarah's results were 
consistent with summary data from two previous studies. One found that 79 percent of 
verb types and 33 percent of verb tokens were regular in a group of first-graders (mean 
age 6 years 9 months). A much larger study of kindergarteners found that 23 percent 
of verb tokens were regular. (In Eve's more limited data, SO percent of tokens were 
regular before the period of overregularization, but later tranacripts yielded a more 
typical 27 percent.) 

9 Most of the percentages in this section were read from graphs in the published reports 
and should be accurate within 1 percent unless noted as approximate. Usually ranges 
indicate variation across monthly age groups, but in this instance we provide a range 
because Marchman and Bates did not state how many of the overregularized verbs were 
also reported as correct (as would occur if a parent had picked up on their child's 
inconsistency in past-tense form for certain verbs). We therefore calculated this percent
age once for no overlap and once for complete overlap. 
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10 This concern actually can be extended further. Past-tense forms are generated from 
stems in linguists' grammars, and this entire debate rests on the assumption that people 
do likew1se. But Marcus et al. (p. 66) contrasted elic1ted production studies in which the 
stem is provided to children with "naturalistic settin!P in which children produce a past 
form for an irregular in response to a mental representation of the verb's meaning plus 
the feature for past tense; the phonetic form of the stem need never be activated." 
Conceivably this would be true of regular verbs as well, affecting more verbs for a longer 
period than would be expected on grounds of parsimony. If so, the most appropriate 
connectionist model of development might start with a network mapping {a) verb mean
ings on to verb stems, and then add pathways mapping (b) verb meanings+ pastness on 
to past-tense forms and (c) verb stems on to past-tense forms. How these pathways 
would unfold in time and the nature of any interactions between them would need to be 
addressed. 
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ARE SYNTACTICALLY STRUCTURED 

REPRESENTATIONS NEEDED? 

In a classic symbolic model, rules operate on representations. Chapter S presented 
the connectionist case for d ispensing with rules and some classicist objections; now 
in chapter 6 we move the debate forward to the related issue of the status of rep
resentations. Linguistic analysis of a sentence like Joan loves the florist yields a syn
tactically structured representation in which the sentence is seen to be constructed 
from constituents: loves is composed with the florist into a larger constituent (a verb 
phrase), which in tum is composed with Joan into a sentence. But connectionist 
models of language processing use distributed encodings. Most connectionists have 
no qualms about calling these encodings "representations" in the broad sense that 
they model the mental states that refer to and make sense of the world, as long as the 
term is not taken to imply sequences of elements with explicit syntactic structure. 
Their critics also view this as a crucial distinction. One of the first, and most 
discussed, critiques of connectionism was put forward by Jerry Fodor and Zenon 
Pylyshyn (1988), who argued that connectionist models whose representations fail to 
exhibit syntactic structure cannot account for major facts about cognition. 

This chapter examines Fodor and Pylyshyn's critique as well as three lines of 
response offered by connectionists. The first two connectionist responses accept the 
assumption that cognitive systems can operate on their environments only insofar as 
they internalize structured representations of this environment, but differ on the 
nature of the structure that is required. The last response rejects this assumption, 
and proposes internalizing only the knowledge of how to interact with external 
representations. Coupled with this last line of response is an appeal to structured 
external symbol systems, such as natural languages, to account for the features of 
cognition emphasized in Fodor and Pylyshyn's critique. These responses thus pro
gress from relatively conservative to fairly radical. 

6. 1 Fodor and Pylyshyn's Critique: The Need for Symbolic 
Representations with Constituent Structure 

6.1.1 The need for compositional syntax and semantics 

Fodor and Pylyshyn (1988) began their critique of connectionism by distinguishing 
between r~resmtationalist and eliminativist approaches to theorizing about cognition. 
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Representationalists claim that the internal states of the cognitive system are "rep· 
resentational (or 'intentional' or 'semantic') states" that "encode states of the world"; 
eliminativists "dispense with such semantic notions as representation" (Fodor and 
Pylyshyn, 1988, p. 7).1 After offering the distinction, Fodor and Pylyshyn placed 
connectionism on the representationalist side, citing both textual evidence from con
nectionist publications and the fact that connectionists typically provide semantic 
interpretations of the activities of either single units or ensembles of units. This assign
ment then became the foundation of their argument against connectionism, because 
it was constructed to show that connectionist systems are inadequate as representa
tional systems in ways that classical systems are not. 

Although the two kinds of systems differ in their level of representation -
subsymbolic vs. symbolic- the critical difference for Fodor and Pylyshyn was the 
character of those representations. For more than two decades, Fodor has advocated 
the languagt of thought hypothesis, according to which cognitive activities require a 
language-like representational medium (see Fodor, 1975). In particular, symbolic 
representations have a combinatorial syntax and semantics. This means that repres
entations are composed of constituents, which may themselves be composed of 
smaller constituents, and so forth. Unpacking the structure eventually yields atomic 
symbols (the elements of representation). The rule-governed processes that operate 
on representations arc syntactic; that is, they are applied with respect to form, not 
meaning, and can apply at any level of the constituent structure that satisfies a spe
cified structural description. When the time comes to provide a semantic interpreta
tion, however, it is compositional in a way that mirrors the syntax: the semantics 
of the whole depends upon that of the parts. In section 1.3.1 we noted that proof 
procedures that are complete provide an interface between proof theory (which 
derives propositions from other propositions syntactically) and model theory (which 
focuses on whether the propositions are true, that is, on their semantics). In Dennett's 
( 1978) terminology, the syntactic engine mimics a semantic engine. 

For example, the operation that applies to P & Q to get P is licensed for any 
representation that has the form P & Q. It is a syntactic operation, but is useful 
because it interfaces with semantics so as to permit the truth of P to be inferred from 
the truth of P & Q. In the simplest case (atomic constituents), red & round can be 
operated upon to get red. (Since we are discussing the language of thought, not 
the language of English, it is best to think of these words as convenient symbols 
for common human concepts.) P and Q could be molecular rather than atomic 
constituents, though. For example, the same operation could have applied to (red & 
round) & (g'f'een v square) to get red & round before it applied to red & round to get 
red. 

Fodor and Pylyshyn charged that connectionist systems lack a combinatorial syn
tax and semantics. Although individual units or coalitions of units in a connectionist 
system may be interpreted semantically, they cannot be built into linguistic expres
sions and manipulated in accord with syntactic rules. Because they are not 
compositional syntactically, they are not compositional semantically either. 

The crux of Fodor and Pylyshyn's argument, then, is that only a system with 
symbolic representations possessing constituent structure can adequately model 

..,... cognitive processes. The language of thought exhibits three properties that re
quire a combinatorial syntax and semantics - features that are also exhibited by 
conventional human languages and were first recognized in that more accessible 
medium: 
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Joan loves the florist the florist loves Joan 

Figure 6.1 Tree diagrams of the constituent structure of two sentences. 

• The productivity of thought refers to the capacity to understand and produce inde
finitely many propositions. This capability for unbounded expression is achieved 
by using finite resources, particularly recursive operations, which entails a com
binatorial syntax of thought. 

• The systematicity of thought results from an intrinsic connection between the 
ability to comprehend or think one thought and the ability to comprehend or 
think certain other thoughts. It is claimed, for example,2 that anyone who can 
think Joan /()f)es the florist can also think the florist /()f)es Joan. For this to be so, 
"the two mental representations, like the two sentences, must be made of the same 
parts" (p. 39). Figure 6.1 illustrates this point by displaying a simplified con
stituent structure for the two sentences. The second sentence has the same parts 
and the same structure as the first sentence; the only difference is that the two 
noun phrases have been switched between the subject and object positions in the 
tree. Someone who has mastery of this structure should be equally able to 
process either sentence. 

• The coherence of inference involves the ability to make syntactically and semant
ically plausible inferences. For example, one can infer from xis a brown cow that 
x is a cow, or from a true conjunction (A & B) that both conjuncts are true (A is 
true and B is true). 

6.1.2 Connectionist representations lack compositionality 

Fodor and Pylyshyn contended that connectionist systems have no way of compos
ing simple representations into more complex representations, and therefore lack 
these three essential properties. Part of their argument goes as follows. First, con
sider connectionist networks that have a localist semantic interpretation. Each rep
resentational unit is atomic, and there is just one way the units relate to one another; 
by means of pairwise causal connections. Thus, if A & B and A are two nodes in a 
network, the weight of the connection from A & B to A can be set such that 
activating A & B results in (causes) the activation of A. This could be viewed as a 
kind of inference, but the network's representation of the thought A is not in any 
way part of its representation of the thought A &: B . Any two nodes could be wired 
to have the same pattern of influence; for example, node A & B might excite node Z. 
Clearly, then, the connection is not compositional in nature, and the inference does 
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not go through in virtue of the syntactic relation between the nodes. One unpleasant 
outcome, in their view, is that the inference must be built in separately for each in
stance of conjunction rather than by means of a rule that utilizes variables to specify 
the syntactic relation of inclusion. For example, the unit B & C must be specifically 
linked to unit B if the inference from B & C to B is to be made, just as A & B had to 
be linked to unit A. On this basis, Fodor and Pylyshyn concluded that localist connec
tionist systems lack the requisite resources for cognition. 

Might distributed networks be more suitable than localist networks as cognitive 
systems? In some networks using distributed representations, the units that are 
active in a particular representation encode features (or microfeatures) of the entity 
that is being represented. Smolensky (1987) specifically criticized Fodor and 
Pylyshyn's A & B analysis as too simplistic and not relevant to distributed repres
entations. By way of illustration, he adapted Pylyshyn's own example (presented at a 
1984 Cognitive Science Society meeting) involving a set of ad hoc features for cup of 
coffee. Smolensky noted that they could be viewed as falling into three subsets with 
respect to questions of combinatorial structure. The first set has features that apply 
to cup alone; if a unit is designated to encode each feature, the activation pattern 
across the units provides a distributed representation of cup (e.g., two such features 
might be porcelain curved surface and upright container with a handle). The 
second set applies to coffee alone (e.g., brown liquid and burnt odor). The third 
set applies only to cup and coffee as they interact (e.g., brown liquid contacting 
porcelain). An activation vector for cup of coffee will include the vectors for cup and 
for coffu, a relation that plays much the same role in processing as the com
positionality of symbolic representations. However, it will be approximate rather 
than exact (because activation values can vary), and the third set of features will be 
activated only for the particular combination cup of coff~e. Thus, the network repres
entation offers a sufficiently close approximation to compositionality plus the bonus 
of context-dependence. 

Fodor and Pylyshyn (1988, pp. 19ff) responded that this is the wrong kind of 
composition for the purpose they have in mind. The way in which a microfeature is 
part of a representation of an object is not the same as the way in which one syntactic 
unit (e.g., a noun phrase) is part of a larger syntactic unit (e.g., a verb phrase). Thus, 
in a symbolic representation of the proposition Joan /()f)es the florist, the unit repres
enting Joan stands in a particular syntactic relationship to the rest of the proposi
tion, such that the proposition is not confused with the florist /()f)es Joan. This is not 
true of a distributed representation. For example, a (minimally) distributed repres
entation of the proposition Joan /()f)es th~ florist could be achieved in a network 
whose units corresponded to such concepts as Joan, /()f)es, and the florist by activat
ing those three units. However, Fodor and Pylyshyn argued, it would be indistin
guishable from the representation of the florist /()f)es Joan. It would not help to add 
units for relationships, such as a unit for subject, for there is no straightforward way 
to capture the fact that it is Joan who is the subject and not the ftorist (that is, to 
compose the units hierarchically). The units are just bundled together in a relation 
of co-occurrence, without the structure that syntax would provide. Fodor and 
Pylyshyn concluded that connectionist networks, whether localist or distributed, 

.- forfeit the benefits offered by a combinatorial syntax and semantics. 
One interpretation of this point in shown in figure 6.2: the activation of certain 

units in the input layer of a simple network is adequate to distinguish Joan looes the 
florist from Terry leaves the baker but not from the florist [()f)es Joan. The subject and 
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oeoeeoeee 
baker florist Terry Joan loves lt'aves Subject Object Verb 

Figure 6.! An aUt:mpr to repres~nt conMituent structure un one layer of a connectionist 
ncrwnrk that is tno simplt: to work. With the units for Joan, lm·n.ft .. rist. suhjur, ohjert, anJ 
r·uh all acti\·e, thcrc is nu indication that Jtum is the mhjf<'l anJ fl•JTi$t is the ohj~ct r:llhcr 
than the rt•wrsc. Snm,· way of binding words to ~rammatical rok-s is needed. 

ohjcct role~ :tre activated, hut arc nor bound ro the person units so as to d istinguish 
" 'hich person is in which role- this is a simple case of the notorious bimii11g prnbfem. 
In contrast, the t rees in figure 6.1 have hierarchical structure ohrained by applying 
rules of composition. Althoul{h the same components and the same rules of compMi
tion ,m: im·oh·ed in both trees, rhe positions of the components in each tree clcnrly 
distinguish which is subject and which is object. According to Fodor and Pylyshyn , 
these resources are distinctive to symbolic theories, and such a theory 

"'Ill have tc> f.!O out of its w"v to explain a linguistic competence \\hich t!mbract"S one 
sentence but not the other. And simtlarly, if a theory says that the ment:1l repres..nta
uon that corresponds to the thOUf(ht that P & Q & R has the same (conjunctive) syntax 
us the mental rt!presentatlon that corresponds to the: thought that P & Q and thar 
mental pro~esses of drawing inferences subsume mental representations in virtue of 
their syntax, it "'1ll have to go out of its war to explain mfcro:nual capacitio:s whi<..h 
cmbr.Jce the one thoujtht but not the other. Su.:h a competence would be, .It ht'~t. an 
embarrassment for thl' tht!ory, and at worst a refutation. 

By contrast, smce the Conl'lt'ctionist architecture r.,.;ognizes no t·ombinatorial stnlc
ture 10 mental represt:ntatwns, j.(:lpS in t·ognitivc <"Ompett:ncc should prohfernte ,trbit· 
mril) . It's nut JUSt that you'd expect to get them from ume ttl time; it's that, em the 
''no-!ltructure" story, !(aps ar~ th~ rtmnarkt:d t:au. It's the systematic cnmpetcnc<· that the 
theory i~ required to treat a~ an embarrassment. But, as a mllttt:r of fact, inferential 
competences arc hlatmtlly systematic. So there must he something deeply wrong w1th 
<.:onnL.::tiom$t architecture. (p. ~9) 

6.1.3 Connectionism as providing mere implement11tion 

Folio\\ ing these and other arguments that an adequate representational system must 
he symbolic rather than connectionist, Fodor and Pylyshyn did acknowledge that 
the ner\'OUS system m which our symbolic representations are implemented may be 
a connectionist system. This might seem to be an admission that connectionism has 
a role to pl.ty in modeling cognition. But Fodor and P.1•l.vshyn maintained that o11(v 
thr aualysis at the let•el of symbolic processi11g is rell"l.•ant to mgniti1_·e theori::ing, and 
that this !t!f:e/ is twnconnectionist. Connectionism is merely an account of the medmm 
within which the symbolic representational system is implemented, and as such is 
nut pertinent to theorizin~ about cognition itself. This aspect of their aiti4ue is 
!trounded in a notion of le,·els of analysis of nature. There is a causal story to be told 
about interactions withi11 each le\'el (e.g., a srory ahout molecules, a story about 
stones, a story about galaxies), but "the stor) that scientists tell about the causal 
structure that the world has at an y one of these le,·els may be 4uite different from 
the story that they tdl ahout its causal structure at the next lc,·cl up or Jo"n" (Fodor 

ARE SYNTACTICALLY STRUCTURED REPRESENTATIONS NEEOED7 161 

and Pylyshyn, 1988, p. 9). i\1oreover, Fodor has argued dsewhcre (Fodor, 197~) 
that a sinlo(le fun.:tion may be implemented in any ont· of a number of lower-level 
mechanisms and that a single lower-level mcch<ulism may figure in many functions. 
For example. money can he physically realized in paper, metlll, stones, or clams. 
Eal·h of these physical entitleS has its own causal story ~md properties (.:.g., paper is 
made frurn trees and can he crumpled), but these are not n:le,·ant w tht• functions 
they m1ght serve at the monetary level, wh1ch has its own story. Likcw1~e. co){nitl\'e 
functioning has its o\\n story which is minimally constrained, if at all. hy scientific 
accounts of the neural substrate. 

The causal story that is rele\'ant to cogniti\'e sdcnce, for Fodor and Pylyshyn, is 
a story about actions performed on structured symbolit· representat ions. Since 
connectionism per se cannot prO\·ide an adequate ~tory about actions performed on 
such representations, but the symbolic account does, then connectionism is not a 
l'andid<lte theory of co!(nition. At best, it is a story ahout 1mother len!, but as such it 
is no more relevant to theories of cognition than arc stories about molecular pro
cesses in the brain . 

\\'hat about the level of implementation ibelf? In the course of responding to 
some of the arguments commonlr made on behalf of conm:ctionism (such as those 
discussed in section 2.3), Fodor and Pylyshyn ga\'e some attention to this question. 
On the1r view, most of the ad\'antages connectiomst models seem to h,t\'e over 
symbolic models are due entirely to the fact that symbolic models arc currently 
implemented on \'on Neumann computers. 'When symbolic models arc implemented 
in more neural-like hardware, they v. ill exhib1t the same virtues as connectionist 
modds. Moreover, the fact that these characteristics stem from the mode of imple
mentation shows that they art: nor cognitive o.:haracteristics at all, but merely features 
of the Implementation. For example, Fodor and Pylyshyn maintain that the time 
consumed by a particular cogniti\t: pn>l't:ss is a matter of implementatiOn, and dot:s 
not inform us as to the nature of the architecture Itself; 

the uhsolute spet'd ,,f a process •~ a propt·rty par Hallmu of Its impk·ment.ttinn . ... 
Thus, the fa.:t th.tt ir)dl\·oduMI neurons rt>quore tt'ns of mili*<'und~ [sic] to fir., can have 
no benrin,~t on the pn•dictcd speed at which m1 algorithm will run wtfl!ss tlll'r~ ts til lmst 
a part tal. mdrpt'lldmtly nmlit·afl'd theory of h11rt' t lrl' opnatwns of tht' functimwl ttrdtill'c
turr are implentcllteJ in nmmus. :-;mce, in the t·ase of the hmin, Jt is nnt e1·cn c<.'rtatn that 
tho: tinng of neurons IS nwariably the relevant implemcntunon property (at l,•ast fur 
l11ghcr le\'d cugniti\'·o: processes. hke learning ;md m~mnry) the IIJO step "wnstrJinl" 
t'Xdudes nothm~. ( I'Jl!X, p. 55} 

In particular, Fodor and Pylyshyn pointed ()Ut that nothing prohibits operations on 
symbols from being implemented in a parallel architecture and hcnct• being per
formed much more rapidly than in a von ~eumann computer. They applied similar 

arguments to other purported \'irtucs of connectionist systems (e.g .. resistance to 

n01se and damage and use nf soft constraints). 
It ~hould be noted that Fodor and P ylyshyn 's men• implementation argument relit's 

on some very particular .1ssumptions ahout how l~;:\'cls of nature, and the disciplines 
that study them, relate to one <~nothcr. Specifically, they place information-pnK~·ssmg 

accounts of cognition and language at rhc sdmc lc,·d as .tbstract Hccounts, such as 
those pro\'idcd in logic nr linlo(uistic theory. The gap we left in the (IUOte abm·e 
was thl• following parenthetical comment: "(B~ contrast, the rt'/(ltin• spcl·d with 
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which a system responds to d ifferent inputs is often dial:(nostk uf distinct processes; 
hut this has always b~n a prime empirical basis for deciding among alternatin~ 

algorithms in information processing psychology)" (p. 55) . Information-processing 
act:ounts nrc not n m atter of mere impleml·ntation for Fodor and Pylyshyn, but 
rather arc closely associated with the lin~:uistic theory itsdf. This exemplifies a 
desire on the part of Chomskian linguistics to con:r some of the traditional territory 
of cognitive psychology as well as linguistics. In contr;~st, many psycholo~ists (e.g., 
:\k~cill , 1975; !\larr, 1982; Rumclhart and ~1cCielland, J9l!5) ha\'c emphasized the 
d i~tinction between abstract accounts of langua!(e as a ~t<Hic product (which make no 
reference to the real-time processes that produce it) and procc:ssing accounts of 
linguistic bcha,·ior. 

In our view (see Abrahamsen, 1987, 1991), abstract accounts arc: the tasks of dis
ciplines such as linguistics and logic. Both information-processing nnd connectionist 
models occupy a lower level of analysis and are the tasks of such processing-oriented 
disciplines as cognitive psychology and artificial intelligc:nce:' Computational neuro
science:: is at a third, yet lower Je,·el of biological inquiry. The neural account m ip;ht 
be regarded as implementin!{ the processing a.:eount, and the processing account as 
implt·mcnting the:: abstract (linguistic) account . In a multi-level account such as this, 
one can en,·isage different le\·els causally constraining each other without endorsing 
a strong reductionism (Bechtel. 1988 , chapter 6; Bechtel , 1994a); in this way the gap 
between abstract and neural accounts can be bridged . In contrast, since:: Fodor and 
Pylyshyn do not strongly distinguish the abstract linguilaie a(·count from the process
ing account, they have no place to locate connectionist models except at the neural 
level. The processing accounts that they find acceptable are at the same le\·el as 
abstract accounts (the symbolic level), and must ach ieve their combinatorial syntax 
and sem antics in a system of operations on symbol s trings. 

The connectionist gambit is to develop processing accounts using means other 
than operations on symbol strings. Connectionists generally agree that their altern
ative means must account for data that are suggestin: of combinatorial structure in 
language. Furthermore, connectionists themseh·es have recognized the importance 
of the variable biuding problem (a more developed vt:rsion of the binding problem 
that was illustrated in figure 6.2 above). Rules usually c:mploy variables as a com
pact way of indicating that they can apply tn any member of a class. In a given 
application, all occurrences of the same ,·ariable must be instantiated by tht: same 
indi\·idual. (For example, x- lotJes .\'might be instantiated as Joan loti('S herself.) The 
challenge for connectionists is to make networks do the work that in symbolic 
theoraes 1s performed by mC<~ns of structured representations " hich include \'ariables. 
L' nllke Fodor and Pyly$hyn, connectionists do not assume that symbolic representa
tions are the only adequate means for doing this work; they are JUSt the:: most obnous 
means . Nnr do they agree that success at the d ifficult task of find in~ alternative means 
can only he n:garded as "mc:rc: implementation" of the symbolic al.count. 1 'he connec
t ionist goal is to achieve models that give an account of phenomena that are handled 
rather well b y rules but also, without additional mechanisms, ~ive an elel(ant account 
of other phenomena as well (e.g., learning, generalization , and variation). If connec
tionist .u:cuunts did nothing more th;m implement" hat truditional rules already do 
well. they probably would not he worth the effort im·olved in constructing them. 

Fodor and Pylyshyn's critique has heen taken ~eriously by a number of connection
ists. They han! not, however, llgrced on how it should he answerl·d. In the remainder 

... 
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of this chapter , we l'Onsider three kinds of global n ·sponses th;lt conn<'ctionists have 
made to the claim that s tructured s:,-mhols are required fur co~nition and to the 
collateral llaim that there must he structure-sen:~itive rules operating on these sym
h<•ls. Before prc~enting the~e responst.>s, though , we should note:: that om: response 
open tn connl'l'tionists is to contest the uhi4u ity of pruducti,·ity and systcmaticit~ in 
actual co~nitl\ c performance (Chnstiansen, 1992; \\'askan and Bel·htcl. 1997). We 
\\ill not dl·1·clop th1s l :<.~ue further here, hut clear!)· it is rele\ ant to l'\'.1luating thl· 
SU\.ccss uf connc<:twnha models- and of symbolic models us " ell. 

6.2 First Connectionist Response: Explicitly Implementing 
Rules and Representations 

Somt: l'<JOnntiontsts agree \\ ith Fodor .md Pyl)sh yn 's contention that humans carry 
out explicit symbol processing - at least for such activities as pmblem solving and 
rt.'ason inK - and ht:nl·e ha,·c directed their efforts to implementing systems of rules 
and represl.'ntations in net\\orks. What is distinl.'tive of this approach, and renders it 
closc:st w the symbolic tradition, is that it works from the top dmvn, beginning with 
a rule-based U\.count and designing a network that will implement those rules. In 
order to ensure that the net\\ork employs the desired rules, modelers ha,·e tended to 
engmcer their own designs rather than allowing the network to construct its own 
solutions. But those: who adopt this approach d~:ny that they are engaged in mere 
implenu:ntation; rather, they contend that by tmplement ing rules and representa
tions m a network thc:y art• able to t-Jke advantage of m:mr of the crucial benefits that 
acc rue as a result uf the connectionist implt:ml·ntation . Dyer (1991, p. ~5) well 
describes the appeal of pursuing this approach: 

\Vhat 1\ C currently app~ar to have is a situation in which suhsymholic, dtstributl'd 
proccs~ing models cxhthit massi"e parallelism, graceful error dc~o:radation, robust fault 
tfllcranu!, .mel go:neral o~dnprive learning capabiliti~s. wh1lc symbol/rule based ~ystrm~ 
el'hi1.ut pow<·rful rt•asnning. structural and inft.'rentinl <'llpabilities If we could embed 
S) 1nbol rc:pn'Sl'nlutiuns and structun:-manipulatinl( opcn•tiflns within a distributed, 
~~~b~'·mh<>h<· ar..h1h:cturc. then \·cry powerful, massi,·cl} par.11ld. fuult tolerant high. 
lc\'d rea~• ·nm~: planning sy~tcms <'<.uld be crt'll tl·cl 

6.2.1 Implementing a production system in a network 

Fahlman ( 1979) and Touretzky and Htnton (19!18) offered two early attempts to 
tmplemem rules and symbolic repr\.-scntntions m connectiun1st networks. In par
t icular, T uuretzky and Hinton created a Distributed Connectionist Production 
System (DCP~). as described m some detail in section 2.2.4.2. In a production 
s~stcm , symbolic expressions arc m ampulatcd b r production rules (often referred 
to as pmductiuns). Euch rule h:ts the form If A tht' ll B where A is a condition and B 
ts ;m uction , ,md thert: 1s a rcurking ml!llwry used like a blackboard to drive the 
~election ot ru lcs and record thc:ir rc:;ults . jus t one kmd of rule \\as imp lemcnte~ 

in DCPS: the cond1ti•m spe.;ilk';$> what expressions must he in workm~ memory in 
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ord~r for th~· rule to tire, th~ action spcutics expression~ to he mo\'cd in (or out) 
of workmg nwmon. <'!nd the expressions an: mt·aningless triples of letters . For 
example: 

(FAB) (FCD) --+ +(GAB)+ (PDQ) - (FCD) 

T his specitlt•t~ thH t 1f (FAB) :md (FCD) arc both in working mt:mory, then (GAB) 
anu (PDQ) should he addt·d and (FCD) should he ddetcd. 

\'ic11cd just as a production sy~rem, this is pretty uninteresting. In more relll istic 
production s~ stt·ms the symbolic expression!' arc mellningful : s;1me an.· gm1ls and 
suhgoals, "hich din·t't thl· actil'ity of the system to\\ ard!' ;H:complishing <l task, and 
others arc more directly task-n:lated (e.g. , numerals if the task is multiplicatum). 
Toun·tzky and H inton used a simple, homogeneous set of ruks because their 
purpose was not to simulate human perform:mce but rarher to demonstrate that 
a rule sys tem can adnmt.lgeousl~ he implemt·nted in a distributed connectionist 
architecture. Their implementation was complex and ingenious (they stllted thar it 
was nne of the largest conne~·tionist systems vet constructed). E,·en the seemingly 
straightforward matter nf getting the triples into \lorking memory \las taken as an 
opportunity to explore highly disrrihutt.>d encoding- 216 triplcs were coarse-coded 
on 2,000 binary receptor units, as described in section 2.2.4.2. Their first srstem, 
DCPS I, used distributed or semi-distributed cncodings in !'C\'eral t•ompmll'nts: 
(a) the \\urk ing memory, (b) an an~a where rules were encoded, and (c) two areas 
u:;cd fnr matching the cxpn:ssions on the ~·ond1tion side of a rule. For the most 
part DCPSJ operated as a Boltzmann mat.hine (a type of intcractll'e network that 
asymmetrically iterates its computations until .m energy minimum is re;Jc.:hed; see 
section 2.2.2.2), but a gating mechanism was ndded to con trol access to working 
memory. 

The actual structure and operation of D<.:PS 1 JS too complex to C\'en summarize 
here; there is a six-page overYtcw in Bt•chtcl and Abrahamsen ( 1991 1, hut many details 
of Jts impressh·e engineering cun be found only in the original paper. \\'hat is import
ant here is that, first, Touretzky and Hinton seemed to ha,·e achie\"ed a reasonablv 
su{·ccssful implementation of a simple production system; although they d1d n~t 
pro,·idt: detailed performance data, they did cite one test run using a six-rule loop in 
which I ,000 successh·e rule tinngs were carried out without error. Second, hy givmg 
the production system a connectionist implementation, it inherited the appealing 
prnperties of networks that were introdwed in section 2.3. including (a) "best-nt" 
matches between the expressions in working memory and in a rule's ..:ondition side 
without ha1·mg to specify in advance all the parameters on which fit might be 
c\'aluared; (b) resistance to damaj;!e; (c) the capacitv to generalize. Touretzky lind 
Hmton themselves noted that they had· not fully realized the potential of these 
charactenstics and looked to future work to complete the promissory note of going 
ht•yond mere Implementation. Also, DCPSI had at least one disad\'ttntage: slow 
operation (:\IcDermott, as reported in Dyer. 1991 , p . 45, dubbed this the Tourft : k'• 
tarpit problem). Finally, it lacked the ability to learn or to handle rules that included 
n mahles. T nuretzky and Hinton prodded their next svstem, D<.:PS2. with a limited 
capacity to deal with a single \'ariable. Howe1·er. even ~uite ordinary human reason
ing tasks require multiple \'arillhlcs. In the next section we usc one s1mple inference 
to illustrate why many theorists t hink \'<lriables are needed and therefore binding 
them is needed as \\ell. . 
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6.2.2 The variable binding problem 

From Jnlm gm·l' .\lnr,\' Book/ it ~-.m bt: inferred thar Af,r_,. M CIIS R(J(Jk I . The rde1·:mt 
ruk of infacno:e um he st:Jtcd using a quintessential s~ ml"l<llit· system, tirst-mdcr 
pn:dl(ilte c:akulus. In th~ sm\plined notation used in ;m example from Sh,lstri <~nd 
AJjan.lgaudt: (I 993). it is represented as: 

'<;/x, ,1. ::: [git ·e(x,y,z) ::::> orw ( y,z)J 

m..tbor,ltlllf,t a hit hc~·ond a hare-bones Jogtcal treatment of gi·z:e liS a thrcc-plucc 
p redicate (one that takes thr~·c ordered Mgumcnts), Shastri lind AJJ<Inagadde labeled 
its three 11rguments m terrns of three scm.tntic roles that ;~rc distim:tivc to that 
predicate: thc gi~·er, the recip1ent, and tbcgit·e-ohjcct. Similarly, the two-place pn:dic
atc ur4•n h<IS two semantic roles: the unner and the own-ob}l'l't. The 1·ariahk~ in the 
inference rule tell u:; that 1\hoever is the recipient (in a particular act of gi,·ing) must 
Jlso be the otoner (in a particulc1r rel.ttion of uwnership that results from the act of 
g1nng); this is mdicatcd by the us.: of the same variable name, y , for the ~c,·ond 
.1rgument of gn e and the first argument of llf~ll. (If instead the first expression were 
git:e(y. \',:::)then the inference rule 11ould tell us, mistakenly, that the giver W;ls still 
the owner :1fter the o~ct of ginng-.) Similarly, the two appearances of \·:triable::: tell us 
that the ohJect thllt comes to he owned by the recipient is the: same obJeCt that was 
~pvcn by the gh·er to the rec1pienr. 

In order to apply this I(C:ncral rule to the case of John ..tnd :VIary, the variable 
bi11ding problem rnu~t he sohed. The lirst step is ellsy: from the sentcn<.:e pro\"ided, 
John xcwe 1Hary Boukl, it 1s t·asy to hind three specific entities to the three argument 
positions of the predit·ate gi1•dwhich makes John, Mary, and Book/ the fillers of the 
roles corresponding to these argument posJtion.-). The second s tep is a bit harder, 
but this is where the system attains its power: nut ing the shared variables l>etween 
give and mlln in the inference rule, .Uary and Book/ must be additionally bound to 
the argument positions of own. The result is: 

~tiH(Julm,}\1ar,\ ,Objut /) ~ onm(.vlary .O~jeff I ) 

B} appropri<ttely binding multiple instances of multiple variables, we h.we o;ucceed
ing in inferring that Mary now owns the object that was gi\'en to her. 

Symbolic theorists like Fodor and Pylyshyn claim that the cogniti\'C system mliSt 
use structured representations to carry off thi~ kind of reasoning- if not exactly first
order predicate calculus, then some other rule system that is at least ~IS powerful. 
They are uninterested 10 its "mere implementation'' in a connectionist modd or other 
brain-like architecture. But those connectionists who have actually tried to imple· 
ment Vllriable binding ha\'e gotten a close-up look at how challenging this is. In their 
1988 DCPS2 sy~tcm. Touretzky and Hinton needed to add so much connectivity 
to handle just one ,·ariable in restricted positions that the fea~ibility of scaling up 
their approach to handle mult1ple variables was in question. Smolensky (1lJ90) pro
posed a m11re computatumally efficient way to achieve binding using tensor product 
representations. A third approach was originally proposed .ts a solution to the brain's 
own ,·ersil)n of the hinding problem (von der :\lalsbur~ot , 191!1) and \\"ccS incorporated 
111 a connectionist model by Shastri and Ajj;magaddc (1993). This third approach 
has attracted rhc most attention and its ~·ore idea ~:an be con\'eycd \'isually. which'' e 
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do in the next section. Thcs~· appealing ~hanlt·tcristics du not n~·n·llsarily make it the 
bel-t approach, and 1\C Slll!gest th<lt readers intl'n'sted in dnl\\ ing tlll·ir own conclu
Sion~ start 1\ 11h the rhrcc l· it~·d papcrs 111 e:.plonng 1h1s issue furrha. 

6.2_3 Shastri and Ajjanagadde's connectionist model 
of variable binding 

Th~· h inding pmhkm hl•eame salient in ncurosl icn..:e as"' idcnn: a..:..:umulatt•d th.at a 
great m;m~ d1ffcrcnt hram areas an· im·oh cd m processing a \ rsu.tl scene. with 
tmalvses of location, ~h.1pe, color, and so forth parceled out to spedahzed <lreas. This 
ga,·c risc to the question nf how the results of these analysl·~ arc trucked and put hack 
together into uniti~d percepts. Th,u i~. how docs the system bind each location, 
shupt•, and color analysis tu the wrrect obJect in fl multi-object dil;play? (The prob
lem only ~!t:IS worse if the an.tlyses of other sensory ami highcr-on.lcr bra in areas get 
wnsidcrcd a~ wdl.) A h) potht'SIS put forward hy \'On der ::\lnlsburlf ( 19!! I), now sup
ported by l'\ idence at k·ast from low-len~! dsual areas (Gray and Sinjler, 1989; F,ngel, 
Kiinig and Singer, 1991: Singer, 199-l), is that the brain uses temporal synchrony: 
cells thnt analyze different features of the !'3111e object emit bursts of firing in phase 
with one another. Lokendra Shastri and Verkat Ajjanagadde used this idea in the 
s~stcm thev des1gned m 1993 for making infercnns like that of the.- john and Mary 
example. It is one of the.- !Jr.~test-sGllt· efforts to implement rule-based reasoning over 
structured representations in connectionist networks, so \\e willgi\·c just a ghmpse 
of it by describin~ a small part schematically. 

Shastri and A;janngadde's key innonltion " -"s to htwc units in a net\'~<ork turn on 
and off in a rhvthmic pattern across time, and to usc the fact that the appropriate 
units turn on and off in sym·hruny ro b ind names of indi\'iduals UWury) to roles 
(n•dpienl and nt~'lll'r). lin its for a different indh idunl (Rook/) and 1ts roles (gir.:e
ohject, t!WII-Ob)ut) turn on and off in their own srnchronous pattern, offset from the 
nrst one, to imhcate that they nrc bound together as well. Shastri and AjJanagadde 
referred tu these as dynamic hmdings. 

Consider how a technique like this can be used tc> Implement mfcrem:cs '""'" ing 
just two rules: 

I Vx, y. :: [gi1·t·(.\·~~·.::) ~ <lfL'II(y,zH 
2 'lrlu.~ · (onm(u,t•) ~ cmr-st'fl(u,1·)) . 

Rules I and 2 emplo) three predicates, .f!it·e. orun, and ran-ull. as Illustrated m tigure 
6.3. Each prcdscate rs r~prcsented by the joint activit) of its ar,~tumcnts, e.1ch of 
\\ h1ch com eys a predr~--ate-specitic role hke l(it:er. For example, the predic-Jte l(ive 1s 

represented b) the: JOlllt activity of units for giur, ruiptml, and l!i'l.:t>-nbjt!t"l (mdic
ated by the three circles cndosc.-d in an oval}. Of the fi,·e a\ a1lable indil·iduals 
(rc:pn.-scntcd by the units to the s1de labelcd}o/m, Sumn, tl!ary, Book/. and Ball/), 
thn·e arc bound to t~r~otument umts b)- tlring in phase'' ith them. Th1s IS ven· rou~hly 
mdicated by sho\\ ing each unit as pattcrnt·d (e.g. , ,\1ary and the .trgumo;-nts to 

wh1ch it 1S bound have d iagonal stripes). \Vhen 11 rule lin·s. its roles become hound. 
This can be thou~o:ht of :Is h<lppening m the next time cydc, though tht' temporal 
dynamics arc actually more complex. The Jown\\ard Hrmws represent ~·onncct1ons 
that implement cunstnunts on the bindings: there is one such urnm whcne,·er the 
sam~·' ariahlc up pears on borh the kft and right sidt· of a ruk-. .-\n~ mu m·als uhlll f,:" 
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John 

Susan Mary 

owner 0 ® 

Book1 Ba111 

e 0 

can sen 

FiJIIIff IS.J A :«:hematic rendering of rut~ I and 2 in Shllstri and Ajjuna~odde 's (I <)93} 
structured netwnrk smplement.uion of mle-haSt"d reasnnin~~: . S.,e text fur exposition. 

with th~· downward arrows betw~en some or all of those arguments correspond to 
om: rule. (In the uctual system, each cirde in figure 6.3 is an ensemble of units and 
each arrow is a set of many-to~many connections. The rectangular boxes "ithln the 
ovals rc.-prcscnt a complex mechanism that determinc::s whether the conditions arc 
satisfied for eat·h rule to fire.) 

Figure 6.4 shows how activation is propagated thruugh the network as a result of 
an initial encoc.lrng of the proposition John gat•e Mary Book/ . During the first time
step, the ensembles for John and giver are the tir:~t to start turning on and off in 
phase. The ensembles for Alary and recipil'llt turn on slightly latc:r but in phase with 
t><tch other, and like,.,.ise for Book/ and given-objtct . Thus. temporal synchrony is 
uSt'd to encode the argument bindings, Acth-ity across network connections brings 
rule I into play. so approximately one time-step later (the other side of the first 
double bar 10 ligurt 6A), the ensemble fur m~.:ner synchromz.::s with those for ,Wary 
and rl!crpiellf, and the ensemble for oumed-objecl synchmnizes with those for ~it:t>n
nhjtcf and B·wk / . This pattern of acti\'ation brings rule 2 into play, so after one more 
time-step the ensemble for can-sell-object he-'!ins turning on and off in synchrony 
with the ~tlready-active ensembles for m,·ned-object, grt.en-objc•ct, 11nd Boukl. Sim
ilurly, the ensemble fm f>Oif llfinl-setlt r becomes synchronized with the ensembles for 
ott:III'T, ri'Cipinrl, and 1'\llary. These mfercnccs can be made \'ery rap idly e\·c.-n in a 
large nct\\urk using this design. 

Shastri unJ Ajjanagadut" 's system is dearly ;m impressi\"e piece of engineering and 

1t is <"apahle of c.trrying out .t signiticant amount of logic;tl reasoning. But it dol·s 
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Book1 1-----' ......_ _ _. '---H----' ..._ __ _, ~-~+-----' ,_ __ _, 

~11------------K-------H---------

Step 1 Step2 Step 3 

Figure 6.4 Changes in activation over three time-steps in Shastri and Ajjanagadde's (1993) 
network. The units active simultaneously at step I bind each individual to a role in the 
initial proposition, John tave Mary Boolcl . Mary and Book I are bound to additional 
roles as a consequence of applying rule 1 in step 2 and rule 2 in step 3. (In the actual 
implementation, activity involves ensembles rather than single units and time is not 
discrete.) 

raise a number of questions. The first concerns neurobiological plausibility and is 
especially germane to this particular connectionist model since it was inspired in 
part by the neurological synchrony hypothesis. At present (see Singer, 1994}, the 
strongest evidence for temporal binding in the brain is for binding between different 
columns in primary visual cortex. ( V 1 is laid out topographically, so object encodings 
extend over several columns; synchronous firing seems to occur in VI when differ
ent columns are coding for different features of the same object.) The question of 
whether synchrony is used more widely by the brain to achieve binding is not yet 
answered. A second concern is the highly detailed architecture that is needed in this 
model to carry out reasoning: specific ensembles of units have to be connected with 
just the right other ensembles. Neural connectivity seems to be far less precise. Even 
if one does not consider this model to be a brain-level model, there is the question of 
how this connectivity pattern could be laid down. It is far more intricate than could 
be accounted for by existing connectionist learning principles. Finally, there is the 
question of what is gained by the connectionist implementation. Currently it em
ploys one important connectionist idea, that of massively parallel propagation of 
activation (within each time step). As in the case of Touretzky and Hinton's model, 
this should bring such advantages as soft constraint satisfaction and graceful degrada
tion, but there was no systematic assessment of the extent to which these advantages 
were achieved and of how they might be exploited. 
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Michael Dyer (1991) developed a perspective on the relation between connectionist 
and symbolic accounts that in fact suggests an important possible role for models 
like that of Shastri and A.iianagadde. He suggests thinking in terms of a hierarchy of 
levels of research (p. SO): 

MIND 
KNOWLEDGE ENGINEERING (KE) 
LOCALIST CONNECTIONIST NETWORKS (LCN) 
PARALLEL DISTRIBUTED PROCESSING (PDP) 
ARTIFICIAL NEURAL SYSTEMS DYNAMICS (ANSD) 
BRAIN 

He proposed that these different levels occupy "distinct 'niches' in what might be 
termed an abstract processing 'ecology.' That is, what subsymbolic/PDP models do 
well, purely symbolic systems do poorly, and viet versa" (36). All too often, inquiries 
at different levels are carried out in isolation from each other. But the goal, as Dyer 
sees it, is to allow resources at different levels to complement each other. Discussing 
the mappings between models at different levels is a crucial step towards achieving 
a synthesis. For example, the knowledge engineering level is the level of symbolic 
AI; it is well suited to stating the content and structure of a domain and supporting 
such tasks as goal/plan analysis. Beneath this is the level exemplified by Shastri 
and Ajjanagadde's simulation, that of localist networks. At this level dynamical 
principles such as the propagation of activation come into play. Having such mul
tiple levels available enables choices that may produce better models. For example, in 
their work on analogical problem solving, Holyoak and Thagard (1989, 1995) faced 
the task of identifying the best analog to each problem situation, where there are 
many dimensions on which the situations can be compared and no perfect matches 
exist. To handle this task, they plugged in a localist connectionist program which 
was well suited to identify best matches with multiple constraints. For other tasks, 
they did traditional AI programming. Dyer (1991) also suggested that such tech
niques as the use of synchrony to implement role bindings may help to bridge these 
levels. 

Designing networks to encode and utilize specifically designated rules is a fruitful 
endeavor in its own right that extends our understanding of how cognitive functions 
might be realized in a network. Additionally, though, this approach offers one 
strategy (a relatively conservative one) for showing that network models can display 
Fodor and Pylyshyn's three properties. Considering just the two systems described 
above: 

• Both appear capable of displaying productivity, by applying their rules indefin
itely many times to the output of previously applied rules . 

• Their use of coarse coding yields a less crisp version of systematicity that should 
add generalization capabilities "for free" - arguably an improvement over the 
systematicity of classic systems. 

• They exhibit coherence of inference to an extent. Of all the items in Touretzky and 
Hinton's working memory at a given time, any subset of them could be "in
ferred" to be present. And after Shastri and Ajjanagadde's system has inferred 
that Mary is both recipient and owner of Obfectl, it should be straightforward to 
pull out from the full set of in-phase units the simpler information that Mary is 
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the recipient of Object}. That is, the representation of her various roles is com
positional, albeit in a Aat (rather than hierarchical) encoding. 

Assume for the moment that convincing evidence and arguments had been achieved 
for all three properties. This would leave untouched the main sticking point: for 
Fodor and Pylyshyn, even a fully successful network of this kind would merely 
implement a symbolic system, and it is at the level of the symbolic system that the 
propenies of productivity, systematicity, and coherence of inference would reside. 
Moreover, such networks only panially exploit the resources that make connectionism 
a serious alternative to the classic symbolic approach. Hence, we tum now to more 
radical connectionist responses, in which syntactically structured symbols are in
corporated only implicitly (the second connectionist response) or are abandoned 
entirely (the third connectionist response). 

6.3 Second Connectionist Response: Implementing Functionally 
Compositional Representations 

6.3.1 Functiooal vs. concatenative compositionality 

Connectionists adopting the second approach grant Fodor and Pylyshyn's claim 
that, at least for some purposes such as processing sentences, it is necessary that the 
cognitive system create compositionally structured representations. However, they 
prefer the compositional structure to be implicit rather than explicit. For example, 
T imothy van Gelder (1990) distinguished between juJtCtional and concatenotiw 
compositionality. He noted that the classic device for representing the compositional 
structure of a compound (nonatomic) expression, such as a sentence, is concatena
tion; "linking or ordn-ing successive constituents without altering them in any way" 
(p. 360). The crucial notion here is that the representation "must preserve tokens of 
an expression's constituents (and the sequential relations among tokens)" (p. 360). 
But such explicit incorporation of constituents is not essential for representing a 
compound expression; it is sufficient to have a representation from which the com
ponents can be recovered by some operation. Recognizing this is what opens up the 
possibility of functional composititmality. 

The challenge for connectionism in offering an account of representations that are 
compositional but nonetheless not classical is to show how they exhibit only functional 
compositionality and yet accomplish the ends for which compositional representations 
are posited - explaining behavior that depends upon the compositional character of the 
representation. Van Gelder offered three examples which at least suggest how networks 
can create functionally compositional representations: Pollack's ( 1990) recunive auto
associative memory (RAAM) networks, Hinton's (1990) reduced descriptions of 
levels in hierarchical trees, and Smolensky's (1990) tensor product representations 
of binding relations. We will focus on RAAM networks because they are grounded 
in an ordinary feedforward connectionist architecture, whereas the other proposals 
are more specialized. Pollack and others have shown not only that training RAAM 
networks on explicitly compositional trees yields distributed representations from 
which the trees can be recovered, but also that those representations can be utilized 
by additional networks to carry out inferences requiring sensitivity to constituent 
structure. These findings are suggestive of functional compositionality. 

I 

I 
~ 
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P1 

~ 
Knew Pat P2 

~ 
Loved John Mary 

Figure 6.5 A tree d1agnun of sentence l , Pat lrn~ John lotJed Mary. It includes 
proposJtson I (PI ) and the embedded proposition 2 (P2). 

6.3.2 Developing compressed representations using 
Pollack•• RAAM networks 

171 

Pollack set out to solve a different problem than that of creating representations that 
avoid concatenation. His main goal was to represent recursive structures of variable 
length (such as linguistic trees) using representations of fixed length (a layer of units 
in a network). In one study, he obtained trees by recasting 13 sentences into a nested 
predicate-first propositional format. For example, the sentences "Pat knew John 
loved Mary," "John loved Pat," and "Pat thought John knew Mary loved John" 
were recast into nested propositions as follows: 

1 (Knew Pat (Loved John Mary)) 
2 (Loved John Pat) 
3 (Thought Pat (Knew John (Loved Mary John))) 

In addition to loved, knew, and thought , other propositions included such predicates 
as saw, ate, hit, hoped, is, with, and on. The constituent structure of trees is most 
clearly displayed in a tree diagram, as shown for sentence t in figure 6.5. Its con
stituents are propositions 1 and 2 (labeled Pt and P2) and the three parts of each 
proposition. Proposition 2 is composed of the words Looed,John, and Mary. Proposi
tion 1 is composed of the words Knew and Pat and proposition 2. That is, P2 is 
nested (embedded) within Pt ; P2 is a subtree and Pl is the whole tree. In the entire 
set of 14 trees (one sentence was ambiguous, resulting in two trees), the number of 
propositions ranged between one and four, and all propositions were triples (a 
predicate and two arguments). By recasting the sentences as trees, the investigator 
(not a network) did the initial work of deten:nining each sentence's constituent 
structure. The interest is in how he got his network to represent and use that 
structure. 

Pollack's solution- the recursive auto-associative memory (RAAM) network- is 
shown schematically in figure 6.6. It is auto-associatit>e in that it can recreate on its 
output layer any pattern provided to its input layer (from a set of patterns on which 
it has been trained). It is recursit>e in that its hidden layer incorporates and 
reincorporates information about a tree when each constituent is presented in tum 
to its input layer, beginning with the most deeply embedded one. By the time it 
reaches the top of the tree, it has encoded the entire tree in a compressed representa
tion on just 16 units. The fact that the original tree can then be reconstructed by the 
decoding part of the network is evidence that the compressed representation is func
tionally compositional. It has no explicit symbols (no words; no parentheses or node 
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Reconstructed proposibon 

Output pattern 
Con 3 sets of 16 umt:s) 

Decoding 
(using 3 x 76 x 16 connect1ons) 

Compressed representation 
(on 76 umts) 

Encoding 
(using 3 x 16 x 16 connecttons) 

Input pattern 
(on 3 sets of 16 units) 

Presented proposition 

Loved John 

Loved John 

Pat 

' ' ' 

Pat 

\ 

\ 
I 

' 

Fi~tttri'IS .tS Pullack '~ (1990) n:wrrent auto-a..sociattl"t> memory (RAA:\.1) network. Each 
l.1rgc: .1rrow repres ... nrs a full set of connections. Tht: J ashc:d arrows :tre nut relt'\"ant for the 
>~tmple proposition m this ex.tmple, (Lm·ed J ohn Pat). If it had been embt:dd .. d within 
anuther proposition. its hidden layer pattern would ha1·e been copied on to one set of input 
units (downward s arrow) and becomt' the tar~c:t pattern for the corresponding set of output 
untt~ (upwarc.ls arro\\ ) ns part of proct-s.~ong the higher propos1tion; see fi~t~~rc: 6.7 

labds) and in fact has smeared together the words and the1r constituent structure 
man undifferentiated numeric activatiOn pattern (Yector). Yet a 3- or 4-proposition 
tree can be reproduced, one proposition at a t1me, on the output layer. 

T c> explain how Pollack's RAAM does this, we \\Ill follow the network's activity 
for a proposition (Lflt!ed Johrr Pat) which does not invol\'e recursion. As shown in 
figun: 6.6, it is pn:sented to the input layer using a m inimally di.stnhuted binary 
representation for each word. (:\!though all untts 10 the network are capable of 
taking any value between 0 and I, Pollack decided to use only 0 .md 1 in the word 
patterns.) Semanticall) similar words are assignt:d similar patterns. For example, 
the four possable words denoting a person result in a l'alue of I on un it 5, a different 
pair of values for each person on units o-7, and a value of 0 on the rest of the 16 
units. Verbs get a l"alue of I on unit 13 and on some or all of units H - 16. It rakes 48 
units in all to represent the three-word proposition. Second, the encodinl( part of the 
ncnvork compresses the 48-unit acti,·ation pattern on to 16 h1dden units , smearing 
together tht: three words. (That is, each unit in the h idden layer w1ll take a ,·alue 
hetw~:cn 0 and 1; becaus~: it recein:•s input from all three sets of input units - ,·ia a 
total uf 48 connections - 1ts l"aluc ~:an be intluenced by all three words.) Third , the 
Jet:oding part of the network tries to g~:t hack tht: original act11·ation pattern: if it 
suc~:ccds, the output pattern will ha1·e \·alues dose to I on the units that correspond 
to (Lnt·td Jolm Pat) . (Of course, the network cannot perform like this for even the 
simpl..:st pmpositions until after it has under!{one training. as indicated by the arrow 
point ing upwt~ rJs to a target pattern. The dowmn1rds arrow, not rdev;mt in this 
simple example, is equivalent to the arrow hetwcen steps (a) and (h) in fil(urt: 6.7.) 
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(d) 

Decode P2 

(c) 
Decode P1 

(b) 

Encode P1 

(a) 

Encode P2 

(Knew Pat ( Loved John 

(Knew Pat 

(Knew Pat ( Loved John 

-----................... , 
( Loved - John - Mary )) } 

Mary)) 

... ' ---
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Fi~tllrr fJ. 7 l'oll.lck's ( l'i<Jf>) RAA:\1 nl'twurk, separated mrn an t'Oo..'\>d.:r neti\C>rk (~tcp~ (a) 
•mc.l (b)) and n decodt·r m•t11 ork (St<•ps (c) and (d)) in ord.:r to recon~truct the pmpositional 
<·m·oding of th.: sent.:m:c Pat km-t'' Juhn lm·ed Alary. Sec t<·xt for exp<>sition. 

Emhedded propositions n.·quirc more stc::ps and compro::s~ mon.• information on the 
h idden layer. The~ also require a separation uf the network into an encode r network 
and <I decoder nttwork; all of the proposi tions in a tree must bt: encoded before 
decoding can be~otin . Figure 6.7 shows major steps in the processing o f thc tree in 
tigure 6.5: (Knt'ft: Pat (Laud J oltn M"ary) ) Figure 6.7 hn~ less picturinl detail rhan 
figure 6.fl, Wtth lahels such as Knnv and (LJJJ) used to indicate:: acti1·at1on pattt:rns 
across sets of units .• md shu" mg only the ~·ncodcr or de,·odcr network as rclcn mt. 
Bcl(mning at the bottom of the figure. dtagram (a) show~ the encoder network's first 
step: the cmhedded proposition ( [,IJnc/ John J/ary) 1s presented to the mput units, 
holding ,\side Knt'fl' Pat unttl the next stt•p. A compressed representation of those 
three words i~ a~·hien:d on the h idden layer; we can label this u~i n t! the acronvm 
(L].'il). ln~>tcad of passing immediately to the output layer (11 hit-h is not ~ho11 n). ;he 
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compressed representation gets copied on to one set of input units, as indicated by 
the dotted arrow, bringing us to the next step. As shown in diagram (b), the original 
input patterns are replaced by those for the next proposition - that is, those for the 
two words that had been held aside along with the compressed encoding of the original 
pattern. This 48-unit pattern is now itself compressed on to the t 6-unit hidden layer 
(using the same connection weights as in the first step, but with a different result 
because the input is different). For the network the result is simply a numeric 
pattern, but for us the label (KP (LJM)) helps us keep track of what information has 
been compressed in this recursive encoding procedure. 

There are no remaining words, so we can move on to decoding. (Now it is the 
input layer that need not be shown.) In diagram (c), the fully compressed representa
tion is partly decompressed on to the output units. If all goes well, two sets of units 
will get activation patterns that approximate those for Knew and Pat, and the other 
set will have a pattern that does not approximate any word. Because this pattern is 
unknown, it must be a compressed representation of an embedded proposition. 
Therefore, as shown in diagram (d), it is copied on to the hidden layer (replacing the 
earlier pattern there) and run back over the decoding connections for further uncom
pressing. A pattern that approximates (L()fJed John Mary) is achieved. Assuming 
some extra mechanism for storing and nesting the results of multiple steps, the pro
position (Knew Pat (~edJohn Mary)) has been reconstructed. 

This procedure of recursive encoding followed by recursive decoding works fairly 
well, but some caveats and limitations should be mentioned. First, a procedure must 
be specified for dectding whether an output pattern corresponds to a word or requires 
a further cycle of decompression. Pollack pointed out that getting this to work in 
practice may present a problem for scaling up RAAM networks. Second, although 
the network handled trees with as many as four levels of embedding, its recursive 
operations can be expected to suffer from capacity limitations; at some point per
formance should degrade as more information is compressed on to the hidden layer. 
Explicit symbolic representations do not share this characteristic - levels simply get 
added to a tree- but a mechanism for handling such trees might be designed so as to 
exhibit similar performance limitations. (If the system is intended as a cognitive 
model, such limitations should correspond to those of humans.) Third, the fact that 
input patterns were binary whereas hidden layer units took real-numbered values 
means that the opposite problem obtains for single propositions; as Pollack recog
nized, an "unbounded number of bits can be trivially compressed into a real number" 
(p. 96). Hence, the hidden-layer patterns can meaningfully be described as com
pressed only in the case of propositions that include at least one (preferably more) 
embedded propositions. (For each embedded proposition one 16-unit pattern of real 
numbers is fed back through the input layer to the 16-unit hidden layer. Hence, a 
tree with three levels of embedding like tree 3 above would require the compression 
of 32 units of real numbers plus 7 bit patterns on the 16-unit hidden layer.) 

Leaving these technical concerns aside, the key to the successful operation of the 
encoding and decoding networks is finding appropriate weights for their connec
tions. Thus, training must come first, and this is done using the auto-associatiw 
network in which the encoding and decoding networks are combined as shown in 
figure 6.6. In the case of the 14 trees we have been discussing, training is organized 
into epochs comprised of one training trial for each tree and subtree. On each trial, 
the network tries Immediately to reproduce on its output layer the pattern presented 
on its input layer, compares the result to the target pattern for that tree (as indicated 
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by the upwards arrow), and adjusts the weights so as to decrease the discrepancy the 
next time it encounters that tree. As usual, a large number of epochs will be needed 
to adequately train the weights. 

Again using as an example the tree (Knew Pat (~ed John Mary)), we begin by 
presenting to the input units the appropriate binary patterns for the words in the 
embedded proposition (~ed]ohn Mary). The same binary patterns are also desig
nated as the target output. The network, using random initial weights, generates a 
pattern of activation on the output units that does not even come close to the target. 
To help remedy this failure to duplicate the input pattern, backpropagation is used 
to revise both layers of weights in the network so as to reduce error (the discrepancy 
between the acrual output and the target output). 

The tree (figure 6.5) has one more proposition, which is presented next so that the 
weights will be adjusted towards its needs as well. Just as for a trained network, the 
input units are supplied with the binary patterns for the words Knew and Pat and 
with the compressed representation of the embedded proposition. The compressed 
representation is obtained by copying the pattern that is on the hidden units at the 
end of the previous step (as indicated by the downwards dotted arrow in figure 6.6, 
which corresponds to the arrow extending from figure 6.7(a) to 6.7(b). The upwards 
dotted arrow indicates that the same compressed representation is supplied to the 
training procedure to use as the target output; it will be compared with the actual 
output that is obtained by running this second proposition through the network. In 
this example there are no further propositions, but the procedure can be repeated as 
many times as necessary to handle more levels of embedding (up to four in the 14 
trees of this study). 

An interesting problem in training the weights results from the fact that com
pressed representations are run back through the input layer and, since this is an 
auto-associative network, also are used as target outputs. The compressed representa
tions are not prespecified, but rather are the products of the network's own activity. 
Since the weights get adjusted every time a proposition is presented for training, the 
compressed representation will be different for the same proposition the next time it 
is presented (i.e., in the next epoch). Thus, during training the network is "chasing 
a moving target." In early epochs the compressed representations make very poor 
target patterns for guiding weight changes via backpropagation. Repeated applications 
of the training procedure bring improved representations and weights, with almost 
perfect auto-association evenrually achieved. The two parts of the network can then 
be detached and used as encoder and decoder networks in the manner described 
above. 

6.3.3 Functional compositiooality of compresaed representations 

After training, Pollack's encoder network was able to produce compressed repres
entations from which the decoder network could reconstruct all t 4 trees. In light of 
this success, two questions arise. First, how did the networks achieve this perform
ance? Second, what can be done with the compressed representations besides simply 
decoding them? It rurns out that these two questions have related answers, which 
have to do with the nature of the compressed representations. 

The compressed representations exhibit several properties that play a role in the 
success of the networks. First, they do (implicitly) represent the compositional 
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structure of complex expressions. Using a RAAM network trained on another set of 
trees (syntactic phrase structure trees), Pollack performed a cluster analysis on the 
post-training numeric patterns on the hidden layer. The result indicated that the 
network had made structure-relevant generalizations; for example, verb phrases 
formed one cluster and prepositional phrases another. It did not do this by con
catenating explicit grammatical symbols like V and NP, but neither had it merely 
memorized a set of unrelated mappings. Generalizations about constituent structure 
were captured in the network's weights. However, this is only a partial answer to the 
question of how RAAM networks perform their tasks. A more complete answer 
- showing that the networks exhibit productivity and systematicity - would also 
answer some of Fodor and Pylyshyn's objections to networks. 

Pollack assessed productivity by encoding and then decoding new patterns of 
the same kind as those used in training. The network trained on syntactic phrase 
structure trees was able to generalize its knowledge to a number of additional 
well-formed patterns, but stopped short of full productivity. The network trained 
on propositions was less successful; often its encoding of a new proposition was 
decoded into one of the original training propositions by mistake. Pollack gave just one 
example: when presented with the new proposition (Thought John (Knew Pat (Lowd 
Mary John))) the network returned (Thought Pat (Knew John (Looed Mary John))), 
which is tree 3 above. He explained the error as due to the fact that "the input 
patterns are too similar; i.e., the Hamming distance between JOHN and PAT is only 
one bit" (pp. 94- 5). This would likely become a more serious problem in trying 
to scale up the network to handle larger, more realistic corpora. Pollack suggested 
(p. 96) that the solution might be to use distributed representations for words com
parable to those the network constructs for embedded propositions. Critics of Pollack 
may see in this problem an indication that one of the reasons for the success of the 
network, the fact that the vocabulary was constructed to make words of a category 
more similar (a feature that the network clearly picked up on in its generalizations), 
may actually spell its downfall (see Haselager and van Rappard, 1998). However, it 
is possible to make a more positive interpretation by arguing that this network error 
is precisely the sort we expect from humans as well (for example, you might have 
had to go back to reread the sentence to notice the difference). 

Pollack also took a preliminary look at the capacity of the proposition network to 
exhibit systematicity. Since four names were available in the lexicon used to con
struct the trees, 16 simple propositions were possible. However, only four of them 
actually occurred in the 14 trees on which the network had been trained: those in 
trees 1-3 above plus (Loved Pat Mary). Pollack put the 12 untrained propositions 
through the trained RAAM, and found that its auto-associative abilities generalized 
well: all 12 propositions could be encoded and decoded with no further training. 
Recalling the sort of examples Fodor and Pylyshyn offered as illustrative of sys· 
tematicity, the network would seem to have exhibited this property to some degree. 
(To know to what degree, further assessments using multi-proposition trees and 
additional predicates would be needed.) 

So the answer to the first question above - how do the networks achieve their 
success? - has to do with their ability to arrive at connection weights sufficient to 
encode and decode explicitly compositional trees using compressed representations 
that are functionally compositional. Evidence for their functional compositionality is 
preliminary but diverse: the cluster analysis suggested that the networks make gen
eralizations about structure, and the generalization studies indicated some degree of 
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productivity and systematicity. All of this is relevant to answering the second ques
tion above - what can be done with the compressed representations besides simply 
decoding them? To the extent that they are functionally compositional, they should 
not need to be decoded in order to be useful in performing a variety of interesting 
tasks that require sensitivity to constituent structure. 

6.3.4 Performing operations on compressed representations 

As a preliminary demonstration of additional uses for compressed representations, 
Pollack trained a separate 16-8-16 feedforward network to make a simple kind of 
inference (unfortunately untrue in real life): (Lowd X Y) implies (Loved Y X). He 
constructed its training and test cases by using the RAAM network to obtain com
pressed representations of the 16 simple propositions and from these formed 16 
implicational pairs. For example, one pair was (Loved Pat Mary) ~ (Lootd Mary 
Pat); another was (LotJed Mary Pat) ~ (Looed Pat Mary). Then he used back
propagation to train the feedforward network on 12 of the pain~. When supplied 
with a compressed representation of a proposition of the form (Looed X Y), its task 
was to produce on its output layer the compressed representation of (Looed Y X). 
As evidence of generalization, Pollack further showed that it could handle the four 
untrained pairs as well. However, too much should not be made of this demonstra
tion. As discussed above, Pollack's hidden-layer representations of simple proposi
tions involve something more like recoding than compression, and there is no 
embedding to keep track of. Further, associating these input-output pairs should 
not be much of a challenge for a 16-8-16 feedforward network; it is the number of 
patterns and their statistical structure that determine d ifficulty, not the fact that they 
were produced as compressed representations by another network. 

The point concerning compression (but not the one concerning embedding) was 
addressed by Blank, Meeden, and Marshall (1992). Using a procedural variation 
in which word-by-word presentation produced compressed representations of 
simple propositions, they succeeded in making and generalizing inferences such as X 
chase Y ~ Y flee X . As a bonus, another network achieved 85-88 percent accuracy 
when it was trained to detect categories such as ntJUn-oggressi've in the compressed 
representations. 

The points concerning both compression and embedding were addressed in the 
results of Chalmers (1990). His method was similar to Pollack's, but because he used 
more complex trees as the output targets we can assume that (a) their representations 
would be more compressed; and (b) the ability to produce and then decode them would 
indicate some degree of sensitivity to constituent structure. Trees for active sentences, 
such as (John Lovl Michael), were paired with trees for the corresponding passive 
sentence, such as (Michael (Is Lovl NIL) (By John NIL)) . (To stay with Pollack's 
triadic format, Chalmers used NIL as a dummy element.) There were five names and 
five predicates, making 125 possible active sentences. Chalmers first trained a RAAM 
network to construct compressed representations of 80 trees ( 40 active and 40 pas
sive), and then obtained an additional 80 compressed representations as a byproduct 
of testing its ability to generalize. He next trained a feedforward Transformation 
Network using the first 80 compressed representations, appropriately paired as input 
and target patterns. When provided with any of the 40 compressed actives the 
trained network produced the corresponding compressed passive, and when that 
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was presented to the RAAM's decoder network the correct tree was recovered. To 
test generalization, the extra 40 (untrained) compressed actives from above were 
presented to the Transformation Network. Only 65 percent of the resulting patterns 
on its output layer were adequate to produce the correct tree when run through the 
RAAM's decoder network. Yet, all but one of the errors involved substitutions of 
words within the same category, revealing that even the errors demonstrated a 
respect for the systematicity of the uncompressed representational system. 

Do RAAM networks perform systematically enough to credit them with solving 
the variable binding problem? No, if one emphasizes that nouns were sometimes 
confused when generalization was tested using untrained propositions (especially for 
Chalmers and for Pollack's embedded propositions). A tentative yes (pending more 
simulations), if one emphasizes that the confusions were limited to nouns with 
similar encodings and that the capabilities tested amounted to variable binding 
(though performed without explicit variables). To the extent that the networks 
exhibited these capabilities, they did it by making use of positional encodings, that 
is, encodings on a separate ensemble of units for each position in a sequence. When 
Pollack trained a network on simple propositions, for example, the first ensemble of 
16 units was dedicated to encoding the predicate, the second ensemble to the noun 
that was the predicate's first argument, and the third ensemble to the noun that was 
the predicate's second argument. There was no ambiguity of the kind described by 
Fodor and Pylyshyn when multiple nouns, each in a different syntactic role, are 
encoded on a single ensemble of units (figure 6.2). Positional encodine was also used 
in the logic networks in section 4.3 (each proposition and connective had its own 
small ensemble of units), Plunkett and Marchman's (1991 , 1993) past•tense net
works (there were separate, though identical, ensembles of units for encoding the 
first, second, and third phonemes comprising a verb stem), and in many of the 
networks in chapters 7-10. 

Pollack viewed the representations developed by his RAAM network as "a very 
new kind of representation, a recursive, distributed representation" (p. 102). His 
method for combining recursive operation with distributed representations was 
indeed novel, and the initial demonstrations of functional compositionality were 
encouraging though incomplete. The compressed representations have the potential 
to be directly usable by a variety of cognitive operations, and to this extent Fodor 
and Pylyshyn's notion of a cognitive system with explicitly compositional syntax 
and semantics may be effectively countered. One question that remains is how well 
RAAM networks might scale up to perform realistic cognitive tasks; for a negative 
assessment, see Hadley (1994a) and Haselager and van Rappard (1998). A related 
question is whether they will make the transition from serving to make a theoretical 
point to becoming a pan of modelers' toolkits. It appears that RAAM networks as 
such will not, but some of the design principles they incorporate (positional encod
ings, recursive encodings) have found widespread application. 

6.4 Third Connectionist Response: Employing Procedural 
Knowledge with External Symbols 

The first two responses to Fodor and Pylyshyn followed the common strategy in 
cognitive science of buildine internal representations of the external items with 
which a system must deal, and then performing internal operations on them. These 
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respondents took classical rule systems and the compositional structure of natural 
language as starting points, trying to achieve the same ends as classicists but by 
connectionist means (in pan because they expected these new means to confer some 
distinctive advantages). The systems we reviewed in sections 6.2 and 6.3 had in 
common the use of distributed representations: in those exemplifying the first 
connectionist response, the investigator explicitly hand-crafted the representations 
so as to implement rules, and in those exemplifying the second connectionist re
sponse, the networks invented their own representations such that information about 
compositional structure was implicit and recoverable. Whether explicitly or impli
citly, external structure was internalized. This fits with a perspective on cognitive 
theorizing in which the structure of natural language is taken to be a reflection of 
the structure of the internal representations we employ in our mental processes, and 
is a point of similarity between classicists and most connectionists. 

A very different approach is to think of external representational systems, such as 
natural languages, not as reflections of something else, but as comprising their own 
structured representational systems. On this view, our cognitive system must have 
the procedural ability to utilize this compositionally structured representational sys
tem, but it need not build up a complete compositional intertral representation of what it 
is processing. In what follows, we will first explore how connectionist networks 
might acquire and possess such procedural knowledee. Then we will explore the 
implications of this external symbols approach for answering Fodor and Pylyshyn. 

6.4.1 Temporal dependencies in processiq Iancuage 

Two significant characteristics of sentences are: (1) they are processed sequentially 
in time; (2) they exhibit long-distance dependencies, that is, the form of one word 
(or larger constituent) may depend on another that is located at an indeterminate 
distance. For example, verbs must agree with their subjects, but a relative clause or 
other constituent can intervene between the subject and the verb. In order for a 
network to produce or interpret sentences, it must be able to retain information 
relevant to such relationships. The challenge here is to design networks that can do 
th1s without building explicit representations of complete linguistic structures. 

A standard feedforward network is incapable of retaining information about spe
cific previous inputs; essentially, the slate is wiped clean when a new input pattern is 
presented, and the new hidden and output patterns depend just on that input. The 
only information carried over from past processing is any updating of the weights 
that occurred if the network was in training mode. The weights provide long-term 
encoding of information about how to respond to all inputs of the types on which the 
network is being trained - in human terms, a long-term semantic memory but no 
long-term episodic memory and no shon-term memory. At a given point in time a 
feedforward network has access only to this limited long-term memory and to the 
patterns generated by its current input. 

We have already seen in section 6.3 that feedforward networks can be modified to 
remedy their lack of short-term memory, specifically, by adding recurrent connec
tions for copying encodings from one set of units to another. In RAAM networks 
one set of input units sometimes receives a copy of the hidden unit pattern rather 
than an externally supplied input. This serves as a shon-term memory for already
processed parts of a sentence, allowing fairly complex sentences to be presented on 
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hidd"n units to S!><'Cial input units (and , in Jordan's proposal. mdi,·,<lual input units to 
thcm~.-h·cs). 

just three sets of units. In the current section the same bdsic mnovation (copymg 
patterns across recurrent connc:ctions) is adapted to the ~!!Oal of achieving procedural 
proc<:ssmg of sentences. Simple Recurrent Networks rece1ve sentencc:s one word at a 
time . .md use their short-term memory capability to retam whatever information is 
most useful for predicting the next word or word class. Unlike RAAM net\\orks, 
they do not nece11sarily rc::tain the complete constituent structure of the sentences 
pn:sented to them. 

6.4.2 Achieving short-term memory with simple recurrent networks 

The basic innovation that gave rise to Simple Rt:eu rrent :-.ietworks (SRNs) was 
offered by Mich<1d Jordan ( J9g6b). He added recurn:nt connections for cop~ ing the 
pattern on the output units on to a special set of input units he called stat~ units. 
When the m:xt item in the sequence is presented to the re~ular input units. both that 
p~ltern and the pattern on the state units are fed through the nt:twork (figure 6.l!(a) ). 
Thus, the network can utilize a trace of the decision it reached on the previous 
processing cycle. This is made rccursi\'c by feeding the prc,·ious pattern on the state 
units hack ro those units along with the prcviou~ output pattern and sending their 
combined influence to the hidden units. jeffrey Elman ( 11.)90) de\'cloped a ,·ariation 
on this design in whil-h it is the \'dlucs of the hidden units, not the output units, that 
arc t.:Op1c.:d back on to spec1al input units; he called them runte.\·t units (figure 6.l!(b)}. 
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The motivation for this change is that the activation pattern on the hidden units is 
the network 's internal representation of the input. Send in~~: th is representation back 
through the network makes the net\\·ork's activity sensiti\'e to its own construal of 
the immediatdy preceding input.' Elman's SRN is similar to a RAAJ\f network in 
that the copy comes from the hidden la,·er, but different in scndin~t it to a resen·ed 
set of ~:ontext umts. As we w11l see, SRNs also are d!stincfl\·e in how they use this 
an:hitc.:ture to impl~:ment procedural proet.'SSing of externally structured material. 

The sort of memo!') that SRNs provide of past processing differs dramatil·ally 
from that of tradition<!! cngnitive models. This is be~t seen by considering how an 
Elman-style SRN uses recursion (in a \'ariation on jordan's method) to achieve 
Sl'nsitivity to information presented more than one cycle previously. It receives no 
explicit representation of that input. But it does receive as input the copy of the 
activations of hidden units on the immediately pre,·ious cycle. This pattern was 
itself the product of the input on that cycle and the activations on the: hidden units 
the cycle before that . So the current pattern on the context units has been influenced 
not just by the previous input, but also by the one before that . This recursi,·e 
acll\'ity can extend throur:th many cycles, although the further back the cycle, the 
rn<Jre degraded is the information in the context pattern and the less it contributes to 
current activity. 

In summary. SRNs process sentences word by word, but use their context units 
to mcorporate mformation about previous words. This is accomplished not by ex
phcit representations of those words, but rather by a pattern of activation that 
retams (decreasingly over cycles) a record of the results of processmg them. Henc..-e, 
recurrent networks clearly pronde one way to address the first characteristic of 
sentencc:s ml'ntioned above: they process sentences sc:quentially in time. They do 
this in a way that provides some memory function, but is this nontraditional memory 
adequate to handle the second characteristic of sentences, the dependencies between 
nonadJacent words? 

6.4.3 Elman's first study: Learning grammatical categories 

To determine ho" well an SRN could learn depc:ndencies between words, Elman 
( 199{)) traint'd one to keep predicting the next word in a linguistic corpus. It had 31 
units each in its input and output layers, and 1 SO units each in its hidden layer and 
context layer. In order to assure that the input patterns were orthogonal, he used a 
n•mdistributed binary encoding of a 29-word \'Ocabulary. (For each word, nne of the 
31 input units was turned on and the rest were off; the other two units were resen·ed 
for later simulations). From these he constructed IO,OOtl simple two- and three
word sentences b) nllmg 15 d1fferent sentence templates with words randomly 
selected from the ;~ppropriate set for each position . Three f)f the tcmplatt.>s were: 

:OWU~-Ht MAI'o VF.RB• J-.;TRANSITI\' E 

:-totJI'o -A:--1 1:\HTI; \'f.RB-·rRANSITI\'E Nlll' N-ANIMATI! 

;o.;o\ ':'1-Hl" HI'o VHRB RAT :O.O liN · ~·ooo 

~ote that some templates u sed more inclusive c~ttegorics than others. The third 
template <:ould J.(Cneratc just 12 sentences, including woman eat tonki.r and hoy eat 
bread. The second tcmphJtc could generate these and several thousand more. Havmg 
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obtained 10,000 sentence tokens, Elman concatenated them into a single corpus 
27,354 words in length (with no indication of the beginning or end of individual 
sentences). Within a sentence, the possibilities for the second word depend upon the 
first word, and the possibilities for the third word depend upon the first two words. 
For example, woman eat can be followed only by sandwich, cookie, or bread, whereas 
dragon eat can be followed by woman, man, girl, boy, cat, mouse, dog, monster, lion, or 
dragon as well as sandwich, cookie, or bread. 

The corpus was presented to the SRN one word at a time. On each cycle the net
work tried to predict the next word in the sequence, compared its output to the target 
word, and then adjusted its weights. After only six training passes through the entire 
corpus, the network's predictions closely approximated the actual probabilities of 
subsequent words in the training corpus. (During training the target output was the 
actual next word in the corpus, but for testing the output was compared to a com
posite pattern in which each word's activation level was equal to the proportion of 
times it was the next word given the preceding words in the sentence. Attaining that 
composite would be the best the network could do, since it has no way of knowing 
precisely which sentence is being presented.) 

What interested Elman was not just that a network could do this, but how it did it. 
What representation of the input sentences had been formed on the hidden layer to 
enable good performance on this task? The statistical technique of cluster analysis is 
often used to answer this type of question (e.g., for RAAM networks in the preced
ing section). ln a cluster analysis, the similarity between each pair of hidden unit 
patterns is calculated, and a hierarchical tree structure is generated that displays the 
similarity structure of the patterns. Hence, input patterns that produced very sim
ilar hidden layer patterns will be tightly clustered together at one of the lower 
branches of the tree, whereas less similar patterns will be more remotely connected 
through a higher branch of the tree. 

Elman performed a cluster analysis on the trained network, which is shown 
in figure 6.9 (displayed sideways, such that higher branch points are at the left). At 
the highest level, nouns and verbs formed separate branches of the tree. That is, the 
patterns of activation across the hidden units distinguished nouns from verbs; the 
network had been sensitive to the distributional d ifferences between nouns and 
verbs in the training sentences. Within these broad classes, narrower linguistic 
classes branched from nodes midway through the tree (e.g., verbs for which a direct 
object is obligatory vs. optional vs. ab5ent; animate vs. inanimate nouns), and the 
narrowest classes were clustered at the bottom (e.g., domestic animals vs. aggressive 
animals). 

It is important to note that the pattern of activation produced on the hidden units 
was determined not just by the input pattern, but by the pattern on the context units 
as well. Elman demonstrated this effect by substituting a word not previously in the 
corpus for all tokens of the word man, and presenting this revised corpus to the 
network without any additional training. The patterns generated on the hidden 
units for this new word were very similar to those that had been generated for man, 
and only the context units could have been responsible for this. 

The performance of the SRN is quite impressive, especially when it is recalled 
that it achieved it without any knowledge of semantics. For example, the network 
learned to group the encodings for animate objects together only because they were 
distributed similarly in the training corpus. Elman cited Jay McClelland's charac
terization of this task as comparable to trying to learn a language by listening to the 
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Figure 6.9 Elman's (1990) cluster analysis ofthe patterns formed on hidden units in a 
simple recurrent network when the network was trained to predict the next word in a 
corpus of 10,000 two- and three-word sentences. The cluster analysis reveals how the 
network has categorized the various words in its corpus by giving items within a category 
similar activation patterns. For example, the patterns for nouns are generally more similar 
to each other than to those for verbs, but greater degrees of similarity identify smaller 
clusters within these broad clusters. This diagram was kindly supplied by jeffrey Elman. 

radio. It turns out, however, that this is not as farfetched as it sounds. In a study 
published in Science that received considerable attention, Saffran, Aslin, and New
port (1996) showed that 8-month-olds exposed to four different three-syllable non
sense words in a continuous stream of randomly ordered tokens for just two minutes 
picked up enough statistical information about the sequential distribution of the 
syllables that they became sensitive to the word boundaries. (We cannot pursue the 
exchanges triggered by this article. In particular, Marcus, Vijayan, Bandi Rao, and 
Vishton, 1999, responded with their own version of the task and a rule-based "algeb
raic" explanation that is at odds both with the original article and with models that 
support an explanation in terms of sensitivity to the statistics of input. For example, 
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Christiansen, Allen, and Seidenberg, 1998, offered a connectionist model of the word 
segmentation task that exhibits this kind of sensitivity.) 

6.4.4 Elman's second study: Respecting dependency relations 

Elman's (1990) study showed that a network exposed to a corpus of sentences one 
word at a time could gradually incorporate its statistical dependencies into its weights 
so as to perform the task of predicting which words were possible next. However, 
the corpus was limited to monoclausal sentences generated from t 5 templates. The 
sentences of any natural language show far greater diversity and require at least re
cursive rules (not merely templates) for their generation. Elman (1991) employed a 
significantly more complex stimulus set. Its sentences were constructed from the 
following phrase structure grammar, in which parentheses indicate optional con
stituents; vertical bars indicate a choice among alternatives; PropN indicates Proper 
Noun; RC indicates Relative Clause; and who is used rather than the more formal 
wham for object relative clauses (who NP VP): 

S~NPVP" ." 

NP ~ PropN I N I N RC 
VP~ V (NP) 
RC ~ who NP VP I who VP (NP) 
N~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~~~ ~ ~ 
PropN ~John I Mary 
V ~ chase I feed I see I hear I walk l live I chases I feeds I sees I hears I walks I lives 

Additional restrictions 

• number agreement between Nand V within a clause, and (where appropriate) 
between head N and subordinate V 

• verb class (number of arguments): 
walk, live: verb intransitive (preclude a direct object) 
chase, feed: verb transitive (require a direct object) 
see, hear: verb either (optionally allow a direct object) 

Elman noted that the sentences constructed with this grammar exhibit a number of 
important features of natural language. First, they require agreement between sub
jects and verbs and adherence to restrictions on verbs and their argument structures. 
Second, agreement and argument structure must be preserved even when relative 
clauses intervene. Further, there is the potential for recursive embedding of relative 
clauses. Finally, many sentences have several different points at which the sentence 
might end or continue. While still just a small fragment of English, the corpus 
provides a more challenging test of the SRN's abilities. 

In this study Elman used an SRN with more layers than that of Study 1; there 
were two 10-unit hidden layers above and below a main hidden layer of 70 units. 
The 70 context units fed directly into the main hidden layer, bypassing the first tO
unit layer. Inputs were encoded in the same localist fashion on 26 input units (that 
is, a different unit was turned on for each of the 23 words in the vocabulary or for 
the "." used as an end-of-sentence marker; two units were reserved for later tests).5 
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As before, the network was trained to predict the next item in the string on its 26 
output units. 

An extremely interesting finding was that when Elman presented the whole cor
pus at once, the network failed to learn. Rather, it had to be trained in phases- one 
of two effective methods for achieving what Elman (1993) dubbed "starting small.»~> 
During the first phase, it was trained on a corpus of 10,000 simple sentences (sen
tences constructed without relative clauses), which were concatenated as in study 1 
except this time the sentence boundaries were marked by a period("."). The corpus, 
with a mean sentence length of 3.46, was presented to the network five times. In the 
second phase, 25 percent of the corpus consisted of complex sentences (sentences 
with one or more relative clauses) and 75 percent simple sentences; mean sentence 
length was 3.92 words. In the third phase the percentage of complex sentences was 
increased to 50 percent, resulting in a mean sentence length of 4.38 words. In the 
final phase of training, the percentage of complex sentences was 75 percent and the 
mean sentence length was 6.02. 

After the final training phase, generalization was tested on a novel data set con
structed in the same manner as that used in the final phase of training (75 percent 
complex sentences). The network was evaluated in terms of how well its predictions 
of the next word approximated the probabilities of particular words occurring next, 
which was a measure of whether it could predict the proper word class according to 
the grammar. This was done by determining the context-dependent vectors for each 
word in every sentence in the corpus, which represented the probability of occur
rence of each word in such a context. The error produced was quite low (the mean 
cosine of the angle between the vectors was 0.852 with sd = 0.259). 

A more detailed evaluation could be made by examining the network's response to 
individual sentences during testing. Consider first simple monoclausal sentences 
(figure 6.10). After it was given the input boy the network responded by activating 
roughly equally the word who and each of the three classes of singular verbs. If the 
input was the plural boys, in contrast, the network activated who and each of the 
three classes of plural verbs. (The length of the bar for each verb class was obtained 
by simply summing the activations for the two verbs in the class.) If the singular boy 
was followed by the verb lives, which cannot take a direct object, the network's 
prediction after this second word was simply " ." If, on the other hand, it was 
followed by sees, for which a direct object is optional, it activated not just "." but also 
proper name, plural noun, and singular noun. If, instead, the initial word ~ was 
followed by the word chases, which requires a direct object, the network activated 
proper name, plural noun, and singular noun but not "." 

The network was also able to handle more complex sentences with relative clauses. 
Some of the requirements which the network satisfied are rather subtle. For ex
ample, following boys who Mary, the network predicted that the verb would be one 
that required a direct object. This was correct, since the direct object (boys) had 
already occurred. Thus, the network is sensitive to direct objects whether they occur 
after the verb, as in simple sentences, or before the verb, as they might in relative 
clauses. Sometimes the dependencies it respects are rather long-range. After being pre
sented the sequence boys who Mary chases the network correctly predicts that the next 
word will be in one of the three classes of plural verbs, thus maintaining agreement 
with boys. Note that if the network were not sensitive to long-distance dependencies, 
and were only relying on the immediate context of Mary chases, it presumably would 
predict a noun. 
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end of seotence 
"who" 

pl. verb iotraos. 
pl. verb trans. 
pl. verb either 

(a) boy .. . 

s1og. verb 1ntrans. ~!1111!!!11 
sing. verb trans. 
sing. verb either 

prop. name 
pl. noun 

sing. noun 
o~-o~.2~o~.4~o~.6~-o.La~ 

(c) boy lives .. . 

end of sentence •••••••••• 
"who" 

pl. verb intrans. 
pl. verb trans. 
pi verb either 

sing. verb lntrans. 
sing. verb trans. 
sing. verb either 

prop. name 
pl. noun 

smg. noun L_~..._.._.._.._.._.._....__........_, 
0 0.2 0 .4 0.6 0.8 

(e) boy chases 
end of sentence 

"who" 
pl. verb 1ntrans. 

pi verb trans. 
pl. verb e•ther 

smg verb lntrans. 
sing verb trans. 
s1ng. verb etther 

prop. name 

pl. noun ~=~!!~L....__.._....__......_j sing. noun~ 

0 0.2 0.4 0.6 0.8 

(b) boys . . 

0 0 .2 0.4 0 .6 0.8 

Fi~"" 6.10 Sample rl'sults from Elman's (l«J90) simple recurrt:nt network Oept:ndm~ 
on "hat W<>rds han: just be..-n encountered, the output umts for the worda that mil(ht 
cum ... next bt:cnme al·tive. Tht' .Jell\ at ions for all words m the same t;h \SS (e g . plural n:rh 
intr.msitiv<") arc summed, as indi~-ated by the length of the bar, (The :tbscnn: uf :1 bar m..-arls 
that da:<s was nut predicted to occur next.) 

Elman claimed that because the grammar he used in his simulation ullows recttrs
ive embedding of relative clauses, it is the sort of grammar that Chomsky ( 1957) 
argued could not be n:a~onably modt:led by a finite state automaton and Miller und 
C homsky ( 1963) argued could not he handled by statistical mference. He inter
preted his SHN's success as a demons tration that connectionist networks exc eed the 
limitations uf finite state machines and statistical inference cn~o:incs (Elman. l ~J93) . 
None theless, the computational rc~tuirt>mcnts in Elman's grammar il re far less de
manding than those of a nutural hmguagc sul·h as English (there are no mm·cmcnt 
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cats who John who dogs love chases run. 

OBJ1 SU81 VERB1 

I 
08J2 SUB2 VER82 1 

SUB3 VERB3 

f?i~:r~r.- fl . // Th.: double n :ntr.r-l·mbcd1kd s.:ntcnce US<'d in Christiansen·~ ( 191)~) study. 

Th<· suhj<·<'t', ohj<·<:t~. and ,·crb~ l:':tch ~Ire labckd as hclon~ting In clause I. 2. nr J 

transformatums, for example). Moreover, as a gent>ral strategy in mvcstigating anv 
l'omputatum:ll model, we should ~cck to find its limitations and compare them to 

thosl' of humans. Accordingly, it is interesting to consider brictly Morten Chri~
tianst·n 's ( l 'JlJ4) l'Xpenments usmg SRNs for the samr. task devised by Elman, hut 
using more complkatcd grammars. 

6.4.5 Christiansen's extension: Pushing the limits ofSRNs 

Christhmsen (I 1) 1J4) constructed two grammars that grmcrate some of the more 
complex structures found in naturnllanguagcs. including multiple center em beddings 
and cruss-depcnden..:ies. (Cross-dcpendcncy is a rare structure, found in only a few 
lan).!uages such as Dutch. in which verb complements of each noun phrase occur in 
the .order in wh1ch the correspondin~~: noun phrases occur.' We will focus on his 
re5ults with a Rntmmar that permitted recursive center embeddings but not cross
<kpendt·ncies.) In a center-embedded strut:ture. a complete clause (NP VP) is inter
posed between the NP and VP of a higher dause. Here is a simple example of a 
center-embedded sentence: tire cake tlrat Pat baked crumbled. An example with the 
same structure, but harder to process is: wts rvlw Jolm chases rrm. Such sentences get 
mUl h more difficult when there are mult1ple em beddings, as in: cats whom Jolrn 
rdwm dogslot'l' chases rrm. As shm~n in figure 6.11, such a sentence requires noun
\ ' l rb agreement and linking of a direct objt'ct to it~ transitive verb to extend over one 
or mllrc interwning relative. (Center embeddings were permitted in Elman's gram
mar as \\ell, but he d1d not report an~ examples of the network 's performance on 
st:ntcnt·es im·olving multiple center embcddings.) 

Chrtstiansen 's grammar also allows a variety of sentence structures not permitted 
in Elman's grammar: prepositional modJficatum of noun phrases, geniti,·es, con
joined noun phrases, and sentential l·omplements for propositional attitude verbs. 
~lorcon:r, cuch of these can be employed recursi\•ely. The following is the complete 
J,!rammar Christi,msen used for his experimt:nts. Note that V(i) is mtranstth·e, V(t l is 
transit i\·c, \'(ol is optional. and V(d takes a sentential complement; gen indicates a 
gcniti,·e cnnstrut·tion; and other notation is consistent with Elman's: 

S ~ 1'P \'P "." 
:-.IP-+ Prop:"/ I N I N rel I :-.:: PP I gen N I N and NP 
\'I' ~ \ '(i) I V(t) :"'P I V(o) (NP) I V(c) that S 
rei-+ n:lw :'\P \'(tfo) I n•/w \'P 
PP ~ prep prcpN 
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gen ~ :-.1 + "s" gen N + "s" 

~~~ ·~ ~ 1 ~ 1 ~ 1 ~ 1 ~ 1 ~ 
Prop~~ John .\fary 
\'(i) ~jumps I jump I rrms I "'" 
Y(t) ~ luvts l01·e I dwu I d~nus 
V(t•) ~ St't'S St'f 

\'(c)~ thinks I think sa_ls I say knm~·s I knuru 
prl'P ~ m•ar f from I in 
prepi\; ~ tmw I lake elf\ 

Christianst•n offered the ft lllowing as examples of scntmces permitted by 1his gram
m••r (except thalt it would not reeugnizc the po~'icssin~ punctu.ltion m sentcn~·e I): 

:\lary knows that John's boys' cats see dogs. 
hoy lu\'es girl from city near lnke. 
man who t•hases girls in mwn thinks that \lary jumps. 
John sii\'S that cats and dogs run. 
\lury who lo\'es john thinks that men sa~ that girls ehJsc boys. 
l{irl who men chase lon.'S cats. 
cats whfl john who dogs lo\'e t·hascs run 

Christiansen used a network with 42 input and -l-2 output units to provide a localist 
cncodin~ of the 38 vncnbulary items (four units wen: kft unust-d); there were ISO 
hidden units. Following the samt: proc:edure as Elman, he tramed the network in fi\'e 
phases \\ith 10,000 sentences per phase. Instead of restricting the training materials 
in the early epochs to simple sentences with no embedding, he used Elman's altern
ati,·e technique of limiting the length of recurn:nt memory a\·ail.•ble and ~radually 
incrtasing it as training progresses (see note 6). On•rall, the network performed only 
a little worse than Elman's despite confronting a considerably more difficult corpus 
(mean cosine: 0.7904; sd: 0.2702). 

\Vhereas Elman emphasized scntt:nces on which the network could make l'Or
rcct predictions, Christiansen focused on the extremely t.halh:nging cases for which 
errors start to appear. We w1ll examine just one of the sentences on whil'h Chnsti.msen 
tested h1s network, the doubly center-embedded sentence in figure 6. 11 : t ats who 
]fJim v:ho dogs /ot;e chases r11n. Christiansen stated that the net,~ork had little tl r no 
difficulty on sentenl"':S with a smgle center-em~dded clause, but it did make 
errors on this doubly center-embedded sentence. Figure 6. 12 shows the activations 
for various classes of words on the output laver liS each \\Ord was presented tn the 
input layer. The network performed flawlessly as it w11s fed die first few words of the 
sentence . For example, panel (b) in figure 6.12 shows that it predicted either a noun, 
a genitive, or a singular \'erb following word ~(who). 

The network made its first error when it reached the word /Ot;e (d). It should have 
predicted a singular trans1ti\'e \erb to a.&.:ree with the subject ]fJhrr. It did acti\'ate the 
nutput unit for th1s Clltt:gory (dark har), but also acti\ ated intransiti,·c and pro
position;~ I attitude singular verhs, plum! ,·crbs, and espt:ciall} the end-of-st:ntence 
m<~rkt:r (stnpcd h;~rs) . It also made too many predictionll in the m~.\t step (e), but then 
when ~upphed with run (f), it correctly prt:dictcd that the t~t•ntcncc was complete. 

That the errors cropped up where they did in this ~entence rnil.(ht he \'iC\\ed as 
mdicatin j.( human-like performance, for it is at these points in such scntcn~:es that 

(a} cats who John ... 

end of sentence L 
"who" ,. 

pl. verb intrans. 
pl. verb trans. 

pl. verb prop. att. 
sing. verb intraM. 

sing. verb trans .•••••• 
sing. verb prop. att 
gen., prep., "and". 

pl. noun 
sing. noun 

~_.--~~~~--~ 
0 0.2 0.4 0.6 0.8 

(c) cats who John who dogs , .• 

end of sentence 
"who" 

pi verb intrans. 
pl. verb trans .••••••••• 

pl. verb prop . .1tt. 
sing. verb intrans. 

sing verb trans. 
sing. verb prop. att 
gen .. prep., • •nd", 

pl. noun 
sing. noun 

end of sentence 
"who" 

pl. verb intrans. 
pl. verb traM. 

pi verb prop. att. 
ting verb mtrans 

smg verb trans. 
sing. verb prop. att 
gen., prep., "and", 

pl. noun 
sing. noun 

~--~~~----~~--~ 0 0.2 0.4 0.6 0.8 

(eJ cats who John who 
dogs love chases . . 

~~~~~~~~~ 

0 0.2 0.4 0.6 o.s 

(b) cats who John who ... 

Cd) cats who John who 
dogs love .. . 

(fJ cats who John who 
dogs love chases run 

0 0 2 0.4 0.6 0.8 

Fti/UTI' 6.12 Th~ pr~t.!icttons of Chrisnan~n·s {199~) nt!two rk M t.l1ffercnt p<>ints in 

proc~~~mg the sentence 10 li,.cure o. ll. Acti••ntwn I~' d s Rre ca!t.:ulat~d liS m ti~turc 6.10, 
except thnt tht· dark l1.1rs IOt.licatt! <orrl'<'t pred1ct1uns of th<' n ext word cl:1s~ b\ the nt:twork 

ant.! tht· ~trtp.:d h>lrs u lt.IJ<'Ui t' crrnn~uus prcdKtltms (lhosc nm .tll<>wed b~ 1hc: ~rnmm:~r ) . 
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humans tend to get confused. In this regard, Christiansen cited studies of recall 
reported by Miller and Isard (1964), of comprehension by Larkin and Burns (1977), 
and of grammaticality judgments by Marks (1968). The network also showed pat
terns of sporadic error in the most deeply embedded parts of sentences with pre
nominal genitives with three levels of recursion, right-embedded relative clauses 
with two levels of recursion, and prepositional modifications with three levels of 
embedding. In most cases the network continued to predict the correct continua
tions, but would also predict grammatically illegal continuations. On the other hand, 
the network showed no difficulty handling multiple right-branching sentential com
plements, as in Mary says that men think that John knowt that cats run, and humans 
find this kind of embedding relatively easy as well . 

To make more precise comparisons between the network and humans, Christiansen 
and Chater (1999) developed a measure of grammatical prediction error (GPE) that 
allowed the network's output to be mapped on to common psycholinguistic meas
ures. GPE is computed on the output for each word in a sentence, reflecting the 
processing difficulties that the network is experiencing at each point, and these can 
then be averaged to get a mean GPE for each sentence. Christiansen and Chater 
found that mean GPE scores fit human data on the considerable difficulty of center
embedded sentences in German (compared to cross-serial dependencies in Dutch, 
for example). Moreover, McDonald and Christiansen (in press) fit human data on 
the differential processing of singly center~embedded subject and object relative 
clauses by mapping single-word GPE scores directly on to reading times. Results 
like these suggest that SRNs can play a role in modeling human performance across 
a range that includes incompetencies as well as competencies. 

6.5 Using External Symbols to Provide Exact Symbol Processing 

The assumptions and implications of the third connectionist reply to Fodor and 
Pylyshyn (section 6.4) are worth exploring a bit further. The core idea is that the 
human cognit ive system might have acquired procedural knowledge for working 
with structured representations without forming the same kinds of structured repres
entations internally. This suggests a different explanation for the origin of product
ive and systematic thought: it might be a consequence of humans developing txttrnal 
symbol systems, such as those of natural language, which exhibit compositional 
structure. Consider language as the quintessential symbol system. Part of its interest 
lies in its dual role as an internal tool (e.g .• for mental problem solving) and as an 
external tool (e.g., for written or verbal problem solving and for communication). 
This duality is emphasized in Vygotsky's (1962) characterization of problem solving 
as carried out externally early in development (by means of tgocentric spetch) and 
internally later on (by means of inntr spetch). It is in the external mode that we can 
actually observe symbols being manipulated, somewhat as they might be mani
pulated in a formal symbol system. In the extemalist approach to symbol processing, 
the focus is turned from symbols in their mental roles to symbols in their external 
roles. (For development of a related approach to religious symbols and religious 
systems see Lawson and McCauley, 1990.) 

Smolensky (1988) discussed the cultural practice of formulating knowledge in 
external symbols that can be used to communicate that knowledge (e.g., in a textbook 
or lecture). He viewed these external symbolic formulations as being internalized 

ARE SYNTACTICALlY STRUCTURED REPRESI:NTATlONS NEEDED? 191 

and utilized by a conscious rule inttrprtttr that is distinct from the inherently sub
conceptual intuitivt processor. Although his interest was directed primarily towards the 
latter processor, which is the one that requires a connectionist account, he noted three 
properties of the linguistic encoding of knowledge that are important not just for 
individuals but also for such cultural goals as the advancement of science: 

• Public access: the knowledge is accessible to many people. 
• Rtliability: different people (or the same person at different times) can reliably 

check whether conclusions have been validly reached. 
• Formality , bootstrapping, universality: the inferential operations require very 

little experience with the domain to which the symbols refer. 
(1988, p. 4) 

The pre-connectionist assumption had been that in order for people to operate as 
conscious rule interpreters they must make use of internal rules and structured 
representations. It may be fruitful to approach this from another angle, however. 
Each human is born into a community which makes extensive use of external sym
bols, and these symbols and the regularities in their relation to one another (and in 
their relation to the world and to the child's own mental states) are part of the 
environment in which the infant develops. The novice human acquires the ability to 
interact with the external symbols by means of lower-level processes (such as 
connectionist pattern recognition) that do not themselves involve a direct inter
nalization of these symbols. That is, the infant learns how to use external symbols. 
Although an individual's ability to think and reason appears to be aided by eventu
ally internalizing the use of symbols in some sense, this internalization comes later 
and is incomplete. Even in mature individuals, difficult problems elicit the use of 
external symbols. Also, it is quite unclear in what sense symbols are internalized. 
The connectionist program includes the goal of uncovering the causal mechanisms 
that occur at the subsymbolic level in carrying out what is identified at a higher level 
as symbolic proctssing. Until the program has been actualized to a much greater 
extent, there is no way of knowing whether additional causal mechanisms at the 
higher, symbolic level will also be needed to tUCount for those regularities that are 
most efficiently dtscribed at that level. Alternatively, connectionist processes such as 
pattern recognition may suffice to account for the ability to use symbols. Or there 
may be other specialized processes, not themselves symbolic, that generate activity 
in the system comparable to that occasioned by particular external symbols. If a 
connectionist wishes to examine symbol processing at this time, networks' use of 
external symbols may be the most appropriate place to begin; coming to understand 
what it means to internalize them will be more of a challenge. 

The suggestion we are developing here is rather different from the approach of 
directly designing networks to perform symbolic processing. Rather than trying to 
implement a rule system, we are proposing to teach a network to use a system 
(language) in which information, including rules, can be encoded symbolically. In 
encountering these symbols, however, the network behaves in the same basic man
ner as it always does: it recognizes patterns and responds to them as it has been 
trained. (For a relatively simple simulation of how a network might learn to use 
language in this way, see Allen, 1988). If the external symbols are in an enduring 
modality (e.g., handwriting), the external storage will enable the network to perform 
tasks that it cannot solve on the basis of a single act of pattern recognition. Rumelhart, 
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Smolensky, McClelland, and Hinton (1986) in PDP: 14 illustrated this by construct
ing a scenario for solving a three-digit multiplication problem: 

We are good at "perceivina" answers to problems .... However, ... few (if any) of us 
can look at a three-digit multiplication problem (such u 343 times 822) and see the 
answer. Salvina such problems cannot be done by our pattem-matchtng apparatus, 
parallel processina alone will not do the track; we need a lund of serial processing mech
anism to solve such a problem. Here is where our ability to manipulate our environ
ment becomes critical. We can, quite readily, Jearn to write down the two numbers in a 
certatn format when given such a problem. 

343 

.ill 
Moreover, we can learn to see the first step of such a multiplication problem. (Namely, 
we can see that we should enter a 6 below the 3 and 2.) 

343 
.ill 

6 

We can then use our ab1hty to pattern match again to see what to do next. Each cycle 
of this operation involves first creating a representation through manipulation of the 
environment, then a processing of this (actual physical) representation by means of 
our well -tuned perceptual apparatus leading to a further modification of this rep
resentation. (Rumelhart, Smolensky, McClelland, and Hinton, 1986, p. 4S)1 

They went on to suggest that this kind of iterative operation using external symbols 
is what allows difficult problems, as in logic and science, to be solved: 

These dual skills of manipulating the environment and processing the environment we 
have created allow us to reduce very complex problems to a series of very simple 
ones .. .. This is real symbol processing and, we are beginning to think, the primary 
symbol processing that we are able to do. (p. 46) 

Our discussion of fonnal logical abilities (section 4.3) can be viewed from this 
perspective. A person or a network that confronts external symbols that are configured 
in accord with rules of logic might learn to process those symbols in the appropriate 
logical manner (e.g., detecting what steps to include next in a derivation). 

Rumelhart et al. took the additional step of considering how this use of external 
symbols might to some extent be internaliud. Their basic idea is that a mental 
model of the external symbolic environment is constructed, and the procedures that 
would ordinarily operate on external symbols operate instead on the mental model. 
By using the output of the mental model as the input to the next mental operation of 
pattern-matching, and the output of that operation as an input to the mental model, 
a loop is obtained that can sustain a series of mental operations. A mental operation 
itself is viewed as the network's process of settling or "relaxing" into an interpreta
tion of a symbolic expression. They suggest that the resulting stable state endures 
long enough (approximately half a second) to be conscious, but that the rapid cycles 
of computation involved in settling are not conscious. (Cf. Dennett's, 1978, analysis 
of one aspect of consciousness in terms of a specialized speech module that provides 
a means of reporting the results of cognitive processing.) Rumelhart et at. 's specu
lative, but intriguing, development of this idea can be consulted on pp. 38-48 of 
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PDP:/4. Although they do not specifically discuss the status of the internalized 
symbols, it is clear from their discussion that the symbols are simply patterns in a 
network. Stable states of the network are the "symbols"; but this is achieved by a 
subsymbolic, dynamic encoding that is quite distinct from the construal of symbols 
in the symbolic tradition. 

Processing loops of the type used in the multiplication example would be one way 
to support recursion computationally, providing a connectionist mechanism for 
obtaining Fodor and Pylyshyn's properties of productivity, systematicity, and infer
ential coherence. Fodor and Pylyshyn would not be satisfied by this, because the 
connectionist mechanism is not one that guarantees the systematicity that they 
attribute to all thought. They may be wrong, however, to insist on the ubiquity of 
systematicity. The capacity for recursion arises rather late in development, and 
therefore should not be a part of a model of nascent cognition. That is, children do 
not initially construct models and use them to produce the processing loops that 
may support recursion. This may partly account for the fact that young children's 
language does not fully exhibit Fodor and Pylyshyn's properties of productivity, 
systematicity, and inferential coherence. Children's language (and thought) is par
ticularly dependent upon the eliciting conditions and feedback provided by the 
external environment (symbolic or otherwise). A close analysis of the development 
of language from a connectionist perspective would pay high dividends as a way of 
grappling with questions concerning the prope.rties of language and how the cognit
ive system functions so as to exhibit them. 

Smolensky's ( 1 988) distinction between a conscious rule interpreter and an intuitive 
processor pursued a somewhat different approach to the internalization question. 
Here, Smolensky was willing to accept symbolic models as providing an adequate 
account of the internal encoding and use of linguistically communicated rules. A 
chess novice would rely heavily on rules, for example, before she had developed 
sufficient experience to build a good intuitive processor that could often set which 
move to make (see section 4.2). Smolensky did suggest that there are advantages 
to performing a subsymbolic encoding even of rules (in particular, this would sim
plify interaction with the intuitive processor, which is a nontrivial problem for his 
approach); but still he pressed hardest on the idea that two distinct levels are involved 
at least with respect to explanatory adequacy. ' 

Although we find most of Smolensky's ideas in this paper quite appealing, we are 
uncomfortable with the sharpness of this distinction. A somewhat different way of 
thinking about rules (which he touched on but did not apply to this issue) is to 
regard them as encodings that are unusually isolated from other encodings, and in 
particular are relatively context-invariant. (Either the rule is elicited in only one 
context, or is accessible from any relevant context but with rigid fonn.) This ap
proach would predict a fair degree of continuity in the process of acquiring expert 
knowledge, and would view rule-like versus non-rule-like knowledge representation 
more as a continuum than as a dichotomy. At all points on this continuum, the same 
subsymbolic network approach to encoding would be used. Higher levels would 
simply be more abstract levels of description of certain regularities displayed in the 
network; within the network there would be additional nuances that may be useful 
for some purposes. 

Leaving behind the issue of levels, we will note one last idea in Smolensky ( 1988): 
his vision of what could be achieved by coordination between a rule interpreter and 
intuitive processor. He wrote: 
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An integrated subsymbolic rule anterpreter/intultive processor in principle offers the 
advantqea of both kinds of processing. Imagine such a system creatmg a mathematical 
proof. The intuitive processor would generate eoais and steps, and the rule interpreter 
would verify their validity. The senal search throuah the space of possible steps, wh1ch 
is necessary in a purely symbolic approach, is replaced by the intuitive generation of 
pouibilities. Yet the precise adherence to strict inference rules that is demanded by the 
task can be enforced by the rule interpreter; the creatiVIty of mtuit1on can be exploited 
while its unreliabihry can be controlled. (Smolensky, 1988, p. 13) 

It is interesting to note that in many cases of actual mathematical proofs, the rule· 
checking function is only incompletely performed. The mathematician will say, 
following Laplace, "It is easily seen that . .. ," when in fact many steps remain to be 
filled in and sometimes it turns out that the steps cannot be filled in since the move 
is invalid (Cipra, 1989). 

The proposals summarized in this section represent the most speculative of the 
connectionist perspectives on symbols that we have considered. They treat symbol 
manipulation as a learned capacity that is initially carried out on symbols in the 
external environment. On this view, symbols are primarily human artifacts such as 
linguistic and mathematic expressions, but they may eventually be internalized in 
the same format as nonsymbolic information. 

6.6 Clarifying the Standard: Systematicity and 
Degree of Generalizability 

In addition to these connectionist attempts to explain systematicity, there have been 
a number of attempts by both symbolic theorists and connectionists to clarify just 
what systematicity requires. We will briefly consider two such proposals, one focus
ing on the nomic nature of systematicity, and the other on the relation between 
systematicity and generalization. 

In response to some of the early attempts of connectionists such as Smolensky to 
demonstrate systematicity in networks, Fodor and McLaughlin (1990; see also 
McLaughlin, 1993) argued that the issue is not whether one can make a connectionist 
network exhibit systematicity, but whether one could make it fail to do so: 

the problem that systematicity poses for connectionists ... is not to show that system
atic cognitive capacities are possible given the assumptions of a connectionist architec
ture, but to explain how systematicity could be necessary - how it could be a law that 
cognitive capacities are systematic - given those assumptions. 

No doubt it is possible for Smolensky to wire a network so that 1t supports a vector 
that represents aRb if and only 1f it supports a vector that represents bRa; and perhaps 
it is possible for him to do that without making the imaginary units explicit .... The 
trouble is that, although the architecture permits this, it equaJiy permits Smolensky to 
wire a network so that it supports a vector that represents aRb if and only if it supports 
a vector that represents zSq; or, for that matter, if and only if it supports a vector that 
represents The Last of The Mohicans. The architecture would appear to be absolutely 
indifferent as among these options. Whereas, as we keep sayina, in the Classical archi
tecture, if you meet the conditions for being able to represent aRb, YOU CANNOT 
BUT MEET THE CONDITIONS FOR BEING ABLE TO REPRESENT bRa; 
... So then: it is built into the Classical picture that you can't think aRb unless you are 
able to think bRa, but the Connectionist picture is neutral on whether you can think 
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aRb even if you can't think bRa. But it is a law of nature that you can't think aRb if 
can't think bRa. So the Classical picture explains systematiciry and the Connection
ist picture doesn't. So the Classical picture wins. (Fodor and McLaughlin, 1990, 
pp. 348-9) 

One aspect of Fodor and McLaughlin's complaint against Smolensky seems right 
on target: to the degree that one accepts that cognition is systematic, one wants an 
explanation for it. Simply showing that a specific connectionist network exhibits 
systematicity does not provide an explanation. One would also want to know that 
such a network could emerge reliably under naturalistic conditions (e.g., under 
variable training conditions such as those experienced by different children) and 
have an account (e.g., an evolutionary account) showina why such a network would 
have developed. But the standard they have held aloft- that as a matter of scientific 
law, connectionist networks should exhibit systematicity - is far too strong, as a 
number of critics have pointed out. Aizawa (1997), for example, identified possible 
compositional systems that nonetheless do not exhibit systematicity, thereby demon
strating that compositionality does not, as a matter of law, establish systematicity. In 
a related manner, Hadley (1997) argued that symbolic representations only acquire 
systematicity when they are coupled with the appropriate processing mechanism, 
and no natural laws ensure such coupling. Matthews (1997) pointed out a further 
limitation of the symbolic approach: merely showing that a syntactic structure can 
be represented in the cognitive system does not suffice to show that it can be thought 
(i.e., understood). You might perform the transformation between aRb and bRa and 
discover that you have come up with a symbol string that is expressible but not think
able: " I can think the thought that xis the sole member of the singleton set {x}, but 
I am quite certain that I cannot think the thought that the singleton set (x} is the sole 
member of x. I have no idea what proposition, if any, the sentence the si"'leton set 
(x} is tlu sole member of x expresses" (p. 162). 

Turning now to the issue of generalization, one construal of Fodor and Pylyshyn's 
argument for productivity and systematicity is that these are core characteristics 
displayed by real cognitive systems when they generalize to new cases. It has been 
standard fare for connectionists to examine the capacity of their networks to gen
eralize from training cases to new cases. But does the generalization exhibited by 
networks achieve the level or kind of generalization that inherently characterizes cog
nitive systems? Hadley (1994a) set out to analyze the sort of generalizability reported 
in studies of connectionist networks and proposed three degrees of systematicity. 

A network exhibits the lowest degree of systematicity, wealt systematicity, if it is 
merely ucapable of successfully processing (by recognizing or interpreting) novel 
test sentences, once (it) has been trained on a corpus of sentences which are repres
entative" (p. 6). The training corpus is representative if every word that appears in 
the training corpus appears in each of its permissible positions (if all positions were 
permissible, this could be accomplished by borrowing the Latin squares used to coun
terbalance sequences of conditions in an experiment). Thus, in weak systematicity, 
the sentences to which the network can generalize merely have new combinations 
of old words in their old positions. 

To obtain higher degrees of systematicity the network must process words ap
pearing in positions in which they did not appear in the training set. If its processing 
of new complex sentences (those with embedded clauses) has certain limitations, the 
network is said to exhibit quasi-systtn~aticity. Specifically, the particular sentence 
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fonns must have been experienced during training, and for each word "in an embed
ded sentence (e.g., ' Bob knows that Mary saw Tom') there exists some simple sentence 
in the training corpus which contains that word in the same syntactic position as 
it occurs in the embedded sentence (e.g., 'jane saw Tom')" (pp. 6-7). 

To exhibit strong systmraticity, for Hadley, a network must "correctly process a 
variety of novel simp/~ sentences and novel embedded sentences containing previously 
learned words in positions where they do not ap~ar in the training corpus (i.e., the 
word within the novel sentence does not appear in tlu same syntactic position within 
any simple or embedded sentence in the training corpus" (p. 7). Using this criterion, 
Hadley argues that connectionist models of language processing, including those by 
Pollack (1990), Chalmers (1990), and Elman (1990) discussed in this chapter, fail to 
exhibit strong systematicity. 

Hadley himself (Hadley and Hayward, 1997) created a connectionist network 
which he claims does exhibit strong systematicity. As it processes sentences it de
velops bindings between concepts and case roles (both given a localist encoding); as 
a result, it employs explicitly compositional representations and in this respect ex
hibits affinities with symbolic approaches. It employs a version of Hebbian learning 
to create these bindings. (In illustration, this would be like adding special binding 
units and connections to figure 6.2 so that the network is able to pair up joan
Subject, loves-Verb, florist-Object, or more accurately, completely wiring up the 
units but then training the resulting network so that only bindings that respect the 
grammar can be established during actual processing.) During training, Hadley and 
Hayward withheld a large number of sentences which had some of the nouns in 
novel positions (e.g., subject or object). When later tested on these, the network 
could process them correctly. 

Although it seemed to have satisfied Hadley's criterion for strong systematicity, 
the network was designed to handle a very minimal grammar. All sentences had the 
form NP Verb NP, in which each NP consisted of a single noun or a noun followed 
by a relative clause (i.e., an embedded sentence of the form NP Verb NP). The 
network achieved systematicity by creating bindings between localist representa
tions, and so implemented a kind of compositional syntax. It is thus in the spirit of 
our first connectionist response, explicitly implementing rules and representations. 
But to accommodate even a minimal grammar, and despite its use of relatively 
simple localist encodings, it required detailed wiring and activation procedures for 
each relationship. It is not obvious how one could scale up such a system to handle 
something like a natural language. 

Christiansen and Chater (1994) used Christiansen's network, discussed above, to 
find out whether a connectionist network that developed its own weights and rep
resentations (rather than being hard-wired to implement a rule system) could satisfy 
Hadley's strong systematicity condition. They established two tests of strong system
aticity. In one test, during training neither girl nor girls was permitted in a genitive 
context either as the possessor or the possessed . In the other test, during training 
neither boy nor boys was permitted in noun phrase conjunctions. Thus, in the test 
sentences the words were appearing in novel syntactic roles. When the network 
that was trained on the cross-dependency grammar was presented with the test sen
tence Mary 's girls run, it correctly predicted that girls would be followed either by 
a plural verb or a plural genitive marker. Moreover, when the next word in fact was 
the plural verb run, the network correctly predicted the end-of-sentence marker. 
The other test sentence was Mary says that John and boy from town see. This is per-
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haps an unnecessarily tough test of strong generalizability: not only is boy occurring 
in a novel syntactic role, but a prepositional phrase is interposed before the verb. 
Nonetheless, when the recurrent network reached the word boy in processing this sen
tence, it correctly predicted that the next word would be a plural verb, a preposition, 
a singular genitive marker, or who. (It also incorrectly partially activated the singular 
verbs, but it also did so on a comparison sentence on which it had been trained.) After 
the prepositional phrase, the network again predicted a plural verb or a preposition, 
but also erroneously activated to a lesser degree the singular verb and the end-of
sentence marker. (Christiansen and Chater also reported on tests with the center
embedded network. In that case, the genitive test with girl and girls did not produce 
positive results; and the other test, with boy and boys in conjunctions, produced less 
error than in this case.) Although these are only limited tests of the ability of the 
network to meet Hadley's criterion of strong systematicity, they are suggestive that 
connectionist networks might be able to satisfy that standard (but see Hadley, 1994b, 
and Haselager and van Rappard, 1998, for a pessimistic assessment). 

6.7 Conclusion 

Classical symbol systems, ones that use concatenation so that constituents are actu• 
ally encoded in syntactically composed structures, are clearly powerful devices for 
reasoning. They readily permit (although it is doubtful that they necessitate) the sort 
of productivity, systematicity, and inferential coherence to which Fodor and Pylyshyn 
directed attention in their critique of connectionism. Moreover, they make it much 
easier to achieve the sort of generalization to which Hadley drew attention: working 
with discrete symbols and syntactic rules, it is easy to handle novel sentences in which 
the same symbols are placed differently in the same rule-generated structures. 

Since connectionist networks do not employ these resources, the challenge for 
connectionists is to achieve these benefits in some other way. The first approach we 
considered was top-down: designing networks specifically to encode symbols and 
implement syntactically specified relations. The second approach was bottom-up: 
having the network itself develop encodings of symbolic structures which sacrificed 
concatenation but were still able to perform the functions for which symbolic theor· 
ists have employed concatenated structures. Finally, we considered a more radical 
option, in which networks might conform themselves to the structures found in 
external symbol systems such as natural language (manifested, for example, in their 
ability to predict the legal next symbols in the symbol string) without representing 
the whole string internally, either in a concatenated fashion or functionally. In 
simple recurrent networks, slightly different activation patterns on hidden units 
serve to distinguish cases presented on previous cycles which the network must keep 
track of in order to solve specific problems. It is still too early to decide whether any 
of these approaches is able to capture whatever level of productivity and systematicity 
is found in human cognition (investigators differ even on that question), but they 
represent promising strategies for connectionists to pursue. As for Fodor and 
McLaughlin's requirement that they capture these properties necessarily, it is an 
interesting question that cannot be answered as easily as they suggest. It may be that 
only certain connectionist or post-connectionist architectures with certain types of 
corpora would be necessarily productive, systematic, and coherent. If so, it would be 
important to identify these types and why only they behave in that way. 
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While connectionists and symbolic theorists have devoted considerable effort to 
arguing for their respective positions and against the alternative, these debates are 
not likely to settle the dispute. It is our impression that they do not address the 
actual reasons for one researcher's choice of connectionism or another's preference 
for symbol processing. In large measure, attraction to connectionism has depended 
on dissatisfaction with symbolic models. Hence, it is a quite varied assortment of 
researchers, many not sharing common objectives, who have turned to connection
ism. The degree of dissatisfaction depends in part upon what a researcher takes as 
the data to be explained. Those who are most impressed with the abstract regularit
ies in behavior- as captured in linguistic competence theories, for example - have 
tended to remain satisfied with symbolic theories. Many of those who are concerned 
with variations in actual performance, on the other hand, have found it difficult to 
incorporate those phenomena into symbolic theories and have either pursued connec
tionist alternatives or have developed less traditional symbolic theories. In a strong 
sense, this initial difference in basic objectives leads the theorists for the two sides to 
talk past one another. 

NOTES 

Fodor and Pylyshyn cited John Watson's (1930) behaviorism, Patricia Churchland's (1986) 
neuroscience elimmauvism, and Stephen Stich's (1983) syntactiC ehmmauv1sm as examples 
of eliminativism in their llenlle. However, Churchland, wh1le mdeed a strong proponent 
of eliminativism, accepts the idea that neural states may llerve a representational role; her 
quarrel is with the sentential or propositional approach to representation. Similarly, most 
connectionists regard networks as representational, but emphasize the1r distinctness from 
traditional symbolic representations . Since Fodor and Pylyshyn'a paper, though, a number 
of advocates of dynamical systems approaches to modeline coenition, whom we will dis
cuss in chapter 8, have explicitly argued for doine away with representations. However, as 
Clark and Tonbio (1994: see also Clark, 1997b) point out, most dynamical modeling has 
been focused at lower-level systems using sensory information to euide spatial navigation. 
They note that it is hieher- level tasks such as long-term planning that are "representation 
hungry," and propose that when dynamicists confront these tasks they too will need to 
reintroduce representations. 

2 As our small contribution to reducing the gender-typine prevalent in linguistic examples, 
we have adapted their actual base example, John lows the girl, to one with a female 
erammatical subject and gender-neutral grammatical object. 

3 Although connectionist models use finer-grained units (subsymbols) to account for a 
!riven phenomenon than do most information-processing models, this is irrelevant to 
determinine whether they occupy the abstract or processing level of analysis. The size and 
nature of the units reflect choices made within that level, e .g., how deeply one must go 

into that level's part-whole hierarchy in order to achieve the best account of the phenom
enon. As discussed in Abrahamsen (1987), each level has its own part-whole hierarchy of 
units of analysis appropriate to that level. 

4 An alternative to usmg recurrent networks is to present the context in the input. For 
example, in modeline language comprehension, one might provide as input not just the 
target word, but three words on either side . The problem is that one thereby limits what 
counts as context to the three words on either side. Often the required context is much 
broader. For example, a language user must be able to supply the proper verb form for its 
subject even when dependent clauses intervene (e .g., Tht dog at whom tht gardener in tht 
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neighbor's yard threw tM rock was barking). H the length of the dependency becomes too 
long, of course, we may fail to remember what the proper verb form should have been. But 
there is a broad ranee in which humans are highly accurate and it is simply not reasonable 
to pro\·ide such a range in the input. 

5 Because this approach gives each word an independent encoding, a plural noun is not 
constructed from the corresponding singular form plus a plural inflection. Thus, girl, girls, 
and cats have equally dissimilar encodings. The network learns from distributional con
straints to treat girls, cats, and the ocher two plural nouns similarly, but there is no 
information in this particular corpus that would lead it to treat girl as more similar to girls 
than to cats. 

6 If, instead of this phased training, the network were trained on the whole corpus at once, it 
would never master the corpus. It would also show a surprising pattern of error: it might 
get lone-range dependencies correct, but fail on short-range dependencies within a relative 
clause (e.g., producing "The boys who the &irl •chase aee the dog"), Human children, as 
Elman noted, master simple sentences before complex ones. Children, though, are expoaed 
to the whole adult corpus from the beginning. Elman (I 993) demonstrated that he could 
achieve the same effect by limiting the number of precedine words for which recurrent 
connections could provide information. In the earlieat epochs the context units were reset 
every 2 or 3 words; this interval was gradually increased to every 6-7 words and then 
dropped entirely. (The procedure was meant to m imic children's eradually irH:reasing short
term memory.) Elman's discovery with networks coheres with an earlier empirical discov
ery and theoretical proposal of Elissa Newport. She showed that late learners of a language 
(often learners of a second language, as in Johnson and Newport, 1989) never exhibit the 
same performance as early learners. Late learnera tend to make extensive uae of fixed forms 
and show insensitivity to the variability in the internal morphology of these structures. 
Early learners, on the other hand, tend to learn the components, and their errors often 
involve omission of components. Newpon's proposal is that earlier learners actually bene
fit from reduced memory which forces them to focus on shorter structures which irH:or
porate the relationships (e.g., subject-verb agreement) that are put toaether compositionally 
in the adult language. She called her proposal the " less is more hypothesis." 

7 An example from Dutch is "de mannen hebben Hans Jeanine de paarden helpen leren 
voeren" which, preserving the Dutch word order, becomes in English: "the men have 
Hans Jeanine the horlles help teach feed," which can be translated into Enghsh word order 
as "the men have helped Hans teach Jeanine to feed the horses." 

8 Another approach is to use recurrent networks to carry out the sequential operations 
reqUired in arithmetic. For example, Cottrell and Tsung (1989) have developed simulations 
of addition of two multi-digit numbers that use a recurrent network to store partial resulta 
for later stages of processing. 
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7 

SIMULATING HIGHER CoGNITION: 

A MODULAR ARCHITECTURE 

FOR PROCESSING SCRIPTS 

Most of the connectionist simulations we have discussed up to this point have been 
demonstrations of discrete cognitive abilities such as generating the past tense of a 
verb or predicting the next word in a language corpus. Not infrequently, observers 
of such demonstrations ask "But what kinds of interesting things can these sys
tems do? Can they carry out whole tasks of the kind that characterize daily life for 
humans?" In this chapter we will describe an ambitious connectionist model designed 
by Risto Miikkulainen (1993) to read stories about different topics, represent and keep 
track of them, retell them, and answer questions about them. Miikkulainen took as 
his starting points (a) an influential approach from traditional cognitive science, 
Schank and Abelson's (1977) scripts; and (b) networks that use backpropagation to 
learn. But simple networks were not adequate to achieve the variety of script-related 
activities which Miikkulainen had targeted; with considerable ingenuity, he arrived 
at a modular connectionist architecture that went beyond what had been previously 
possible both in connectionist modeling and in the implementation of scripts. 

7.1 Overview of Scripts 

Scripts are knowledge representations that specify the typical structure of events in 
such routines as going to a restaurant or giving a birthday party. They have their 
roots in work on natural language understanding by artificial intelligence researchers 
in the 1970s, particularly Roger Schank. He began by developing what he called a 
conceptual deperukncy framework for displaying causal and other links between events 
(Schank, 1972), and identified 11 primitive acts that provided a simplified means of 
representing those events (Schank, 1975). Examples of primitive acts are PTRANS 
(the transfer of the physical location of an object, as in go or put), MTRANS (the 
transfer of mental information within or between subjects, as in see and tell), 
A TRANS (the transfer of an abstract relationship such as possession of an object, as 
in give and sell), and INGEST (as in eat and smoke). Each primitive act is the core of 
an event that may involve an actor, object, direction of transfer, and instrument 
(e.g., Babe Ruth would often PTRANS a baseball to the outfield with a bat). States 
could also be represented (e.g., a person's hunger). Schank's group wrote a program, 
MARGIE, that could build a conceptual dependency representation of a sentence, 
make inferences, and generate a paraphrase incorporating the inferences. Given the 
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sentence Babe Ruth hit a baseball, for example, the instrument slot could be inferred 
and appropriately filled, so that with a bat might be included in the paraphrase. 

It soon became clear that additional sources of inference and constraint had to be 
considered in handling longer stretches of text. Hence, Schank and Abelson (1977) 
proposed the notion of scripts, and implemented them by chaining Schank's prim
itive acts together into structures that captured human knowledge of familiar situ
ations. A renowned example is their restaurant script, which describes the sequence 
of events that transpire in a restaurant from the perspective of a customer. Heading 
the script are lists of props (e.g., money and a menu), entry conditions (e.g., the 
customer is hungry), and results (e.g., the customer is not hungry). Several roles 
(e.g., customer, waiter) help glue together the script by appearing repeatedly in the 
various component events. A script may be divided into scenes (e.g., entering, 
ordering, eating, and exiting). Since the sequence of events depends upon the kind 
of restaurant, the restaurant script contains different tracks for fast-food restaurant, 
cafeteria, coffee shop, fancy restaurant, etc. The coffee shop track includes more 
than 30 events. Half of these are in the ordering scene, which begins when the cus
tomer (S) requests a menu from the waiter (W). The first four of the ordering events 
will suffice to convey the flavor of the script: 

S MTRANS signal to W 
W PTRANS W to table 
S MTRANS "need menu" to W 
W PTRANS W to menu 

When someone imtantiates the script by telling a story about a particular person 
ordering a meal in a particular restaurant, typically only a few of the events in the 
script will be explicitly mentioned. Schank and Abelson proposed that readers in
voke their own knowledge of scripts in understanding stories, which enables them to 
infer the unmentioned events. This would explain people's ability to answer ques
tions that require such inferences and the fact that events not mentioned in a story 
often get included when people paraphrase it. 

Schank and Abelson described an AI program, SAM, that surpassed MARGIE 
by including script-based inferences and omitting inferences that were correct but 
less salient. They also began exploring more flexible sources of inference (goals and 
plans), and their students contributed a crop of additional programs and implementa
tions for representing text, answering questions, and paraphrasing. Later Schank 
added representations at a higher level than scripts (e.g., MOPs) and proposed 
replacing inflexible tracks with dynamic access of specific memories (Schank, 1982). 
However, it is the original notion of a script as a fairly rigid event structure that has 
endured as one of the showpieces of classic symbolic AI and has been most influen
tial in the wider academic arena. 

7.2 Overview of Miikkulainen's DISCERN System 

If connectionism is to offer a convincing alternative (or extension) to the symbolic 
approach used by Schank and other AI researchers, it is important to show that 
connectionist systems can perform the sorts of behavior- for example, paraphrasing 
and answering questions about stories - for which scripts have been invoked. 



202 SIMULATING HIGHEA COGNITION 

Miikkulainen (1993) designed DISCERN (Distributed SCript processing and Epis
odic memoRy Network) to provide such a demonstration and to explore the more 
complex architectures required to perform more complex tasks. He trained his 
system to handle stories involving three different scripts: going to restaurants, traveling, 
and shopping. There were three tracks for each script, and a number of specific 
stories for each track. For example (p. 3), here are shortened versions of three stories 
with the script and track shown for each: 

john went to MaMaison. john asked the waiter for lobster. John left a big tip. 
{Restaurant: fancy) 

2 John went to LAX. John checked in for a flight to JFK. The plane landed at 
JFK. [Travel: by plane) 

3 John went to RadioShack. John asked the staff questions about CO-players. 
john chose the best CO-player. [Shopping: electronics) 

Since it had already been trained on complete versions of numerous stories like 
these, DISCERN could generate its own expanded paraphrases of the short ver
sions. For example (pp. 29- 30), when presented with story (1) above, it produced 
the following complete story: 

4 John went to MaMaison. The waiter seated John. John asked the waiter for 
lobster. John ate a good lobster. John paid the waiter. John left a big tip. John 
left MaMaison. 

Notice that DISCERN filled in many details absent in story (1), such as the waiter 
seating John and John paying the waiter. That is, it behaved as though it knew the 
restaurant script. But it had never seen the script- rather, the stories on which it had 
been trained provided a variety of instantiations of each track of the script. The 
stories differed in the specific participants filling the roles and in the choice of which 
events were explicitly mentioned. From these DISCERN put together the restaur
ant script, distinguishing among its three tracks and capturing in its weights such 
statistical regularities as the tendency for food to be good in fancy restaurants, bad in 
fast-food restaurants, and unpredictable in coffee shops. In fact , three different 
scripts with three tracks each were simultaneously abstracted, since the restaurant 
stories were mixed with others. DISCERN also could apply the results of its train
ing to the task of giving plausible answers to queries. It did this by using the query 
as a cue for retrieving its encoding of the most relevant story and assuming that it 
contained the answer. For example (pp. 4, 30), queries for which stories (1)- (3) 
provided plausible answers were: 

Q : What did John eat at MaMaison? I A: John ate a good lobster. 
Q : Where did john take a plane to? I A: john took a plane to JFK. 
Q: What did john buy at RadioShack? I A: john bought a CD-player at RadioShack. 

Since Miikkulainen 's system is one of the first attempts to produce a network system 
to carry out cognitive activities on such a large scale, it is worth examining in some 
detail how it operates. One key characteristic of DISCERN is that it does not consist 
of a single network; its work is segmented into subtasks accomplished in sequence by 
the eight modules shown in figure 7. 1. There are two memory modules: a lexicon 
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Input Output 
text text 

Figure 7.1 Miikkulainen's (1993) DISCERN system. The Lexicon and Episodic Memory 
are memory modules that utilize Kohonen's aelf-orranit.in& feature map architecture. The 
other six modules are processing modules that utitiu the FGREP or recurrent FGREP 
architecture. 

which translates written words into meaningful internal representations and an 
episodic memory which keeps track of the stories presented to the system. These 
support the work of six processing modules: two for parsing material at the sentence 
and story levels (to obtain representations of stories), two for generating material 
at the sentence and story levels (to paraphrase those stories), and two for encoding 
and answering questions about stories. In the trained system, as shown in figure 7 .1, 
the modules are used sequentially across one of two pathways (paraphrasing or 
question-answering). However, another key characteristic of DISCERN is that the 
processing modules have a distinctive architecture (called FGREP) that requires 
them to interact cooperatively with the lexicon during training, yielding representa
tions that are adapted to the needs of all six modules. 

In what follows, we will first consider the motivations and benefits of modular 
design; then describe the FGREP architecture in the simplest possible system (a 
single processing module with a single set of lexical representations); then describe 
the various modules of the complete DISCERN system and follow the flow of pro
cessing through it; and finally present examples of the whole system's performance 
and provide a brief evaluation of the system. 

7.3 Modular Connectionist Architectures 

In attempting to explain systems in nature, scientists generally begin with a working 
assumption that they are composed of subsystems. This is especially evident among 
biologists, for whom a primary research strategy is to decompose the task performed 
by a system into subtasks and make a corresponding decomposition of the physical 
system, localizing each subtask in one of the specialized components. For example, 
the overall task of a cell is to serve as the basic unit of life. A few of the subtasks 
carried out by cell components are control of access to and from the cell interior (by 
the membrane), energy transfer (by the mitrochondria), and synthesis of proteins 
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(by the ribosomes). As research progresses, a hierarchy of finer-grained decomposi
tions and localizations emerges (see Bechtel and Richardson, 1993). A division of labor 
into two or more specialized components is the weakest sense in which a system may 
be said to be modu/aF. 

Within the cognitive sciences, the idea of modular organization has played an 
especially prominent role in neuropsychology. When a patient exhibits a deficit in a 
particular function (e.g., language production), it is assumed to result from damage 
to a brain area responsible for performing that function. If the organization of the 
brain is essentially modular, deficits in other functions should be indicative of brain 
damage in other areas. To obtain better evidence that two different brain areas 
qualify as modules subserving different functions, researchers often seek a double 
dissociation: patients with damage to one brain area should exhibit a deficit in function 
1 but not function 2 (e.g., language production but not language comprehension), 
whereas patients with damage to the other brain area should exhibit the opposite 
pattern. This research strategy has proven so useful that neuropsychologists have 
continued to rely upon it heuristically despite concerns. One problem is that it relies 
upon two additional assumptions about modules: that they operate independently 
and, therefore, that the effects of damage to a module will remain localized within it. 
Farah (1994) argued that a better account of double dissociations can be obtained by 
abandoning this locality assumption and building distributed, graded, interactive 
models such as connectionist networks. Shallice (1988) recommended a moderate 
stance, in which damage to a module is viewed as primarily affecting that module 
but also may have a lesser impact on modules that interact with it. Double dis
sociations in degree of damage can then be used to identify these non-independent 
but distinct modules. Another problem is that even double dissociations do not 
guarantee an optimal modular account; further work may result in new decomposi
tions of tasks or new assignments of tasks to brain areas. For example, Zurif (1980) 
proposed that the brain area originally thought to serve as a language production 
module actually functions as a syntax module in both production and comprehen
sion tasks, and Grodzinsky (2000) narrowed this to just two aspects of syntax (one 
affected in production and the other in comprehension). 

Connectionists are sometimes construed as antiAmodular for yet another reason: 
they have often proposed to handle in a single network tasks that other cognitive 
scientists divide between two different subsystems (modules). In section 5.2 we 
discussed at length the best-known example: Rumelhart and McClelland (1986a) 
demonstrated that a single network is sufficient to form the past tense of both 
regular and irregular verbs, thereby challenging the claim that two different sorts of 
processing are required (one rule-based and one memory-based). In section 10.2.3 
we will encounter similar connectionist challenges against dual-route accounts 
of reading (a context in which Shallice developed even more nuanced ways of inter
preting double dissociations). 

But what are these fights really about? They are not targeted on the use of modu
lar architectures, in the weak sense of building a system out of specialized subsystems. 
Connectionists share with other cognitive modelers a distaste for holism: they as
sume not only that different networks exist in humans for performing such disparate 
tasks as producing sentences, identifying objects, and traversing a maze, but also 
that these networks may be composed from subnetworks which perform different 
subtasks. Modular designs have a general appeal because they help make the task 
performed by a system theoretically tractable. This is a major concern in scientific 
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theorizing generally (see Simon's 1969 discussion of decomposable and nearly decom
posable systems), and underlies decomposition and localization as research strategies 
in many scientific fields (as in the example of cell biology above). 

So there is broad agreement in cognitive science that systems can best be built by 
composing them from modules. The disagreement has to do with the character of 
those modules. Connectionists have a profound preference for general-purpose 
designs that can master any number of tasks in a variety of domains. For example, 
a feedforward network with three layers of units can form the past tense of verbs 
(Plunkett and Marchman, 1991 ), pronounce written text (Sejnowski and Rosenberg, 
1987), or use sonar echo data to discriminate rocks from mines (Gorman and 
Sejnowski, 1988). During training the network captures the constraints implicit in 
the encodings presented to it, whatever the domain. When connectionists compose 
multiple networks into a modular system to perform more complex tasks, not infre
quently the modules are of the same general design (but trained on a different part of 
the task). 

An alternative view is that modules have task-specific architectures. Dual-route 
theorists propose different mechanisms (i.e., rule-based or memory-based process
ing) for regular versus exceptional forms within the same domain. Evolutionary 
psychologists scale up this modest task-specificity to a sweeping domain-specificity, 
viewing the entire mind-brain as a collection of specialized modules honed by evolu
tion to perform specialized tasks. And a singularly provocative proposal has been 
advanced by philosopher Jerry Fodor (1983), who divides the mind-brain into a set 
of innately specified modules for processing specific types of inputs (e.g., colors, 
shapes, faces, melodies, utterances) and a nonmodular, holistic central system re
sponsible for reasoning and beliefs. The modules are hardwired, special-purpose, 
bottom-up processors that work fast in part because they are informationally encap
sulated (sharing only inputs and outputs with other modules and otherwise operat
ing autonomously). That is, within-module processing is not influenced by other 
modules or by beliefs from the central system. 

This thoroughgoing embrace of the independence assumption, along with the 
emphasis on task-specific architectures and other strong assumptions, puts Fodorian 
modularity generally at odds with systems of interactive modules (called "integrated 
systems" by Bechtel and Richardson, 1993), including interactive network designs. 
However, McClelland (1987, 1996) arrived at the interesting idea that propagation 
of activation across a layer of connections is informationally encapsulated, but that 
the pattern of activation across a layer of units often benefits from having multiple 
influences (including top-down connections from "later" layers of units). For ex
ample, we saw in chapter 4.1.2 that the letter units in McClelland and Rumelhart's 
( 1981} interactive activation model of word recognition were influenced not only by 
feedforward connections from feature units but also by feedbackward connections 
from word units. McClelland reinterpreted two human data sets that have been cited 
as supporting Fodorian bottom-up modules as actually more consistent with inter
active networks. Specifically, he argued that the timecourse of disambiguation both 
for word meanings and for phonemes is suggestive of top-down feedback effects. 
Whether such effects are bounded within a module (and hence less of a problem for 
Fodor) or suggest an ongoing sharing of information between modules is not always 
easily decided. At the very least McClelland's analysis suggests that interactive 
networks must be among the candidate architectures for implementing modules. To 
greater effect, it points to system designs in which backward connections allow 
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"late" modules specializing in higher-order or integrative processing to influence 
the operation of "early" modules that perform more localized computations. As we 
will see in chapter 10, there is growing evidence that this is how the brain itself is 
organized. 

Such lofty debates can be sidestepped in examining Miikkulainen's DISCERN 
system, because his design has no backward connections between modules. In col
laboration with Dyer, he deferred this issue in order to focus on the tasks involved in 
building any modular network system: analyzing a task into components, deciding 
which of a small number of general architectures to use for each subtask, deciding 
how to connect the modules into a system and coordinate their activity and informa
tion flow - and not least, implementing and evaluating all of these decisions. The 
result was a system in which modules are used in sequence and some are usable for 
more than one task. When the task is to paraphrase a story, information flows into 
the Lexicon and from there in sequence to the Sentence Parser, Story Parser, Epis
odic Memory, Story Generator, Sentence Generator, and finally back out through 
the Lexicon. When the task is to answer a question, the same sequence is traversed 
except that the Cue Former and Answer Producer replace the Story Parser and 
Story Generator. Each module completes its subtask via its own internal operations, 
and the result is copied from its output units on to the next module's input units. 
The modules differ in how much material they need to complete their subtasks (a 
word, sentence, or entire story). They also differ in which of three network archi
tectures Miikkulainen chose as most suitable. Two of the architectures are interactive 
(simple recurrent networks and Kohonen feature maps), but their interactivity is 
self-contained and not used to implement top-down influences. 

During training the modules are hooked up quite differently. The processing 
modules are detached from each other but connected bidirectionally to the Lexicon, 
through which each of them is trained simultaneously on the same corpus. One 
outcome of each training trial is a modified representation of each word involved in 
the trial (as explained in the next section), and the modified representation is imme
diately posted to the shared Lexicon. The next module that encounters that word in 
a training trial will be using a word representation that was most recently altered by 
a different module. That is, though each module is performing its task autonom
ously during each of its training trials, across trials and modules (via the Lexicon) 
there is a flow of shared information about how words should be represented. 

7.4 FGREP: An Architecture that Allows the System to 
Devise Its Own Representations 

7.4.1 Why FGREP? 

Why does DISCERN change its own lexical representations? In part, this is a 
response to an objection raised against some early connectionist networks. Critics 
noted that some of their success could be attributed to the use of nonarbitrary input 
encodings, taken from a predetermined analysis of the domain. For example, 
McClelland and Kawamoto (1986) designed a network with hundreds of input and 
output units (but no hidden layer) to generate case-role representations of sentences 
-the same task performed by DISCERN's Sentence Parser module. They created a 
set of semantic dimensions, each with 2 to 7 values (e.g., softness; soft vs. hard), 
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assigned values to words, and from these derived hundreds of conjunctive features 
which were used to encode each word of a sentence input. For example, potato was 
presented on the 263 units reserved for the direct object by turning on the unit for 
soft&food, turning off units for hard&tool and large&animate, and so forth. 
The word pasta differed from potato on only one dimension (form), so their pre
determined encodings were sufficient to assure that they would get similar case 
assignments. The encodings amount to a theory about what is salient in the task 
- here, that lexical semantics is important in assigning case and more particularly 
that conjunctions of particular dimensions are important. Those who object to such 
theory-laden encodings have raised the same objection to the Wickelfeature encod
ings employed by Rumelhart and McClelland (1986a) in their past-tense network 
(their theory being that verb stems are represented by coarse-coded context-depend
ent phonological features), and would apply as well to Plunkett and Marchman's 
(1991) localist encodings (which were based on the related theory that verb stems 
have a localist encoding using position-specific, context-independent phonological 
features). 

One strategy for answering this charge has been to use input patterns that are 
arbitrary, rather than crafted by the investigator, and let their task-related structure 
be discovered on one or more hidden layers during training. In arbitrary encodings 
the individual input units have no featural or other interpretation, and they can be 
constructed such that all patterns are equally dissimilar. Hence, whatever internal 
representations emerge on the hidden layers during training cannot be attributed 
to explicit packets of information in the input patterns. One example is Hinton's 
(1986) network for answering questions about relationships in family trees . Each 
of 24 persons was represented by turning on a single binary unit in an 24-unit 
array, and each relation (such as parent, sibling) had the same kind of arbitrary 
encoding in a separate, 12-unit array. Each array fed into a separate set of hidden 
units, which then fed into two layers of common hidden units and finally into a set of 
output units that designated the second person in the relationship. After training 
on such items as the input Carolyn has-mother and the target output Victoria, the 
network seemed to have achieved a featural encoding on its hidden units that hap
pened to be fairly localized. For example, in the first set of hidden units there seemed 
to be units for Italian kin, English kin, first-generation kin, second-generation kin, 
and so forth. 

These nonarbitrary internal representations emerge from the network's activity as 
it gradually discovers the structure implicit in the particular pairings of inputs with 
outputs in the corpus of training items. Even though both the input and output 
patterns are themselves arbitrarily coded, the learning procedure adjusts the weights 
into the hidden units so that a task-relevant re-encoding of the inputs will be achieved 
on the hidden units. In the above example, Carolyn's arbitrary input pattern is re
encoded on the hidden layer so as to specify that she is English, is first-generation, 
and so forth. The re-encodings are calculated on the fly and are replaced on each 
new trial, but the knowledge used to produce them is retained (in distributed form) 
in the connection weights. 

For Miikkulainen's modular system a more elaborate solution to the problem was 
needed, because the task-relevant re-encodings had to be equally relevant to the 
needs of six different processing modules. The work of re-encoding the words in 
each input pattern and retaining the results could not be contained within the 
internal operations of any single module. What was needed was a common lexicon 
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that could store the re-encodings in an accessible format both during and after 
trainin~. :md n tn1inin~ procedure that would le:n·e this snrr uf trace of its acti,·ity. 
i\•liikkul.tincn and Dyer (191Jl) found an elegant solution which they implemented, 
initially. in a single processing module with a single: s«:t of lexical repn:scntations. It 
is in the same sp1rit as Hinton's reliance on changing thl' weights of connections into 
hidden units, but extends backpropagation an additional step so that it changes not 
only the weights but also the aL'tivation patterns on the input units (which initially 
arc urbitrary) . The most rc:ccnt activation pattern for a word is retained in the 
lexicon, making possible many crdes of retrieval and adapti,·e modification . Hence, 
the network J.tradually arri\'es at task-rt'le\'ant re-encodings that are easily accessible 
from the lexicon, rather than appearing only temporarily on the hidden units. 

:\liikkulaincn and Dyer referred to the architecture of th is modified feedforward 
system as FGREP (Forming Global Representations in Extended back-Propaga
tion). In FGREP. each time a pattern is presented on the input units, the network 
~cnerates a response on the output units, the error is e\·aluated, and an error signal is 
sent hack through the network to chang«: each layer of weights and then the input 
pattern itself. This last, nm·el step is achie\'cd by changing the activation \'alue of 
each input unit by the product of the error value at that unit and the learning rate, 
constrained by the proviso that the value cannot fall below a minimum or exceed a 
maximum \·aluc. (To the backpropagation algorithm, each input pattern is equival
ent to an additional set of weights, which can be regarded as weights on ,·onnections 
from an additional set of binary units that feed into the original input units.) The 
revised word representations achie\'ed on the input layer through this procedure are 
then stored in the lexicon. 

7 .4.2 Exploring FGREP in a simple sentence parser 

To tllustrate the utility or the FGREP architecture , M iikkulainen and Dyer de
signed a preliminary \·ersion of the Sentence Parser module. As shown in fil(ure 7.2 
(from Miikkulainen, 1993, p. 54), when provided with a sentence this module 
assigns its words to case roles. It amounts to a connectionist simulation of a Schankian 
computer program for translatmg a sentence into a simple conceptual dependency 
~presentation, although its flat structure treats acts as equivalent to case roles (los
ing both the centrality and abstractness of Schank's primitive acts). In the full 
DISCERN system (figure 7.1 }, the Sentence Parser gets its inputs \ia the Lexicon 
and sends its output to either the Story Parser or the Cue Former, but in this initial 
version the only connection was with a simplified lexicon. Miikkulainen and Dyer 
us.td the same corpus of 1,-n 5 three- and four-word sentenct"s and case assignments 
as ;\ lcCielland and Kawamoto ( 1986), but replaced the semantll' feature representa
tions of each word with arbitrary ones (since the main point of FGREP was to 
dt·,·elop its own encodings). Extended backpropllgation gradually reshaped these 
cncodings to incorporate the semantic and syntactic structure implicit in the corpus. 
These FGREP encodin~s were called lexical reprc.mrtatiom, semantic rcpreserrtations, 
or simply patterns. 

The input hl)er of tht~ ' 'ersion of the ~entence parser was di\'ided into four 
asscmhlics of units, each of which \\as rcser\'ed for a particular grammatical role. A 
sentence was prcscntt·d to the network by copyin~ the current encoding of each 
word fmm the lexicon to the appropri;ue assemhl)' of input units: the first set of 
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Figure 7. 2 :\<1iikkulainen and D~·o:r's (1991) sento:ncc potrser, a sin~lc FGREP module th,u 
couper:ttt'S with :1 simplified lexicon so that word representation~ and network wo:tghtll bnth 
become increasmgly udapted to the task of determining each word·s case role. Repnnted 
v.ith permission from R. MiikkulRinen (1993) Subsymbvlic N atur<lll-tmJ(tWJf<' Proassmp : 
An lnlt!f!rt/Ud }11/odel of Scripts, Lexicon, and Ml'mory . Cambridge, :\<lA: MIT Pre'iS, p. 54. 

twdve units encoded the subject, the next set the verb, the third set the direct 
object, and the fourth set the with-NP (the noun following the preposition ruith; as a 
simplification, the determiner the is not explicitly represented). The network's task 
\\as to channel each word from its syntactic role assembly to the appropriate case 
role assembly on the output units. There were five assemblies of output units (three 
or four of which should be filled on each trial): agent, act, patient, mstrument, and 
mod1fier. Each grammatical role (excc:pt verb) can be used to convey more than one 
cllse role, but in a particular sentence the arrangement of words across syntactic 
mles usually adds sufficient constramt that just one way of filling the cuse roles is 
appropriate. For example, although the with-NP often tdentifies an instrument of 
the actton, as in (I), it could msread modify the patit"nt, as in (2): 

(I) The boy ate the pnsta with a fork. 
(2) Th .. boy ate 1he pasta with the chco:se. 

In this example, the fact that cheese is a food fa,·ors its assignment us a modifier of 
the object of ate. (Like the act slot, the modifier slot IS defined in relation to case 
roles but is not a case role; in the simplified flat structure used here, for (·cmvenience 
they are called case roles.) Similarly, the subject of the sentence typically identifies 
the agent of the action (3), but when non-animate it can inst«:ad identify the instru
ment (4) or the patient (5): 

(3) The girl broko: the window with the ball. 
(4-) The rock broke lhe window. 
(5) The window bruke. 

The network indicated its analysis by channeling the pattern for each word to the 
appropriate set of output unit:; (as well as it could given its current \\eights). If rhcrl· 
were no word in the sentence that could fill a particular case role, the tar~et output 
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on each unit in that case-role assembly would be set as 0.5 (the null pattern). Thus, 
for the input sentence The girl broke the window with the b~ll (presented as the sequence 
girl broke window ball), the target on each training tnal was to place the c~rrent 
panem for girl on the output units for agent, the pattern for broke on the umts f?r 
act the panern for window on the units for patient, the pattern for ball on the umts 
for' instrument, and the null pattern on the units for modifier. (N.ote that s~veral 
different terms for such patterns are used in this chapter: in addit1on to le~cal.or 
semantic representation, the more general terms encoding, vector, filler, and actrvatum 
pattern are used interchangeably with pattern in various contexts.) 

As the network was being trained to perform this task, the FGREP procedure 
gradually changed both the weights in the network and the patterns .used to ":pres
ent various words. On the trial captured in figure 7.2, the network d1d a good JOb of 
reproducing all except one word on the appropriate case~role assembly. It. was 
uncertain whether to channel the current pattern for ball to mstrument or mod1fier, 
and therefore spread reduced levels of activation across the 12 units in both assem
blies. Almost every instrument unit had too little activation, and an error signal 
based on each discrepancy was passed back to guide changes in the weights on the 
connections with each of the 25 hidden units. Conversely, almost every modifier 
unit had too much activation, and their hidden unit connections got weight changes 
as well. Next the weights between the hidden units and input units were changed, 
and finally (the step that makes this an FGREP procedure) the activation patterns 
on the input layer were changed. Although the pattern for ball was the most obvious 
candidate for change, all of the words adjusted to each other in context. For exampl~, 
the pattern for broke changed so as to increase the likelihood that the next time tt 
followed girl (or a word with a similar representation, such as boy), and preceded 
window ball (or words with similar representations, such as vase rock), the with-NP 
representation (i.e., ball) would be channeled to the output's ins~rument ~sembly. 

With the altered representations replacing the current ones m the lexacon, the 
next time a sentence with ball as the with-NP was scheduled for a training trial, the 
most recent ball representation would supply the activation pattern for the with
assembly and the target pattern for the instrument assembly. The adjustment fro~ 
the preceding trial would not be sufficient to produce a correct response, but thts 
time more of the activation in the ball pattern should get channeled to the instru
ment assembly and less to the modifier assembly. The remaining discrepancy with 
the target would produce another round of adjustment, ~nd so on for a~l the word.s. 
(This procedure illustrates the "chasing a moving target strategy also Illustrated m 
Pollack's RAAM networks discussed in section 6.3.) 

7 .4.3 Ezploring representatioas for words in categories 

The changes brought about in the representations made them sensitive to how they 
functioned in the corpus. Across the sentences of the corpus a given word might fill 
several different case roles depending on its grammatical role, what words filled 
other roles, and which of 1 2 semantic categories it had been assigned to. Although 
implicit in the corpus as experienced by the network, regularities involving these 
categories had been explicitly built into the corpus by McClelland and Kawamoto. 
Each sentence was generated from one of 19 sentence templates; for example, "The 
girl broke the window with the ball" was generated from THE HUMAN BROKE THB 
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FRAGIL.EOBJ WITH THE BREAKER by replacing THE HUMAN with one of the nouns in the 
human category (man, woman, boy, girl), THE FRAGILEOBJ with one of the nouns in 
the fragileobj category (plate, window, vase), and THE BREAKER with one of the nouns 
in the breaker category (bat, ball, hatchet, hammer, paperweight, rock). 

One reason for the uncertainty about the case assignment of ball was that it 
belongs to the possession category (bat, ball, hatchet, hammer, vase, dog, doll) as well 
as the breaker category and could therefore be the with-NP in a sentence generated 
from another template: THE HUMAN HIT THE HUMAN WITH THE POSSESSION. Though 
the two templates have the same sequence of syntactic roles and make the same case
role assignments for the first three lexical items, they differ on the last one: THE 

BREAKER maps to the instrument role and THE POSSESSION maps to the modifier role. 
Because it belongs to three such subcategories of objects (and to a broader object 
category as well), the final representation of ball should blend inftuences from each 
of these categories and the templates using them. By processing ball in context as it 
appears in various sentences, the trained system should be able to channel it to the 
appropriate case-role assembly on each trial. 

As a somewhat more extreme example of the compromise necessitated by limiting 
each word to one representation, chicken is a member of the food and animal categ
ories (and the subcategory prey). Its final representation is intermediate between 
those of other foods and other animals (and chicken exerted its own inftuence in 
pulling foods and animals closer together than they otherwise would have been). As 
with ball, sentence context made it clear which template had been used and hence 
which category and case role were required for chicken. 

In a few cases ambiguities are inherent in the corpus and no amount of training 
will eliminate the kind of smearing of activation across two case-role assemblies that 
is illustrated for the partially trained ball in figure 7.2. For example, bat belongs to 
the same object categories as ball but also is an animal. The category is clear in most 
sentences, but there are three (The bat broke the plate/window/vase) which could have 
been obtained from either of two templates: 

• THE ANIMAL BROKE THE FRAGILEOBJ (agent-act-patient) 
• THE BREAKER BROKE THE FRAGILEOBJ (instrument-act-patient) 

Even after training, these sentences produce activation across both the agent and 
instrument assemblies. This outcome does signal that an unresolvable ambiguity has 
occurred, but does not provide clear representations of the two alternatives. 

Words that are identical in their category memberships suffer from a different 
problem in forming the patterns that are supposed to distinguish them in the lex
icon. In the most extreme case, girl, boy, woman, and man initially were quite differ
ent (each arbitrary), but by the end of FGREP training were virtually identical. As 
members of just one category (human), these words had identical privileges of occur
rence in the corpus. This produced excellent generalization, but at the cost of 
discrimination. Miikkulainen and Dyer proposed two ways out of this difficulty. 
The first is that in real world discourse there will be different things people say 
about girls, boys, women, and men, and this will enable the network to maintain 
distinct encodings. But a second alternative they offered is to keep part of the rep
resentation of each word (which they term the JD) fixed so that it does not change 
with experience like the rest of the encoding (the content). They suggested that 
while arbitrary in the simulation, "the ID +content technique can be thought of 
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as an approximation of sensory grounding" (Miikkulainen and Dyer, 1991, p. 366; 
Miikkulainen, t 993, p. 72); for example, the ID units might capture sensory qualit
ies of the word's referent while the content units capture its semantics. 

7.4.4 Movin1 to multiple modules: The DISCERN system 

Following this preliminary exploration of FGREP, Miikkulainen and Dyer (1991) 
created a variant design (recurrent FGREP) and used it in a five-module system, 
DISPAR. With its additional modules, DISPAR could both parse and paraphrase 
stories. Variations in the stories were easily produced by using the ID + content 
technique in the lexicon (e.g., some stories had Mary as the customer and others had 
John; their content units became almost identical but their 10 units remained fixed 
and distinct). DISPAR was a predecessor to Miikkulainen's (1993) DISCERN 
system. Besides adding two question-answering modules to DISCERN (making a 
total of six processing modules}, Miikkulainen upgraded the Lexicon and added an 
Episodic Memory (making a total of two memory modules). In the remainder of thia 
chapter we will examine DISCERN, beginning with methods for storing, organiz
ing, and retrieving information in its Lexicon. 

7.5 A Self-organizing Lexicon Using Kohonen Feature Maps 

7.5.1 InnovatioDS in lexical desien 

In giving greater attention to the Lexicon in DISCERN, Miikkulainen (1993) took 
as his starting point the two innovations reported in Miikkulainen and Oyer (1991): 

• enabling the system to gradually form its own meaningful, task-adapted repres
entations by means of extended backpropagation (FGREP); 

• mixing fixed and adaptive units (ID + content) within each of these semantic 
representations. 

His first new move was to build a more realistic lexicon - one that was not limited to 
semantic representations but had more than one kind of information about the 
words used in the stories. SpecificaJiy, he added a set of crude, but adequate, ortho
graphic representations: each letter of a word was bitmapped, and the number of 
pixels that were dark rather than light determined an activation value which repres
ented that letter in a representation vector for the written word. During training the 
orrhographic representations and the two ID units in each semantic representation 
remained stable, whereas the content units were transfonned from arbitrary encodings 
to semantic ones by adapting themselves to the needs of all six processing modulee. 
A separate training procedure then organized the orrhographic and semantic repres
entations (more than 100 of each) and created connections between them so the system 
could carry out the storage and switchboard functions expected of a lexicon. We 
will distinguish the two kinds of representations by using italicized upper case for 
orrhographic representations (e.g. , FRIES) and continuing to use italicized lower 
case for the semantic representations that previously were the only kind of lexical 
representation (e.g., fries) . 
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This last task is much more easily said than done: maintaining a set of representa
tions is the kind of memory function for which simple feedforward networks have 
long been known to be ill-suited. A network's memory is not representation-like (its 
connection weights normally store only highly distributed knowledge about con
vening one representation into another), and a network's representations are not 
remembered (they are activation patterns on multiple layers, all of which change 
each time a new pattem is presented on the input layer). Those representations that 
are used as input patterns typically are maintained in a corpus that is external to the 
network itself, circumventing the question of how they might be incorporated in the 
inner workings of a more comprehensive model. 

7 .5.2 Using Kohoneo feature maps in DISCERN•• lexicon 

Miikkulainen found that he could solve the storage problem, and get some bonuses 
as well, by using Kohonen's (1981, 1989, 2001) self-organizing feature maps to 
implement orrhographic and semantic memories in DISCERN's Lexicon. This 
specialized network architecture maps a set of high-dimensional vectors (here, the 
orrhographic or semantic representations) to a lower-dimensional space (the feature 
map). By means of an unsupervised learning procedure, each vector gradually gets 
mapped to a unit of the feature map such that units for similar vectors tend to be 
neighbors (that is, the map self-organizes). For example, in the orrhographic map 
the units corresponding to FRIES and TRIED are close together, whereas in the 
semantic map the units corresponding to fries and hamburger are close together. 

Figure 7.3 displays the units encoding the high-dimensional vectors (7 for orrho
graphic and 12 for semantic representations}, a porrion of each map (less than one
fourth of each 20 x 20 grid of units), and a few of the bidirectional connections 
between units (with those most involved in translating MARY into Mary high
lighted as dark arrows). Regarding terminology: (a) Miikkulainen calls the first map 
a "lexical map," but we use the term "orthographic map" instead; (b) Miikkulainen caJis 
the second map a "semantic map," we retain that term for lack of a better alternative, 
but note that such maps reflect syntactic as well as semantic distributional constraints. 
DISCERN can use these maps to translate between orrhographic and semantic rep
resentations in either direction, but we will starr at the top and work our way down. 

7.5.2.1 Orthography: From high-dimensional vector representations to map units A 
word enters the DISCERN system when an external agent (Miikkulainen, or a 
computer program acting for him) copies its orthographic representation on to the 
7-unit orrhographic assembly (here functioning as an input buffer), as is shown for 
MARY at the top of figure 7.3. In this respect, DISCERN has the same rehance on 
an external corpus as other connectionist models. But the weights on the connec
tions from the assembly to the map units play a special role in this architecture. As 
illustrated for 3 (of the 7 total) connections into the Mary map unit, one outcome of 
self-organization is that the weight vector is identical to the input vector for Mary. 
In fact, for every input vector there is an identical weight vector that can be regarded 
as the system's way of storing an enduring orthographic representation. When 
MARY is presented to the system, the input vector is compared to each map unit's 
weight vector, and the degree of similarity determines the responsiveness of each 
unit. As depicted by the degree of shading of the map units in figure 7.3, present
ing MARY produces the highest activity in the Mary map unit, some activity in 
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Ftgur~ 7 J The opt'r:llion of tht: Lexicon 10 OISCER:'\. The pau.-rn for tht: written wuro.l 
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corresponds 1<> tis \\t:tl(ht \'ct·tor In this c x.tmpl<·, the n ·suh IS the corrt'<'t scmuntic 
n·pr<'scntation, Jlary. 
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ncighhoring units, and t'~nttally no acti\'ation in more remote units. Acti\'ity bubbles 
of this kind are a hallmark of self-organized maps. To understand why, a little more 
dt•tail is nt:,·ded : 

(a) The map units. Of the 104 words in the corpus, I 3 arc mapiX"d to one of the 
72 units in the portion of the orthographic space shown in figure 7.3. That is , each of 
the I 3 un its that is Ia he led with a word is the maxima II) responsi\'e unit for that word, 
and has a Wt'i).Cht ,·, ·ctor that has become identical w that word's urthographic rep
r.:scntation . The other 59 units do not represent words so directly , but their wc::ight 
\'CCtors suppon pru.·essing by their similarity to those of the neighboring word-mappt:d 
units. Thus, unlabdc::d units on the ril(ht will tend to contribute to acti\'ity bubbles 
for ~-letter words , those in the lower left for 6-letter words with an apostrophe, and 
those in the upper left for 8-lettcr words. t.:nlabelcd units can also represent inter
mediate \'cctors \\hen appropriate; for example, if the typo WENT'S were presented, 
the maximally responding unit would probably be the nne to the right of Denny's. 

(b) The t:ertifUI cmmectio11s and weight vectors. Each unit of the orthographic 
assembly is connected to each unit on the orthographic map, making 12 x 72 con
nections into the 72 units shown (and I 2 x 400 into the entire map). Just a few of 
thcS\' vt:rtical connections are shown in figure 7.3: those from units 2, 3, and 4 of the 
orthographic assembly to the maximally responsive units for the two customers 
(Mary and John) and the two fancy res taurants (Mal\laison and Leone's). The 
weights on these connections are indicated by small shaded squares, and the differ
ent gray-scale patterns givt> a sampling of how weight vectors (and hence the on he
graphic representations they encode) differ across words . 

(c) The lateral comlrct1ons. In a biologically plausible conception of the Lexicon, 
the units\\ ithin t:ach featun: map ha\'c lateral connections \\hose weights are preset 
w focus activation around the maximally r<..-sponding unit by means of lateral excita
tion (ncarb)) and inh1bition (elsewhere). Figure 7.3 s hows the excitatory connec
tu>ns from i\lary to her three ne1ghbors; not shown are the excitatory connections 
nround every other unit or the more numerous inhibitory connections between all 
rt:maining pairs uf units. Presenting i\1ARY as input initially produces diffuse 
acti vation around the Mary unit, but interactive processing across the lateral con
nections leads the map to gradually settle into the tight activity bubble shown in 
figure 7.3. Unfortunately, the settling process is very computation-intensive when 
simulated nn a digi tal computer. Miikkulainen therefore replaced it with a more 
efficient computation in which neighborhood ~ize was set by the designer rather 
than achieved by lateral excitation and inhibition. 

(d) Self-orgaui::atiou. The weight vectors are the product of an extended period 
of self-organization (unsupervised adaptation) in which simultaneously the weight 
vectors became more similar to the input vectors (giving the systc::m a memory) and 
nt'ighboring weight vectors became more similar to C11ch other (giving the system a 
ropolo~ical or~anization). For example, although the weight vectors for i.\lary's neigh
bors arc not sho" n in figure 7.3, they are similar to Mary's wcil,(ht \•ector (and h~·nce 
also similar to her input vector) . The organizing process is complex, but each round 
has these steps: (I) an mput vector is presented; (2} the map's resulting pattern of 
activation 1s determined; (3) the weight \'Cctors of the actl\'t: units arc adjusted (to 
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,·arving degrees) towards the input \'ector. The process works bt:st if neighborhood 
siz~ is set lar~e at rhe outl!ct and then decreases. The map in figure 7 .:l has completed 
the organizin~-t process; inputs produce changes in activation but not in \\ci~hts. 

7.5.2.1 Associatit:f co11nections: From tire ortlrograplric map to the semantic map Once 
an ;~cth itv bubble fomts around the :\.lary unit on the orthographu: map, associative 
connccti<;ns between the two maps arc used to create a similar bubble around the 
:\.Jan unit on the st:mantic map. The weights needed to achieve the appropriate asso
ciati;>ns were obtained in Hcbbian supen·illt:d learnin,:t (\\hlch ocLurrcd dunng the 
same pcriod the maps themselves were ~elf-orgamzing without supen·ision). The two 
m.tps arc fully interconnected in both directions, but only a f~w of the strong_est 
connections are shown (in most detail for Mary, and more sketch1ly for the other fi\·e 
words appearing on both submaps; not s.hown are connections fr?m Mary's ncig~boring 
un1ts on the orthographic map to a region around the Mary unll on the semantiC map, 
,,h1ch play a supportm~ role). Tht:se L"Onnt:ctions provide tht: key ste.p in retneving 
the semantic reprt:sentation Jlfl~ry from the orthographic representation .\ll.rl.R Y. 

7.5.2.3 Semantics: From map unit to high-d1mt nsional uctor representations The 
tina I step is to traverse the last set of vertical ~onnections, which connect the semantic 
map "ith the 12-unit semantic assembly. Analogous to the orthographit: end of the 
lex1con, the wc1ght \'<.'Ctor from the Mary unit is iuent1cal to the semantic vector ,\1ary 
and is the sys tem's way of permanently storing that pattern. When the \lary umt be
~omes acth·e on the semantic map, its weight \·ector will assure that the full semantic 
,·ector representation Mary gets placed (temporarily) on the semantic ;~ssembly, 
\\hi~h here is funcuoning as an output buffer 

7.5.2.4 Rn·ersing dirution : From semantic to orthof(raphic represmtations If the 
Lexicon is hooked up to DlSCERN 's processing modules, the Mary vector IS sent 
to the Sentence Parser and from there is passed along to other proces~ing modules. 
The output of the la~t processmg module in the loop, the Sentence Generator, kicks 
the Lexicon into usmg its connections in re,·erse: receiving the .Wary vector on its 
semantic assembly (now functioning as an input assembly), the Lexicon uses the bot
tom $et of connections to activate the Mary unit (and its neighbors) on the semantic 
map. Via upwards-directed associath·e connections (not shown), the corresponding 
l\lary unit (and its neighbors) are activated on the orthographic map, and via the t~p 
set of connections (used in re,·erse) the 1\1AR Y vector appears on the orthographiC 
assembly (now functioning as an output buffer displdying the system's public response).' 

7.5.3 Advantages of Kohonen feature maps 

That completes the tour of figure 7.3. In considenng the imphcations of building a 
lcxtcon from feature maps, it is Important to r~lize that this design decision was 
hiolngically motivated. In low-level ,·ision, Mtikkulainen points our, there has been 
ample documentation nf retmoropic maps and of lateral connection~ arranged to 
produce excitation nearby and inhibition cl$Cwhcre. In pnmary visual cortex, feature
detel"ting cell~ are laid uut topologiL~dlly such that nt:ighborin~.: cells an~ responsive to 
nci~-thboring areas of the retina, and in subareas neurons responsive to a dimension 
sm:h as line orientation may he systematKally la1d out accurdm~ to tht: mlucs they 
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detect (e.g., Huhel and Wiesel, I %8). Similar arrangement!l have heen found within 
so many sensory and motor areas uf cortex that topological mapping appears to be an 
important part of the brain's toolkit. Though direct neurophysiolop;ical e' idcncc 
is not yet available to show that this strategy is used for more abstract domains such 
as Sl'ntantics, ~l iikkulaint:n cites a.o; indirect evidence the ~ategory-s~itic deficits 
found in some brain ksion patients (e.g., loss of a<."C<.'SS to the names of fruits and vt:get
ables, as reported by Hart, Berndt , and Caramazza, 191!5}. In fact, he re\'icws a 
variety of aphasic impairments and suggests how they ccmld he produced hy different 
kinds of damage to a lexicon like that of DISCERN (but trained on a richer corpus). 

In addition to their possible biological reality, feature maps pro\'ide other ad"ant
ages: weight \'ectors provide long-term storage of each item; map units prm ide 
discrete locations for long-term storage of a less detailed representation of each item; 
some (though not all) of the structure of the domain is displayed accessibly in t\\.o 
dimensions; map units make associative mapping between orthographic and semant
ics represent<ltions computationally efficient; many-to-many mapping is possible 
(t: .g., the \\ord bat could m.tp on to two different semantic map units, whereas a pair 
of s~ nonyms could map on to one semantic unit); and the particulars of the mapping 
~-an adapt as representations are added or fall into disuse. Also, though not discussed 
.1bove, areas of the N-ulmcnsmnal space that art: especially dense with items get 
mapped on to disproportionately large portions of the feature space. It is viewt·d as 
more important that items get spread out e\'enly (wtth minimal overlap) than that 
Euclido:an distance relations get preserved. (See box 7.1 in section 7.7.3 for the 
equation go,·erninp; the response to an input in a bJOiog1call} plausible feature map.} 

Tht:re is one other memory module in DISCER.!', the Episodic Memory, which 
makes good use of a mure elaborate \ ersiun of tht: feature map archite~ture. Before 
dt:scnbing th1s, we w1ll lt><lk at ho\\ the six processing modules undt:rstand and 
respond to the sequence of words passed to them by the Lexicon in such a way that 
tht•y t·an be credited v. irh ::orne degree of knowledge of scripts. 

7.6 Encoding and Decoding Stories as Scripts 

7.6.1 Using recurrent FGREP modules in DISCERN 

DISCER~'s ~ix proces~ing modules have in common their utilization of the FGREP 
archit.:cture. The key attributes of that architl!(;ture were exhibited in the prdimin
ary version of the sentence parser (figure 7.2). In DISCERN, though, recurrent 
connections wert: added to the h1dden layer within four of these modules. They :.Jrc 
the type used in Elman ·~ simpk re<:urrent nt:tworks (St:criun 6.4); that 1s, the hidden 
layer pattern is copied to a special set of input units. This desi~n pro\'idcs degraded 
retention of previously proctssed material. with retentJOn becomin~ot more degraded 
as the number of cycles back mcreascs. This permits the input (for the parser 
modules) or the output (for the generator modules) to be pushed word by word 
through a single ~et of units rather than repn:scntcd Simultaneously across assem
blies of units. In theory this makes for a more flexible system that might handle 
material of indefinite length. In practice, the sentences ;~nd stories that \\ere used in 
these simulations were short and simila r enou~h thnt nonrecurrent FGR EP moduk·s 
\\ould prc~um:~hly h~l\·e pt•rfomtt"d adequately- mdeed, the !\Ucccss of the prelim
inary, nonrecurrent sentenC"e p:~rser shmn·d this to be the case. Howen·r, incluuing 
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recurrent connections is <.nnsistcnt with :\liikkuhtinc:n's strong orit•ncatiun towards 
simuhltlon of the human system: they pro\'lde a kind of \\mkin~ memory for \\ord
hy-word processtn~ that IS more realistic than prc~enting n sentence ;tcrnss several 
assemhltcs o f units simultaneously. (They do not prunde lonj!-term memory , since 
the patterns they n:tain are replaced when the system hegins pmccssinJL another 

sentence ur story.) 

7.6.2 Using the Sentence Parser and Story Parser to encode stories 

The four recurrent modules (plus the Lexicon) can work to~~o·ther tn encode and 
paraphrase stories. To begin the encoding pro~·ess, the first sentence of the story is 
presented orthographically one word at a time to tht~ Lexkon, which translates each 
word into its assodated semantic represcntution (as was illu~trnted for :\lary in 
lil(urt: 7.3 nbo,·e). Each resulting activation pattern is passt:d along to the Sentence 
Parser's input units (a single, word-lcn~th assembly) and from there it should be 
l·hanncled to the appropnate asscmbl>· of output units (the assembly. of the six 
a\'allabk, which corresponds to the correct c:lsc role for that word in that po~1tion in 
that sentence). When the Sentence Parser has completed its work on the first sen
tence, the result is passed along to the Story Par~er . This process repeats until the 
Scntenct: Parser has encoded each sentence and the Story Parser has used those 
results to arrive at an overall encoding of the story. 

The operation of the two parser modules is illustrated in figure 7.4 (from p. !!6 
of Miikkulainen, 1993), where JOHN WENT TO MAMA/SON has just been 
processed as the first sentt'nce of story (1). Before thl! Story Par~r could hegin its 
work, the Sentence Parser had to complete the followm~ steps in coordination with 

the Lexicon : 

The Ll·xiwn receives JOHN (orthographic representation) and outputs John 
(semantic representation). 

2 The Sentence Parser receives John and propngates activation throuuh its hidden 
layer ~uch that John reappears on the output untts for tht: agent role (Thl.' appropri
ateness of the agent role reflects the contents of the- semantic representation as 
well as John's implicit syntactic role - in thi~ simple cnrpu:~ the tirst noun pr<:sented 
to the parser is always the subject.} 

3 Because this is a recurrent network, the activation pattern produced on the hidden 
layer in channeling John to the agent assembly is ,·opietl to another set of units, 
called the "prt·vious-hiddcn-layer assembly" hy M1ikkulaincn b\lt '\:untext units" 

here. 
~ Next, the Lexicon translates WE.VT <~nd sends tuellt to thl! S,•ntence Parser. 

This time the htdden-layer pattern is influt'nced not only h y the current word 
(ttent) but al!:o by the pre,·ious-hiddt:n-laya encoding of John on the context 
units- both patterns serve as inputs to the hidden units, which channel t~ent to 
the act units. (Note that the parser has only implicit knowlege that tt·mt is 10 the 
syntactic role of verb; explicitly it is simply m:~king use of the encoding of the 
first word th:lt is being supplied ''ia the cuntext unit~. This context alont: should 
he s ufficient t<> d:~~sify rt•errf Hs an act, hut tht: content~ of thc semantic representa
tion point this way as well.) 

5 The next word (TO ~ to) Jo,•s not till a ca~e role. hut after its processing the 
context units havc a o.lttern rctlc<·tinl! the oa~sal!<' of .111 thn·e \\ords throuuh the 
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OUT· Case-rote representation of the sentence 

IN Sequence of case· role representations 

Act Redpnt Pat·attr Patient Location 

OUT: Slot-fitter representation of the story 

f'tJ(Ure 7 . .J The St:ntenc.: Parser and Story Parser JUSt ;.Iter procc:ssml( the tir~t sentence in 
stun· ( I), J (Jhll rut'l/1 /11 Mn.\1/uisllll. Reprimc:d with permission from R. :\t.ikkulainen (1993) 
Suhsl'lnholu .Valural LmtJ!IItlf(t Pwussi111!: An lllltf(rattd Ml)(ltl uf Scripts , uxirun, and 
M .. mory. <.:ambndgc, :\1A. l\IIT Pres.~. p. !16. 

h1ddcn h1yer asscmbl>• (gtving greatest emphasis to the most retcnr word, which 
helps "1th the next step). 

6 Wht:n the last wurd UHAJHAISO.V ~ 1lllrl1Haistm) 1s processed, us own semantic 
rt:pn:scntation combines \\ 1th that of the prt:ccding context to channel 1t to the 
l<x."iltum role. 

7 Finally, the penod c:ndtng the sentence i!C encoded hke a word. but signals that 
tht• cast:-rule representation should now bt: rl.'gardt:d as complete. (The Sentence 
Parser module in tiuure 7.4 has reached this rmnt in 1ts processing; the penod 
will rcmnin 10 the mput a~sembly until the next sentence begins.) 

The S,·ntcm:e Purser output- a lase-role reprl•senrurion of the sentence - now 1s 
use<.! ds the soun·e of input to the Sron · Purser. For each case role in turn, the 
.t,·t h <lti<m pattern corrcspondm~or tu the semanttc n·presentation of the word filling 
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that role is supplied to the Story P:.trscr's input assembly. If a ~·ase role is unfilled in 
the curr~nt s.:ntcncc, a null pattern is supplied. (The spaual layout of C>ll>C roles in 
figure 7 .~ m.tkes it appear that the enttre representation is supplied at once, but the 
phrase "Sc4ucncc of c.:ase-role rt"pn::s~ntations" clarifies that in fact it i~ supplit:d one 
word at a time to a single assembly of 12 input units; that is, the Story Parser's 
architecture 1s almost identical to that of the Sentence Parser.) 

From the burst of words that romes its way each time the Sentence Parst:r ~·om
plctes a sentence, the St11ry Parser create~ and rdines a script· hased repre~entation 
of the ''hole story on its output l:.tyer. As each story unfolds, it becomes t:Jte~-:orizcd 
by script and track and its scntem:es gr;1dually provide the words needed to till the 
roles .1ppropriate to that script: 

Saipt Tracks Roles in tlu• script 

Restaurant Fano.:y, <:off..:e-shop, fast-food Customer, food, restaurant , taste, tip 

Tran•l Plane, tr<~in. bu~ Passenger, origin, destination, 
distance 

Shopping Clothing, dectronic~. grocery Customer, item , store 

Specifkally, a $lot-filler representation of the story is gradually formed across se\'en 
assemblies of output units: one assembly for script name, one for trat·k name, and 
fi ,·e for the roles in that script. The Story Parser fills the slots (a) by b inding each 
word to its role in the script (i.e., channeling each word's acti\'ation pattern - its 
semantic representation - from the input assembly to the appropriate assembly of 
output units); and also (b) by letting each word influence which patterns appear on 
the other output assemblies, espedally those for script and track. (The names for 
scripts and tracks within DISCER;-.1 are handled just hke any other words by the 
two modules for wh1ch they are part of the input: during training these modules 
alter each such pattern adaptively across tri~tls, using the Lexicon to swre the in
terim and final representations. ) 

Unlike thc Sentence Parser, which ach1eves a complete output each t1me one 
sentence has been processed, the Story Parser may not achieve a ...-omplete output 
unril several sentences have passed through the system. One consequen...-e is that the 
representations on the context units in this module become increasingly compressed 
as the words of se\'eral sentences pass through. On the other hand. as illustrated in 
li~un; 7 A, the Story Parser may form a complete output from a fraction of the full 
story due to its automatic inferencing. For example, when 1\laiHaison is encountered 
as the location \\ hile processing the tina sentence (" hich the Story Parser "knows" 
by combining thc i\1/aNlaison pattl'rn on its input assembly with the context pattern), 
th~ Storv Parser (a) channels it tu the script's fifth slot, which indicates the particular 
restaurant if this is the restaurant script; (b) decides (at least tentatively) that the script 
is the restaurant script and the track is fancy; and (c) most interesting, infers that the 
fond tasted ~ood. (Burger King would ha\·e led it to infer that the food tasted bad). 

In its usual operatum, once DISCERN has finished encoding d story it sends the 
script n:prcscntation to the Episodic ;\(emory module for storage. Since that module 
is itself nHhcr complex, here we will ~~msider R n:duced s}stem in which par :o~phras

mg is immcdnltc r.nhcr than memory-mediated . That is, the Story Parser's output is 
copi~·d d;rectly to the input as.~emblies of the Story Generllwr. 
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IN: Slot-filler representation of the story 
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R 

I-'111.11U 7.:; The Stury Gt:nerator and the Scnrcm(·~ Generator in the midst of l!enerating 
th~ first St'lllcm·e in story (I), John teen/ to LHa,\1t~ison . Repnnted With permiSSIOn from R. 
:\<li1kkulainen (1993) ,','uhsymbolic Natural Lan1(tl(lge Pro•·•·ssi,g: An lnugrated lHod'l of 
Scnpts , L~.,·inm, and Mmrory. Cambridge, :VIA: .\liT Pro:ss, p. !!8. 

7.6.3 Using rhe Story Generator and Sentence Generator 
to paraphrase stories 

In figurc 7.5 (from p . 88 of Miikkulaincn, 1993). the Story Generator has recci,ed a 

complete script-hast"d representation from the Story Parser, which has fini~hed 
processing evcq sentence in story (I). The task of the Htory Generator is the reverse 
of parsmg: it must produce {one word ilt a time) a .:ase-role rcprescntation of (.;tch 
sentence that is to comprise the paraphrase. To do this, the Story Generator uses a 
recurrent architecture that has the same components as the Story Parser, but run in 
re,·crs..:. This actudlly makes 1t a quite different archilel·ture: since processing in 
figure 7.5 begins at the bortom and \\Orks its way up, the script reprcscnttlt ion 
(laid out Simultaneously acros.-.; sc\·en assemblies of input units) is now a fixed input 
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pattern and the words (pushed sequentially through a single assembly of 12 units) are 
now the output. As with the Story Parser, the spatial layout of these words according 
to their case roles in the figure is somewhat misleading; it should be kept in mind that 
the word patterns are produced serially on one assembly at the top of the Story 
Generator and that their serial order is the only means by which they are bound to 
the fixed sequence of case roles. 

Figure 7.5 shows the Story Generator at the point at which it has completed its 
work on the first sentence of the paraphrase. It did this by producing the pattern for 
John on its output assembly (implicitly binding John to the agent role), then went 
(the act), then null patterns for words 3-5 (which would have been the recipient, 
patient-attribute, and patient), and finally MaMaison (the location). What drove the 
changing series of words was the changing series of activation patterns on the con
text units in combination with the constant script representation. In more detail, the 
following steps were involved in producing the first few words of the first sentence: 

The previous-hidden-layer assembly initially encoded a null pattern, and that 
pattern was sent via one set of weighted connections to the hidden units while 
the script representation was sent from the input assemblies via another set of 
weighted connections to the same hidden units. (Here "sent" refers not to simple 
copying, but rather to a transformation of the pattern in accord with the story 
knowledge that was gradually incorporated in the weights during training.) 

2 The resulting hidden-layer pattern (and its own transformation via the weighted 
connections to the output assembly) had the effect of selecting the customer in 
the script representation as agent of the first sentence. As applied in this ex
ample, John was the first word produced on the 1 2-unit output assembly. 

3 The pattern on the hidden units that was involved in channeling John to the 
output assembly was copied to the context units in order to provide context for 
the next step. 

4 With this non-null context pattern now supplied to the hidden layer along with the 
unchanging script representation, the Story Generator selected went as the second 
word to be produced on its output assembly. 

5 The pattern on the hidden units that was involved in channeling went to the 
output assembly was copied to the context units. 

6 This new pattern incorporated information about both of the first two steps and, 
along with the unchanging script representation, influenced the Story Generator 
to produce a null pattern as its third output (so that the first sentence would not 
include a recipient). 

This process continued until the entire series of word patterns (including three null 
patterns) had been produced. As each word was pushed out of the Story Generator, it 
was retained by copying it on to the appropriate case-role assembly of the next module, 
the Sentence Generator. At the same time, the hidden-layer pattern involved in its pro
duction was copied on to the context units, from which it could help with selection of 
the next word. In figure 7.5, MaMaison has been produced as the last case-role filler 
of the first sentence. This kicks off a round of processina in the Sentence Generator, 
but the Story Generator itself does not get reset at this point; it continues compressing 
additional history on to its context units as it generates the words of the second 
sentence, third sentence, and so forth until a complete story has been produced. 

The Sentence Generator module in figure 7.5, having received a complete case
role representation of the first sentence, has begun converting it into the sequence 
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of words that will comprise the first sentence of the paraphrase. Like the Story 
Generator, this module has a recurrent architecture that resembles that of the corres
ponding parser but operates in the reverse direction to produce a series of words on 
a single output assembly. As each word (semantic representation) emerges, it is 
passed through the Lexicon so that the first sentence of the paraphrase will appear in 
public (orthographic) form. In figure 7.5, the Sentence Generator has just produced 
John (the first word of the sentence, and hence implicitly its subject), which can then 
be translated to the orthographic representation, JOHN, by the Lexicon (not shown). 
The second sentence is generated by a similar process (Story Generator to Sentence 
Generator to Lexicon), and so forth until the paraphrase is complete. Note that no 
creativity is involved: during training the aenerator modules learned the canonical 
sequence of sentences for each script and how to bind the words in a specific story to 
the generic roles. What is meant to be impressive is the fact that a complete para· 
phrase usually will be generated even if the parser modules received only a subset of 
the sentences forming the complete story. 

7.6.4 Usia• the Cue Former and Answer Producer 
to aoswer questions 

Missing from figures 7.-4 and 7.5 (though included in figure 7.1) are the two process
ing modules used to answer questions about previously processed stories. When a 
question is received, it is processed by the Sentence Parser like any sentence in a 
story. But the network recognizes it as a question, and so passes it to the Cue Former 
network rather than the Story Parser. The Cue Former constructs a script-based 
representation of the information in the sentence. It attempts to fill every slot- those 
whose fillers are not explicitly mentioned in the sentence as well as those mentioned 
(and most saliently, the slot for the script role being queried). The output from the 
Cue Former is then used as a probe to the Episodic Memory, which in this task 
retrieves the trace of a similar story that had been stored previously (we will see how 
in the next section) . If the cue fails to elicit any memory, there is no response. If it 
succeeds, though, both the question and the script representation of the memory are 
supplied to the Answer Producer, which constructs a case-role representation of the 
answer and sends that to the Sentence Generator. The Cue Former and the Answer 
Producer were not designed to handle input or output sequentially; each is a non
recurrent FGREP network. 

7.7 A Connectionist Episodic Memory 

7.7.1 Makin& Kohonen feature mapa hierarchical 

In the complete DISCERN system, once the Story Parser has finished constructing 
a script-based representation of a story this result is stored in the Episodic Memory. 
This module has a special design that enables it to assign a unique memory location 
to each story and to keep track of which stories have been presented most recently. 
This is a very different type of task than confronts most connectionist networks, 
which generally require many epochs of training to encode new information, encode 
it in distributed fashion rather than distinctively, and have no way to distinguish 
new from old information. The basic architecture that enables the Episodic Memory 
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Input vector: 

RFJLMB 

Fif!tlrf i.6 The hierarchy of sdf-organizmg feature maps that constitutes the Ep1sodic 
:\ltmory of DISCERN. When th«- Swry Parser sends the completed slot-filler 
repn:scntation of story (1) to the Episodic Memory, these units become active in this order: 
the r~sraurant unit in the script map, the fane~· unit in the track map, and the JLMB unit 
m the role-binding map (John, Lobster, ?1-la"laison. ami Btl( are the key bindings in thts 
story) Also shown, \'t:ry sketchily. is the episodic memory trace created around the JL:\lB 
unit. Repnnted with permis.sion frum R. Miikkulaint:n (1993) Subsymhnlir Natural · 
Lartguage PmuuiTtg: An lnttgraud Mod.:/ of Scripts, Ltxicmt, and lv!emt>ry. Cambrid!(e, 
:\lA. :\liT Press, p. 156. 

to accomplish its task is that of Kohonen's ( 1989) self-organ1zing featun: maps. As 
discu!'scd in the Lexicon section abo\'e, this an:hitecture maps high-dimensional 
Yectors to a lower-dimensional (usually two-dimensional) space that self-organizes 
such that similar items tend to be loc;tted near each other. 

The Episodic Memory module is used to ston: script representations of storie~. so 
here the high-dimensional vector is an acti\·ation pattern across seven assemblies of 
units (script, track, and slots for five so.:ript roles •. Implicit in this representation is 
a hierarchy; for example, the MaMaisnn story is one way of filling the slors (bot
tum level) for the fancy track (middle level) of the restaurant script (top level). 
:\liikkulainen decided to make this explicit by creating a hierarchy of self-or.~tanized 
fc:aturc maps, as ~hown in figure 7.6. At the top level, stories become positioned on 
a 2 x 2 map that distinguishes them bv script. Durin~ot the self-organizing phase, the 
four weight vectors into that map adapt until one unit reliably becomes most 111.:tivc 
for restaurant stories, another for shopping stories, and a third for rra,·cl stories (the 
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fourth unit is excess here, but would be used if there were four scripts rather than 
three) . Each of thcst• units has its own 2 X 2 map ut the: next level, which furthc:r 
.:ategorizes the stones by track (e.g., fancy, fast-food, and coffee-shop tracks for 
restaurant stories). Finally, the active unit on the track map passes just the story
specitk parts of the input veo.:tor to an 8 x 8 role-binding map. which organizes the 
smries according to how their slots arc filled. For example, the unit labeled J Li\10 in 
figure 7.o is tht: maximally responding unit to the f:tncy-restaurant story in \\hie:h thl· 
n tstomcr is john (not Mary), the food is Lobster (not Steak), the n:staurant is 
:\la:\laison (not Leone's) and the tip is Big (not Small). (The taste is always Good in 
''fancy rcst:lur:mr, so this role-binding wa~ mapped at the track level.) 

7.7.2 How role-binding maps become self-organized 

The script ;md track maps are unusually small (4 units each) and dense (3 of the 4 
units arc used), but at first glanl·e the role-binding maps are similar to the lt'xical 
maps in DISCERN. There are 16 different stories per track (e.g., for fancy restaur
ants tht>re are 2 customers X 2 foods x 2 restaur.mts x 2 tips) and 64 role-binding 
units (8 x 8). Hence, the density of a role-binding map is similar to that of the lex
ical maps: for approximately 25 percent of the units there is a story that the unit 
represents (it is the maximally responsive unit to that story), and the remaining units 
s11pport processing via later<tl connections in both directions between ench pair of 
units. As in the Lexicon, the maps self-organize by adapting their weight vectors 
to the input vectors (and to each other) during a period of unsupen·ised learning. 
The 8 x 8 grid that "ill become the role-binding map is prepared for learning by 
setting its lateral weights to be excitatory for nei~hbors and inhibitory otherwise. As 
in the Lexicon, this produces a focust:d acti\·ity bubble around the most al·t ivc unit 
as tht: map settles and the ,·ertic.ll wt:ights are adjusted to enhance this response the 
next time. for fancy restaurants, the result is a map in which (with one t:xception) 
lobster stories are in the upper two-thirds and steak stories in the lower two-thirds, 
small t ips on the left and hig tips on the right, and customer and restaurant \·ary 
in more localized, discontinuous patches (u.rcsult of squeezing four orthogonal dimen
sions on to a two-dimensional space; this patchiness can be seen in figure 7. 7 below). 

7.7.3 How role-binding maps become trace feature maps 

In addition ro the use of hierarchical maps and the hi~h densities nf the 2 X 2 maps, 
there is one further innovation that sets the Episodic i\lemory module apart from 
the Lexicon module: following self-organization, its maps arc reconfigured as trace 
feature maps. Thts provides them\\ ith a mechanism for laying down a memory trace 
each time a story is processed, so that recently prest!nted swries can be favored 
during retrie\·al. The mechanism inYoh·es a ne\\ use of the lateral connections 
\\ithin the role-binding maps. During self-organization the lateral connections were 
preset and did not change (except to reduce neighborhood size); the interesting 
action \\as in the adaptation of the weight \'cctors linking the m<~ps to the input 
\'ectors (story representations) . But once the maps are organized, they can be turned 
into trace featurt• maps by reversing which kinds of weights art: the ones th.Jt change. 
Presented with a story, tht.: sy~tcm lays dO\\n a memmy trace by making large. 
localized weight changes on the appropriate lateral conneo.:tions. and the trace gets irs 



226 SIMUlATING tiiGHfR COGNITION 

D 
JSMS D 

Fig11r~ i 7 The creation of a rolc-bindmg map in DISCERN's Ep•sodic: :\1emury for a 
story m which Mary ate steak at MaMaison and left a small t1p (MSM~). The darkness of 
<"ach umt m the bubble around the unit representing the story (upper lcfl unit) reprcsents 
the degree of lis activation, and the w1dth of rhe arro\\S indicates the strcn)(th of the 
resulting excitatory conncctions. 

meaning from tht: now-stable weight vectors on the vertical cnnnections. The 
e xcitatory lateral connections shown sketchily Jround the J L;\lB unit in figure 7.6 
arc a trace indicating that the story with those role bindings was recently presented. 

The system needs just one presentation to lay down a trace, in cunti"'JSt to the 
gradual weight changes by which standard networks learn a task . How this v•;orks is 
itlustrated in figure 7. 7. which displayfi the lower left corner of the fancy-restaurant 
role-binding map just after presentation of th~: story in which the customer is Mary, 
the food 1s Steak, the restaurant is :VlaMaison, and the tip IS Small. For illustration 
purposes we will stipulate a small activity bubble and trace around the MS;\IS unit 
(an actual response would be larger and more symmetrical). There an: no pre
existing traces in the vicinity, so all lateral connections initially are inhibitory. For 
euch pair of units in this bubble, their le\·el of activity is compared. If unit,, is more 
active than unit., the lateral weight from unit,; to unit.,. is increased (usually enough 
to change it from negative to positive) and the weight on the reciprocal connection is 
decreased (usually a change within the negative range). The changes are greatest 
from the more active units. 

If only the excitatory connections (positi\'e weil(hts~ are d isplayed, the result of 
this process is a drcle (or square) of excitatory connections all pointing towards the 
maximally responding unit, with the degree of excitation decreasing with distance 
from that unit. In the square activity bubble of fi)(urc 7. 7, for example. jSi\IS was 
less active than the other three units; the resulting weight increases on its outbound 
connections were enough to turn them positive (\\bile its inbound connections, not 
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,;hown , hecamt: more ncgati,·c). The next most lll' ti\e unit (above JSMS} got posit· 
j,·ely connected to ~IS.\18 and to the third most actin! unit (next to JSMS), and 
that unit in turn got positi\·ely connected to the most acti\·e unit (MS!VIS). Strong._.r 
positive weights are indicated by thicker arrows. Connections im·oh·ing inacti,·c 
units remain inhibitory, and rcdpnx.~dts to the ex~o:itatory connections become mon· 
~-rmngly inhibitory. 

T he tra~.:e (rhe nmstcllation of positive and negative weight changes) creates a 
hasm of attraction that is "switched off' (at least partly) during any subsequent 
sroragl' trials but plo~ys an important role m pnx:cssing retrieval cue!' (that is. inputs 
for \\hich tra~.:es arc allowed to influence proct'ssing). If a cm: activates any unit in 
the basin nt attra.ction, the network will settle inrn an activity bubble with the most
pointed-at unit giving the maximal response. This enables the S}Stem to n:tneve a 
recently presented story from noisy or partial cues, if they arc sufficiently close to 
actl\·au: a untt within the basin. In our example, a partial cue (the encoding of the 
question WHO ATE STEAK AT J'\tiAMAJSON't) might come down through the 
,·erticnl connections of the hierarchical Episodic Memory and produce an initial 
activity bubble around JSMS. As the lateral connections forming the basin of at
traction come into play, however, act1vity shifts towards MSMS (as it should, since 
that story had recently been presented), and the ilppropriate slot-filler representa
tion of the story gets returned to the system.1 (The equation governing this retrieval 
prol·ess is provided in box 7 .1 .) 

If the network is required to store a memory of a new event which is encoded in a 
different region of the feature map, it simply creates an additional attractor basin. 
How~:ver, if the new event must be »ton•d near an existing trace, it "steals" for its 
attracror basin some of the units that were in the t!Xisting attractor basin. This 

Box 7.1 Equation governing the.- output 11
1 

at time (t + I) of any unit (i. j) 
on a tr.tce feature map 

x is the external input vector 
m ,, IS the unit's ~eight vector 
cl~.. 1s the maximum d1stance of two vectors in the mput space (--/2 in the 2-D 

unit square os;x,ys;l) 
y,...., is the lateral connection weight on the connection from unit (u,v) to unit 

(i.j) 
8 i:. a parameter that determines the relat1ve <."ontnbution of external versus 

lateral activation 
(1 is the standard sigmoidal function: 

I 
G{.::) .., ,, • -1 

I 1- er .. • 

dctermines the slope of the sigmoid 
dctc:rmmcs the displacement of the sigmoid fmm the origin 



228 SIMULATING HIGHER COGNITION 

means that a cue which primarily activates stolen units will now retrieve the more 
recent memory. As additional stories create additional traces , only the closest cue. 
will retrieve the first story; when all of the units in its original basin have been 
stolen, there will no longer be a trace to retrieve. Human episodic memory likewi~e 
exhib1ts recency effects due to interference. 

7.8 Performance: Paraphrasing Stories and Answering Questions 

7 .8.1 Training and testing DISCERN 

DISCERN is obviously a very complex system and the above description has only 
sketched how its component networks operate. On the basis of this sketch, however, 
we can examine some of the performance of DISCERN. For training purpoaea, 
Miikkulainen detached the processing modules from the loops shown in figure 7.1 
and directly connected each to a proto~ lexicon (which stored the most recent semantic 
representation of each word but had not yet formed feature maps). He trained each 
module separately (but simultaneously with the others) to perform its task on each 
of 96 story instantiations generated from the scripts and tracks identified above. For 
the question-answering modules, script specific questions with appropriate words for 
each story were also used for training. 

Initially each module received arbitrary representations of the words in the input/ 
desired output pairs, but they were bound to the correct roles. Each representation 
consisted of two ID units plus 10 content units. Each time a word passed through a 
processing module, its content units were adjusted slightly and the adjusted value. 
replaced the former values in the lexicon. Eventually the content units for the two 
fancy restaurants should be similar, meaningful, and adapted to all six processina 
modules (i.e., reflecting the history and distributional contexts in which they were 
bound to roles - the location role in the case representations and the restaurant role 
in the script representations). A trained semantic representation is composed of two 
ID units plus 10 trained content units. 

When this training was complete, a different kind of training produced internal 
structure in the two memory modules (unsupervised learning organized the featurl[ 
maps, and in the Lexicon Hebbian learning associated its two feature maps). Then the 
modules were reconnected for normal operation and testing (i.e ., the output of one 
network was copied on to the appropriate input units of the next network in the loop). 

Overall DISCERN performed very accurately on tests. In producing complete 
paraphrases of incomplete input stories, for example, 98 percent of the (orth~ 
graphic) words ultimately output by the lexicon were correct. The percentage fellal 
low as 93 percent within particular modules (especially the feature maps), but later 
modules were able to clean up and recover from most of the errors made by earlier 
modules in the loop. However, restricting attention to those words with the 10 + 
content format (by disregarding words like the and to) lowers these percentages to 93 
percent correct on final output and as low as 83 percent within modules. This W8l 

due primarily to difficulties with the ID values which distinguished pairs of other• 
wise identical words; only the Story Parser had some ability to recover from an ID 
error rather than passing it to the next module. 

One can gain a sense of DISCERN's performance by examining what happened 
when it read the following five incomplete stories. Having parsed and laid down a 
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memory trace for each, DISCERN was then asked to paraphrase one and ask ques
tions about others. 

1 John went to Denny's. John asked the waiter for fish. john ate a bad fish. 
2 Mary went to Leone's. Mary asked the waiter for steak. Mary left a small tip. 
3 Mary went to CircuitCity. Mary looked for a good TV. Mary took the best TV. 
~ John went to RadioShack. John looked for a good TV. John took the best TV. 
5 Mary went to DFW. Mary checked in for a flight to SFO. The plane arrived at 

SFO. 

7.8.Z Watching DISCERN paraphrase a story 

The first story was used for a paraphrase task, in which DISCERN was expected to 
produce the complete story after reading the incomplete one. This would indicate 
that the system had captured the statistical regularities implicit in the complete 
versions of all 96 stories during training and could use its knowledge to identify the 
appropriate story and infer the missing information. In fact, parsing the first story 
resulted in the following script representation being output from the Story Parser 
and submitted to Episodic Memory: 

Script 

I $restaurant 

Track 

Scoffee 

Customer 

John 

Food 

fish 

Restaurant 

Denny's 

Taste 

had 

Tip 

small I 

Note that though the story was incomplete, the Story Parser created a complete 
script representation. For example, it supplied the value small for tip because bad 
food was correlated with small tips in the restaurant stories. To paraphrase the story, 
this script representation had to be retrieved from Episodic Memory and fed to the 
Script Generator, which had learned during training to chunk the script information 
into six different (though overlapping) sentence-length "packages," each of which 
was output one word at a time and retained by building a complete case-role repres~ 
entation on the input units of the Sentence Generator. That module rejuggled each 
case-role representation and produced an appropriate sentence one word at a time. 
The Lexicon translated the semantically represented words in each sentence into the 
orthographic representations needed to communicate with the outside world. The 
result was this full story (which was identical to one in the system's training corpus): 

j ohn went to Denny's. john seated john. john asked the waiter for fish. John ate a bad 
fish. John left a small tip. john paid the C2Shier. John left Denny's. 

7.8.3 Watching DISCERN answer questions 

The other basic activity that DISCERN performs is answering questions. As a 
simple illustration of its ability, consider its response when the question WHAT 
DID MARY EAT AT LEONE'S? was posed after it had read all five of the above 
stories and created traces in the Episodic Memory. Receiving a case-role representa
tion of the question from the Sentence Parser, the Cue Former used the knowledge 
embedded in its simple (nonrecurrent) FGREP network to create the following 
probe: 
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Script Track Customer Food Restaurant Taste Tip 

llrrstauranl I fancy Mary steak Lron~'s good •from (small) •1 

The Cue Fonner has approximately the same knowledge of scripts as the Story 
Parser, differing mainly in its use of a nonrecurrent FGREP architecture (the eue 
roles are filled simultaneously using assemblies of input units rather than sequential 
input) and in its knowledge of wh-words (who, what, where, etc.). Like the Story 
Parser, it can fill most of the script slots correctly after reading just one sentenee 
(which now IS a question rather than the first sentence of a story). 

But why is the tip slot filled by •from (small)•? Miikkulainen used this awkward 
notation to remind us that it is actually semantic vectors (patterns of activation 
across units) that fill the slots. Usually these are close enough to the vector of ID 

actual word that it is reasonable to use the word to indicate how a slot was filled. 
(Miikkulainen arrived at these words by feeding the vectors to the Lexicon's semantic 
map, noting what word, if any, had its corresponding map unit in the activatioo 
bubble, and using that word to indicate in English what sort of vector filled each 
slot.) In this example, a small tip and big tip were about equally likely and therefo~ 
a semantic vector intermediate between those for small and big was generated for the 
tip slot. The vectors activate units on the semantic map, only some of which corra
pond to words. It happened that the active unit, though between the units for l1rUJ/l 
and big, was closest to that for from. Miikkulainen therefore put from in the tip slot, 
but also noted the correct word in parentheses and set these off by asterisks to sisnaJ 
the difficulty: •jrom (small}•. 

Interestingly, the cue already includes the answer to the question posed: what 
Mary ate was steak. This was partly due to luck, however. Because steak and lo~ 
are about equally likely in a fancy restaurant, an intermediate semantic vector tilled 
the food slot. This time the map unit activated by the vector corresponded to one of 
the two competing words, and it happened (by a hair) to be steak rather than loh1ur. 
However, this is not the system's final answer and it is not crucial that it be correct. 
The cue (assemblies for script, track, and script roles, each filled by a semantic 
vector) is submitted to the Episodic Memory, which has traces of all five atoria. 
The story that best matches the cue is retrieved from the part of the role-bin~ 
map shown in figure 7.7 (MSLS: Mary Steak Leone's Small). It is converted imo 
the same script format as the cue (assemblies filled by semantic vectors), but apia 
we use the closest word to each vector for purposes of exposition: 

Script 

ilrestaurant 

Track 

I fancy 

Customer Food 

Mary steak 

Restaurant Taste Tip 

Leone's good 

Roles that could not be filled with confidence from the cue alone now have clear 
bindings (those of the original story): the vector for tip now is very close to tbc. 
canonical vector for small and the vector for food is now very close to the CBJlOJILlCII~· 
vector for steak. Because the system has retrieved the complete story from memory, 
questions can be answered with confidence. To make this happen, the script rep,. 
entation of the story is supplied along with the case-role representation of the 
question to the Answer Producer. Using its nonrecurrent FGREP architecture, 
module outputs a case-role representation of the answer, and it is further or<ocl~ecl . 

through the Sentence Generator and the Lexicon so that DISCERN can output tbt 
correct answer: MARY ATE A GOOD STEAK. It answers this question eveD 
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though the original story (see above) never said that Mary ate the steak. The script 
representation does not distinguish what Mary ordered from what she ate, and so 
DISCERN uses the information about what she ordered to also supply the inforrna· 
tion about what she ate. It would also respond to other questions about information 
that was not specified as long as the script representation supplied values for these 
slots based upon what was most frequent in the training set. 

Amongst many other examples of DISCERN's performance that Miikkulainen 
offers, it will be useful to look at one case in which the question, WHO BOUGHT 
TV? was ambiguous, since two stories involved the buying of a TV. The Sentence 
Parser constructed the case-role representation: 

Script 

I who 

Track 

bought 

Customer Item Store 

TV RadioS hack I 

guessing that the TV was bought at RadioShack because of the statistics in the 
training data. The Cue Fonner, though, created the followinr script representation: 

Script 

ISshopping 

Track 

Selectronics 

Customer 

John 

Item Store 

TV •CircuitCity(RadioShack)•l 

proposing, again on the basis of statistical regularities, that john bought the TV, but 
now combining this with the inappropriate store information (given the stories). 
While this probe could activate the memory of either story, the story about john 
was most recent, and so it won the competition and resulted in the output script 
representation: 

Script 

llshopping 

Track 

Selectronics 

Customer 

John 

Item Store 

TV RadioS hack I 

which in tum caused the Answer Producer, Sentence Generator, and Lexicon to 
combine in producing the answer JOHN DID. 

7.9 Evaluating DISCERN 

In many respects, DISCERN is an impressive demonstration of how connectionist 
tools might be employed to model higher cognitive tasks. More specifically, it illus
trates how multiple connectionist networks can collaborate to accomplish simplified 
versions of such tasks as reading stories and questions, paraphrasing stories, and 
answering questions about them. It shows the efficiencies achieved by a sequential 
modular organization, in which the output of each network becomes the input of the 
next network (in fact, Miikkulainen created and ran a nonmodular version of his 
system to demonstrate it was less efficient than the modular one). The structure
sensitive representations developed by the FGREP architecture play a major role in 
this efficient collaboration. The networks each individually introduce errors, but 
frequently these errors are corrected as processing proceeds through later networks 
in the loop. 

There are also clear limitations to DISCERN, among which are the following. 
First, once trained, the network does not handle novelty well. Despite capacity for 
limited kinds of generalization within each module, in the end any new story will be 
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treated as an instance of the scripts it has already learned. Second, there are severe 
limitations in the representations the network can use. For example, only a small 
subset of actual sentences have the word order and case roles required by DIS
CERN, and even those have considerably more structure than is recovered by 
DISCERN. Third, the scripts cannot be combined nor employ recursion. (Neither 
can DISCERN process sentences with embedded clauses, but a subsequent simula
tion of Miikkulainen's indicates how one might overcome this d ifficulty.) Fourth, 
there are several unrealistic technical requirements. To cite just two: (a) the modulea 
must be hooked up in a special way while the Lexicon self-organizes (but people 
acquire new words seamlessly during acts of comprehension); (b) a parameter gov
erning the contribution of the lateral connections must be reset whenever the Epis
odic Memory module switches between storage and retrieval. Miikkulainen explicitly 
notes these and other limitations, and his book should be consulted for intriguing 
suggestions as to how some might be overcome. 

Beyond these more specific limitations, though, DISCERN raises a more general 
question about the use of connectionist networks in modeling higher cognitive pro
cesses: what is (or should be) the relation of connectionist models to traditional 
symbolic models in the same domain? In the case of DISCERN, there were several 
points of contact between the network model and traditional approaches to cognitive 
modeling. 

First, and most obviously, the script framework had been developed within the 
traditional symbolic tradition and was then given a connectionist implementation 
in DISCERN. The implementation added some desirable characteristics. For 
example, the task-relevant representations developed by the FGREP architecture 
supported the system in making plausible inferences and in cleaning up errors that 
arose, overcoming to some extent the brittleness that is characteristic of symbolic 
models. On the negative side, it took herculean effort to produce a model that 
implemented only the simplest version of a script approach at a time when Schank 
(pursuing his own distinctive variety of traditional AI) had progressed considerably 
beyond it. 

Second, the ideas that words should be stored in a lexicon and that stories should be 
stored in an episodic memory has traditional roots as well. Again, DISCERN imple
mented these ideas using nonsymbolic means that carry attractive advantages. In 
addition to achieving content-addressable memory storage, Kohonen feature maps 
display the capacity for self-organization that is an essential aspect of human cogni
tion. Some compromises were needed to get the system built, such as Miikkulainen's 
role in crafting the hierarchical map structure in DISCERN's Episodic Memory. 

Third, the traditional nature of the tasks performed by each module was no 
accident. The idea of modular organization as well as the method of determining 
the number of modules and their division of labor were borrowed from traditional 
cognitive science. The method involves an a priori task analysis. Miikkulainen 
complied by carrying out a rather high*level cognitive decomposition to determine 
subtasks of his two overall tasks (paraphrasing and question-answering) and de
signed one module for each of the eight subtasks identified. Cooper (1994) leaned 
especially on this aspect of DISCERN in suggesting that Miikkulainen had not 
realized his professed desire to perform all operations within a subsymbolic frame
work. Instead, Cooper pointed out, by predefining the modules and using assem
blies of units to obtain compositional representations Miikkulainen may have 
provided much or all of what Fodor (1975, 1987) requires for a language ofthought. 
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Miikkulainen's book was the focus of multiple reviews in issues of Psycoloquy be
tween 5(46) and 7(34). 

This is not the first time we have encountered some tension in the connectionist 
enterprise between its revolutionary aspirations and traditional roots. DISCERN is 
a relatively well developed example of what connectionists were able to achieve in 
their first decade while tolerating this tension. Having now completed our discus
sion of DISCERN we find ourselves at a major transition point, where we must ask 
what path or paths different researchers pursued during connectionism's second 
decade (the 1990s). The major ones are outlined in the next section. In keeping with 
the broad introductory goals of the book, the first three paths are not pursued 
further, but each of the next three paths is discussed in its own chapter. 

7.10 Paths Beyond the First Decade of Connectionism 

Classic conMctiortimr. Existing designs, such as multi-layered networks with featural 
input representations, provide the familiar advantages of connectionism and are 
relatively simple to build. For many cognitive scientists, connectionism has already 
paid its way by contributing useful architectures to the toolkit. Those focused on 
problems rather than tools choose network designs when their characteristics are 
needed and more traditional designs when those are sufficient. Others take seriously 
a theoretical commitment to connectionism and focus on exploring the capabilities 
and applications of existing network designs. 

A ~ore connectionist connectionism. Some investigators view the traditional, sym
bohc roots of connectionism as a fact about its history, while putting current energy 
into designing more flexible, adaptable, thoroughly connectionist models with the 
potential to scale up to larger, more realistic problem domains. This path overlaps 
somewhat with the first one but emphasizes new developments. If a successor to 
DISCERN could itself decide what work each module should perform, and could 
revise the modular structure when necessary, it might out-perform a human de
signer at dealing with fluctuating task requirements. For example, if daughter-of
DISCERN had developed modules adequate for answering questions about familiar 
stories and then was presented with the new task of making inferences under coun
te~factual conditions, it might add this capability by adapting existing modules, or it 
m•ght add one or t:nore new modules to work with the existing ones, or it might 
reorganize its modules more extensively. It is hard for a human designer to know 
which approach would work best. At this point networks cannot achieve this either 
but some preliminary efforts have been made towards building networks that ca~ 
define their own modules (see Jacobs, Jordan, and Barto, 1991, in section 10.2.1 for 
one example). In the same spirit, others have specified ways that single-module 
networks can develop in a task environment so as to end up with an appropriate 
number and arrangement of units (see Nolfi, Miglino, and Parisi, 1994, in section 
9.4). Although there have been some intriguing developments in network design 
along these and other lines, the task is difficult and there are no dramatic break
throughs to report yet. 

Hybrid networks. Some connectionists, while equally interested in advancing design, 
hold no brief against the traditional symbolic approach and prefer to increase rather 
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than decrease its influence. They deliberately design hybrid systems that use connec
tionist means to implement traditional ideas, designs, and systems. An early example, 
Touretzky's (1986) connectionist implementation of a production system, was dis
cussed in detail in the first edition of this book. More recent exemplars include 
Bamden (1995), Sun and Alexandre (1997), and Touretzky (1990). 

Dynamical networks. A major new development in the 1990s was the application of 
dy11omical systems theory to cognitive modeling. One way of doing this brings together 
connectionist networks and dynamical tools and concepts. Chapter 8 provides an 
introduction. 

Network robot controllers. Another field that attracted increasing attention acroaa 
the 1990s is artificial life. One approach involves using a connectionist network 
(usually evolved using a genetic algorithm) as the "brains" of a robot. The advant
ages of connectionist over symbolic models is especially apparent in sensorimotor 
domains, making this a very natural and promising step to take. Chapter 9 focuses 
on this development. 

Network models in neuroscience. Advances in neuroscience, especially neuroimaging, 
have brought cognitive science and neuroscience into much closer alignment dunn, 
the 1990s than in the previous two decades. As part of this overall trend, connec:
tionists have shown an increased interest in designing network models of particular 
brain areas or functions . Chapter 10 addresses this convergence, and is the final 
chapter of the book. 

NOTES 

Mii'kkulainen does not explicitly refer to input/output buffers or place them within the 
Lex1con. Though they would seem to be needed at least durmg the self-organizing pro
cess, thereafter the Lexicon may simply store weight vectors and use them to move rep
resentations in or out of the assemblies that are located within processing modules. 

2 If, however, a cue activates a unit that is outside of any basin, the network will oscillate 
due to the inhibitory connections around that unit; such oscillation is interpreted • 
indicating that the network has no memory of hearing a story of this sort. 
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8 
CONNECTIONISM AND THE DYNAMICAL 

APPROACH TO COGNITION 

8.1 Are We on the Road to a Dynamical Revolution? 

We saw in chapter 1 that connectionism has its roots in the 1940s, when ideas about 
the nervous system, computation, and intelligence came together synergistically. We 
briefly traced the path from formal n~rons to perceptrons and noted that events 
in the 1960s led to a period in which these neural network models became over
shadowed by symbolic models of intelligence. With the rise of connectionism in the 
) 980s neural networks regained prominence, and for two decades the two approaches 
have each sought to dominate cognitive science. 

This is part of a larger story. The energetic collaborations of the 1940s had 
multiple, sometimes intertwined strands, of which the best known is an emphasis on 
feedback and control in the cybernetics of Norbert Wiener and others. This required 
attention to the dynamics of change in time, an aspect of the functioning of systems 
which has often been ignored by connectionists (though not by Stephen Grossberg 
and his group, who continued to advance network research during the period when 
symbolic models were dominant; see Grossberg, 1982). In an even broader context, 
the dynamics of complex physical systems have been mathematically describable at 
least since Newton (building on work by Galileo) formulated his three laws of 
motion and developed the calculus to gain the ability to predict specific planetary 
configurations. New geometrical approaches to dynamics by Poincare in the late 
nineteenth century prepared the way for the rise of Dynamical Systems Theory 
(DST) in the twentieth century. Initially applied primarily to physical phenomena 
such as eddies in a stream (Landau, 1944), by the 1980s DST was being extended to 
motor coordination by Michael Turvey, Peter Kugler, and j. A. Scott Kelso (see 
Kelso, 1995) and by the 1990s to the development not only of coordinated activity 
but also more cognitive capacities (see the 1994 book by Esther Thelen and Linda 
Smith). Although the mathematics of nonlinear dynamical systems can be daunting, 
DST has spawned compelling graphics that help to provide an intuitive grasp of key 
concepts (among the suggested readings at the end of the chapter, see especially the 
copiously illustrated introduction by Abraham and Shaw, 1992). 

The idea that cognition is dynamic and can best be understood using the tools of 
DST attracted increasing attention across the 1990s but is still somewhat of a fron
tier outpost in cognitive science. Much of the excitement was conveyed in Mind as 
Motion, a 199 5 book originating in a 1991 conference which brought together many 
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of the pioneering modelers. The editors, Robert Port and Timothy van Gelder, 
wanted to convince a broad audience that DST has revolutionary implications for 
cognitive science. In an introductory chapter they characterized cognitive science aa 
wedded to what they call the computational approach (i.e., symbolic modeling) and 
called for a change, contending that "dynamical and computational systems are 
fundamentally different kinds of systems, and hence the dynamical and computa
tional approaches to cognition are fundamentally different in their deepest founda
tions" (van Gelder and Port, 1995, p. 10). Further, they portrayed the emergence of 
the dynamical approach in cognitive science as a Kuhnian revolution: 

The computational approach is nothing less than a research paradigm in Kuhn's classic 
sense. It defines a range of questions and the form of answers to those questions (i.e., 
computational models). It provides an array of exemplars - classic pieces of research 
which define how cognition is to be thought about and what counts as a successful 
model. ... [T]he dynamical approach is more than just powerful tools; like the com
putational approach, it is a worldview. The cognitive system is not a computer, it is a 
dynamical system. It is not the brain, inner and encapsulated; rather, it is the whole 
system comprised of nervous system, body, and environment. The cognitive system is 
not a discrete sequential manipulator of static representational structures; rather, it is a 
structure of mutually and simultaneously influencing c/umgt. Its processes do not take 
place in the arbitrary, discrete time of computer steps; rather, they unfold in the rtal 
time of ongoing change .... The cognitive system does not interact with other aspecta 
of the world by passing messages or commands; rather, it continuously coevolves with 
them .... [T]o see that there is a dynamical approach is to see a new way of conceptu
ally reorganizing cognitive science as it is currently practiced. (van Gelder and Port, 
1995, pp. 2- 4) 

If computational and dynamical world views are poles apart, connectionism occupies 
a somewhat more ambiguous territory in between. Highly interactive networks, 
such as Boltzmann machines, are dynamical systems of considerable interest in 
principle. In practice, they are hard to use and hard to analyze even with the 
availability of DST tools. Feedforward networks have made the greatest inroads 
into cognitive science, in part due to their tractability, but the only aspect of this 
architecture that is dynamical is the adaptation of weights during teaming. Moat 
connectionist models, even interactive ones, carry some symbolic/computational 
baggage and therefore are not the best poster children for van Gelder and Port's 
revolution. We see a somewhat different future, in which connectionist modeling 
can benefit from both computational and dynamical approaches and can sometimes 
even combine them within the analysis of a single network. 

In what follows we will introduce some basic dynamical concepts and tools in 
section 8.2; describe how the simplest concepts have been utilized in four areas of 
network research in 8.3; and describe how the concept of chaos has been utilized in 
two network models in 8.4. Then in 8.5 we return to philosophical issues raised by 
van Gelder and Port. From their overall claim that classic connectionism occupies 
an untenable halfway position between the computational and dynamical approaches, 
we move to more specific arguments concerning explanation (countered by Bechtel} 
and representation (countered by Clark and Wheeler). The counter-arguments lead • 
towards a more inclusive cognitive science, and in 8.6 we discuss a controversial 
version offered by philosophers Terrence Horgan and John Tienson. Let us start, 
then, by introducing some concepts and tools from the mathematical core of the 
dynamical approach: dynamical systems theory (DST). 
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8.2 Basic Concepts of DST: The Geometry of Change 

8.2.1 Trajectories in state space: Predators and prey 

If a picture is generally worth a thousand words, in the case of dynamical systems 
theory each picture is worth at least ten times that many: among DST's innovations 
is the adroit use of geometrical representations to help conceptualize how systems 
change. The simplest picture is a plot of the states traversed by a system through 
time, that is, the system's trajectory through state spact. The trajectory is a continu
ous curve if the system is defined in real time, or a sequence of points in discrete 
time. Each dimension of state space corresponds to one variable of the system, and 
each point in the space corresponds to one of the possible states of the system. For 
systems with one continuous variable, the state space is a range of values on one 
dimension (e.g., the frequency of a tone; the height of a person; the firing rate of a 
neuron; the population size of a species in its habitat). The trajectory of a pure tone 
is a regular oscillation between two values (if a time dimension is added to the plot, 
a sine wave is obtained). A trajectory for height starts with an infant's height at birth 
and rises (irregularly) over time. 

To move up to a two-dimensional state space, the most obvious way is to consider 
an additional variable; for example, you can visualize your child's growth by graphing 
height and weight on orthogonal axes and plotting a point each week; connecting the 
points approximates the child's trajectory through height-weight space in real time. 
Another way of moving up to a two-dimensional state space is to examine the same 
variable for two different individuals (or neurons, populations, network units, etc.). 
Keep adding more, and you end up with a h igh-dimensional system. For example, 
the activation values across a 90-unit output layer in a feedforward connectionist 
network can be represented as a single point in a 90-dimensional state space - each 
unit's activation is treated as a separate variable of the system. If the network is 
feedforward, its response to an input is one point in the space. If it is interactive, the 
changing activation values are represented as a sequence of pointS - that is, as a 
trajectory through activation state space - but the outcome may be similar since 
some trajectories simply converge on a point and remain there. 

A two-dimensional state space is much easier to visualize than a 90-dimensional 
one, so we will use the case of two species in a predator-prey relationship to illus
trate some key concepts (the case is described by Ralph Abraham and Christopher 
Shaw, 1992, pp. 82-5). The classic account was proposed independently by Alfred 
James Lotka (1925) and Vita Volterra (1926). Our first picture, figure 8.1(a), shows 
several variations on an idealized cyclic trajectory (also called a periodic trajectory) in 
the state space for number of prey (horizontal axis) and number of predators (ver
tical axis); it was inspired by periodicity in the population sizes of different species 
of fish in the Adriatic Sea. To understand the cyclic changes in population size, four 
parts of the outermost curve (labeled I-IV) can be considered separately. (See below 
for discussion of the whole family of curves.) When there are relatively few of both 
predators and prey, the number of predators declines for lack of food while the 
number of prey increases for lack of predators (region 1). The increase in prey, 
though, provides a more ample food source for the predators, and beyond a transi
tion point, the number of predators will begin to increase along with the number of 
prey (region II). But the increase in predators results in increased consumption of 
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(a) (b) (C) 
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0 
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Number of prey 

Figure 8.1 Possible trajectories through state space for interacting predator and prey 
populations: (a) cyclic trajectories (no attractor); (b) point attractor with spiraling transient; 
(c) cyclic attractor with spiraling transients beginning at points inside and outside of it. 

prey, so after another transition point the number of prey declines while predators 
continue to increase (region III). But eventually the shrinking prey population leada 
to starvation for predators and both predators and prey decline in population (region 
IV). When the number of predators becomes sufficiently low, the number of prey 
will begin to increase again (region 1). And so forth: in principle, each population'• 
size is predicted to oscillate (move between two extremes) forever, with the same 
period (elapsed time) on each cycle. The prediction derives from the Lotka-Volterra 
equations, in which the rate of change of each population depends on the current 
number of prey (x) and predators (y) as well as the values of the control paraFMten 
(A, B, C, and D): 

OX 
dt "' (A - By)x (1) 

dy at "" (Cx - D)y (2) 

To obtain a cyclic trajectory using these equations, an appropriate set of para~ 
meter values must be identified (not all values will produce such a trajectory).' AI 
shown in figure 8.1 (a) for one such set of values, the equations then yield a family of 
concentric closed curves around a central equilibrium point. Within that family, the 
particular curve- ranging from no oscillation at the center to the extreme population 
swings of the largest-diameter circle - depends upon the initial values of x and y. 
Once the system embarks on one of these trajectories, it will repeat it indefinitely
unless perturbed by some change outside the system. For example, unusually high 
temperatures may increase the predators' mortality rate, D, and also affect repro
duction and predation rates, reflected in A-C. 

Another way to get different trajectories is to change the equations. In fact, later 
researchers found that the Lotka-Volterra equations alone are unrealistic (e.g., they 
make no provision for competition among prey or predators for limited resouroe8). 
One kind of revision to the system of equations adds "ecological friction" (by ana
logy to the physical friction that brings a pendulum asymptotically to rest by dam~ 
ing its oscillations). Figure 8.1(b) shows how this produces a very characteristic 
DST state space plot. The illustrative trajectory now has two parts. The poi1ll 
attractor at the center (also called the limit point) is stable- if exactly these predator 
and prey population sizes are attained, the system is in equilibrium and will remain 
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in that state. Thus, the attractor is the stable part of the trajectory, and can be viewed 
as describing the long-term behavior of the system. The curve that leads to the 
attractor is a transient, the part of the trajectory that the system traverses as it moves 
from its initial state towards equilibrium. The spiraling transients in this system 
reflect a story similar to the one we told for sections I-IV of the outer cycle in figure 
8.1 (a), except that here the system approaches the equilibrium point as the oscilla
tions in population si:te diminish in amplitude. When the transient spirals towards a 
point like this, the system is a damped oscillator and the point attractor is also called 
a focal point. 

Crucially, trajectories from many different initial states will converge on the same 
focal point: for various initial numbers of predators and prey, the populations will 
approach this point of equilibrium along an appropriate, spiraling transient. In fact, 
it is primarily the convergence of nearby trajectories to this equilibrium point that 
qualifies it as an attractor (cf. the equilibrium point in figure 8.1(a), which is not an 
attractor); and it is specifically a point attractor (limit point) because the subset of 
state space to which the trajectories converge (the limit set) consists of just one point. 
The set of all initial states whose trajectories converge on this attractor is its basin of 
attraction (generally a region of state space but possibly the entire space). The state 
space - also called phase space- filled with the possible trajectories of this system is 
its phase portrait. In figure 8.1(b) this was reduced, for display purposes, to a repres• 
entation of the point attractor (by convention, a small solid circle) and one typical 
trajectory. For systems with multiple attractors (and perhaps other special features, 
such as repellors, saddle J'IIHks, and the separatrices that may form boundaries be
tween basins), a larger number of trajectories or special display conventions are 
needed to convey the essentials of the phase portrait. 

This is a good place to pause and note that considerable idealization is involved in 
using even the modified system of equations to model changes in the population 
sizes of two species in a predato.--prey relationship. First, the real-life populations 
are not a closed system; as already mentioned, external factors such as ocean tem
perature can affect parameter values. Second, here as in many other dynamical 
systems (those classified as dissipative), convergence is asymptotic- the state of the 
system approaches the attractor as time approaches infinity. Beyond the formal 
nature of this characterization, it also assumes a continuity that cannot be attained in 
population dynamics. Each birth or death brings a discrete change in the value of x 
or y. At best these values will jiggle around in the vicinity of the equilibrium point as 
individuals are born and die. This leads to another notion that is worth making 
explicit: even if the system could reach true equilibrium, what is stable is the value 
of two collective variables. Out in the Adriatic Sea, individual fish are still giving 
birth and dying, eating or being eaten. Trajectories of change in the lives of indi
vidual fish are not inconsistent with lack of change in the size of their two populations. 

A phase portrait that is somewhat more realistic for the Adriatic case (though still 
idealized) can be obtained by making one more revision to the system of equations. 
Figure 8. l(c) shows a cyclic attractor (also called a periodic attractor or limit cycle) 
along with a few of the possible transients. This is a form of stable behavior that at 
least involves movement - the state of the system endlessly cycles around in state 
space rather than remaining at a single point as in (b). But the comparison to portrait 
(a) is even more informative. The circle in the middle of (c) looks the same as one 
of the circles in (a), but the dynamics producing it are quite different. As a cyclic 
attractor, it is the stable part of a variety of trajectories rather than a single trajectory. 
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That is, in (c) many different starting points all converge on the same circle (that ia 
why it is called an attractor), whereas in (a) the starting point is already part of the ~ 
circle and determines its diameter.1 (Note that although both of these cycles art 
circles, in other systems they might be any sort of closed curve; we will see much 
odder-shaped limit cycles in figure 8.3(a).) Examining (c) more closely, it can be 
seen that a trajectory that begins with many predators and many prey and another 
that begins with very few predators but almost as many prey both have transienta 
that converge on the limit cycle; that is, the long-term behavior of both trajectoria 
is the same. Trajectories with transients inside the limit cycle also converge on it; in 
the one exemplar shown in (c), the trajectory begins near a point repel/or (a point 
from which trajectories diverge- the opposite of an attractor- shown conventionally 
as a small hollow circle) and spirals out to converge on the limit cycle. Thus, the 
basin of attraction is extensive. 

8.2.2 Bifurcation diagrams and chaos 

Some systems exhibit behavior that is more complex than in figure 8.1. In additiOD 
to the possibility of multiple attractors and other special features, there exist un
stable trajectories which appear random despite following a deterministic path (i.e., 
the trajectory never repeats itself, but from any given point in the state space thete 
is an algorithm that determines the next point). Perhaps more dramatically than 
necessary, this is called a chaotic trajectory. When the (infinite number of) possible 
chaotic trajectories of a system exhibit the characteristics of an attractor, the system 
is said to have a chaotic attractor. In particular, trajectories that begin near each 
other in the (infinitely large) limit set of the attractor will tend to diverge (a charac
teristic known as stntitive dependence on initial conditions), while trajectories that 
begin in the limit set's basin of attraction will converge on it. Chaotic attractors tend 1 

to be topologically complex. One of the simpler examples starts with the doughnut
shaped torus, which can be thought of as offering an infinite number of cyclic 
trajectories. A system with a torus attractor in its phase portrait will exhibit quui• 
periodic behavior (continuously circling the torus but not repeating any particular 
cycle). However, the behavior becomes unstable for a torus in a very high-dimen
sional space: the system samples various cyclic trajectories along the surface of the 
torus, jumping from one to the next at irregular intervals. This unstable sampling of 
cycles is a chaotic trajectory. And this glimpse of a complex field of mathematics will 
have to suffice here. 

Chaotic behavior is one innovative concept of DST; another is the importance of 
parameter values in whether a system exhibits that behavior. Even simple nonlinear 
systems may exhibit phase transitions (rapid shifts from one phase portrait to 
another) when the value of one or more control parameters changes sliahtly. For 
example, a single difference equation may produce a single point attractor, a cyclic 
attractor (limit cycle), or a chaotic attractor for x depending on the value of one 
control parameter A. The rapid transition in dynamics, brought about by a small 
but critical change in the parameter, is referred to mathematically as a bifurcatiofl. 
The simplest example (from which the general term derives) is a pitchforlt bifurca
tion, wherein a single point attractor splits in two. To explain and illustrate thl8 
concept, we will use a bifurcation diagram to display the varied behavior of a well· 
studied type of system defined in d iscrete time. It is specified by the logistic equa-

CONNECTIONISM AND THE DYNAMICAL APPROACH TO COGNITION 241 

tion (which should not be confused with the logistic activation function introduced 
in chapter 2): 

x,.1 = Ax, (1 - x,) (3) 

where xis a variable with range O<x<l and A is a control parameter from the range 
O<A<4. The subscripts t and t + 1 index successive time-steps fo, t1o t2, t 3, and so 
forth; any value x,.1 depends in part on the value x, on the previous time-step. We 
can begin by simply examining the sequence of values taken by x (its trajectory) 
when A is fixed, as it is generally assumed to be for a given system. Here is the 
calculation of the first five points of the trajectory when A = 3 and the initial state 
x0 = 0.5: 

x1 = 3 X 0.5 X 0.5 = 0.75 
x1 = 3 X 0.75 X 0 .25 = 0.5625 
x3 = 3 X 0.5625 X 0.4375 = 0.7383 
x4 = 3 X 0.7383 X 0 .2617 z: 0.5796 
Xs = 3 X 0.5796 X 0.4204 = 0.7310 

It can be seen even from these few points that the system is behaving as a damped 
oscillator (its behavior through much but not all of the stated range) . It is conver
ging on a point attractor at 0.6667 and the transient is a discrete version of the 
continuous spiral in figure 8.1(b). That is, it alternates between high and low values 
rather than spiraling between them. (In both cases, since the oscillation is damped, 
the high and low values themselves keep changing as the system converges on the 
attractor.) If a different initial value of xis used, the high and low values may begin 
further apart or closer together but will converge on the same attractor value of 
0.6667. 

From all this detail about the trajectories of x when A = 3, the only information 
needed for the bifurcation diagram is the value of the point attractor, 0 .6667. In 
general the bifurcation diagram for the logistic equation shows, for values of A 
within some range, the stable (long-term) values that x may attain. The transients 
one would obtain from different initial values of x are ignored; only the stable value 
or values to which they converge are plotted. A single stable value is the simplest 
outcome, and that is how this equation behaves when A is between 0 and 3. 

Figure 8.2 shows the bifurcation diagram for values of A between 2.6 and 4.0. 
This catches some of the simple part of the range. The first bifurcation (a pitchfork) 
appears just beyond A= 3 where x's stable long-term behavior suddenly switches to 
an alternation between two values (that is, the point attractor is replaced by a 
periodic attractor with periodicity of 2). These values (the prongs of the fork) drift 
further apart as A increases, but what matters most is that the dynamics are qualitat
ively different before vs. after the point of transition, which is called a bifurcation 
point. Just beyond 3.4 another bifurcation point is reached, and the system's period
icity increases to 4. 

At a value of A beyond 3.6 a different kind of bifurcation begins to develop, one in 
which the attractor ceases to be periodic and becomes chaotic. The darkened region 
is a rough representation of the fact that x is taking a nonrepeating sequence of 
values. The value at each time step is deterministic since it is generated by equation 
(3), but each value is a new one. The new phase portrait contains a chaotic attractor, 
which changes form as the value of A increases. Interestingly, there are even values 
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Fi11ure 8,2 BifurcAtion plot of the logiStic function (I J for values of A bctwl'en 2.6 
and -*.11. For ,-aloes of A less than 3.0 the fum:tion settles mto a point attractor. Above 
3.0 ot bofurcates into a two-pomt attructor, than ll four-point attrnctor. and so furth. 
Beyond 3.6 it enters a chautic regime pum.tuated br periodicity w1thm narro'>' rangd. 

of A beyond the initial bifurcation to chaos for which x wiJl once again exhibit 
s1mple periodicity. The values of x l-omprising each sequence show up in figure 8.2 
as liulc: lines within otherw1se white bands near A= 3.6, 3.7, and 3.8. 

8.2.3 Embodied networks as coupled dynamical systems 

1\:oY. y,e can return to the assumption that A IS a constant for a gi\'en system. This 
actually applies only 1f the system is an autonomous dynamical system - one that is 
unaffected by any other system. If so, trajectories through the state space can be 
specified in terms of equations (frequently nonlinear) whi~:h simply relate the_ va~
ables of the system. Often, however, a system Y.ill be influenced by factors outs1de Its 

boundaries (e.g., if we construe planet Earth as a system, variation in the sun's radiant 
energy is an external factor mfluencing this system). A 11onautonomous dynamical 
system is one in which the \'alues of one or more parameters vary due to external 

influences. 
The dynamics get especially interesting if two systems are nonautonomous be· 

cause they are coupled, with the states of each system inftuencmg the value_s. of 
parameters or variables in the other system across time. Thus, when the cogmttve 
system is construed as a dynamical system, it may be further construed as coupled 
\dth other dynamical systems invol\'ing the organism's body and em·ironm~nt. In 
carrying out e\·en a simple acth·ity such as tappin~ a pencil, there may be: ree~procal 
relations among three systems: the firing of neurons (brain), the ml)\'ements of_t~e 
fingers (body), and the tapping of the pencil ag:unst a surface (environment)- Th1s IS 

the sort of interaction among brain, body, and en,·ironment that mi11ht best be 
modeled by con~truing them as coupled d~ nam1cal systems. (One can also cons true 
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t·ouplcd dynamical syst..:ms as a single, aumnomous dynamical system, but at a cost 
uf complexity. Considerations of tractability often dictate treating the systems as 
separate, with c;Kh affecting the other by determining the \'alues of some of its 
par!lmt:tns.) 

Dynamil·ists oftt•n ct:lebrate coupling as a much more powerful and useful way of 
thinking about the interactions het'ween the co~nitive s}stem and its en\'ironment 
than is offered by tmd1tumal perspccti\·es. Roth symbolic and connectionist mmlckrs 
h:l\'e found it diffkult to ad,·ance beyond the "boxes in the head" models "hich 
h~:g-an to replat·e stimulus- rl-sponse models in the 1960s. This legacy includes a 
:-ratic characterization of the em·ironmcnt (e .g .. the fixed corpus that provides input 
p;ttterns to a network) <lnd a cognitive model that acts with no further refer~·nt·c to 
the environment once an input is recei\"cd. The input is operated upon (with interim 
rcsults passed from one processor to another) and the result is sent out of the system 
as an output. For example, the DISCERN system (chapter 7) has a settuence of 
processing modules, each of which performs its own transformation on the input it 
rccci,·es and sends output to the next module (and, when the last module has 
completed its work, back out to the world). Most of DISCERN's modules are 
simple recurrent networks, but this allows only a very limited type of interactive 
processing (no settling dynamics, and connections remain within the bounds of the 
module). None of the modules has loops out to the en,•ironment and back or a means 
of changing its own operations in S] nc with ongoing changes in the environment. 
lntt:ractive network designs offer some potential as tools to implement such loops, 
hut in the absence of correspondingly complex characterizations of the em• ironment 
(e .g. , in terms of coupled dynamical systems) they do not overcome the limitations 
of traditional input- processing-output architectures. 

Dynamicists are much more inclined to focus on the multiple ongoing inter· 
actions between the cognitive system and its environment, and some have aln:ady 
bt~un adapting the notion of coupling and other tools of DST to this ambitious 
project. In so doing, they have become natural allies of a di\·erse community of 
researchers who emphasize situated and embodied cognition. Rejecting the idea that 
one can study cognition solely as a set of processes occurring within an agent, these 
theorists focus on the interactions between cognitive operations and such external 
structures as the instruments in an airplane cockpit (Hutchins, 1995). Cognitive 
science has become increasingly receptive to this view and to the use of DST as a 
source of sophisticated tools for modeling more fine-grained transactions amongst 
the brain, body, and world- a trend celebrated by Andy Clark in the subtitle of his 
1997 book, B~ing Tllerr: Putting Brain, Body , and World Together AJ(ain. 

8.3 Using Dynamical Systems Tools to Analyze Networks 

In applymg d ynamical systems tools to connectionist networks, one must decide 
which variables of the system to represent. In the case of connectionist networks, the 
m·o most plausible choices are the weights on connections (viewing learning as a 
trajectory through weight space) or the acti\'ation ,-alues of units (viewing process· 
inu as a trajectory throu~h activation space). \Ve hegin with some examples in which 
state -space plots ha\'e been used !0 analyze trajectories through acti\'ation spa~:c. Of 
p;lrticular inter~st arc the displays of attra.:tors in phase portraits. 



244 CONNECTIONISM AND THE DYNAMICAL APPROACH TO COGNITION 

8.3.1 Discovering limit cycles in network controllers 
for robotic insects 

Randall Deer (1995; sec also B~r. 1997) has made effc~ti\'c usc of ~tate space plots 
to analyze c•mncctionist n.:tworks dtsignt:d to be coupled to a model insect in order 
to control its lell mon:ments. The model insect has six legs, each with a foot at one 
end and a joint connectin~ it w the body at the other c:nd. Each leg has three 
effectors: one raiscs or lowers the foot. and the other two apply opposing torques at 
the joint which combine to mo\'e the lei{ forward or backward . Each lcg also has a 
single sensor that tracks the angle: of the: joint. The insect livt>s as a computer 
simulation, though it could also be cmbodic:d in a robot. Its walking is controlled by 
a 30-unit recurrent network composed of 6 subnt'tworks. The subnt•twork control
ling each leg consists of tive units that arc fully interconnected . Three arc: output 
units (motor neurons) which send instructions to the leg's thrc:e effectors, and two 
arc connected only to the output units and to each other (interneurons). Each unit 
also recei\'es "dghted input from the leg's sensor, completing a loop betwc:en the leg 
and its contmller network. That is, the dynamical systems of the body and the 
control network are coupled. Additional connections between subnetworks assure 
that the sensory information and motor acti\"ity of the six legs arc coordinated. 

With this basil· architecture as a startin_g point, several uiffert:nt controller net
works with task-adapted weights on their connections were: crc:ated using a genetic 
algorithm procedure (see section 9.1 ). The fact that the wetghts were obtained by 
simulated evolution rather than learning is not crucial here; Beer's focus was on the 
dynamics of the systems once they had those weights. To contrast autonomous with 
nonautonomous dynamical systems, he manipulated access to sensory feedback. 
Co~tpled networks evol\'ed with full access to input from the joint angle sensors (the 
network and the body were nonautonomous dynamical systems because each re
ceived input from the other); mllonomous networks evol\"ed with the sensors turned 
off {the body, still controlled by the network, was nonautonomous; but the net\\ork, 
lacking feedback, generated its 0\\0 states autonomously); and tlll~'l;ed nett~·urks evolved 
\\tth the sensors sometimes on and sometimes off. 

All networks eventually could make the modd insect walk employing the "tripod 
gait" characteristic of fast-moving six-legged insects: the front and back legs on one 
side would mo,·e in synchrony with the middle leg on the opposite side. While one 
set of three feet was swinging, the: othc:r set would remain on the ground, providing 
support. However, the three sets of networks fan.·d differently ''hen challenged in 
further testmg. The coupled networks exhibited fine-tuned cuntrol of \\alking, hut 
performed poor!} if the sensors "ere turned off; they had e,·oh ed cin:utts that were 
dependent on a constant flow of sensory input and could not generate an appropriate 
sequence of states "hen forct'd to function uutonomously. The autonomous networks 
produL'C!d \\alking in a stereotyped tripod fo!lli t regardless of whether sensory input 
was now made a\·ailable; they autonomously cycled through the same sequence of 
st.ttes and had no means of incorporating a new, e:.:ternal \"ariablc to generate a 
modified sequence. The m1xed networks worked as \\ell as the coupled networks 
with sensory input, but could also function autonomously when input w.ts removed. 

To rnor~: clnselv examtne these difft:rinll dvnamics, Beer began with the relative: 
simplicity of the ~utonomous networks and n~rrowed his focus to a single live-unit 
suhnetwork l"Ontrollinll \\hat ht' posited was a sin~otlc-ll'ggcd insect. Beer sought to 
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Figur(' ~ .. J Tr;~jccroncs m motor ~p.tl"c fur two of Beer'~ (1995) m:twork contrulll·rs fur a 
mudd trt$<:1!1. Su,·cl·s.~ivt: J<:tivauon values 11re pluttcd fur the foot, backward '"' mg ( RS), 
and fumard ~\I ing (FS) motor nl'uron!l in rh..- s ubnetwork cuntrullin!! one le~-: . (a) The 
a urunumous network (sel\sur coff) pruduc~"!l a hmit .:yclo: \\'h•·n the R<:ll\ .ttiun valu<'ll are 
in the! upper b..ck comer the foot is down 11nd the nl!twnrk i~ in J stan.:<: phusl!; when 
:1<"11\"ation values are in t h <: lower front corner, thl! network i> in a swing pha!l<! (b) Th<: 
l'nupled network (sensor on) exhibn< a roul'(hly Similar trajectory, hut 1t is pruduced by 
movm11 between t\\o puint attr~ctort. 

understand how the network c-ontrolled the leg's mo\"t:ment. He found that the fi,·e
dtmensional ~tate space for this simplified control system exhtbited a limit cycle, 
which is proJected into a three-dimensional motor ~pace in figure 8.3{a). When sent 
to the effectors, this repetitive sequence of motor neuron activation patterns propels 
the leg repeatedly through a one-legged version of the tripod gait. For example, 
when the control network is in tht: state at the lower right front corner (the middle of 
the swing phase), the insect's foot is raised and leg is $Winging forward while the 
torso remains still. In the state at the upper left rear comer (the middle of the stance 
phase), the foot is on the ground and the leg is still; the buckward-swmg torque is 
tr;msmttted to the torso, propelling it forward. The shift from one phase to another 
Jepends upon reverstnR th~ relative dommance of the forward swmg neuron (FS) 
and backward swim~ neuron (BS) as well as the activity of the foot nc:uron (value~ above 
0.5 instruct the foot to be down); on each cycle there is one such shift into a swing 
phase and another into a stance phase. Following the trajectory from the re.tr to front 
comer, the relati\"e dominance is shifting from the backward swing n~uron (BS) to 
the forward !~Wing neuron (FS); from the front to rear comer, the opposite shift occurs. 

When the same: ki!ld of analysis is applied to a coupled netwtlrk (one that cvol\"ed 
with the leg-angle sensor "turned on), the results are superficially similar. Figure 
~ .3(b) shows that a limit cycle fairly s1milar to the one tn figure lU(a) is obtained, 
and it produces c:ssentiallv the same gait in the insect. The umh:rlying dynamics are 
quite different, howevc:r. The l~g angle is now \"anable, rather than taking a constant 
value of zero. Because the sensor supplies a stream of leg-angle values to the network, 
l'ach pmnt on the limit cycle has its own instantaneous trajectory. !\lost of these 
trajcctones terminate in one of t\\O point attractors , which are ~upcrimposed on the 
~tate space plot :1s ~ohd circles. For example, each point on the leftmost portion of 
the limit cycle has a traj~:ctory that te rminates in the stance atrractor (top ci rcle ). For 
the lowest of these points the trajectory to that attractor is rdativdy long, hut as the 
nt:twork's states ~lh·ance up the limit cyd~ the mstantaneous tr11jectorics get shorter. 
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E,·cnrually the ~t<Jnce atrra<.tor is rea~·ho:d ami the nl'l\\ork n:m.tins in th;H st<ltc fur a 
ttmc. Huwcn•r, the st.lh.' is one that produces forward motion of the body, which 
j(raJuillly chnnges th~· leg an~,tle; under the leg-:mgle :<cnsor's antiuenct•, the stance 
attnlctor disappears and the swin~,.: ;lttra<:ror appt•ars. (Additional, unstahlc nttractors 
make a hrief appearan<.·e durin,g the transition.) :-.low the state of the network pro
~,.:resses alung the rightmost portion of the limit cydc in aco.:ord with a ~cquen<.·e of 
instantaneous trajectories terminating in the swing attra<.·tor. 

\\'hile more interesting than the dynamics of the autonomous network, tht: reli
anet: on sensory fecdba<.·k to make tht: appropri;ltc Mtractor appear has ll price. If the 
t•oupling is broken by turning the sensor off, the network will get stuck on one 
traje<:Wry leading to tht: stanct: llttractor and, once it Tt'aches that smte, will ha\'c no 
way to mo\'e out of it. The inst:<:t will stand forC\'er . Th<.· mixed network m·oids this 
fate because its instantaneous trajectorit's an• based on limit C) dt: attn1ctors rather 
than point attractors. Not only does it not gt:t stu<.·k if input is rcrnu\'ed; it l"Xhibits 
1111 adaptivt: "functional plastic ity" as its trajectories dynamically adjust to the flow of 
sensory feedba<:k. For cxamplt:, when Beer inten·cned by makin~ the sensory input 
change more slowly than norn1al (as would happen if the insect's legs were longer), 
the mixed controller network became entrained by the sensory signal, slowmg its 
own cycle to remain in phase. Beer (1995, p . 203) rcmarkt:d: "The likelihood of 
anyone designing such a flexible and mmpJct leg controller br hand is probably 
rather low." To continuously adjust to a changing em irnnment, he nnds the "messy" 
dcsign of intermittently coupled dynamic systems more promising than the modular 
designs of engineers. 

If Beer's study had been run purely as a network stmulution, without the DST 
analysis, there would have been no plotting uf limit cycles and mstanraneous trajcct
ories, no understanding of the role of attractor dynamics, and no explanation of 
why the constantly coupled network fails to function properly when the sensor is 
turnt:d off but the intermtttently coupled (mixed) network does. In the next scction 
we show that DST is cqually important for attaining a deeper under!ltanding of a 
quite different dass of models: layered interacti\'e networks trained to simulate 
reading aloud. This more diffen:ntiated, cognitl\'e task elicits the de,·clopment of 
multiple pomt attractors. 

8.3.2 Discovering multiple attractors in network models of readint 

\Ve saw in chapters 2 through 5 that feedfon\ ard networks can be used for a variety 
of tasks involdng pattern recognition (e.g., assignment to St'rnantic categories) and 
p.tttern transformatiOn (e .g., past-tense formation). A simple way to add interacti\'ity 
to such networks is to add recurrent connections ~tWt't'O p:urs uf output units. 
L ateral inhibition produces dynamical mtt"raction, in which even a small advantage 
in initial acti\'ation \'alue can become a large difference as the system settles. The 
disp.trity in acri\·ation values between t'o'<> units at time t is one determinant of the 
disparity in their inhibitory effects on each other at time t + 1, with thc more acti\'c 
u nit suppressing the less active unit \·ia its stronger inhibitory signal. \Ve saw latt:ral 
inhibition at work in the Jets and Sh;~rks simulation in section 2. I. ~lcCielland and 
Rumclhart's 19R I word-recognition model in section ~.1.2, and (along with lateral 
excitation) in the lexical and episodic mt•mory modules of DISCERN in sections 7.5 
and 7,7, 
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PiJ!tlrt .~ .J An tl\'Cr:dl framework for lextcal processing adapted from Seidenber~t and 
:\lcClelland (19~9). Those pathw:Jy~ that had been implem~:ntcd by 1996 are in shown in 
buldfa.:e: the pathway from orthography to phonology (Plaut et al., 1996: filled arrows) and 
the pathway from orthography to semanrics (Hinton and Shallice, 1991 : hollow arrows). 
:\either model included thc full kt of feedforward and feedback connections of the original 
framework. Plaut et al. left out the hidden-to-graphcme fcedback connections and Hinton 
and Shallice obtained mteractivity by adding clean-up units rather than feedback 
wnnect10ns. The models also dtffercd in how they ~pecitic:d their grapheme unns (sec: text). 

In dynamio.:al terms, we ~an say that such networks have multiple attractors and, 
\\hen provided with an input, follow a trajectory in activation space that converges 
on the most appropriate onc. In a network thtu lcarns to sort input patterns into four 
l:ategories, for example, each of the four categories rna} develop its own point 
attractor in the acth~dtion s tate space for the output units. As long as the initial 
l'el'ponse to an exemplar is a pattern that falls into tht: basin of attraction for the 
appropriate <:ategory, the rept:ated revisions of each output unit's activation will 
graduall} bring the pattt:rn arbitrarily dose to the desirt:d pattern for that category 
(i .e. , the system follo\vs a trajectory that converges on the point attractor). 

lntt:ractivc networks that de\'dop multiple basins of attraction (attractor netw()rks) 

have played a key role in a research area with a long and contentious history: 
accounting for how humans read. Fil,'llre 8A shows an overall framework for lexical 
processing adaptt:d from Scidenbcrg and McClelland (1989), in which specialized 
groups of units (induding groups of hidden units) interact with each other. To 
model reading, input is provided to the orthographic units. If the goal is to read 
aloud, then tht: system must generate a phonological output. lf the goal is to under 
stand the word, then it must n:tric,·c a semantic interpretation. (Usually humans do 
hoth \\ hile rei!ding <~loud- they interpret the text as they pronounce it .) Since all of 
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the interactions bt:tween groups of units are bidirectional in this O\'erall framework, 
scmantics can influence a phonological output and phonology can influence a semantic 
interpretation. In pradke, it has been difficult to implement the full framework (but 
,;ce section lll.2.J .J for a rou~h approximation to the interaction between semantics 
and phonology that was ad\·antageous in a model of surface dyslexi11). Here we focus 
un more limited mudd~ in which only one of the pathways invoh•ed in reading was 
extntcted and examined in isolation. Specifically, Hinton and Shall ice ( 1991) modeled 
the pathway from orthography to meaning (large unfilled arrows) and Plaut, 
McClelland , Seidtmberg, and Patterson ( 1996) modeled the pathway from ortho
graphy to phonology (large solid arrows). The number of unit!i and other details in 
tigun: !!A refer to these t>Ao simulations. The units at the end of t:ach pathway were 
completely or partly interconnected as indicated, with the result that multiple point 
attntctors devc:loped in those groups of units. 

8.3.2.1 .Modeling the wnantic pathway Hinton and Shallice's ( 1991) network runs 
\ ertically through figure 8.4. As we will discuss in chapter 10, they planned to lesion 
the network to simulate errors made by individuals with deep dys lexia when read
ing aloud (most frequently semantics-based errors such as PEACH~ "apricot"). 
Becaust: the pathway from orthography to semantics appears to play a prominent role 
in this disorder, Hinton and Shallice isolated it for study. (They assumed that the 
pathway from semantics to phonology, which is needed to complt-te the reading
aloud task, functioned with little error and was not crucial in simulating this particu~ 
Jar disorder.) In their intact model of this pathway, 28 grapheme un its encode a 
word's orthography (i.e., its spell ing or ,·isual form) and send activation through a 
hidden layer to 68 sememe units. As described below, there are interactive connec
t ions within this last layer and between it and a layer of clean-11p rmits; aided by 
attractor dynamics, the semantic layer settles into the pattern corresponding to the 
word's meaning. There is no further interactivity, though: the connections specified 
in figure 8.4 from orthography to hidden units and from hidden units to meaning 
were unidirectional rather than bidirectional in this particular model. 

Hinton and Shall ice trained the network on a corpus of 40 three- and four-letter 
words across I ,000 epochs of backpropagation. Each written word (indicated by 
upper case; e.g., MUD) could be given a localist, position-specific encoding using 
binary grapheme units. Pos ition I (linguists call it the onset) had II consonant units, 
position 2 (t·cn,·el) had 5 , ·owel units, position 3 had 10 consonant units, and position 
4 had optional E or K (positions 3 and 4 are both part of the coda which follows the 
vowel in some but not all syllables of English). The ~ord meamngs (ind1cated by 
lower Cllst; e.g., mud) were limited to th·e semantic categories (animals, foods, body 
parts , indoor and outdoor objects) and were represented using semantic roles appro
priate ro those categories. For each role a group of scmeme units was designated 
(sometimes called an ensemble or assembly of units), and acti,·ation of one unit pro
vided a localist encoding of how that role was filled in a particular word meaning. 
For t-xample, units 9-15 formed an ensemble for encoding color, with one unit each 
for white:, brown, ~reen , transparent, etc. Representing the mcanin~ of one \\Ord 
involved activating approximately 15 units. which could include multiple units from 
a gi\'en role ensemble (e.g., lime has two tillers for the taste role: sweet .md strong). 

The challenge for the model is that \·isually similar words (e.g .• MUD and MUG) 
need to be mapped on to <..liss lmllar meanings (e.g ., role:filler sememes for the 
meaning mud include hardness:sof't :md location:on-ground and thm;e for mug 
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include hardness:hard and location:indoors), whereas visually diff~rent words 
(i\tiUD and BOG) need to he mappt:d on to similar meanings. But their network 
does not treat the ~pdhng of a word as an arbitrary pointer to its meaning, Hinton 
and Shallu.:e noted, because networks most naturnlly de,elop \\t.: ights that map 
~imilar inputs to :;imiiJr outputs (that is why networks arc ~!H1d at generali7.ation). 
Extra work is needed to own:ome this tc:ndenq· . Hinton :md Shallke therefore 
employed interactt\'e l·onnections to mm·e the initial semantic patterns towards the 
more distal desired p<ttterns and ro form point attractors at these loc11tions. During 
k·arning, changes in the weights on the interactive connections cn.·lltl'd appropriate 
basins of attraction in semantic space. Similar~lonking words initin lly produce sim
ilar ~emantic patterns in the resulting network. but if the points ,in the corn·sponding 
semantrc space are in different attractor basins, the system should follow 11 trajectory 
to the corrt:l't meaning in each case. As shown in figun: 8.5 for MUD and MUG 
(using points in spaces of reduced dimensionality to partly represent patterns in the 
network), the similarity in spelling tends to result in rt.:presentations that maintain 
~orne proximity through the transformations from orthogr-dphic to hidden to semantic 
layers of tht: nemork . But then the in teractin: dynamics among :<ememes put the 
two words on to d1veq~ing trajectories (less di rect than shown) towards distant 
attractors. The additional words shown (without their basins of attraction) indicate 
that attractors for other words in the same semantic catt:J{Ory tend to be nearby. 

The interalti\·e connectiOns that Implemented this dynamic were of two kinds. 
First, Hinton and Shall iC'e inserted pairw1se connections between sememe units 
within the same semantic role ensemble, which tt:nded to produce Hln'ing degrees 
of laterdl inhibition within these groups. Second, they added a set of 60 clean-up 
rmits '' hich rece1ved input from the sememe un its and sent activation back to them. 
These units learned whirh combinations of sememes were characte ristic in the 
corpus and guided the sememe patterns towards these combinations. For example. 
when the un its for size:small and hardness:hard and shape:JD all arc active, 
location:indoors also ~huu}d be active, The clean-up un its will notice that and 
boost the net input to the location:indoors unit over time until it crosses its 
acti\'ation thre~hold . That is, the co-occurrence of these fou r units is an attractor, 
and its dvnamics enhance processing of such words as mug, cup, can, gem, and bone. 
:\1orenve.r . the entire sememe pattern comprising the meaning mug is an attractor in 
part due to this subregularity and in part due to idiosyncratic factors and other 
subregularities it shares \\ ith other words. For example, mug shares t he cluster 
use:for-eating-drink.ing/location:on-surface/location:indoors/shape:JD "ith 
rm1, nmr, pnp, and /iml' (cup differs becaust: it is pl:~ced on a saucer rather than on a 
~urface :~nd gt'm and bnne are not used for eating or drinking). In effect, :~ttractor 
hasins for subregulanties like these :~rc assembled into word-sized attractor basins, 
each of \\h1ch occupies a distinctive region in the full 61!-dJmensional semantic 
space. These 40 basins guide the: network into the appropriate medning for each 
input despi te the initial tendency to keep ' 'isuallv similar words too close together. 

8.3.1.2 i\tlodeling tht plwnolo~?iwl pathway When:as 1-lmtnn and Shallice intro
duced intcractivity because they anticipated that attracton; in semantic space would 
hr:lp soh·e u problem, Plaut. McCit:lland, Seidenbt:rg, and Patterson ( 1996; here
after, PMSP) included an interactive network as part of a long-stand in~ commitment 
to inte ractil'e 11rchitcctures on the part of their research team. They compared it to 
an othc:T\\ isc identical feed forward network in part to lind out whether intcractinty 
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Figrm: 8.5 A ~~:hematic illustration in just two dimension~ of how attrllctor dynamics 
uverconu: the tendency for ,·isually similar 1nmls like and HUD and iHUll to hmd 
near each o ther in semantic •pace (Hinton and Shalh~:e , JI)C)J ). Each word 's ml·amng 
.:urrcsponds to a pwnt attra.:tor ( large dnrs , far ·'P"rt for these two words) whos.:: l.1rge basin 
uf attracmm includes the aniti.1l pomt of cntf') to the spa..·e (sm all d ots. nc:lrby for thcSt: two 
wordt). Via mtcractl\ c prnn:S»ing e,och word fullows ,, trliJedory (lo:ss dir.-~ t rhan sho\\ n ) to 
the: apprnrriate poant attractor, mud or mrlf(. :'\'ott' that mrrg os dos~ ro rrrp , not to mud . 

would he disadvantageous for th1s particular task. which modeled the pathway lead
in~ from ortho~raphy directly to phonol~y. Though ultimateh· thev expected the 
entire network in fi~ure 8.4 to be in\'OI\'t:d in the reading-aloud task, this path'\\ay 
,:ecmed most crucial for readin!: in !(encral (espeCially somewhat mechanical or 
absent-minded reading) and for a form of surface dyslexia in "hich hl\\ -fre4uency 
exception words are especially prone to disruptron. Like Hinton and Shallil'e, they 
planned to simulate one form of dyslexia by lesioning their nct'\\ork (this part of 
thei r project is d1scussed in section 10.2.3). 

Reading aloud is a task that is quasi-rt'J.!IIIar; that is, largcl) systematic. bur with 
exceptiOns. For example, .'H /NT, fl l!VT, and T/.VTare regular words hut PINT is 
an exception \\ord he~:ause irs vowel has an atypical pm nunciation. The regularities 
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an· sometimes described using rules of grapheme-phoneme corre~p,mdence, but one 
uf Pi\ ISP's goals was to show that both regular and exceptional pronunciations can 
be successfully mudded using a network rather than explicitly stated rules. Pl\ISP 
tn1ined their network ro map graphemic into phonemic encodinJZS using a corpus of 
2,91JK regular and l'XlTption won.h. (resrrictL-<.1 to onsct-\'owekoda monosyllables, 
l'.g-.. TH-1-NK ). Like Hinton and Shallicc thL·y used a localist, posi tion-specific 
cnco<.linu scheme, hut it had to be more elaborate because their words were more 
complex (they could mclude multi-letter graphemeN like TH and also multiple gr.!ph
crncs in ea.:h pos1t10n). Then.: were 105 grapheme units divided into three en
sembles: Jf) onset units such as G, W, WH. and TH; 27 \'Owel units such as .4, /,AI, 
00. and 0 Y; .md ~8 codd umts such as G, X, KS, TII, SS, and TCH. The hidden 
and phoneme layers were as shown in tigure 8.4. The three f.(roups of phoneme units 
Wl're position-specific for onset, ,·owcl, or coda. !\lore than one unit could be actin· 
fur a position ; for example, to present THINK to the net\\ork requires activating 
three onset units (the pnmary grapheme 7'flllnd by conventiOn also T and H ), one 
vowd unit (I) and two codu units (N and K, whi~h arc separate graphemes). In 
addition to the feedforward connections, each phom:me unit sent a lateral connec
tion to C\'el)' other phoneme unit (induding it!a.:lf) and ll feedback connection to 
each hidden unit ; it was interactive processing across these two sets of connections 
that produce.-<.! attractors in thc network. (Note that the use of position-specific 
l'l\semblcs of units in the input and output layers contrasts with Sddenberg and 
:\>lcCiclland's usc of Wickelfeature reprc.-s.:ntations in a I 989 model; reasons fur 
ch.mging therr encoding ~ysrem are noted rn section 10 2.3.3.) 

Tht network w.ts trained W1th the backpropogation thro11gh tzme procedure (an 
adaptation of backpropagation for recurrent networks). After I ,900 epochs of train
In!{ 1t had lt·arncd to pronounce all but 25 of the 2,998 regular and exception words 
in the corpus. The comparison network, which had the same feedforward connec
tions but neither tvpe of recurrent (interactive) connection , learned much more 
~:asily; it made 0 errors dfter just 300 epochs of traming. However. given that inter
active networks ~re more neurally plaus1ble than purely fcedforward networks, PMSP 
thought it important to lind out \\hether an attractor network was able to generalize 
its trainin,11; on Y.ords so as to attain human- like performance in pronouncing 
nonwords. ft was by no means obvious that this would be the case, since attractor 
dynamics arc supposed to help ensure that a network's response will be one of those 
already learnt:d (e.g., the pronunciation "think," which is /Oink/ in phonemic nota
tion), not only to the inputs on which it \\as trnincd (e.g. , the written word THINK) 
hut also to s imrlar inputs on which it was not trained. (e .g., the non word BIJ.VK). As 
lonJ{ as the input activates a point within some word 's basin of attraction, the 
i nteraction~ between the units during st!ttling should result in the activation of that 
\\ord. Th1~ would seem to preclude the network correctly reading aloud nonword 
test items; for example, if the initial response to BINK fcll into the attractor basm 
tor the pronuncrarmn of THINK it would be incorrectly pronounced ;Oink/ . 

In fact. thouAh, the network performed \'cry well. It was rested on a list of 86 
non words creHted by Glushko ( 1979}, in which half were derived from regular 
words and half from irregular words, and a list of 80 nonwords used by 1\lcCann 
and Uesn.:r ( 1987) for a control condition. Taole H. l compares the performance of 
human participants in their studies with that of the interactive (attractor) network as 
\\ell as the comparable feed forward network . The simi larities are impressive , with 
the same pattern of d1fficulty in each rnw and the absolute percentages 'ef} close in 
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Table 8.1 Percentages of regular pronunciations in tests of three sets of nonwords 

Glushko (1979) 

Reader 

Humans 
Interactive network 
Feedforward network 

Regular 
non words 

93.8 
93.0 
97.7 

Note: Adapted from Plant et al. (1996), table 3. 

fKception 
non words 

78.3 
62.8 
67.4 

McCann and Besner (1987) 

Control 
nonwords 

88.6 
86.3 
82.5 

two of the three columns. Moreover, error in the networks, used as an index of 
difficulty, showed the same regularity by frequency interaction as human naming 
latencies (i.e., infrequent exception words are slower than frequent ones, whereas 
regular words show little or no frequency effect). A closer analog to naming latency 
was available for the interactive networks (average time to a criterion of stable 
responding); it showed the same interaction. (However, Spieler and Balota, 1997, 
argued that the model should yield good predictions of relative performance by 
humans on individual items, not just two-way interactions involving broad categor
ies such as high-frequency items. On their analysis, it did not.) 

How was an attractor network able to respond appropriately to nonwords? PMSP 
proposed that the network's primary strategy was to develop, not whole-word 
attractors, but rather componnctiaf at tractors- one each for the various onset, vowel, 
and coda clusters that make up words (a duster contains one or more graphemes or 
phonemes, such as theN and Kin the coda of THINK). That is, the network did 
not always treat written words as unanalyzed wholes but rather teamed the usual 
pronunciation of each onset, vowel, and coda that recurred across the words of the 
corpus. It encoded them as "soft" activation-based correspondences between ortho
graphic feature patterns and phonemes rather than "hard" grapheme-phoneme cor
respondence rules. Learning the regularities in this way produced attractors for 
particular phoneme clusters in phonemic space that were associated with the appro
priate orthographic clusters via additional attractors in hidden-unit space. To pro
nounce a regular word, in effect, the network found the intersection in each of these 
spaces of the attractors for its onset, vowel, and coda. The same dynamic could work 
just as well for pronouncing nonwords composed of novel combinations of familiar, 
regular phoneme clusters. For example, the intersection of attractors for /b/ and / i/ 
and /nk/ would yield the correct pronunciation of BINK even though the entire 
pattern BINK had never been experienced. 

Exception words are more complex, since they present a mixture of regular and 
irregular correspondences. PMSP suggested that the system takes advantage of 
whatever regularities do exist within the word but goes part-way to a whole-word 
approach to handle the more idiosyncratic aspects. In order to support this claim, 
they created several innovative analyses of how the onsets, vowels, and codas of 
various types of words were handled by the network. For example, if MINT were in 
the corpus, they could show that the orthographic encoding of the onset M would be 
responsible for the inclusion of /m / in the network's output, the vowel/ would be 
responsible for /i/, and so forth. But for the exception word PINT, the onset and 
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coda in the orthographic representation actually would be more influential than the 
vowel. These analyses provided a window on what was happening at the hidden 
layer in the absence of a good way to directly examine the attractors that developed 
there. Even the indirect analyses were too complex to describe here, but the need for 
them underscores that part of the unfinished business of connectionism is to attain 
better tools for understanding activity in large networks. In the next section we 
return to a simulation by Jeffrey Elman that was discussed at some length in section 
6.4. We can now view it as a discrete dynamical system and examine an additional 
analysis he performed which combined principal components analysis with state 
space plots to get a direct (though partial) look at hidden layer activity. 

8.3.3 Discovering trajectories in SRNs for sentence processing 

One way of examining the activity of units in a network is to plot trajectories in a 
state space. Each dimension represents the activation value of one unit, and a traject
ory in this space displays the changing state of the network across time. As we saw 
above, Beer (1995) made good use of this method to unearth the reasons why his 
autonomous, coupled, and mixed networks behaved so differently in certain tests. 
By limiting his analysis to three motor neurons controlling a single leg, he was able 
to provide three-dimensional displays of the limit cycles that evolved and, for the 
networks with variable input, characterize the dynamics in terms of instantaneous 
trajectories and attractors. 

In this section we show how Jeffrey Elman (1990, 1991) used trajectories in state 
space to explore the activity of simple recurrent networks (SRNs). His project is 
otherwise so different from that of Beer that it provides some sense of how broadly 
useful the tools of DST can be. One difference is that Beer had an unusually small 
number of units to examine. For most network models, including that of Elman, 
some method of collapsing the activity of numerous units into a low-dimensional 
plot is needed in order to visualize the state space. Another difference is that SRNs 
have a distinctive design that lies somewhere between interactive networks (whose 
recurrent connections can exhibit attractor dynamics) and feedforward networks 
(which have no recurrent connections and cannot develop attractors). They have 
recurrent connections, but they are used in a special way that enables the network to 
retain and re-use a (compressed) history of its own sequence of states (it recursively 
copies states; no attractor dynamics are involved or possible). Changes of state are 
discrete, in response to input, but the possible changes are constrained by the state 
history that forms part of the input. In DST terms, SRNs are nonautonomous 
systems (because they receive input) which change state at discrete time-steps (once 
per input) and might be viewed as composed of subsystems, two of which are 
coupled (because the units that store the state history and the hidden units provide 
input to each other). 

As we discussed in section 6.4, Elman trained simple recurrent networks to pre
dict successive words in a corpus of sentences. He was interested not merely in the 
network's success, but also in understanding how it accomplishes its task. In his 
1990 paper he used cluster analysis to show that hidden unit patterns were similar 
for words with similar privileges of occurrence in sentences; that is, patterns for 
words in the same syntactic/semantic class, such as human or transitive vnb, were 
clustered together in the hierarchy extracted by the analysis. This way of examining 
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hidden-unit activity was necessarily rather coarse-grained: since patterns had to be 
averaged across contexts to obtain a single pattern for each word, the cluster analysis 
provided no insight into how the hidden-unit patterns for a given word varied 
according to current grammatical context. Such variations play a key role in enab
ling an SRN to predict the next word. 

To examine the time dimension rather than averaging it away, a DST framework 
would suggest plotting the trajectories of the activation patterns on the hidden layer 
as the network moves from one word to the next in a corpus. For a network with 70 
hidden units this would require a trajectory in an activation space of 70 dimensions, 
which can easily be computed but cannot be displayed on a page nor grasped by 
mere mortals. Elman (1991) turned to principal components analysis as a method 
for taming the surfeit of detail. This statistical procedure extracts a set of orthogonal 
dimensions (principal components) that captures much of the structure in the data 
and projects the high-dimensional vectors on to this reduced space. If the number 
of derived dimensions is still larger than desired, a state space plot can be limited to 
two or three of them (selected because they account for the most variance or are 
most relevant for a specific analysis). Elman views his networks as having learned 
constraints on possible trajectories. When a word is presented along with a record of 
the sentence's trajectory so far (on the input and context units, respectively), the 
hidden units integrate this information and propagate it to the output units so as to 
activate one (or more) words that meet the constraints. The plots generated using 
dimensions from the principal components analysis display the word-by-word tra
jectory of a sentence through a subspace of the overall hidden-unit activation space. 

Elman (1991) used this technique to view some of the dynamics involved in pro
cessing sentences generated by a phrase structure grammar (the grammar and the 
"starting small" technique of training simple sentences first are the same as in Elman, 
1993; see section 6.4 for details). Figure 8.6 displays plots in the two-dimensional 
state space obtained from principal components 1 and 11. This particular hidden
unit subspace happened to be particularly informative about the processing of relat
ive clauses. A separate plot is provided for each of the following sentences. (To 
minimize other influences on the trajectories, boy is the only noun used throughout.) 

(a) boy chases boy. 
(b) boy chases boy who chases boy. 
(c) boy chases boy who chases boy who chases boy. 
(d) boy who chaset boy chases boy. 

Consider sentence (a). The first word (boy) is presented on the 26 input units and 
becomes re-encoded on the 70 hidden units. Weights on the connections leading out 
from the hidden layer support the network's prediction on the 26 output units 
(which 1s not a single word, but rather all words that satisfy the distributional 
constraints of the corpus: all of the singular verbs, including chases, plus the word 
wlw). When the 70-dimensional activation vector on the h1dden layer is projected on 
to the subspace to give us a partial look at it, in figure 8.6(a), we see it has landed in 
the lower right comer (at a point high on component 1 and somewhat low on 
component 11 ). Now the network is (in effect) wiped clean except that the hidden· 
layer vector is copied on to the context units and the next word (chases) is presented 
on the input units. This combination produces a hidden-unit vector that projects to 
a middle left point in the state space. After it has been used to predict the next word 
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Figu~e 8.6 Trajectories through activation state space aa Elman's (1991) simple recurrent 
network (SRN) predicts successive words in a corpus generated by a phrase structure 
grammar. Only the first and eleventh principal components of the hidden unit activations 
are shown. Sentences (a) through (d) are displayed counter-clockwise to facilitate 
comparison of (a) to the sentences obtained by addma an obJect relative clause (b) or 
subject relative clause (d). Recursion of the object relative clause ia shown in (c). 

on the output layer, this new hidden-layer vector (which now encodes the history of 
hidden-layer responses to boy.and then chase) is copied on to the context units and 
the next word (another token of boy) is presented on the input units (it is another 
token of boy, and would have been among the predicted words on the previous step 
if the network had learned its task well). This combination (boy as the next word in 
a sequence beginning with boy chases) produces a hidden-unit vector different enough 
from the first one that it projects to a different part of the state space (it is similar on 
component 1 but much higher on component 11 than the first boy). 

To make this short sentence's trajectory easy to see in figure 8.6(a), the three points 
in the state space are labeled and joined with lines, with an arrowhead added near 
the beginning and a square at the end. It is a genuine trajectory, in that each state is 
constrained by the previous state (e.g., the positioning of boy is context-dependent). 
However, because the state changes are discrete and input-driven, intermediate 
points are not actually traversed by the network. The lines merely indicate the 
temporal order in which the system jumps from one point to the next. Nonetheless, 
it will become evident as we discuss plots (b)- (d) that state-space plots combined 
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with principal components analysis provide an extremely useful window on the 
sequential activity of simple recurrent networks. 

Figure 8.6(b) shows what happens when an embedded clause is added to the simple 
sentence (a). The trajectory begins as in 8.6(a) but then reveals (for just components 
1 and 11) how the network deals with a relative clause modifying the object. Though 
who is a subject, like the initial boy, the network takes note of its relative pronoun 
category and context by producing a hidden-layer encoding that yields a negative 
value on component 1 (i.e., the trajectory jumps to the far left of the state space). 
The embedded chases boy subtrajectory is more like that of the main clause: though 
displaced somewhat, it still has the object boy higher and further right than the verb 
chases. 

When yet another relative clause is added, figure 8.6(c) shows that a triangular 
subtrajectory much like that of the first relative clause is produced - but displaced 
slightly. This small difference in states is not accidental; it reflects the fact that 
although each clause is linguistically identical (a relative clause modifying an object) 
their contexts are different. One is preceded by another relative clause; the other ia 
followed by another relative clause. Elman states that the failure of the network to 
informationally encapsulate each clause contrasts with the way recursion is handled 
in a formal grammar or computational push-down stack. He calls the network's 
solution "leaky recursion" (p. 2!8) and argues that it is actually advantageous to 
encode the same kind of clause in different contexts a bit differently on the hidden 
layer, even though they result in the same output behavior (the network produces 
the same sequence of word predictions twice). 

The remaining plot, figure 8.6(d), shows what happens when those same words 
must be predicted, but in a context with very different sequential dependencies 
(modifying the subject rather than the object). The fact that the words make up a 
relative clause is reflected in their now-familiar triangular subtrajectory; the fact that 
this clause modifies a subject rather than an object is reflected in its very distinctive 
placement in the space compared to 8.6(b).) 

What if additional relative clauses are added? Since an increasingly long history 
must be compressed on to a fixed number of hidden units as they recursively track 
progress through a sentence, eventually the network's performance degrades. In 
sentence (d), for example, the first boy and the final chases must agree in number. 
The second principal component (not shown in figure 8.6) is especially sensitive to 
the subject noun's number; here, it captures that boy is singular, not plural! The 
weights leading out from the hidden units know how to use this information to 
predict a verb that agrees in number (here, chases rather than chast), and also know 
how to delay exercising this knowledge when an intervening embedded clause is 
encountered. With additional embeddings, the hidden-layer encoding becomes too 
compressed and sends less usable information to the outgoing weights. In a nutshell, 
networks (like humans) become less dependable at dealing with long-distance depend
encies as distance increases. 

8.3.4 Dynamical analyses of learning ia networks 

The state space plots in this chapter have displayed activation spaces for networks, 
some (such as Elman's) focusing on individual trajectories and others (phase portraits) 
showing at least some of the attractors in a particular system. State space plots can 
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also be used to display a network's weight space and the trajectory of weight changes 
it traverses during learning. Because error reduction plays such a key role in con
nectionist learning algorithms, generally a dimension is added to the weight dimen
sions which displays the amount of error associated with each weight state. In chapter 
3 we introduced two plots of this type. Figure 3.1 was the simplest possible plot: error 
on the vertical axis and the range of possible weights for one unit on the horizontal 
axis. Its curvilinear function indicated how much error was associated with each 
weight within a range for a hypothetical system. The lowest point on the line is 
especially important; we referred to it there as a global minimum, but in dynamical 
terms it is an attractor. (The single local minimum in that figure is also an attractor.) 

Learning rules such as the delta rule and backpropagation are gradient descent 
rules, which means they change weights in a network so as to follow a trajectory to a 
lower error. The various points in weight space from which a network will settle into 
a particular minimum constitutes its basin of attraction. When there are multiple 
attractor basins, as in figure 3.!, they are separated by repellors- points in the weight 
space from which the system will move away. (A successful learning procedure can 
escape local minima by perturbing the weights enough to get beyond repellors.) In 
figure 3.3 we showed how such a weight space representation can be generalized to 
two weights.5 Again, the low points are attractors (now on a two-dimensional error 
surface rather than a line), and gradient descent will lead the network to follow a 
(frequently meandering) downwards trajectory. The networks used to model human 
performance generally have high-dimensional weight spaces, but the same general 
concepts apply. 

8.4 Putting Chaos to Work in Networks 

8.4.1 Skarda and Freeman's model of the olfactory bulb 

Most of the researchers reviewed so far in this chapter are card-carrying connec
tionists who design and test network models in the usual way and then add DST 
tools to obtain a better than usual understanding of how the models work. How does 
the research differ when DST is the starting point, and networks are simply one of 
the possible mediums in which to explore the potential of DST tools and concepts? 
Beer's work on network controllers for model insects provides a partial answer, and 
in this section we will consider work from two additional groups of investigators. One 
characteristic of DST -driven research that quickly becomes apparent in the original 
papers is the extent to which mathematical considerations and analyses are front and 
center. For example, the paper by Beer cannot be meaningfully summarized without 
talking about limit cycles and attractors. In this section we go further by consider
ing, at a very schematic level, systems that exhibit chaos in some phases of their beha
vior. Another characteristic is that DST researchers enthusiastically put genuinely 
novel findings on display. These are not easily assimilated by the uninitiated, and in 
section 8.5 we will discuss arguments for (and against) regarding dynamical approaches 
to cognition as a new paradigm that supersedes, rather than augments, existing 
paradigms. 

DST researchers also exhibit a bias towards systems with nonstationary dynamics 
- those with an intrinsic ability to keep moving between states rather than getting 
stuck in an attractor. This contrasts with the typical connectionist view of networks 
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as input-output devil:es; from that pcrspccti\'e, using an input to push a system's 
stare into the appropriate poim attractor is a pretty interesting wa} to get an output. 
The fact that nothm~ will happen next, unless ~tn external agent 1-eros the acti,·ation 
valut-s and supplies another input, has not been a high-priority concern. Christine 
A. Sk.~rda and Walter J. Freeman ( 1987, p. 172) tried to ra1se nmsciousness on this 
issue by not in~ that "the neural system does not exhib1t bt-havior that can~ modeled 
\\ ith point attractors, except under deep anesthesia or Jt>ath . Cumergt.>nce to a point 
attraetnr amounts to 'death' for the system." Instead, they' iew the ner\'ous system 
as a dynamical !lystem that is constantly in mmion, findinll Jiffcnm t opportunities 
not only on trajectories within a single phase portrait but also ;ls changes in para
meters reshape the phase portraits themsel\'es. 

E\'en the humblest aspect of nervous system functioning is re-construed by these 
neuroscitmtists: its background activity is chumc::d to emerge from deterministiC 
chaos rather th:m random noise. Dt•spitc the dmma of the term "chaos," th is simply 
means that the system continuously changes state alonK a trajectory that appears 
random but IS determined by the equations gon~rning the system and its 101tial 
conditions (the values of its \~driables at t.,) . Skarda and Freeman ,·i~:wed chaos as a 
way of keeping the O\'erall state space active and ready ICJr more targeted action, in 
contrast to tht: usual assumption that background activity is noise that is unrelated 
to signals and obscures them. (Chaotic systems art famous for their sensitivity to 
initial conditions - that is, small differences in initial values tend to produ~:e quite 
dissimilar trajectories - hut the particular trajectories arc unimportant for Skarda 
and Freeman's purposes.) 

Skarda and Freeman sought to entice their readers townrds th1s perspective by 
discussing Freeman's (1987) model of the olfactory hulh. The model is a network, 
bur is connectiomst only in the broadest ~nsc of that term. Its design was motivated 
by considerations from DST and neuroscience: each component of the olfactory 
ltystcm (with subsets of excitatory and inhibitory neurons of different cell types 
treated as separate components) is repre~nted b y a second-order nonlinear differen
tial equation, and these components are ~·oupled \'Ia excitatory and inhibitory con
nections into an interactive network. In a painstaking sc::ries of studies, Freeman and 
his earlier collaborators had conditioned animals (typically rabb1ts) ru respond to 

particular odors. In trackmg concomitant electrical activity using EEG recordings, 
they had found that the olfactory bulb exhibits a pattern of d1sorderl} firing during 
exhalation and more orderly finng during inhalation. The model exhibits similar 
alternations. During l.tte exhalation it recdves no input and behaves l·haotically -
engaging m "restless, but bounded, activity" (p. 165). During mhalauon an odor is 
supplied, which usually sends the systt:m from chaos into the basin of one of several 
limit cycle attractors that rather suddenly make an appearance. Each attractor is a 
pre\ iously learned response to a particular odor (exct:pt that one corresponds to a 
no-odor control condit1on); hence, the S}'stem can be s.'lid to have recognized an odor 
when the system lands in the appropriate arrractor. 

:"'ore that the recoJZnition response is not :;tatic. F1rst, ''hen the tnlJectory is 
p ulled an to a limit t•ycle attractor it cydes throul(h multiple states (1 s. a point 
attractnr's single state). Second, once:: that cyclic uttractor has done 1ts Job, other 
aspl·Ctl' of tht: system 's dyn,tmlcs (referred to :~s nonstationary) pro\lde mutes into 
other activity. One way our is that the relatively orJ{,mlzed phase portrait for inhala
tion mcludc::s the lo\\ -energy chaotic f).>e/1 to which the s~ .. rem will retreat 1f a no,·el 
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~ Ex~ation 
•:. · '- - motivabon 

~Wakngrest 
~ 

c;JAi(p Deep anesthesia 

F igurt' ,'1. 7 H yp01heu cal pha~ portrans for the: (I) factory system Repnnred ~A11h 
permi:ss1nn frum Frel·man (19l!7, p. 146), who c:mphasized the inhalation and l'Xhalation 
pha:>t'~ ul r.tbbns when mutivatcd b~ presentation nf prel'lously conditionl'd ndors. 
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odor IS supplit:d (and from which a new hmit cycle can form across rt:peated presen
htt lons). The more usual way out is that the phase portra1t itself 1s contmuously 
chanjling. During exhalation the limit cycle attractors disappear and the:: system 
finds llt"W opportunities in chaos. Skarda and Freeman (p. 168) "conjecture that 
chaotic ac tivit)' provides a way of t"Xerc1smg neurons." On the next inhalation, chaos 
plays a murt: task-relevant role, allowing " rapid and unhiased access to every limit 
l'yde attractor ... so that the entire repertoire of learned discriminanda is available 
tu the animal at all times for instantanc::ous access. There 1S no search through a 
mtmory store. '' 

For Skarda and Frt:eman, tht:n, odor recognition is achievt:d when the olfacrorv 
system altcrnatt:s between relatively fre~:-ranging chaotic behavior (exhalation) and 
odor-specific cyclic behavior (inhalation). 'Tbe same system is capable of reaching 
extrt:mes of anesthesia and seizure, as sho\\n by the hypothetical "snapshots'' of 
some of irs possible phases in figure 8.7. In each phase portrait the two primary 
dimensions represent the overall acti\'ity of two subsets of neurons (c::xcitatorv and 
inhibitory). The I'Crtinll d1mension repn:sents the amount of energy when a p~int is 
:u.tive. During anesthesia a point attractor produces a temporary "death" (very lo\\
cJ1l•rgy state). A point repcllor replaces it as the system moves to a \\liking rest. A 
chaotic wt:ll (the:: circular trench, whose hase 1s a chaotic attractor) develops and 
deepens a~ thl' s~stem becomes more motivated and alternates between exhalation 
.md inhalation. The limit cycles are represented in the center of the inhalation 
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portrait, and become latent as the system relaxes into exhalation or (exceptionally) 
gets repelled into the degenerate, low-dimensional chaos of seizure. 

The system's ability to temporarily lose and regain its limit cycles via its own 
nonstationary dynamics is an intriguing solution to the problem of how to stop 
responding to one input and begin responding to another. To understand what 
moves Freeman's model between inhalation and exhalation, recall the logistic equa
tion (equation (1)). In figure 8.2 it was seen to exhibit chaotic dynamics in a region 
with values of A beyond 3.6. But within this region there existed values of A for 
which the dynamics again became periodic. This suggests the possibility of a system 
moving from chaotic regimes to temporarily stable ones (and back to chaotic ones) 
through small changes in parameter values - an ability that would be extremely 
useful for a nervous system. The equations describing the functioning of the olfactory 
bulb are more complex, but they show this same characteristic. Importantly, changes 
in parameter values are not arbitrary (e.g., some reflect the influence of systems to 
which the olfactory bulb is connected). As Skarda and Freeman (p. 167) note in 
discussing the overall states captured in figure 8.7: "[T]he olfactory system and ita 
corresponding model have a hierarchy of states. The basic neural dynamics and the 
equations are the same in all states but, depending on various neural conditions 
and model parameters, the systems behave differently .... Both systems display the 
capacity for abrupt, dramatic global jumps from one state to another. These are the 
bifurcations." 

8.-4.2 Shifting interpretations of ambiguous displays 

In Freeman's model, changes in parameter values (usually due to the activities of 
related systems) are responsible for the system's transitions; the role of chaos is 
affected by, but does not effect, those changes. Chaos has been argued to play a 
much more prominent role in the spontaneous shifts of attention that people report 
when they look at such well-known ambiguous figures as the duck/rabbit, young/old 
woman, and the Necker cube. For example, Cees van Leeuwen and his collaboratoR 
(van Leeuwen, Steyvers, and Nooter, 1997) proposed a DST -based network model 
of people's shifting perceptions of the ambiguous display at the center of figure 8.8. 
To the left and right of it are unambiguous displays that produce relatively stable 
percepts. The same network model that can simulate ordinary percepts like theae 
becomes destabilized in the presence of the ambiguous display. repeatedly switching 
between column and row interpretations of its organization. In their words (p. 321): 
"The noisy processes which help construct the pattern will revolt against it, once it 
becomes established." In achieving switching behavior, they made an important 
advance beyond the first network model of perceiving ambiguous figures, in which 
the network settled to one of two point attractors (chose one of the possible inter
pretations of a Necker cube) but then stopped (Rumelhart, Smolensky, McClelland, 
and Hinton, 1986). 

The work of van Leeuwen et a!. expanded upon three related strands of research. 
First, Skarda and Freeman (see section 8.4.1) had the insight that chaos may be 
fundamental to perception and constructed the first network model in which chaotic: 
and stable behavior alternate. 

Second, j. A. Scott Kelso showed that coupled systems with nonlinear dynamica 
could switch between metastable (not quite stable) states at irregular intervals, rnim-
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Figure 8.8 Stimuli used in van Leeuwen, Steyvers, and Nooter (1997). If the gestalt 
principle of symmetry is used to group items, the black squares in the left display will be 
grouped vertically and those in the right display horizontally. Those in the center display, 
however, will be ambiguous and subjects may alternate between grouping them vertically 
and grouping them horizontally. 

icking the switching intervals of people asked to press a button each time their 
interpretation of a Necker cube reversed. On Kelso's account (see Kelso, t 995), each 
interpretation is attractive to the system but is not quite an attractor. The system 
therefore exhibits intermittency, alternating between metastable states and chaotic 
bursts in which the system breaks free and moves erratically through state space. In 
the words of Kelso (1995, p. 200): "[T]he system dwells for varying times near 
attractive states where it can switch flexibly and quickly. Faced with ambiguous 
stimuli, the brain will be revealed as a twinkling metastable system living on the 
brink of instability,"6 Kelso also emphasized that the metastable states (and the flow 
of patterns in the brain more generally) are an outcome of self-organization. Patterns 
are generated by a large number of components interacting nonlinearly, with no 
supervisors or agents needed. Although Kelso gave considerable attention to the 
dynamics resulting when two or more self-organized systems become coupled, he 
characterized the systems themselves in terms of equations with a small number of 
variables and parameters (see section 8.5.2). 

This leads to the third strand contributing to van Leeuwen eta!. 's work. One way 
to understand how the systems became self-organized in the first place is to build a 
network model whose units are low-level components of the perceptual system. 
Kunihiko Kaneko ( 1990) explored the stability characteristics of a type of network 
called a coupled map lattice (CML). A lattice is a sparsely connected network in 
which the couplings (connections) can be viewed as topologically arranged such that 
neighbors are coupled and other units are not; for example, the Kohonen feature 
maps used for DISCERN's lexical and episodic memories in chapter 7 are lattices. 
A map is a type of function in which values are iteratively determined in discrete 
time; for example, the logistic equation (equation (3) in section 8.2.2) is a map and 
was used by Kaneko to obtain the value of each unit in a lattice at each time-step. 
This choice yields coupled nonlinear units which move between values within a 
range (oscillate) in discrete time either periodically (e.g., alternating between the two 
most extreme values) or chaotically (yielding a quasi-random sequence of values 
within the range). Such a network can exhibit different kinds of behavior depending 
on what values have been assigned to certain control parameters; among the possib
ilities are synchrony7 across periodic or chaotic units (i.e., all units in a cluster have 
the same sequence of activation values, even if that sequence is chaotic) and chaotic 
behavior across chaotic units (chaoto-chaotic emergence). 
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Van Leeuwen et al. proposed that CML networks could be harnessed as lower
level, self-organizing mechanisms for achieving intermittency in models of percep
tion. Given the ambiguous display in the center of figure 8.8 as input, an appropriate 
CML quickly comes to exhibit one pattern of synchronized activity for the colum
nar interpretation (as on the left) and a different one for the row interpretation (as on 
the right). These patterns are metastable states of the network, so they can suddenly 
reorganize (shifting the synchronization from rows to column! or vice versa, or 
under some conditions from global to more localized synchronization or vice versa). 

Preliminary to studying a full-scale CML model of perceptual orgamzation, van 
Leeuwen et al. first examined the simplest network in which synchronization can be 
achieved- a network of just two units. Since individual neurons probably are linear, 
each unit is best thought of as a micro-ensemble of excitatory (pyramidal) and 
inhibitory (stellate) neurons. The net input to each unit is calculated according to 
the following equation, in which a~ represents the value of unit x (our notation, 
reflecting that it is roughly comparable to an activation value in a traditional con
nectionist network) and C represents a coupling parameter (comparable to a connec
tion weight) that determines how much each unit is affected by its own value versus 
that of the other unit: 

(4) 

To obtain the value of unit x at each discrete time, they incorporated the net input 
calculated by equation (4) within the logistic equation (see equation (3) ): 

a, ... , ._ A netinput~., (1 - netinput~) (S) 

The net input and value of unity were obtained in the same way. As shown earlier (in 
figure 8.2 for equation (3) ), the values of a unit approach a point attractor at lower 
values of A and periodic attractors at intermediate values, but behave chaotically 
for most values above 3.6. This is how each unit on its own would behave. Because 
the units are coupled, however, the additional parameter (C) can alter these out
comes. The overall behavior of the two-unit network depends on the values of both 
A and C. 

In this miniature network it is easy to measure synchronization: the two units are 
synchronized when the difference between their activation values at each time-step 
is zero. Generally they do not start out synchronized, but van Leeuwen eta!. demon
strated that the size of the difference will decrease monotonically to zero when 

'Mt- 1/A) < C < 'Mt + 1/A). 

That is, for appropriate values of C relative to A, after a transition period the two 

units will exhibit the same sequence of values- a sequence which itself (dependina 
on A) may be chaotic. It is outside this range of guaranteed synchrony that thinp 
get interesting. The size of the difference may be a constant or may vary periodic;• 
ally, quasi-periodically, or even chaotically. Most relevant for a psychological model of 
perception, the size of the difference may vary interminently: alternating between zero 
(a semi-stable state of synchronization) and a chaotic sequence of values (wandering 
through state space until the difference rests temporarily at zero again) . 

Van Leeuwen et al. then extended their analysis to the larger CM L networks 
appropriate for perceptual tasks. For example, each unit in an array of 50 x 50 units 
may be sparsely coupled to just four other units- its neighbors in the array. (Note 
that van Leeuwen et a!. usually coupled each unit to its corresponding unit in 

CONNECTIONISM AND THE DYNAMICAl APPROACH TO COGNmON 263 

additional arrays as well, but one array is enough to get the key results.) They began 
by simply generalizing equations (4) and (5) to apply to more than two units, and 
found that small values of C relative to A tended to generate relatively small clusters 
within which units may synchronize their activity. What was needed to simulate 
shifting perceptions of the grid in figure 8.8, however, was a very specific synchroniza
tion m which the clusters were specialized to its rows and columns; for more stable 
perception of a large "X" pattern, two diagonal clusters (at different orientations) 
were needed. To obtain networks that could adapt to the input patterns of interest, 
they modified the way in which C and A were used. First, A became a variable 
controlled by input rather than a fixed parameter. Relatively hiah activity in the 
receptive field of a unit was realized by lowering the value of A for that unit. (This 
seems backwards, but lower values of A would tend to drive the unit to a level of 
chaotic activity at which it is more likely to synchronize with other units: weak 
chaos.) Second, the coupling parameter C was replaced by adaptive weights on each 
local connection plus a global parameter C,..., which scales those weiahts so as to 
produce a bias towards stability or instability (depending on the value of A). When 
the activation sequences of two units begin to synchronize the weight between them 
is increased; this favors greater synchronization in the succeeding time-steps. Thus, 
synchronization that initially just happened to occur between two chaotic sequences 
gets grabbed and used by the system to move towards more structured activity. In a 
sense, the weights serve as a short-term memory of recent synchronization that 
helps to reinstate that synchronization. With this occurring across multiple pairs of 
units simultaneously, the system can advance towards larger clusters within which 
all units are synchronized (e.g., a cluster specialized to the third column) and leave 
behind its chaotic behavior in favor of one of the metastable states (e.g., seeing the 
grid as organized in columns). 

Using this adaptive CML, van Leeuwen et al. were able to simulate the behavior 
of a perceiver switching between metastable synchronizations when the input repres
ents an ambiguous figure, but also attaining stably synchronized clusters when the 
input is an unambiguous figure. What is important is that the system has the in
trinsic capacity to achieve percepts via synchronization but also the flexibility to 
change to a different percept via desynchronization. Ambiguous figures are useful 
for researchers because they can be counted upon to put the system into irregular 
swings between synchronization and desynchronization. This case would be only a 
curiosity, though, if it did not point the way to the system's overall design and capac
ities. That the same system can handle unambiguous figures is an initial demonstration 
of the generality of the design. Recently this research group has provided further 
demonstrations. Within perception, they have shown that CMLs can provide an 
especially efficient solution to Grossberg's boundary contour problem (van Leeuwen, 
Verver, and Drinkers, 2000). In a much bolder move, they have proposed to extend 
the timescale at which coupled maps are considered to operate downwards as far as 
iconic memory and upwards to long-term memory (van Leeuwen and Raffone, 
2001 ). In this unified view of perception and memory, representations at a variety of 
timescales may be realized and maintained by the chaotic dynamics of coupled 
oscillators. A bold claim elicits tough questioning. Much work would be needed to 
show that this mechanism is adequate to account for a broad variety of perceptual 
and memory phenomena; and even if it works as a base, additional mechanisms may 
be needed as well. There is also the question of whether this is the way the brain 
actually does the job. 
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The questions raised by chaos-inspired dynamical models, exemplified here by 
those of Skarda and Freeman and van Leeuwen's group, will not be answered quickly. 
The results to date suggest that incorporating a DST perspective in the very design 
of networks yields distinctive properties which may be used to advantage in modeling 
and may also change the way cognitive scientists think about perception and cogni. 
tion. However, the approach is too new to have moved much beyond individual 
models; for example, Freeman and van Leeuwen make very different uses of chaot. 
As researchers gain more experience with DST -driven network design, principles 
and practices will emerge and the approach will have its best chance of gainina 
increased visibility and impact within cognitive science. Will enough researchers be 
sufficiently enticed to re-situate their own work within an unfamiliar theoretical 
territory, bringing about a Kuhnian paradigm shift? If so, would the impact of 
connectionism be seen retrospectively as merely transitional? We now leave specific 
models behind and return to philosophical inquiry into implications. 

8.5 Is Dynamicism a Competitor to Connectionism? 

8.5.1 Van Gelder and Port's critique of cJas.ic connectionism 

Connectionist networks are clearly complex systems and, as we have seen, certain 
connectionists have found DST tools to be extremely useful in analyzing the behavior 
of their networks and developing new kinds of networks. As exemplified in the 
quotation from van Ge.lder and Port at the beginning of the chapter, though, for 
some theorists the emergence of dynamical approaches offers not just a set of tools to 
be utilized within existing paradigms but an actual Kuhnian revolution in cognitive 
science. On this view, connectionism was not the real revolution: 

[C)onnectionism should not be thought of as constitutina an alternative to the com
putational research paradigm in cognitive science. The reason is that there is a much 
deeper fault line runnina between the computational approach and the dynamical ap
proach. In our opinion, connectionists have often been attempting, unwittingly and 
unsuccessfully, to straddle this line: to use dynamical machinery to implement ideaa 
about the nature of coanitive processes which owe more to computationalism. From the 
perspective of a genuinely dynamical conception of cognition, classic PDP-style con
nectionasm (as contained in, for example, the well-known volumes [of] Rumelhart and 
McClelland, 1986, and McClelland and Rumelhart, 1986) is little more than an ill-fated 
attempt to find a halfway house between the two worldviews. (van Gelder and Port, 
1995, pp. 33-4) 

In support of this claim, they asserted that the classic connectionism that used 
networks (especially feedforward networks) as "sophisticated devices for mappina 
static inputs into static outputs" (p. 32) is disappearing as it splits into two distinct 
streams. Researchers in the relatively computational stream design networks that 
straightforwardly implement computational mechanisms or have hybrid archi· 
tectures. Researchers in the relatively dynamical stream design networks like thoee 
discussed in the current chapter and give at least some attention to their dynarruca. 
Van Gelder and Port allow that (p. 34): "Connectionist researchers who take the 
latter path are, of course, welcome participants in the dynamical approach" but aleo 
point to ways they differ from nonconnectionist dynamicists - especially thole 
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dynamicists taking the quantitative approach that van Gelder and Port regard as a 
standard or prototype. 

One difference that tends to keep connectionists at the periphery of dynamical 
modeling is the type of formal model employed: massive networks targeting the 
"microstructure of cognition" versus equations with collective variables targeting its 
macrostructure. Moreover, van Gelder and Port seem concerned that connectionists 
are still carrying baggage from the classical computational approach that slows their 
progress along the road from the halfway house. This concern is elucidated in 
several papers in which van Gelder laid out his view of the differences between the 
computational and dynamical worldviews (van Gelder, 1995, 1998, 1999). In what 
follows we will first briefly contrast the two styles of modeling and then grapple with 
whether the computational baggage is a help or a h indrance by discussing issues of 
explanation and representation.• 

8.5.2 Two styles of modelin' 

Dynamicists generally strive for compact models in which one or more (preferably 
differential) equations capture the overall behavior of a system in terms of a very 
small number of variables and parameters. Connectionists (even those taking a 
dynamical approach) produce models which have about the same number of equa
tions but apply them repeatedly across the ranges of variables. Iteration of this kind 
yields as many activation values as there are units and as many weights as there are 
connections at each time-step. These differences in the type of formal model em
ployed reflect differences in goals and desired grain-size of one's account. 

For example, we have already seen that in van Leeuwen et al.'s CML account of 
the perception of ambiguous figures (a network-like dynamical model) a large number 
of coupled oscillators are governed by the same equations but do not behave identic
ally. They interact to produce conflicting, metastable interpretations of a stimulus. 
Kelso's (1995) standard dynamical account also achieves metastability (pp. 218-23), 
but with respect to the value of a single collective variable (~) that measures the 
synchrony of just two coupled oscillators. The two primary interpretations of the 
ambiguous figure are indexed by these values rather than simulated. It is a new 
application of Kelso's signature model of a surprisingly salient task: finger twiddling. 
People are asked to move both index fingers up and down either together (in-phase) 
or in opposition to one another (antiphase) in synchrony with a metronome. As the 
speed of the metronome increases it becomes impossible to maintain the antiphase 
movement, and subjects involuntarily switch to in·phase twiddling. This can be 
dynamically understood as a transition from a landscape with stable attractors for 
both types of movement to one with a stable attractor on.ly for in-phase movement. 
Intermediate values of relative phase (9') may appear during the transition (e.g., one 
finger just a bit ahead of the other in their up-down cycles). The attractor landscapes 
( V) within which in-phase, antiphase or intermediate relative phases occur can be 
obtained from equation (6) by providing appropriate values of the parameters: 

v = -<p&J- (J cos tp - b cos 29' (6) 

To genuinely understand this equation and its ramifications, you must read Kelso's 
book. The main point here is that an equation with just a few parameters can give an 
account of the behavior of two coupled oscillators (here, fingers). The difference 



266 CONNECTIONISM AND THE DYNAMICAL APPROACH TO COGNITION 

between the fingers ' spontaneous frequency and the metronome's frequency is re
flected in &r>. The a and b parameters reflect (indirectly) the oscillation frequency 
(how fast the fingers are moving), and afb is a crucial coupling ratio (when it is small, 
osciUation is fast and in-phase movement is the only attractor). Certain combinationa 
of parameter values produce intermittency (the system fluctuates chaotically between 
the two kinds of movement, which now are semi-stable rather than stable). Change 
the realization of the equation from finger phases to competing interpretations of an 
ambiguous figure (by changing the interpretation of each collective variable), and 
voila- equation (6) models a perceptual phenomenon (the distribution of switching 
times) at an abstract level. 

Van Leeuwen et al.'s CML model is different in part because it does two jobs. 
Unlike Kelso's model, it simulates the percepts themselves- its units actually organ
ize themselves into synchronized columns or rows to simulate the two interpreta
tions of the ambiguous display. Like Kelso's model, though, it also models the 
more global perceptual phenomenon of semi-stable interpretation by repeatedly but 
irregularly switching between these percepts. 

This difference in style of modeling has other consequences. Certain concepts that 
are part of the "computational baggage" (our metaphor) apply much more natuntlly 
to dynamical network models than to standard dynamical models. In the ambiguous 
figures task, van Leeuwen et al.'s explanation comes in the fonn of a wuchaniltic 
motkl, within which the metastable patterns can reasonably be regarded as two 

alternative representations of the stimulus (albeit distributed rather than classical). 
Kelso's compact system was not designed to do these jobs; it models the fluctuation 
between interpretations of the stimulus array but not the interpretations themselves. 
In taking a closer look at these computational concepts and at the dynamical alternat
ives, we will find that each can play a different but useful role in exploring dynamical 
network models. 

8.5.3 Mechanistic versus covering-law explanations 

The notions of mechanistic model and representation that we find useful in think
ing about dynamical network models are rooted in stronger, classical notions: 
homuncularity and symbolic representation. Van Gelder (1995, p . 351) had the 
classical versions in mind when he characterized the computational approach in 
tenns of "a mutually interdependent cluster" of properties: "representation, com
putation, sequential and cyclic operation, and homuncularity." A computer program 
with subroutines is a prototype that gives a good, quick sense of what he meara. 
Computation involves discrete operations that manipulate representations; they 
apply sequentially (not in parallel); and sometimes a particular sequence of such op
erations will apply iteratively or recursively (cyclic operation - here a discrete notion 
that is not to be confused with oscillation or limit cycles in a dynamical model). 
When combined with these other properties, representations are sequences of mani
pulable elements that usually also have meaning (are symbolic) - this special case 
is the classical notion of representation. Before discussing representation further, we 
will take a look at computational versus dynamical approaches to explanation and 
the special case of homuncularity. 

The homuncularity property derives from Daniel Dennett's (1977) characteriza
tion of the components in a mechanistic model of the mind as homunculi. By thil 
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metaphor- whimsical but making a serious claim - Dennett saw the mind as a com
mittee of little agents, each with its own specialized subtask (e.g., discrimination, 
memory, evaluation), who pass messages (representations) to one another to perform 
the overall task. Each little agent itself can be analyzed as a committee of somewhat 
more specialized, less clever agents; and so forth until the lowest-level agents per
form primitive calculations such as picking the larger of two numbers. Put less color
fully, such a system has a hierarchy of components, each of which perfonns its 
subtask by taking representations as input, operating on them, and sending the 
outputs to other components. 

A mechanistic model relaxes this characterization, such that in some cases the 
components may function and interact continuously rather than discretely and their 
interactions may be better characterized as causal or information-bearing than as 
classically representational. One way in which scientists construct such a model is to 
first decompose a task into subtasks and then try to recompose it by specifying the 
component performing each subtask and its interactions with other components (see 
Bechtel and Richardson, 1993). The model is taken to provide an explanation of the 
system's perfonnance of the task. In principle the decomposition could continue down 
to primitives (cognitive models are often assumed to "bottom out" in neurobiology), 
but in practice modelers usually limit themselves to going down one or two levels. When 
the components of a model like this can be localized in the system being modeled 
(e.g., identifying edge-detectors in the primary visual cortex), Bechtel and Richardson 
(1993) call them complex systems to distinguish them from simp/~ systems (for which 
components have not been identified) and from int~grat~d systems (in which the com
ponents interact by feedback loops or other reciprocal connections- the most difficult 
kind of model and usually not achieved until a research program reaches maturity). 

Who needs mechanistic explanation? Most explanations in the mainstream of 
biology tend to be of this genre. Symbolic models in cognitive science generally 
qualify- they served as Dennett's paradigm case of homuncularity and van Gelder's 
prime target. (However, competence models such as Chomskian grammars have 
a componential structure that may not map cleanly on to the processing system 
modeled). Standard dynamical models are generally claimed to bypass the mechan
istic style of explanation. It is network models for which the question gets most 
interesting. but to show why, we first need to ask: what are dynamical modelers 
doing if not providing mechanistic explanations? 

One possibility is that dynamicists merely describe a system by identifying regu
larities in its behavior. But van Gelder (1998, p . 625) rejected this suggestion, noting 
that dynamical accounts of cognition are no different in form than dynamical ac
counts of physical phenomena such as planetary motion. Since the latter count as 
explanatory, so should the fonner. Indeed, his point is well taken; the contrast is not 
between explanation and description, but rather between two fonns of explanation. 
The logical positivists identified a form of explanation, deductive-nomological or 
covering-law explanation, which fits the dynamicist case. In a covering-law explana
tion, a phenomenon is explained by showing how a description of it can be derived 
from a set of laws and initial conditions. The dynamical equations provide the laws 
for such covering-law explanations, and by supplying initial conditions (values of 
variables and parameters), one can predict and explain subsequent states of the 
system. That is the appropriate kind of explanation for van Gelder, since he pro
poses to regard cognition solely as a dynamical system- one that changes states in 
time as expressed in equations. 
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Now we can consider networks. The simplest thing to say is that the type of 
explanation attributed to them can vary with the design of the network and with th 
designer's leanings between classical connectionism and dynamicism. Much mo~ 
interesting is the prospect that they may lead us to new kinds of explanation that 
comb~n~ a~d ext~nd current options. Van Gelder (1995, p. 374) projected that 
combmmg mgredaents of the two world views in connectionism "may well tum out 
to be an unstable mixture" and refrained from doing so; we prefer to focus on th 

· h · h e constructive synt es1s t at may emerge from the energy put into such a project. 
(Clark, 1997b, was similarly optimistic about combining these types of explanation 
and provided a thoughtful discussion of explanation more generally.) 

Here are some cases. Sejnowski and Rosenberg's (1986) NETtalk network can 
serve as an exemplar of a feedforward connectionist design, which in this cue 
provides a mechanistic explanation of reading aloud (see section 3.2.2.3 for more 
details). At the first level down, it is easy to identify components (the input, hidden, 
and output layers) and to state they are connected by two full sets of feedforwarct 
connections. Below that there are two more levels of decomposition on the input 
layer (seven sets of letter units) and one more level on the output layer (one set of 
articulatory feature units). It is distinctive to connectionist networks that the hidden 
layer affords only a functional decomposition: cluster analysis reveals functional 
components for various grapheme-phoneme regularities, vowels vs. consonants, etc. 
The connectivity of the network is also highly distributed, unlike classical systema. 
The designers built the network as a mechanistic model, but cannot give a complete 
mechanistic analysis of the microfeatures and microactivities that result from ita 
adaptive weight changes during learning. However, the incomplete mechanistic 
explanation is the best available; dynamical analysis has little to offer towards under· 
standing feedforward networks. 

When interactivity is added to layered networks of this type via recurrent connec· 
tions, complex activity extended across time and connections becomes very important. 
This aspect of a network model benefits from dynamical analysis. We suggest that a 
connectionist dynamical approach offers the opportunity to embrace both types of 
e~planation and use them to serve complementary purposes (see Bechtel, 1998). Most 
s1mply, the dynamical analysis can offer covering laws that characterize overall pat· 
terns of change in a system (generally in terms of aggregate or external variables) and 
the mechanistic one can show how those changes are effected. The connecti:mist 
researcher built the network, knows its components and how they are connected, and 
can use this knowledge to "go behind the scenes" and provide a (panial) mechanistic 
account of the phenomena captured in the dynamical covering-law explanation of the 
system. Dynamical tools may then be used not only to characterize the complete system, 
but also the interaction of the components. For example, in building the CML 
model of ambiguous figure perception, van Leeuwen et al. ( 1 997) knew from Kelao'a 
work that two coupled oscillators could produce the right kind of semi-stable beha
vior. They wanted to build a system at a much finer grain to model the microstructure 
and microactivity underlying the percepts themselves in addition to the overall semi· 
stable behavior. Their novel solution (using a large number of coupled oscillators u 
compo~ents) was informed by the prior dynamical model but extended it significantly 
by trea~mg compon~nt pa~ as dynamically interacting oscillatoB. The resulting CML 
model1s best descnbed usmg a combination of dynamical and mechanistic analysis. 

In another example from this chapter, a mechanistic analysis gets even further with 
Skarda and Freeman's (1987) model of the olfactory bulb. Built at an intermediate 
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grain-size, the "units" were just 16large nervous system components that were less 
homogeneous than the units of a connectionist network; for example, all of the 
excitatory (pyramidal) cells of the anterior olfactory nucleus were represented collect
ively in one component. However, their interactive connections produced complex 
behavior in the network as a whole. Dynamical concepts and analysis were crucial 
for understanding the chaotic and limit cycle behavior that emerged. Another 
example: Beer's autonomous controller network for insects' tripod gait has six replica· 
tions of the same five units (a componential organization at this level). Three of the 
units controlling each leg have well-defined subtasks (each clearly controls its own 
specialized motor effector) but are dynamical in their quantitative states and intercon
nected activity (including influence from the other two units- the intemeurons). 
Each leg's activity is best understood in terms of a limit cycle, but the state space is 
defined with respect to components of the network. 

The ability of these two perspectives to complement each other becomes even more 
evident when dynamical analysis is applied not only to the whole network but also to 
some of its components. This can work even in a network with thoroughly homo
geneous units within each layer. An interesting case covered above is that of Elman 
(1991), who knew the gross architecture of his simple recurrent network (SRN) for 
predicting words in sentences and could give a rough mechanistic account based on 
his own design work. However, he also used principal components analysis (a tool 
from yet another tradition, multivariate statistical analysis) to identify functional 
components of the system on the hidden layer and used DST tools to discover 
exactly what task those components were accomplishing. For example, plotting 
trajectories through the state space of components 1 and 11 revealed the phenom· 
enon that relative clauses were being wrapped corkscrew-like into the space. 

It is not known to what extent an orchestration of methods like this might yield 
insight into large networks with more complex interactions among units. Michael 
Wheeler (1998) considered the difficulty of explaining the activity of networks 
exhibiting what Clark (1997a, pp. 163-6) called "continuous reciprocal causation." 
An example is Beer's nonautonomous control network, in which sensor input com
pletes a loop between the controller and the environment, but Wheeler was most 
concerned about larger, more homogeneous networks and especially those in evo
lutionary robotics (see sections 9.4 and 9.5) whose organization is minimally con
strained by human preconceptions of design. He thought the eJtplanatory stance 
must become more holistic as the amount of continuous reciprocal causation in
creases, shifting away from modular (mechanistic) explanation and towards system 
dynamics. "The justification for this claim is that the sheer number and complexity 
of the causal interactions in operation in such systems force the grain at which useful 
explanations are found to become coarser" (Wheeler, in press, p. 16). Clark (1997a, 
p. 175) had a similar concern but argued for proceeding more optimistically, "add
ing new tools to cognitive science's tool kit, refining and reconfiguring but not 
abandoning those we already possess. After all, if the brain were so simple that a 
single approach could unlock its secrets, we would be so simple that we couldn't do 
the job!"9 

In accord with the more optimistic view of Clark, we look forward to seeing how 
much headway can be made, even with highly interactive networks, when mechan
istic and dynamical explanation are combined and extended. However, it is so early 
in dynamical network research that this suggestion of complementary, even integ· 
rated, use of two kinds of explanation must be tentative. Those who wish to use an 
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exclusively dynamical approach to cognition may find their own way to go behind 
the scenes, in some way parsing the system and building a hierarchy of dynamical 
models that cover a variety of grain-sizes from the overall phenomenon of interest 
on down. In his 1995 book, Kelso sketched such a vision in chapter 2 and considered 
modeling at neuronal levels in chapter 8. He emphasized, though, that his equations 
give a different parsing than does a mechanistic analysis of the biological systems 
that realize them. For now, networks of homogeneous units and connections, each 
with its own application of the equations governing the system, do a modeling job 
that is hard to replace by purely dynamical analyses. Can we do better than simply 
performing each kind of analysis separately? It would be most interesting if attempts 
to grapple with these problems led to new notions of explanation within the philo
sophy of science in addition to better models. 

8.5 . .f Representations: Who needs them? 

We turn now to a second area of discrepancy between connectionist and dynam
ical approaches that places those who seek to combine them at the periphery of 
dynamicism (but perhaps at the leading edge of the future of cognitive modeling): 
the role of representations. D isagreements about representation abound. It is least 
troublesome within the symbolic approach, where the notion that cognition involves 
operations upon representations (construed as structured sequences of symbols) is 
central. At the other end of the road, among those dynamicists who attend to the 
concept of representation at all, it tends to be either denied or radically redefined. 
Between these extremes are the connectionists, who see part of their mission as (leas 
radically) redefining representation. Activation patterns across the layers of a net
work are commonly (though not universally) regarded as "subsymbolic" (Smolensky, 
1988)- a departure from symbols in their fine grain, their status as numerical vectors, 
and the kinds of activity that generate them (parallel processing, and for interactive 
networks, settling into attractors or other kinds of change across a nontrivial tem
poral dimension). However, van Gelder and Port (1995) worried that connectionists 
taking this view (especially those working with feedforward networks such as 
NETtalk) have insufficiently shed notions of representation rooted in the symbolic 
approach. On this view, an unchanging composition of subsymbols is in danger of 
being treated as a static symbol. 

Dynamical reappraisals of representation were considered as part of an argument 
for the dynamical hypothesis by van Gelder (1998; quotes from p . 622). His starting 
point was to unequivocally dispense with "static configurations of symbol tokens"
a core commitment of what he calls the computational view (some of the commentators 
on this BBS paper, seeing computation as broader, would prefer a different term). 
The main alternative he noted is that dynamicists "find their representations among 
the kinds of entities that figure in DST, including parameter settings, system states, 
attractors, trajectories, or even aspects of bifurcation structures" and eventually "even 
more exotic forms." (See also van Gelder and Port, 1995, p. 12.) That he felt no 
urgency to pare down this mixed bag of possibilities reAects the fact that few if any 
dynamicists view representation as a core concern. Indeed, van Gelder also noted 
(refraining from endorsement or disapproval) the more radical view that dynamicists 
can develop models of cognition that "sidestep representation altogether. "10 He cited 
the work by Beer and by Skarda and Freeman (discussed above in sections 8.3.1 and 
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8.4.1) as exemplifying the ability "to imagine how any nonrepresentational system 
could possibly exhibit cognitive performances" and also to model such a system. 

One could quibble about whether models of sensorimotor function are a sufficient 
basis to argue that cognition more generally can be modeled nonrepresentationally; 
yet, they give a toehold. Freeman and Skarda (1990) clearly endorsed the position 
that representation can be dispensed with (at least in dynamical models of perception 
grounded in brain function) in a commentary with the title "Representations: Who 
needs them?" They answered: "Functionalist philosophers, computer scientists, and 
cognitive psychologists need them, often desperately, but physiologists do not, and 
those who wish to find and use biological brain alaorithms should also avoid them" 
(p. 379). Why should they be avoided? "(T]he idea of representation is seductive," 
giving "the illusion that we understand something that we do not" but in fact "is 
unnecessary to describe brain dynamics" and even "impedes progress" (pp. 375- 6). 
In illustration they gave this remarkable reprise of their olfactory bulb work (note 
that the "burst" they refer to is a spatial pattern of activity across the entire bulb 
under the control of one of the cyclic attractors sketched in figure 8.7): 

For more than 1 0 years we tried to say that ... each burst served to represent the odor
ant with which we correlated it .... This was a mistake. After years of aifting through 
our data, we identified the problem: it was the concept of representation .... [They 
explain that the pattern for a Jiven odor occurs only under conditioning llld chanaes af 
the reinforcement contingency is altered or a new odor 1s edded.) Our findings indicate 
that patterned neural activity correlates best with reliab~ forms of interaction in a 
context that is behaviorally and environmentally co-defined by what Steven Rose ( t 976) 
calls a dialectic. There is nothing intrinsically representational about this dynamic pro
cess until the observer intrudes. It is the experimenter who infers what the observed 
activity patterns represent to or in a subject, in order to explain his results to himself 
(Werner, 1988a, 1988b). (Freeman and Skarda, 1990, p. 376) 

They further stated that this insight led them to ask new questions of their data and 
that their dynamical network model, with its emphasis on the role of chaos, was one 
of the novel answers that resulted. 

Skarda and Freeman's network was intended to model an actual biological sys
tem. Researchers in the field of artificial life (the topic of chapter 9) attempt a more 
abstract characterization of such biological constructs as evolution, sensation, and 
motor control, and many of them share the skepticism about representation. For 
example, speaking from his experience with autonomous aaents (including his insect 
controller networks), Beer (1995, p . 144) concluded that generally "there need be no 
dean decomposition of an agent's dynamics into distinct functional modules and no 
aspect of the agent's state need be interpretable 8ll a representation." Philosophers 
focusing on evolutionary robotics, including Beer's work, have launched into a 
major re-examination of the notion of representation. Wheeler (1998), writin& about 
systems that exhibit high degrees of continuous reciprocal causation, assumed that 
his arguments against their homuncularity (and more generally, their modularity) 
counted as well against their having representations. (He argued elsewhere the point 
that makes this plausible: the claim that these properties are mutually supportive.) 
This was a soft rather than hard conclusion; for example, he left open the possibility 
that more sophisticated evolved robotic control systems of the future would be more 
decomposable. Clark (1997a; all quotes from pp. 174-5) agreed that such systems 
present the "most potent challenge" in finding a role for internal representation, but 
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again preferred a more optimistic and inclusive stance. First, in com ina to grips with 
such complex dynamics, "the notion of internal representation itself may be subtly 
transfonned," losing some of its classical connotations while co-opting dynamical 
notions of inner events (chaotic attractors, trajectories in state space, and so forth; 
a list similar to van Gelder's). But Clark equally threw down the gauntlet to 

dynamicists: 

The recent skepticism concerning the role of computations and representation in cognit
ive science ia, I believe, overblown . ... ~ minimal conditions under which internal 
representation talk will be useful, I have argued, obtain whenever we can successfully 
unpack the complex causal web of influences so as to reveal the information-processing 
adaptive role of some system of states or of processes . . .. [C)ontinuous reciprocal causa
tion between internal and external factors . . . appears unlikely to characterize the ranae 
of cases for which the representational approach is in any case most compelling-viz., 
cases involvina reasoning about the distant, the nonexistent, or the highly abstract. In 
such cases, the focus shifts to the internal dynamics of the system under study. The 
crucial and still-unresolved question is whether these internal dynamics will themselves 
reward a somewhat more liberalized but still recoanizably representation-based under
standing .... no alternative understanding of genuinely representation-hungry prob. 
)em solving yet exists, and ... it is hard to see how to aive crisp, aeneral, and perspicu
ous explanations of much of our adaptive success without somehow reinventing the 
ideas of complex information processing and of content-bearing 1nner states." (Clark, 
1997a, pp. 174-S) 

So far we have looked at how the notion of representation has fared when confronted 
with biological systems and with their simulated counterparts, evolved robot con· 
trollers. Van Gelder added industrial machinery to the array of test cases in a 1995 
article, "What might cognition be, if not computation?" His general goal was to 
argue that dynamical systems provide a plausible alternative to computational ones, 
and that such systems need not have representations. Although at some points in the 
paper he focused on a classical computational definition of representation, he also 
said that his arguments should go through using "pretty much any reasonable char
acterization, based around a core idea of some state of a system which, by virtue of 
some general representational scheme, stands in for some further state of affairs, 
thereby enabling the system to behave appropriately with respect to that state of 
affairs" (van Gelder, 1995, p. 351; he adapted this characterization from Haugeland, 
1991 ). This definition of representation is broad enough to cover both classical 
symbolic and connectionist subsymbolic approaches. 

The notion of "stands in for" requires some explication. One way to characterize 
it is in terms of carrying information: one state or event can stand in for another if it 
carries information about that other state or event. The notion of carrying information 
about something is usually explicated in terms of causal relations (Dretske, 1988). 
But this notion of information is both too general and too narrow for explicating 
representation. It is too general because any effect carries information about its cauae, 
but not every effect constitutes a representation. It is too narrow because it fails to 

account for misrepresentation- the possibility that some state might falsely represent 
something else when it was not caused by it. Based on this and other arguments, 
Millikan (1993) proposed that we need to look in a different direction, specifically, at 
the agent or device that uses (consumes) the information. If a consumer Z is designed 
(e.g., by evolution or by an engineer) to use Y to carry information about X, then Y 
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might serve as a representation of X even if Y never actually carries information 
about X . For example, a radiation detector (Y) may have been designed for a plant 
supervisor who wants to be informed if there is ever a radiation leak (X). If no leaks 
occur, it will in fact produce only false alarms; nonetheless, the radiation detector 
serves to represent radiation leaks. 

In practice, we generally need to look in both directions: some state is a repres· 
entation only if it is used to gain information about something else, but we identify 
what it represents by determining what is capable of bringing it about. For example, 
in Lettvin et al.' s (1959) classic identification of ganglion cells in the froa's retina as 
bug detectors, two kinds of findings jointly were needed to determine what the firing 
of these cells represented: (a) increased firing of these cells generated bug-eating 
behaviors in the frog; (b) bug-like shapes generated increased firing. There are, 
therefore, three interrelated components in a representational story: what is repres
ented (bugs), the representation (increased firing of ganglion cells), and the user of 
the representation (the frog, or the frog's action system). 

While this is not a complete characterization of representation, it provides a suf
ficient foundation to begin considering van Gelder's contention that dynamical sys
tems need not have representations. To make his esse, van Gelder reached back over 
two centuries to james Watt's groundbreaking design for using a steam engine to 
power machinery via a flywheel, and suggested that its centrifugal govemor would 
be "preferable to the Turing machine as a landmark for models of cognition" (van 
Gelder, 199 5, p. 381 ). The governor was the second of two major innovations neces
sary to the invention's success. Watt's first innovation was a gearing system that 
allowed an oscillating piston to drive a rotating flywheel. But the solution to the 
problem of translating one kind of motion into another raised a second problem: 
how to maintain a constant flywheel speed in the face of constantly fluctuating steam 
pressure as well as resistance due to workload on the machinery being driven by the 
flywheel. (For many kinds of machinery, such aa industrial weaving machines, it is 
important that a constant speed of operation be maintained, despite fluctuations in 
resistance, via constant flywheel speed.) The speed at which the ftywheel tums can 
be reduced, when necessary, by partly closing a valve to reduce the amount of steam 
coming through the pipe leading from the boiler to the piston. Similarly, partly 
opening the valve increases the amount of steam. But who or what would keep 
adjusting the valve? 

Watt's solution borrowed a technology already employed in windmills; it is shown 
pictorially in figure 8.9(a) and schematically in figure 8.9(b). (The pistons and gear
ing system between the valve and flywheel are not shown, but complete the loop.) 
To create a govemor, he attached a vertical spindle to the flywheel which would 
rotate at a speed proportionate to that of the flywheel, and attached to the spindle 
two arms with metal balls on their ends. The arms were free to rise and fall as a 
result of centrifugal force. Through a mechanical linkage, the angle of the arms 
would change the opening of the valve, thereby controlling the amount of steam 
driving the piston and hence the rotational speed of the flywheel itself. 

As a first step towards establishing the plausibility of the idea that cognitive 
systems, construed as dynamical systems, lack representations, van Gelder argued 
that the Watt governor operates without representations. He called "misleading" "a 
common and initially quite attractive intuition to the effect that the angle at which 
the arms are swinging is a representation of the current speed of the engine, and it 
is because the arms are related in this way to engine speed that the governor is able 
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/o'IJ.!IIU 8.9 Watt's ct:ntnfugal gm·ernor for a steam t>ngine. (a) Drawing from J, F.1rley, 
A Trtalist on tht Steam E1~gint: Historical, Practil'lll, nml Dl'scriptir.t (London: Longman, 
Rt:e~. Orme, Brown, and Grt:en, 1927). (h).-\ schematic repre~ntation showing that the 
nn~le of the spindle arms c:arries information about the spc:ed of the flywheel fnr the \'alve, 
which uses the anl(le to determine the upcning, thereby re!(Uiating the speed of the fl}·wheel. 

to control that speed" (van Gelder, 1995, p . 35 I). He offered several arguments for 
not construing the angle of the arms as representations; here we suggest counter
arguments to two of them (for a fuller discussion of these and the en her arguments, see 
Bechtel, 1998). Van Gelder began by contending that there i~ no explanatory utility 
in describing the angle of the arms in representational terms (that is, the dynamical 
analysis is sufficient). To establish explanatory utility, we must argue that (a) a 
mechanistic analysis is informative, and (b) that analysis includes a parttcular repres
entational story about the arm angles: they stand in for the speed <>f the flywheel and 
can regulate the valve opening because they carry this information. 

First, then, here is a brief mechanistic analysis of the 'Watt governor (see Bechtel, 
1999). It has several different parts, including the flywheel, the spindle and arms, and 
a linkage mechanism connected to a valve. As figure 8.9(b) makes ~lear, each compon
ent operates on a different engineering principle and hence performs a ~pecific subtask; 
each subtask contributes to the m·erall task of the system via the component's 
connection with the next component in the loop. That 1s, the opemng of the valve gets 
transformed (via the piston) into the rotation of the fly\\ heel, which gets transformed 
mto the angle of the spindle arms, which gets transformed into the opening of the 
\alve. In this way, we have shifted vocabularies from one describing the overall beha
vior of the Watt governor to one de$cribing what its parts do. Then there is an extra 
step back up to the system level by connecting the task of each component to the 
needs of the whole system. Here it becomes clear why \Vatt inserted the spindle arms. 
It is because the spindle arms rise and fall in response to the speed of the flywheel 
that the1r angle can be used by the linkage mechanism to open and shut the valve. 
\<\'ithout the spindle arms and their linka~e mechanism, the: 'al\'e has no access to 
mformation about the flywheel speed. They were inserted in order to encode that 
information in a format that could be used by the vah·c-opcninl!t mechamsm. 

Thi~ m.1kes the spindle arm angle an instance of a more f<(Cneral point about rep
rc~entation : typ1cally someone {a designer, or evolution, or the particular consumer 
produced by design or e\•olution) has gone to the trouble or representing a state of 
affair~ m anorhcr medium because the r~·prl:sentutional mcdtum is more suitable for 
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u~>e by the cunsumer. This can be due to it~ format, its accessibility (e.g., words 
arc generally more accessible to our cognitive system than are their referents), the 
efficiency with ''hich it can be manipulated kg .. computer-aided d~ign), eccmomy 
(e.f<( ., industrial prototypes), and so forth. The representation is not just one vertex 
of the trianJ,!Ic 111 fi~ure 8.9(b), a part like any other part of the dynamic loop; it was 
in~rtcd to play a particular (representational) role and the system functions bL"t:auw 
it was cles tgncd appropriately for that role. 

Another of van Gelder's arguments "for supposing that tht: centrifuJZalgowrnor 
is not representational is that, when we fully understand the relationship between 
engine [tlywhecl] speed and arm angle, we st:e that the notion of representation il' 
just the \Hong sort of conceptual tool to apply"(' an Gelder, \995, p. 353). Bccau:~c 

"arm an~le and engine speed are at all times hoth determined by, and dcterminmg, 
each other's bcha' ior" the relationship is "much more subtle and complex . . . than 
the st,mdard concept of representation can handle." Here is Clark's cominuous recip
rocal causation again, but the complexity resides only in the dynamical analysis. It 
is quite pos:;~ble, and desirJble, to undertake a complementary classical analysis. 
As JUSt noted, it (a) identrfies the system's components, the subtasks they perform, 
and their connecth·rty, and (b) picks out the spmdlc arm angle as representing the 
tlywhcel 's speed for use by the vah·e. It happens in this case that something is 
standmg in for somcthmg dse by being coupled to it in a dynamical manner. This 
opens the way to a dynamical analysts that makes use of the identified components, 
hut emphastZt'S their coupling and provides equations that provide an elegant and 
specific account of their state changes in time. Within the confines of this dynamiL-al 
analysis the components form a loop in which no one of them is viewed as pro\'iding 
a o;tartmg potnt, let alone a differenti.ttcd role such as referent or representation. If 
the equations can be uncovered, this analysis yields an elegant covenng-law explana
tion of the dynamics of that loop-no more and no less. 

In analyzing the Watt governor in this way, we have taken the position that 
representations should be construed broadly rather than restrictively. They can be 
dynarmc rather than static; vary continuously in time rather than discretely; and 
invoh·c quantitative operations rather than sequential manipulation~ of symbols. 
The important thing is that something is standing in for something else. Generaliz
ing the lessons learned from the Watt governor to btolog1cal or artificial ;tgcnts, it 
would seem that they can coordinate their beha\·ior with an environment because 
components of these agents vary their states in response to the environment so as to 
stand in for it. \Vithout such representation:;, 1t seems difficult to explain hmv the 
system is able to take into account specific fearures of the environment. We should 
emphasize that this does not require that the system build up a complete repres
entation of its em· ironment. Theorists such as Ballard ( 1991) and Churchland, 
Ramachandran, and Sejnowski (1994) ha\'e argued that we only selecth•ely, and 
acti\·cly, sample the environment. Whatc\'er information we do sample, how(.-ver, 
must ultimately be represented withm the system in order to be employed in coor
dinating behavior. 

De-emphasizing the importance of the quantitative status of a system turns out to 
he helpful in characterizing dynamical analysis as well . Rick Grush pointed nut in a 
re\•icw of Port and \'an Gelder's 1995 book thut "A larf<(e portion of the models of 
'hi_ghcr' co~-tniti\'1: processes articulated in the book have exactly the same processing
step character us rhe \'ilified computational alternati\'es, even though the lunguagc, 
mathematic:~, and illustrations used to present the models obscure this fact" {Gru~h. 
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t997b, p. 235}. Whe.re equations were supplied, that is, they tended to be difference 
equations by which the value of a variable at time t + 1 depend_s on that variable ~d 
others at time t . This is no closer to real time than the processmg steps of a classtcal 
AI model. In responding to this argument, van Gelder (1999, p. 8) arrived at a more 
realistic way of distinguishing types of models. " In dynamical models, there are 
distances in state, and distances in time, and both are systematically related to the 
behavior of the system." It is the geometry of state spaces in relation to time (whether 
discrete or continuous} that best characterizes dynamical analysis. This also suggests 
that the suitability of dynamical analysis for a particular network has more to do 
with whether trajectories in state space capture something important than with the 
fact that their representations are quantitative vectors rather than symbol strings. 
That sounds just right. 

8.6 Is Dynamicism Complementary to Connectionism? 

Terence Horgan and john Tienson (1996) presented a very specific vision of how 
connectionism and DST can collaborate in providing an alternative to classicism. 
They unfolded it by first characterizing the classical approach in terms of David 
Marr's (1982) well·known three levels of description and then adding five specific 
assumptions of classicists regarding these levels. Essentially, this is the same starting 
point as van Gelder and Port's computational approach , although in the end Horgan 
and Tienson rejected less of it. In summarizing their framework here, we primarily 
use their terminology and their characterization of classicism but also (in paren· 
theses) show Marr's way of referring to each level. 

Levell: Cocnitive.state transitions (Marr: an abstract theory of the computation) 
A cognitiw-transitiun junction (CTF) maps one total cognititJ~ stau (TCS) to the 
next; that is, it specifies input-output mappings of intentional states. The choice of 
function depends in part on the goal of the computation. The CTF is regarded as 
tractably computable because, classically, general psychological laws reduce what 
would otherwise be a brute list of mappings (see assumption 5). 

Level2: Mathematical.state transitioos (Marr: an algorithmic specification of the 
computation) An algorithm is chosen to realize the level· I input-output mappina 
(CTF) and reprnmtations are chosen for the input and output. Classically, formal 
rules (see assumptions 2 and 3) manipulate syntactically structured sequences of 
symbols (stt assumptions 1 and 4). 

Level 3: Physical implementation (Marr: implementation) The level-2 com· 
putations are realized (implemented) in a physical system. A particular machine 
language program run on a particular digital computer is the best exemplar, both 
generally and for classicists. 

Horgan and Tienson then identified the five key assumptions of classicism. Assump
tions 1-3 give the basic layout of level·2 rule-governed symbol manipulation (3 is a 
stronger version of 2 and implies it; both imply t ). Assumption 4 makes language 
or language-like processing a special case (it is a stronger version of 1 and implies 
it, but leaves room for imagistic processing, for example, to satisfy 1 but not 4). 
AssumptionS asserts the fundamentally computational worldview, which the other 
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assumptions elaborate, and also makes a specific claim that it is realizable within avail· 
able resources. Retaining the numbering and wording of the assumptions (pp. 24-5) 
but labeling and rearranging them for easy reference: 

Fundamental computational assumption {let~el 1): 
(5) Human cognitive transitions conform to a tractably computable cognitive
transition function. 

&pr~snttatiun (1~1 2): 
W~ak (t ) Intelligent cognition employs structurally complex mental 

representations. 
StrO"'J (4) Many mental representations have syntactic structure. 

Proc~ssi'flll (/etJ~I 2): 
W~ak (2) Cognitive processing is sensitive to the structure of these representa· 

tiona (and thereby is sensitive to their content). 
Stro"'l (3} Cognitive processing conforms to precise, exceptionless rules, statable 

over the representations themselves and articulable in the format of a 
computer program. 

In evaluating these five assumptions for their own (nonclassicist) purposes, Horaan 
and Tienson made a provocative cut: in addition to retainina the weakest assump· 
tions about representation and processina, they also argued for retaining the strong 
assumption that representations can be syntactically structured. They picked out 
"hard" rules (algorithms) and computational tractability as classicism's points of 
vulnerability. Hence, in arguing for an alternative to classicism, they retained as
sumptions 1, 2, and 4 and denied assumptions 3 and 5. Their favored alternative was 
a dynamically oriented connectionism, which they viewed not as a half· hearted 
halfway house but rather as the kind of dynamicism that is needed for the job of 
modeling cognition. 

These choices put Horgan and Tienson into several different fiahts, not just with 
classicists but also with most connectionists and most dynamicists. Horgan and 
Tienson took issue with classicists over assumptions 3 and S (by rejecting hard rules 
and expressing ext reme skepticism that cognition could be computationally tract· 
able). They stood with their fellow connectionists in rejecting hard rules (the gen
eral arguments are covered at length in chapter 5 and need not be reviewed here). 
But their insistence that there is indeed a language of thought, and that its syn· 
tactic structure must in some way be represented, placed them in opposition to 
many connectionists (see chapter 6). Finally, dynamicists should applaud Horgan 
and Tienson's rejection of assumption S but would tend to agree with van Gelder 
and Port that connectionist networks are a rather marginal medium for dynam· 
ical modeling (especially if they are viewed as realizing syntactically structured 
representations). 

Horgan and Tienson dealt with the nay·sayers in two ways: argumentatively by 
dissecting and debating each assumption and positively by trying to entice them into 
the alternative framework that they called noncomputatiuna/ dy namical cognition (we 
will simply call it dynamicism). To make the contrast with classicism clear, they 
constructed a ·noncomputational dynamical reconstrual of Marr's three levels. Their 
claims at each level can be summarized as follows (see their pp. 63-4 for more 
detail): 
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Level 1: Coeoitive-state transitions In dynamicism the cognitive system ia 
viewed as having general dispositions to move from one total cognitive state to 
another, and these dispositions are captured in psychological laws that are soft 
rather than general. There is no need for a tractably computable cognitive-transition 
function. 

Level 2: Mathematical-state transitions T otal cognitive states are realized as 
points in the state space of a dynamical system, and transitions between states are 
realized in trajectories through that state space. Each representation is a point (or 
region), but not every point is a representation. Relations between syntactic struc
tures (e.g., sentences with vs. without a direct object) are captured not in the pres
ence or absence of certain steps in the algorithm generating a tree but rather in the 
relative positions of points. The discrete mathematics of algorithms is replaced by 
the continuous mathematics of dynamical systems theory. More specifically, given 
how the dynamical system is implemented at level 3, it is a high-dimensional activa
t ion landscape in which each dimension corresponds to the range of possible activa
tion values of one unit in a network. 

Level 3: Physical implementation The dynamical system is implemented in a 
neural network of some sort (working hypothesis: a connectionist network). "Points 
in the state space of a dynamical system are realized by total activation patterns in 
the associated network" (p. 64). 

Horgan and Tienson's denial of assumption 5 (the need for a tractably computable 
function) involves a distinction between computable and tractably computable. One 
could ask whether or not the cognitive transition functions that classicists attempt to 
realize in algorithms are actually computable (e.g., by a universal Turing machine). 
But to Horgan and Tienson, this was not the real issue. A cognitive system whose 
transitions are computable but intractable is as nonrealizable as one whose transi
tions are noncomputable. Any actual cognitive system must be realizable in a phys
ical system that can implement mappings efficiently and quickly enough to be usable. 
They noted that tractable computation of this kind is far from guaranteed: 

[T)here are infinitely many functions [even] with jinitt domain and range that are not 
tractably computable. Consider, for example, any googolplex of unrelated pairinga. (A 
gooaolplex is l followed by 10110 zeros.) The dsfference between infinite and huge-but
finite is not important for coexutave science! (Horgan and Timson, 1996, p. 26) 

Classicists purport to get into the small-and-finite range by means of general psy
chological laws which reduce what would otherwise be a brute list of mappings " too 
gargantuan" to specify. Horgan and Tienson presented arguments that laws of the 
right sort for a computational system (hard laws) are not what the cognitive system 
consists in, nor are they implemented by hard rules at the algorithmic level. On their 
view, the way the cognitive system actually is built does not involve computation 
(the discrete mathematics of algorithms), so the tractability question does not even 
arise. 

Instead of general laws, Horgan and Tienson claimed that cognition has an iso
tropic and Quinean nature that makes computation untractable if not impossible. 
The problem of isotropy is that of gaining access to the right information for solving 
a given task from all of the information in the system, while the Quinean problem 
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concerns measuring the appropriate characteristics of the whole network of beliefs 
(e.g., its coherence) so as to determine how to revise beliefs. They credited Fodor with 
recognizing that these problems, originally identified in the context of confirming 
scientific hypotheses , extend to the general task of belief fixation faced regularly by 
cognitive systems. They did not see Fodor, or anyone else, as having shown how a 
classical system can overcome these challenges so as to handle a new input appropri
ately and efficiently: "Not only do we have no computational formalisms that show 
us how to do this; it is a highly credible hypothesis that a tractable computational 
system with these features is not possible for belief systems on the scale possessed by 
human beings" (p. 42). One avenue of response would be to deny ~at these are 
problems that need to be solved. Waskan and Bechtel (1997) contended that cogni
tion is far less isotropic and Quinean than suggetted by Fodor or Horgan and 
Tienson. A system with some degree of modularity (in the weaker sense exemplified 
in chapter 7, not Fodorian modularity) can concentrate its resources within a small 
part of the overall system. Rather than exhibitina an overall property of isotropy, for 
example, in such a system finding the right information quickly will depend on 
whether the right module is active (and in fact, humans not infrequently do fail to 
access relevant information that is somewhere in the system). A different avenue of 
response was preferred by Horgan and Tienson: they claimed that noncomputational 
dynamical cognition could easily be isotropic and Quinean. The problem of how to 
compute in such an environment (a version of the tractability problem) doea not 
arise if the system does not compute. 

In characterizing their noncomputational dynamical conception of cognition, 
Horgan and Tienson retained the commitment to syntactic structure that is a legacy 
of the symbolic approach (as stated in assumption 4). They construed as mistaken 
the common view that one of connectionism's contributions is to repudiate the use 
of syntactically structured representations in cognitive models. As Horgan pointed 
out, instead of improving on classical symbolic accounts this move produces "a 
seriously crippled cousin of classicism." He asked: 

What exactly are we supposed to be gaining, in terms of our abilities to model cognitive 
processes, by adopting an approach which (i) retains the aasumption that cognitive 
processing is representation-level computation, but (ii} nchews one extremely power
ful way to introduce semantic coherence into representation-level computation: viz., via 
the syntactic encoding of propositional content? Qua representation·level computation, 
it looks as though this amounts to tryina to model semantically coherent thought pro
cesses with one hand - the good hand- tied behind one's back. (Horgan, 1997, p. 17) 

It quickly becomes apparent, however, that their construal of syntax is one that 
many connectionists- but no classicists - would find comfortable. They pointed to 
Pollack's RAAM networks as exemplifying how to get syntactically structured 
representations in a noncomputational cognitive system. These are the same rep
resentations that we characterized in section 6.3 as exhibiting only furrctiottal com
positionality, in contrast to the explicit compositionality of symbolic representations. 
What makes RAAM representations functionally compositional is that there is usable 
information in them about the constituent structure of the tree from which they 
were generated. However, neither Pollack nor Horgan and Tienson have probed to 
discover how much syntactic information is represented nor for what range of lin
guistic performances it is adequate (beyond the passive transformation). They also 
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have not pursued in any detail how the dynamical level of analysis contributes (though 
work by Elman and Christiansen suggests such a pursuit would be rewarding). 

8.7 Conclusion 

Cognitive scientists, including connectionist modelers, increasingly are employing 
dynamical concepts and the tools of DST. In this chapter we have seen how some 
researchers have plotted trajectories through state space and identified different 
types of anractors to better understand how their interactive networks did their job, 
and others have incorporated concepts such as chaos even at the design stage of their 
research. But some advocates of a dynamical approach to cognition claim that much 
more is at stake than the introduction of new tools. Van Gelder and Port (1995) 
contended that dynamics offers a paradigm for cognitive science that promises to 
replace both the symbolic and connectionist approaches. We examined critiques of 
mechanistic explanation and representation and concluded that these concepts need 
not be discarded (e.g., mechanistic explanation is complementary to the covering 
law explanations of dynamicism). Finally, we provided an overview of Horgan and 
Tienson's version of a dynamical approach to cognition, which was friendlier than 
van Gelder and Port's version with respect to both connectionist networks and the 
symbolic notion that representations have syntactic structure. We did not agree with 
all their claims, but their placement of dynamical and connectionist approaches at 
two different levels of a Marr-style analytic framework is a good starting point for 
working out how these approaches can complement each other. 

NOTES 

A simulator for running Lotk~Volterra equations developed by Hendrik J, Blok ie 
available free at bnp·llwww.pbgjca ubc cgl- blok/fiJes btml. 

2 Of course, (c) also bas starting points that are already on the cycle, and it is one of the 
defining characteristics of an anractor that trajectories beginning at those points will 
remain within it. These special trajectories have no transients. Although the cycle in (a) 
exhibits this characteristic, it lacks another defining characteristic of attractors, the tend
ency to attract nearby trajectories. Thus, none of. its trajectories have transients. 

3 Interestingly, it does not much d isturb encoding of the matrix (outer) clause; the three 
relevant points are similar to those in figure 8.6(a). This may be a leaky network analog to 
"popping" the push-down stack in a standard symbolic parser. 

4 This sensitivity is important, because pairs of words such as boy and boys were given 
unrelated encodings on the input layer. The hidden layer seems to have extracted the 
systematic contrast between singular and plural (as well as the essentials of subject-verb 
agreement) purely from distributional information in the corpus. The principal compon
ents analysis not only provides evidence of the network's systematization of number but 
also localizes identification of subject noun number in component 2 - an impressive 
contribution to understanding how the network performs its task. 

5 A weight space with an error dimension yields a very detailed display of its attractors -
not just their locations but also their relative depths along the error surface. Occasionally 
activation spaces are plotted with an energy d imension included ro obtain the same 
effect, as in figure 8.7 in section 8.4.1 (reprinted from Freeman, 1987). 
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6 Understanding why the system behaves in this way requires considerably more depth in 
DST than our brief introduction can provide. To pursue this elsewhere, a reader should 
pay particular attention to the tangency of stable (attracting) and unstable (repelling) 
directions at saddle nodes; to obtain intermittency, the system must be nudged to near
tangency. "When the saddle nodes vanish, indicating loss of entrainment, the coordina
tion system tends to stay near the previously stable fixed point. It's as though the fixed 
point leaves behind a remnant or a phantom of itself that still affects the overall dynam
ical behavior ... . Motion hovers around the ghost of the previously stable fixed point 
most of the time, but occasionally escapes along the repelling direction (phase wander
ing)" (Kelso, 1995, p. 109). 

7 In sectron 6.2 we discussed simulations of Shaatri and Ajjanagadde (1993) that made use 
of synchrony to effect variable binding. In their simulation synchrony did not emerge 
spontaneously, but was created by the way in which connections were engineered. An 
important feature of the van Leeuwen et al. simulation is that synchrony emerges from 
the local activities of the components. 

8 As the commentaries to van Gelder's (1998) paper make clear, there is considerable 
disagreement about the scope and definition of such terms as computational, dymmrical, and 
representation. To keep the discussion manageable, we will focus on van Gelder's version. 

9 Clark included a footnote to this last sentence beginning: "The phrase is memorable, but 
its authorship rather elusive." 

10 In the words of van Gelder and Port (footnote 8, p. 40): "A more radical possibility is 
that dynamical systems can behave in a way that depends on knowledge without acrually 
rrprtsenti"'I that knowledge by means of any panicular, identifiable aapect of the system." 
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NETWORKS, RoBoTs, AND 

ARTIFICIAL LIFE 

9.1 Robots and the Genetic Algorithm 

9.1.1 The robot as an artificiallifeform 

In previous chapters we have seen that connectionist networks are adept at recogniz
ing patterns and satisfying soft constraints. The pattern-recognition capability is 
useful for a variety of tasks, including visual perception, categorization, language, 
and even logical reasoning. The constraint-satisfaction capability can serve an equally 
diverse range of functions, such as controlling motor behavior, making decisions, 
and solving such classic problems as finding optimal routes for a traveling salesper
son. A single network can combine both capabilities. For example, sensory informa
tion presented on an input layer ca.n be interpreted on hidden layers as indicating the 
location of an object in a room. This information can then be used to generate 
appropriate motor commands on an output layer. A network like this knows how to 
locate and move to an object in a room- a simple but essential sensorimotor achieve
ment. If yoked to a mechanical body and provided with a learning p rocedure, this 
sensorimotor network yields a very interesting device: a robot that can use experi
ence to improve its own functioning. We have already encountered some elements of 
such a device in section 8.3.1, where the robot controllers designed by Beer (1995) 
were our first encounter with a newly emerging research area known as artificial life 
or A~Lije. In the current chapter we will sample other eJtemplars of this line of 
research and consider benefits, limitations, and implications. 

For connectionist modelers, embodying networks in robots can be envisioned as 
bringing some appealing benefits: 

• If learning can be made to rely on consequences produced in the environment by 
the robot's actions, these embodied networks will learn much more naturally 
than the usual stand-alone networks provided with predetermined input-output 
pairings by a teacher. 

• Placing networks in robots can be viewed as distributing the tasks of cognition 
beyond the internal cognitive systems (the networks) by coupling them to an 
environment. Sharing the cognitive burden in this way ought to reduce the load 
on the networks themselves (Clark, 1997a). 
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• Confronting the practical problems involved in making a robot perceive and act 
in an environment reminds us that these sensorimotor abilities are foundational 
to other cognitive performance. In real organisms, perception and action are major 
foci of early development and become effective, though still primitive, relatively 
quickly. In both phylogeny and ontogeny, systems seem to redeploy already
existing systems rather than building completely new ones, so it seems plausible 
that basic perceptual and motor systems provide computational frameworks which 
can be re-utilized in the evolution and development of higher cognitive ~apac
ities. (This essentially Piagetian point is modified, but not necessarily abandoned, 
by more recent investigators who would add certain conceptual, mnemonic, and 
other abilities to the inventory of foundational systems.) 

This attractive picture has not yet been realized in its entirety. First, as always, 
advantages must be weighed against disadvantages. Building robots and training 
networks in them is expensive, in terms of both hardware and training t ime. More
over, the fledgling attempts of a network to control the movements of a robot may 
produce serious damage to the physical robot. Some researchers sidestep these dis~ 
advantages, at the cost of weakening the advantages as well, by creating computer 
models in which simulated robots receive input and feedback from a simulated 
environment. Beer (1995) went even funher by using the simulated robot body itself 
as the only environment in which the controller network functioned. (Recall that he 
used the simulated body's leg angle as the only source of sensory input to the net
work.) A second variation on the above picture pursued by many robot researchers, 
including Beer, is using simulated evolution as a method of developing networks in 
addition to (or in place of) learning. 

One obvious advantage of the simulated evolution strategy is that it overcomes an 
unrealistic feature of most connectionist simulations: the networks start with random 
weights and must learn everything from scratch. Evolution can produce networks 
whose weights are fairly well adapted to their tasks prior to any experience. A second 
advantage is that the network architecture itself (not just the weights) can be allowed 
to evolve. Simulated evolution may even produce useful network configurations that 
would not be discovered by human designers (Harvey, Husbands, and Cliff, 1993). 

9.1.2 The genetic altorithm for simulated evolution 

Studies of simulated evolution generally rely on some version of the genetic algo
rithm, which was developed by john Holland (1975/1992) to explore the nature of 
adaptive systems (also see the textbook by Goldberg, 1989). Holland sought to 
simulate three processes that are critical to biological evolution: an inheritance mech
anism that can produce offspring that resemble their parents, a procedure for intro
ducing variability into the reproductive process, and differential reproduction. In 
the standard picture of biological evolution, the inheritance mechanism involves 
chromosomes (composed of genes), variability is achieved when genes recombine 
(an advantage of sexual reproduction) or mutate, and differential reproduction is 
caused by natural selection. (Alternatives to this standard picture have been pro
posed; for example, Gould and Lewontin, 1979, claim that differential reproduction 
sometimes is due to developmental constraints rather than external selection forces 
operating on the organism.) 
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In the genetic algorithm, strings of symbols play the role of chromosomes, opera
tions such as recombination and mutation of these symbols are employed to intro
duce variation when the strings reproduce, and the fitness function governs selective 
reproduction by determining which strings are successful enough to be allowed to 
reproduce. The genetic algorithm applies recursively to produce a succession of gen
erations. In each generation the most successful strings are selected to be parents, a 
new generation of strings is created by copying them (recombining or mutating the 
copies to introduce new variability), the offspring in tum undergo appraisal of their 
fimess, and those selected become parents of yet another generation. For example, 
in simulated evolution of an immune system (Forrest, javomik, Smith, and Perelson, 
t 993), the evolving strings encode antibodies, and the fitness function evaluates how 
well each such string matches a specific antigen (represented by a string that does 
not evolve). In the case of connectionist networks (e.g., Belew, Mcinerney, and 
Schraudolph, 1991), a simple choice is to evolve strings of connection weights, but 
more interesting simulations are discussed below. 

The new research area of artificial life is not limited to explorations of real and 
simulated robots and the evolution of networks to control them. Its general goal is to 
understand biological systems and processes. Its method is simulation, usually by 
means of computer programs. It can be carried out at a variety of levels (from 
individual cells or neural circuits to organisms to populations) and timescales (from 
that of metabolic processes to ontogenesis to phylogenesis). Robots are artificial 
organisms that operate at the timescale of individual actions or action ~Jequencea; 

networks are artificial nervous systems within these organisms and operate at the 
timescale of propagation of activation across connections or layers of connections. 
Artificial life researchers have investigated these plus much more. Before presenting 
a few specific studies of network controllers for robots, we will take a brief look at 
other research strategies in artificial life and how they have been applied in exploring 
very simple abstract organisms. 

9.2 Cellular Automata and the Synthetic Strategy 

Artificial life is related to biology somewhat as artificial intelligence (AI) is related to 
psychology. Psychology focuses on cognitive processes and behavior exhibited by 
actual organisms, whereas AI separates cognitive processes from their realization in 
living organisms. AI researchers have done this by constructing computer systems 
that function intelligently. Likewise, biology focuses on carbon-based life on earth, 
whereas artificial life separates the processes of life from their carbon-based realiza
tion. Like AI, artificial life relies on computers, but this time to simulate living 
systems and their evolution. Since behavior and cognitive processes are among the 
activities of living systems, the boundary between artificial life and AI is not rigid. 

9.2.1 Langton's vision: The synthetic strategy 

Christopher Langton is perhaps the person most responsible for having brought a 
body of research together under the label "artificial life" (partly by organizing a five
day Artificial Life Workshop at Los Alamos in 1987). He emphasizes the idea that 
artificial life, like AI, adopts a synthetic approach to understanding the evolution 
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and operation of living systems: researchers build simulated systems out of already
identified components and see what emerges from their operation. In contrast, 
biologists (and psychologists) primarily take the analytic approach of de<:omposition 
and localization in their investigations of naturally occurring systems: starting with a 
real organism, they figure out what component processes are involved in its func
tioning and where in the system each process is carried out. Langton writes: 

Anijicial L•fe is simply the synthdic approach to biology: ratMr thtm take living things 
apart, Artificial Lift attnnpu to put things together . ... Thus, for example, Artificial 
Life involves attempts to (1) synthesize the process of evolution (2) in computers, and 
(3) will be interested in whatever emerges from the process, even ifthe results have no 
analogues in the natural world. (Langton, 1996, p. 40) 

Langton's third point follows from what it means to adopt a synthetic strategy. 
Elementary processes, characteristics, rules, or constraints are first identified by 
following an analytic strategy in particular species or bodily systems. Once identi
fied, however, they can be put together strategically. For example, an artificial life 
researcher may build abstract organisms - hypothetical beings that are intended to 
simulate life at a certain level (the organism) and degree of complexity (usually low) 
but are not necessarily intended to represent any particular species. The designer 
can experiment with these abstract organisms by subjecting them to simulated evolu
tion, placing them in a variety of simulated environments, changing certain rules or 
processes, varying values of parameters, and so forth. 

As useful as the synthetic strategy has been in both AI and artificial life, not all 
investigators would agree with Langton that it is defining of their field. Some view 
their artificial systems first and foremost as models of some actual system. In AI, for 
example, the competing pulls between analysis and synthesis can be seen in the 
fact that some computer programs are constructed to play chess like a human and 
others are constructed to play chess well. Currently, the programs that play chess 
well enough to sometimes defeat grand masters do so by following search trees 
much more deeply than is possible for their human opponents. The computer and 
human are fairly well matched in skill, but differ in their means. At what point is the 
difference so great that the program no longer qualifies as an exemplar of a synthetic 
investigation into intelligence and instead should be viewed simply as a feat of 
engineering? And how can good use be made of both the (relatively analytic) pro
gram that seeks to closely simulate human processes and the (relatively synthetic) 
program that is only loosely inspired by them? 

We can see how the same tension between analysis and synthesis appears in 
artificial life research by considering Reynolds ( 1987). To simulate flocking behavior, 
he constructed a simple model environment and a number of simple, identical arti
ficial organisms (boids). In a given simulation run, the boids were placed at different 
random starting locations in the environment. All moved at the same time but each 
boid individually applied the same simple rules: match your neighbors' velocities; 
move towards their apparent center of mass; and maintain a minimum distance from 
neighbors and obstacles. Viewing the boids' movements in the aggregate, they ex
hibited flocking behavior - an emergent behavior in which, for example, the group 
would divide into subgroups to flow around both sides of an obstacle and then 
regroup. Note that boids are so sketchily drawn that they can stand in for fish as well 
as birds. Reynolds's work is probably best viewed as a rather abstract investigation into 
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,1.:hic\'illlll(lobal ~hu\ ior from simultaneously acting local ruks (synthetic strategy), 
but it could arguably be viewed instead as an imti11l step towards obtainmg a realistic 
~imulation of bchtl\' iors observed m St.\ eral actual spectcs (analytiC stratt:l(y). 

Dtspitc this tt:nsion, the synthetic and anal) tic ~trategic~ ~han: the same ultimate 
goal: t1> undcr~tand the processes of life. This I(Oal 1mpo~es its tl\\ n constraint that 
the abstract bcin$ls must ha\'e some grounding in import.ant characteristics of real 
bcmgs, u groundmg th.at is pro\ u.kd by biolog1sts who ha' c nbscn eJ the heha,·ior 
of particular species. The results of S} nthetic research, m turn, \\ill sometimes sug
gest new a\'enucs for .mal) tic n:scarch. For example:, a study likt: that of Re}·nolds 
(relatively synthetic) could suggest particular vari.ables to measure in real birds 
(purdy analytic), and the rc:sults might contribute to a more detailed, realistic com
puter model (rc:lati\'cly :mal} tic). The: same: intc:rplay of research stratt·gics can be 
obstned in investigations of such acti,·ities as perception, food-findinlt(, mating, 
predation, and communication, all of which have been stud1cd by artificial life 
researchers as wdl as biologists in the field. (For an ovcn·1ew of such stud1es as well 
as many other kinds of research and issues in artificial life, see the volume edited by 
Ldngton, 1995.) 

9.2.2 Emergent structures from simple beings: Cellular automata 

Perhaps the most abl.tract studit.'S in artiticial hfe are those invoh-in~ cellular automata 
- formal S}Stems that were conct:ived by the Polish mathematician Stanislas Clam. 
A cellular automaton (CA) consists of a latticc: (a network of cells in which only 
ne1ghbors are connected) for which each cell is a finite automaton - a simple formal 
machine that has a finite number of discrete ~tates and changes state on each time
step m accord wuh a rule table (sometimes ~.:ailed a sfdte transition table). A CA is 
defined in part by the size of its neighborhoods. For example, in a one-dimensional 
CA (a row of cells) the ne1ghborhood of each cell might be the cell itself plus two 
cells on each side. For ea(·h possible configuration of states in a nei~hborhood there 
ill a rule stipulating the updated state of the target cell on the next time-step. (This 
should sound familiar: the CA is the same kind of device as a coupled m11p Janice, 
used in van Leeuwen et al.'s model of shittmg perceptions m section 8.4.2, except 
that each unit in a CML takes continuous states via the logistic equation rather than 
the discrete states of a finite automaton.) 

The operation of a CA can be illustrated using a one-dimensional array of ten 
cells, each of which can take JUSt two states: off or on. We can stipulate that a neigh
borhood includes only the cell itself and one cell to each side, and thdt the lt:ftm<>st 
and rightmost cells count as neighbors to each other. Then there will be just eight 
possible kinds of neighborhoods (eight differt:nt configurations of states for a cell and 
its neighbors) . For each of them we enter a rule in the table to show which state tts 
target cell should enter on the next time-step. Using the numerals 0 for off and 1 for 
on, here is one rule table: 

t.:ell and neil{hbors at t Ill 110 )1)1 100 Oil 0 10 ClOt 000 
cell at I + I 0 0 0 0 I 

The behavior of any CA is determined solely by the initial pattern of .states across its 
cells and its rule table. For our example, suppose that at ttmc-~tep 0 the states 
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I ~ 

FllfiiT~ '1./ A s1mpl.- outcome: of usmg the: rul.- table: in the text. A one-d1mensional cellular 
nutumaton With ten cells is shown at umc-step I (top) and at two successive time-steps. 
Empty n~lls are no; shaded cells arc off. 

(a) (b) 

Ftflurt f). ] :Vlore complex outcomes obtamed using the same rule table. Each panel 
~hows a one-d1mensional cellular automaton with 200 cells at 200 time-steps; each row 
dtspl:1ys the state of each cell un one time-step In panel (a) the inmal pattern had JUSt 
one cell on, \\ herea~ in p.md (b) the initial pattt:rn had half of the cdls orr (randomly 
~<·lect .. d). Figures 9.1 and 9.2 were generated using the cellular autumuta simulator at 
llllRJLH!ifr samafe .. du/ahfe/topjcs/ca/caw .. b/ 

happen to form an alternating pattern in which every other cell is on, as shown in 
figure 9.1. Just two of the eight rules will be relevant for this simple •ase. Each on 
cell (shaded) is flanked by neighbOrs that are off (empty), so at time-step I it will 
turn off (010-+ 0); and each off cell is flanked by neighbor!\ that are on, so at timc:
srep 1 It will turn on (101 -+ / ). The first three time-steps are displayed; clearly 
this array will keep switching between the on-(lff-on-off- . . . and the off-on-off-Qn
... patterns indefinitely. 

A great variety of patterns across time can be obtained- many of which are more 
complex than this repeated switching between two alternating patterns- ~:ven with
out changinl( to a new rule table. For example, trying rv.·o different initial patterns 
\\ ith a lar,;tt: r CA (one row of 200 cells) yidds two quite different patterns through 
time as shown in tigurt: 9 .2. (Starting with time-step 0 at the top, each line n·pres
cnts the pattern at the next time-step; the d1spluys were made square by ending at 
time-step 200.) An initial pattern with just one cell on generates the intcrcstin[( 
displu~ on the left; one with half the cells un generates the more chaotic display on 
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t=O t=1 t=l t=3 t•<t 

••••• FiR'"" 9.3 A glider in the Gam~: of Ltft: {see text for tht• rul~s used to generate it). On 
cn:ry fourth tinw-stcp rh~: original shllpe i$ r~stored, but h.ts mo\'ed one squan· ldt ,md one 
~<Juan: do\\ n. 

thl! nght. 'llll.-se n.-sults were obtained using the CA simulator at bttp;lfahfe.santafc:. c:du/ 
alifc:ltopics/ca/caweb/. You can use it to create other CAs (differing in size and rule 
tables) and explore how diffen:nt initial patterns change through time. 

Cdlular automata need not be limitt:d to a single dimension. One of the best
known exemplars is the Game of L1fe, developed by John Conway (see Gardner, 
1970) and used in many screensaver programs. In the Game of Life a computer 
suem is divided into a large grid of squares. Initially, some squares are shaded 
{ali ,·c) and the rest are empty (dead). Each s4uare has eight neighbors (including 
those on the diagonals). As time proceeds dtfferent squares come alive or die depend
ing on two simple rules: 

• If a square is dead on one time-step but has exactly three immediate neighbors 
that are alive, it comes alive on the next time-step; otherwise, it stays dead. 

• If a square is alive on one time-step and has exactly two or three immediate 
neighbors that are ;~li\'e, it remains ahve on the next timt:-step; otherwist:, it dies. 

(Stating these rules in English efficiently summarizes the formal rule table for the 
512 configurations that are possible for this s1ze of neighborhood.) The Game of 
Life attracts attentiOn due to tht: variety of shapes that can de\'elop. For example, 
u:liders are patterns which mo"e across the screen. Figure 9.3 exhibits a glider 
\\hich, after e'·ery fourth time-step, has mo,•ed onl! square down and one square left; 
m the intervening steps it transmogrifies into a \'ariety of other forms. Since these 
shapes and movements are not prespecified in setting up the CA, they are generally 
construed as emergent structures (as were the mo\'ements of flocks of boids in the 
Reynolds stud}'). 

9.2.3 Wolfram's four classes of cellular automata 

Different rule tables can yield very c.hfferent acti\'ity, leadin_ll Steph~n Wolfram 
( 191H) to develop a general classification of cellular automata. l 'smg CAs slightly 
more complex than those above (by incr~.asing neighborhood size to two mther than 
one cell per side), exemplars of all four \Volfram classes can be found. 

• Class I a11t11mata ~:nter the:: :<arne state (e.~ .• all dead or all ali\'t:) from almost any 
starting configuration, usually in just a few timt:-steps. If the second line of the 
rule table in 9.2.2 contained only Us, then no matter how many squarc::s were 
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initially alive, they would all become dead on time-step I and remain dead. In 
DST terms, the system settlt's on a point attractor (limit point) . 

• Class II automata form at least one nonhomogeneous pattern (e.g., some squares 
art: ali\'e and others are dead). Typicall) the system, once lx·~ond any transient 
patterns, exhibits periodic hcha1·ior. That is, it repeatedly cycles through the 
same sequence of patterns (if the cycle length is z~:ro it will settle to a single static 
pattern). In DST terms, the system has a periodic attrnctor (limit (._.,·de). Figure 
9.1 pro\'idcs a simple example. 

• Class J/ I automata arc t.lisordert:d rather than orderly. They exhibit quasi
rand•>m sequences of patterns\\ hich (were it not for their finitcncs!') correspond 
to what is known as dwos in DST. The display on the right side of figure 9.2 
appears d1antic ur near-(hantic. 

• Class IV automata arc the most intert•sting. They exhibit compkx bchadors 
(e.g., expanding, splitting. recombining) that may he intt:rprctcd as rea!iz;~tiuns 
of sdf-organization or computation. Some dynamicists l·all this comple.,·ity in 
contrast to chaos. The Game of Life exemplifies this class (sec figure 9 .3), :md 
nm Leeuwen ct at. 's couplt:d map lattice (st:ction 8.4-.2), though not a CA, 
shows comparable beh<wior when parameter values are chosen so as tn product: 
intermittency. 

9.2.4 Langton and l at the edge of chaos 

Christopher Langton ( 1990) propost:d that different values of a pdrameter, A., would 
tend to correspond w t.l iffl·rent Wolfram classes. Although he explored two-dimen
sional CAs \~ith 8 states, in our simpler examples A. is simply the proportion of rules 
in the rule table that have a I in the second mw; it indicates the potential for cells to 

bt: on at the next time-step. Langton Jdentifit:d key ranges of values by conducting a 
i\.lonte Carlo exploration (that is. he generated and ran a large number of CAs 
,·arying in A. and initial patterns). There was a great deal of \'ariability in the results, 
but he snu!-(ht to capture "a,·emge bt:hll\'ior" hy calculating se\'eral statistics across 
the CAs tested at each A.. W1th very small A., Class I automata tend to occur; when 
raised towards 0.2, Class II automata emerge. With A. in a range of approximately 
0.2 to 0.4-, the complex Class IV automata predominate, but as it is raised to values 
surrounding 0.5 order breaks down and ch<~otic Class I II automata become pre
dominant. Langton referred to the range in which A. tends to produce Class IV 
automata as critical1.alues that are at thr ed!fe of chaos and proposed that these CAs 
could be used to perform interesting computations. Since the distributions in fact 
o\'erlap considerably, a \·alue of A. in the critical range can only suggest that a 
particular CA is likely to exhtbit Ch1ss IV heha,·ior; independent endence would be 
needed to actually classify it. 

The interest in Class IV CAs goes beyond the fact that they can create interesting 
novel pattern,;; Langton inspired other researchers to explore their u5efulness for 
( omputation nnd problem sol\'ing. Norman Packard ( 19ll8) focused on a rule table 
that had l!arlier been found to perform a useful (though approximutc) computation. 
If more than half of the automaton's cel ls were 011 initially, usually all of its cells 
IUrned 1111 e\·cntually (requiring many time-steps, in \\ hich the contlJ,Cur.atlons used 
to determine state upd,ues included three neiJ.(hbors on each side::). If more than half 
were off initially. usuall) all of its cells turnet.l off evenH1all) . If about h<llf were 011 
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and half off, 1ts c•·entual configuration was less predictable. Hence, it acted as a fairly 
reliable detector of which state predominated in its own mitial pattern- a global 
property captured \'ia local computations. Packard's mnO\'at ion was to use a genetic 
algorithm to evolve additional rule tables that could perform this task. Since the first 
row of the table has a fixed ordering of neighborhoods for a ~~,·en number of states 
{he used 2) and neighbors (he used 3 on each side), CAs could be c\·oh·ed using 
~enotypes that explicitly represented only the states on the next time-step (the 2~ ~ 

128 binary digit~ in the second row of the the table). A simpler example of a 
g"enotvpc can he obtained from the rule table in section 9.2.2, which ha$ just 8 binary 
digits due to the smaller neighborhood size: 

0 I I 0 I 0 0 l 

T he fitness function was prO\"tded by the success of the m;~ny CAs that evolved (i.e., 
whether they correctly determined that the initial proportion of active cells was 
greater than or less than 0.5). Packard was especially interested in the fitness of rule 
tables with A in Langton 's region of complexity (centered around 0 .25 or, on the 
other side of the chaotic region, around 0.80). He found that they indeed (on aver
ag-e) were best suited to perform the computation. 

Packard interpreted his findings as supporting Langton '~ proposal that interesting 
computations (class I\' automata) emerge in the critical region he identified for A.. 
Ho" ever, there is more to the story. A n:sean:h team at the Santa Fe Institute 
(;\lelame Mitchell , james Crutchfield, and Peter Hraber, I 994) later evolved CAs to 
perform the same computation, but used a more standard implementation of the 
genetic algorithm. Contrary to Packard, they found that rule tables with A values not 
far from 0.5 performed best and pronded a theoretical argument as to why this 
\\ ould have to be the case. While granting that some interesting CAs such as the Game 
of Life do have A. values in the range Langton identified, they offered their findings 
as an existence proof against "a generic relationship bet"een A. and computational 
ability in CA" and concluded there was "no evidence that an evolutionary process 
with computational capability as a fitness goal w1ll prcrerentially select CAs at a special 
A.< (critical A.} region." They did not, however, deny that relatively simple CAs are 
characteristic at the extremes of the A. range nor did they evaluate rule tables for other 
kinds of computation in that paper. In their more re<"ent work (e.g., Crutchfield, 
l\-litchell, and Das, 1998), this team has continued simulated evolution studies of CAs 
but have focused on applying a computational mechanics framework and a variety of 
refined quantitative analyses to obtaining "a high-le,·cl de~cription of the computa
tionally relevant parts of the system's behn\'ior'' (p . .W). This leaves Langton's in
triguing proposal about A as a possible evolutionary dead-end in under~tanding CAs. 

We will end our brief d iscussion of cellular automata here; it should have given 
t he flavor of the more abstract end of artificial life research. \\'e must skip over a 
.l{rcat deal <If work in the mid-range of biological realism and complexity, leaving 
Reynolds's boids as our one example. The rest of tht.: chapter will focus on the 
evolution of connectionist networks rather than CAs, beginnmg in section 9.3 with 
networks that simulate simple food-seeking organisms (\\hich learn as well as e\'oh·e) 
and progressing 10 9 .4 to network controllers for robots (which develop phenotypes 
as well as e,·oh·e ). Robot controllers were our entry point to the science of artificial 
life in sections 8.3.1 and 9.1, and we look at one additional robot project in 9.5. 
Finally we return to philosophica l issues and 1mpli~:ations in 9.6. 
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9.3 Evolution and learning in Food-seekers 

9.3.1 Overview and study 1: Evolution without learning 

If ~ ou w1sh to us.: networks to control st"nsorimotor behavior in artificial urgamsms 
more complex than cellular automata, how do you get a network that docs a good 
job? A talented designer may quickly arrive at a network that works well for a 
partintlar em·ironment and task, but what if some aspect changes? Including a 
karnm~-: proct=dure has been the traditional way to m.1kc networks adaptwe. Arti
ticiallif~ rcs~·arch u!>ing the genetic algorithm suggest~ that simulated evolution is 
another route to adaptl\·ity that is worth exploring. \Vc have already been intro
duced to the intersection between connectionist networks and artificial life tech
niques in tht= work of Beer (section 8.3.1 ). Here we see how including both kinds of 
atlapti,·ity in networks simulating simple food-seeking organisms has produced a 
better understanding of how learning across the lives of organisms can actually have 
an impact on the C\'olutionary process. This line of research began with Hmton and 
Nowlan ( 1987) and was further pursued by Ackley and Littman ( 1992) and by 
Stefano Nolfi and his collaborators. We will sample it in this section by presenting 
two simulation studies on abstract organisms (Nolf\, Elman, and Parisi, 1994), and 
then in section 9.4 we will track Nolfi's move to related work with robot controllers 
(~olti, Miglino, and Parisi, 1994). 

Nnlfi, Elman , and Parisi (hereafter called NolfiEP) invented simple abstract or
ganisms that e\"oh•ed and learned to tr.1verse a landscape with scattered food sites. 
Each of these food-st:ekers was simulated using a very simple connectionist network 
which encoded and linked a limited rcpetoire of sensations and motor behaviors. 
Each network's archttectun.: was fixed but its connection weights were adjusted in 
the course of learning and evolution. It had four input units: two sensory units 
encoded the angle and distance of the nearest food site, and two proprioceptive units 
s pecified which act1on the organism had just performed. These two kinds of informa
tion were sent through the network'$ seven h1dden units m order to dt:termine 
which acuon would be performed next, and the decision wal; encoded on two output 
un it!>. After applying a threshold, there were just four possible actions: turn right 
(01), turn left ( 10), move forward one cell (11), or stay still (00). NolfiEP's tirst 
simulation (study I) used this architecture for all of its networks. In a second simu
lation (study 2; see secuon 9.3.2), two additional output units were added whose task 
was to predict the next sensory input. The expanded version of the network is 
shown in fi~ure 9.4, but we will be~m with study I .1nd the network without the 
prediction units. 

There is another difference between the two studies. In study 1, improvements in 
food-finding behavior were achieved exclusively by simulated evolution. The mam 
l{oal was to show that purposive behavior could be sculpted from initially random 
heha,·ior by applying a genetic algorithm across generations. In study 2, there was 
another source of change in addition to e\·ulution: learning was used across the 
lifespan of each organism to modify thn:e of the four sets of connection weights. 
Here the mam ~~:oal was to explore how learning and evolution might interact. 

An initial population of 100 organisms was created for study I by randomly 
assigning \\ei.l{hts to the ~·onne.:tions in I 00 otherwise identical networks (four input 
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Predicted 

0000000 

f'lfiillr~ IJ..I 'J'h" n.,rwurk used by ~olfi. Elman. and P:1risi (199~) '" Mmular" ab~rra.:t 
fuod -scckintt orJ..'lllllsms. ~h larl(e arruw is a C"c>mpfo:rc set uf (unn<·c:tions bc!two: .. n units. 
Th<· three ~hmlcd arnm s mdicate ''h1ch la~crs and c:onnc.:riuns m~uc: up the n"rwork u,;ed 
m srud~ I: bo~.<cu un s.:n~ur~ anforma11110 .md rhe <>tl{.lm~m 's pre\ a<>LI., :a~· t aon, th" n"xt 
ALtw n is tlL•tcrmineu. Th<· :addu wnal output units fnr pro:uictan!( th" next """"''rr inputs 
\\"l'rc ~dd.,d w tho= n""'urk m s!l dv 2 

units, se\en hidden un1ts, two output units). Each or~anism lived for 20 epochs, 
dmrn,g \\hu.:h it nad~otatcd its own cop} of a 10 L~ll X 10 cdl environment in which 
10 of the WO cells contained food . In e11ch epoch it performed 50 actions in each 
of 5 environments (differing rn \\h ich cells" ere randomly assigned to contam food); 
at the end of 1ts life the number of food squares it had encoumered was sum
med . Or~anrsms in this initial gener:1tion tcnded to perform poorly. For example, a 
typ1cal trajectory in one of these en\'ironmcnts, as indicated by the dotted line in 
fi~rurc 9.5. rncluded JUSt one food encounter. 'l.lonetheless, the 20 or~anisms who 
happened to acquire the mo~t food were allowed to reproduce. Reproduction was 
asexual (five copies were made of each organism}, and variation was introduced 
hy mutation (in each copy, th·e nmdomly chosen weights were altered by u randomly 
~·hoscn umuum). By the tenth ~cnn<~tion, the organisms had e\'olved sufficiently 
to find many more food squares, with more gradual tmprovemc:nt thereafter. The 
~ol id lmc 111 fi~otu re 9.5 shm\s a typ1c.:al path tnl\"eflled b~ an organism in the tiftteth 
(l<~st) generation. In contra~t to the earlier path, th is one looks purposive. NolfiEP 
emphasized the importance of achie\·ing lifd1ke, goal-directed beha\'ior by means 
of a lifelike. c\'olution.try process. While acknowledging certam simphfications in 
their method (e.g., usexual copying of complete networks rather than sexual re
production with crossm·cr of the ~:cnctic codes go\·crning the construction of net
works), they tnund simulated evolution to be a successful and biologically plausible 
tool for dc\'cloping networks. They partic.:ul<~rly appreciated the biologkal phtusibil
ity of this technique cornp;1red to the standard network de\'clopmcnt technique 
of supcn is~·d learning. ~ature provides ,·arianon and selection hut no explrcit 
tcach~·rs. 
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F1(!11f<' 1/.:i Typical tr;ljc-ctori<·s through the 10 X 10 ~·n\'ironrncnts of the mudd nr~tanism 
in :--Ioiii, Elman, and Parisi's (1119~) study I. The dotto:d line is a tmjt•C"tory fur~ modc:l 
orl(anism in the first j!cncration: it encountered just one food site. Th ... solid lino: i!< a 
trajccwry for a mndcl orl(nnism in the fiftieth generation, which "nC"ountcrcd six food sitL-s. 

9.3.2 The Baldwin effect and study 2: Evolution with learning 

Are any rnh.:s left, then, for lc:armng? Nolfi and Parisi ( 1997) di~cusscd three. At the 
\ ery lea~t. learning augments evolution by permitting adaptations to environmental 
changes that occur too quickly for an evolutionary response. Learning also enables 
Hexibthty, bc:l·ause beha\'ior can be determined by more information than could be 
encoded m the gt'nome. HowC\'er, rn both of these roles, learning is essentially an 
add-on that enhances individual performance but does not interact with the evolu
tionary process. More mtriguing is the possibility of a third role for learning: to 
~:uide evolution. This idea was gtven tts most direct and extreme interpretation in 
Lamarckian evolution- the discredited nineteenth-century claim that acquired char
<lcteristics become directly incorporated in the genome and can be inherited in the 
ne;o.;t generatiOn . A more indirel·t way for leurnrnt,t to ha,·e an 1mp.set on evolution 
was first suggested by James Mark Baldwrn ( 1896). The basi<.: idea 1s that successful 
learners will also be successful breeders, and this source of selection wil1 subtly push 
c\·olution in an appropriate direction; across many generations, the genome itself 
,, 11l move tO\\ ards \"ariations that originally relied on le.1rning. This Baldwin effect 
has been accepted for decades as consistent with a contemporary Darwinian frame
work, but was often o,·crlooked or mismterpretcd. However, Hinton and ;-.:m\ lan 
( 1987) revi\'ed intcre~t by achie' ing the effect in connectionist networks undergoing 
simulated e\'olution and sketching a neat t·ompurational interpretation of this here
tofore obscure corner of e\olurionary thcor~. They lrmited their im·estigation to an 
extreme case m which only one specific set of weights could render the on~anism 
ndapted. and all other" were mabdapth·e. 

Study 2m :-.lolfiEP cxpl(lted hnw learning could guide c\·olution by expanding on 
hoth the simulations and the computational interpretation pront:crl•c.l b,· Hinton and 
:'l:owlan. They first added two uutput units tn the ori~rnal network architecture, as 
we: already ha\'c seen in figure lJA. Th~·se units were desif,!ned to predict the sensor) 
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out(;omc of makin~ the mtl\·cmcnt cnl'O<kd on thl· other two output utnts- that is, 
the Ill'\\ ,mglc and distance of th1.· n<.·arcst food site. The other major design dcd~ion 
'' :1s to makt• th~ weights of the ct>nnt•ctions leading into these new units mmlitiahle 
by hackpropagation. If learning has been successful. the pn·dicted :m).!le/distunce 
should he the same as the al:tual anglc/diMance pres~.·ntcd to the input umts on the 
ncx r time-step. This allowed for a learning scheme in which the desired or target 
output pattern need not he supplicd by an cxte;-rnal tem:hcr, hc~'1luse it is :n ailahle 
from the em·ironment as soon .ts the organism m.1kt..'S its intt·ndcd mon:ment. That 
is, the difference between the predicted and at·tual ;mgle/ dtst.tncc of thl· nenn·st food 
is used as the error signal for learning. Recause backpropagation allon ttes error back 
through the network, this scheme moditi<."S the weights for ltll <.'Onnel·tions except 
tho~e hnking the htd<len units to the two origmal output units for tht· next .tt'tion 
(\\ hu.:h ha,·t: n<~ way of getting a dc.'sired fiction for comparison}. !\'olti ct al. applied 
th1s lt:arning pnx:cdure during the life cycl~.· of each organism. and organtsms \\ere 
~elected for reproduction in the s;~me manner liS in ~tudy 1: ,u tht: end of each ~cn
enltion 's lifespan, the 20 oqz1misms "ho found the most food "ere allowed to repro
duce. The offspring were created by l'Oppng and mutating the original \\"t:ights of 
the parents, not thost: anJ.uired by le.trnin.l( . Hence, then· was no Lamarckian inher
itance of acqu1red charactcristi~o:s. 

NolfiEP were invcstilo!ating wht:ther learning might play a useful role in guiding 
c\•olutJon, and tht:ir results ind icated thdt it could. Learnmg during the lifetime of 
the organisms led to much better performance in later generations - hy a factor of 
two compared with non-learning lineages - t:\·en though the desl·cndants could not 
benefit directly from that learning. NolfiEP's explanation of how sclccti,·t: reproduc
tion and learning interact to produce better organisms in this s ituation is that learning 
pro\'ides a means for determining which organisms would most likely bendit from 
random mutations on their weights. An organism that gains from learning is one with 
a set of initial weights which , if changed somewhat, produce even bt:tter rt:sults. That 
would tend to put the good learners mto the group sekctt:d (bast:d on ~o:ood perform
ance) to reproduce. By comparison, an organism that does not gain from lt:arning is 
ont: whose \\eights art: such that small changes will not product: any benefits. That 
organism may han: found a local mimmum in weight space (see figur<.'li 3.1 and 3.3). 
If so, small changes in wt:ights - whether produced by learning or ~:voluuonary 
changt:s - will not bring further bent:fits. Ht:nce, indudmg learning in the life 
histories of the organisms yields information that permits the evolutionary dt:vices 
of ,·ariation and selection to operate more effectively. NolfiEP's work provides a 
novel explanation of the Baldwin efft:ct by obtaining it in networks that evolve. 

There is another aspe<:t of the interaction between learning and evolution that is 
noteworthy. Evolution imposes needs on the orgunism, and learning has impro,·ed 
the organism's ability to satisfy those nt:eds. While labeling tht: task food seard1ing is 
simply an interpretation, since the or~anism gams nothing from the food squares in 
this simplifit:d simulation, nonethelt:ss, the task of visiting certain squan.-s IS im
posed on the organism by the selection proccdurt: . Tht: fact that lcarnmg to predict 
tht: environment sen·es to promote th1s end is heha,· ioral evidence that visitmg food 
;;quares has become the goal for the organisms. The activation patterns on the 
hidden units can be viewed as pro,·iding representations of the environment . ln the 
lcurning task these represt:ntatinns cnahlc the organism to better predict its future 
sensory input; in the evulutionar} task, tht:} permit it to he!tcr secure food. Since 
lc.1rnmg one t3sk (predicting the futurl' ,tppc•lrance of the en' 1ronment) <:nhances 
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perform;~ncc on the other (finding and at·quirin~-t food), the representations must 
rarrv information that is reh::vant to both tasks. 

\Ve l'an understand ho\\ this might be possible by considering a situation in which 
the nearest food location is at an angle of 90°. This is information that should lead 
both to a decision to turn right and to an expectation that after one does, the food 
"11! he at approximately 0". Both the outputs specifying actions and those predicting 
future anglcjdistann! of food dt:pcnd upon grouping the input patterns into similar
ity groups. This is a functiun sen·ed by the hidden units, so the same similarity 
groups \\'Ill be m·ailablt: to suhscn·c both tasks. h is in this way that lt:arning to 
perform one task can facilitate an organism's performance of another task. 

9.4 Evolution and Development in Khepera 

9.4.1 Introducing Khepera 

Ideally, the interaction of t:\·olution and learning \\ould be studied in a less abstn1ct 
org;mism than the food-seekers just discussed. Two of the above investigators joined 
with another collaborator to take a step forward in complexity by developing nt:t· 
works m control a tiny mobile robot called Khepera (Nolfi, Miglino, and Parisi, 
1994; hereafter called Nolfi::vtP). As shown in figure 9.6, it was equippt:d with 
physical sensors and motor mechanisms and hence could navigate an actual em·iron
ment (a 60 x 35 em art:na with walls and a small circular target area). For practical 
rl'asons, though, ]';oJtiMP developed the control network~ using a simulation of the 
robot in its em·ironment. (In other studies they addrt:ssed the question of how such 
simulations could bt: apphed to developing controllers for real robots; st:e bt:lo" .) 

Khcpera has a diameter of 55 mm (about 2 inches) and is supported by two wheels 
and two teflon halls. Each wheel is driven by a small motor that allows it to rotate 
for"ards or backwards. Khept:ra also has eight pairs of sensors. The light sensors 
can dt:tt:ct lit-up areas at a range of distances, and the infrared st:nsors can detect 
obstacles (objects or walls) in close proximity by bouncing their own light off them. 
As diagrammed m figure 9.6, there are six front and two rear pairs of sensors. They 
influence Khepera's movements by means of whatever internal control network is 
provided. An engineer could quickly dt:sign such a network, but then Khepera 
would be just another robot {one with little practical skill) rather than a simulated 
Jifcform. The rt:al interest is in watching the control nt:tworks emerge via lifelike 
processes of simulated evolution and learning, in pursuit of an ultimate goal of 
ht:ttt:r understanding real e\·olution and learning. NoltiMP's decision to use a simu
lated rather than physical robot added another degree of removal from this ultimate 
goal, hut it aiJo,\ed them the freedom to make :;orne other aspects of their study 
more l·omplex than would otherwise be practicable. 

Nolfil\1P prepared for their simulation by using the physical robot to gt:ncratt: 
a pool of sensory inputs and a pool of motor outputs. That is, first they placed 
Khcpt:ra 10 dtffcrent orientations and locations in tht: physical arena, producing a 
svstematic sample of states on its sensors in which the \\ails and target area \\ould he 
~~en from different angles and distanct:s. Then they gave Kht:pcra's two motors 
dtfft:rent ~.·ombinutions of commands ;md recordt:d its movements. The resulting pools 
of information wcrc used m constructing a simulatt:d \\orld in which the task was to 

mon~ ruwards the small targt:t area in the arena. Simulated t:\'olution and lcarmng 



296 NETWORKS, ROBOTS, AND ARTIFICIAL liFE 

Figuu 9.6 The Khepc:ra robot and ,1 diagram showing tlw locations of it,; sensors. The 
nll~d cird .. s n:present the infrared sensors used to detc{·t obj.:.:ts, "hilt> the •>pt·n circles 
rcprc:scnt lil(ht ~;:nsors. 

6 

interacted to den~lop networks whtch adaptively linked the sensory and motor pat
terns so as to perform this target-seeking task. (Given a different task, the same 
sensory inputs would get lmked differently , though still s~•stematkally, to motor 
outputs - the robot might avoid the target area rather than seek it, ror example.) 

9.4.2 The development of phenotypes from genotypes 

Noltii\IP 's primary innon1tion m this particular study \\<IS to deq:lop a more bio
logically realistic model of how a genotype (the design specifications inherited in the 
~enes) figures in the de\·elopment of a phenotype (the actual organism that results 
from applying those specifications). In prevtous studies using networks as artificial 
organisms, the genotype specified a single phenotypic network. If the network then 
changed its architecture or weights due to learning in its en\'ironment, the genotype 
played no further role in guiding the resulting series of phenotypes. NolfiMP, in con
trast, made the genotype active throughout the hfe of the organism. Because both 
genotype and environment influenced the developmg network {a series of phenotypes), 
fhe same genotype wuld manifest ttself d ifferently in different en\'ironm.ents. 

In order to create thts more biologically realistic genotype-phenotype relation
ship, Noltii\1P used "genes" (structure-butlding in$tructions} to produce "neurons" 
(units) with "axons" (potenrial connections) that gradually ~rew into a "nen·ous 
system., (neural network). Key points in this process are illustrated in tigure 'J. 7 and 
descnbed below. The full set of genes- the genotype- ensures that ea~:h nervous 
system is limited to feed forward connections and has a maximum of 17 internal 
neurons (hidden units, which may be arranged in a maximum of 7 layers), I 0 
sensory neurons, and 5 motor neurons. \\'hcther a given m:uron becomes part of the 
mature ncn·ous system (i.e., b~:comcs function<~ lly connected within a path from 
sensory to motor neurons) IS detcrmmcd b~· the interaction of the robot's genotype 
and its experiences. 

The genotype c<mtains a separate block of genes for each of the J2 possible 
neurons Some of the genes spccif) basic informatmn about the neuron : tts location 
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FrllJire 9. 7 An •·n>h·~,J nt·twork cum roller for the Khcpcnl rnhot at fnur ~taJ(es of 
d.:,·dopm~nt: (a} tlw tOitial 21 neurnns; ( b) tho: growth of branching mwn~; (cl the network 
nftcr it hus bt'l'n pruned to lean: only the connt'Ctions wher~ the axon haJ madt· .;1mtact 
\\ith another neuron; (d) the functionaltwtwurk. Ad:1pted from :'\oll1, :VIiglinn, and PJri~i 
(199 .. ). 

in a two-dimensional Euclidean space (su,::gestive of a \'t:rtical slice throHgh n cor
tical column in a real bram), the weight on any connections to units above it, and its 
threshold or bias. Additionally, each sensory neuron has a gene specifying to \\hsch 
sensor it is to be connected and \\ hether it detects ambtent light or obstacles, and 
each motor neuron has a gene specifying whether it should be connected to the 
motor for the left or right wheel. {If more than one motor unit is connected to a 
given motor, the behavior of the motor is determined by a\·eraging the activations of 
these units.) Finally, the most interesting genes code for the growth of axons that 
may conned to other neurons. 

Carrying out the basic instructions produces up to nine layers of neurons; the 
nascent nt"twork in figure 9.7{a) has 21 neurons in eight layers. Those in the outer 
layers are connected to the robot's sensors {at bottom; not shown) or motors (at top; 
not shown), but initially none of the neurons are connected to other neurons. The 
genes thllt encode growth give each neuron the potential to send out an axon which 
may branch up to four times. One gene specifies the length of each branch and 
another specifies the angle at which it branches. Realizing this potential depends on 
experience. The rest of figure 9.7 shows the consequences of applying these instruc~ 
tions and experiential constraints: 

Figure 9 .7(b): Depending upon the genetic instructions, the branching can yield a 
sweeping arborization extending up through several layers (e.g., that of the leftmost 
sensory neuron) or instead can yield arborizations that are narrower and/or shorter. 
Not all neurons send out an axon, however; this is governed by the expression 
threshold gene in interaction with experience. If this gene's value is~' an axon ~ill 
sprout immediately (maturation with no need for learnmg). Otherwise, it specifics a 
threshold value for the variability of the neuron's last ten adivation \'alues, which 
must be ex~:eeded for an axon to sprout. Once axonal growth has begun, a new 
uncertainty arises: whether any of the branches will contact another neuron. If so, a 

connection is est.tblishcd. 

Figure 9.7{c): The details of axonal bnmchin!t are omitted and ea<:h wnnection is 
indicated by a stratght line. Some of the conncctwns are nonfunctional, howewr, 
hcc.tuse they du nut lie on a path extend in~ .til the way from the sensory to the motor 
layer. 

Fi.l(ure 'J.7(J): The isolated connection~ and neurons arc omitted, leadng the func
tional part of the neural network. In this example, it includl.'S just two sensory 
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neurons (one of each type), four internal neurons in three different layer,;, and two 
mowr neurons. It is the outcome ot the joint activity of genes and environment in a 
single organism within a single generation. We refer to this as "learning" to distin
guish it from e\·olution, but the word is a crude shorthand for a c.:omph:~ process bv 
which a genotype in an em· ironment creates a den•lopmcntal :setil·s of pherwtypcs i~ 
which maturation and lea min~ Are inter!\\ int:d. 

9.4.3 The evolution or genotypes 

Along\\ ith Nolti~IP, we next turn our attention tn e\'olution. To cultivate a popu
lation nf simulnted robots, they employed a strategy ,·er) similar to that used to 
culm·are food -set:kers in the pre\'ious simulation. They began with 100 randomly 
generated genotypes, each of which was used to obtain one simulated Khepera. Each 
such robot lived for to epochs of 500 actions each; in each epoch, both the robot and 
the target area ''ere placed in random locations in the arena and the robot produced 
actions that moved it through the arena. Under the joint influence of its gcnotype 
and the inputs it received through its s~nsors, the robot developed a specific net
work architectun: and assignment of connection weights. The robot's fitness was 
determined in each epoch hy its ability to reach the ta~get area; it was calculated by 
summing the value of SOO-N across all tO epochs, where N is the number of actions 
the robot ne~ded to reach the target the tirst time in an epoch. The 20 robots who 
achieved the greatest fitness in a given generation reproduced, creating 5 copies of 
their genotype (varied by random mutations). NoltiMP also alternated between "light" 
and "dark'' environments. In even generations the robots were placed in an environ
m~nt in which a light illuminated the target area; in odd !!encrations the light was 
left off, thus r~ducing the usefulness of the hght sensors. 

By examining the best 20 indi,·iduals m each generation, 1'\olfiMP were able 
to show that the robots exhibited considerable increases in fitness (between three
and four-fold) over the first 50 to 100 generations if analysis was limited to the 
e\·en-numbered generations (light environment) Odd-numbcrcd generations (dark 
eO\ Ironment) showed a much shallower fitness fum.tinn (on I) a two-fold mcrease}. 
NoltiMP then set out to evaluate the distinctive effects of learning in the two kinds 
of environment by examining mature phcnotypcs of the control network. To do this 
they allowed two clones with the same highly evolved genotype to develop in light 
and dark environments and compared thc two networks that resulted (see figure 
9.8). While there are some clear similarities between the networks produced by the 
same genotype, there are also impressive differences. The network that developed in 
the light environment came to rely on three infrared sensors and two lrght sensors, 
while the network that developed in the unlighted environment relied only on (the 
same) three obl!tacle st:nsors. There were also quite diffcrent patterns of connection 
from liensory neuron 2 to the motor neurons. 

9.4.4 Embodied networks: Controlling real robots 

\\'~: h;n·c been sp~·aking of c• olution and lellrmn~ in mlmy gcm:nmno!l. of robotli, hut 
recall that th1s ''as <Ktu~ ll y a srmulmion study rhat did not usc rhc a~·tual environ
ment and physi..:al robot lifter obtainmg samples of its J;Cnsor~ and mnrur C\ cnrs. 

... 
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Figure 9 .• Y Two e\·olnd network (·om rollers cloned from the same ){enotypc. 'l'he 
<"onrroller on the left is fr<>m a rubot that devdopcd in a hght environment, whereas 
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the cnntroller on the right is from a robot that developed in a dark cn\'ironmo:nt. Beneath 
each cuntroll~r 1S a depi(·tion of th~ sensors that were m;tive in each case. 

Could a network developed by such s imulation techniques be inserted into the 
physical robot and SUCl'ecd in I.'Ontrolling it? :'llolti, Floreano, Mi~-:lino, and Mondada 
( 199~) explored this que~tion by evolving contrullers using (a) real robots and em·ir
onment, (b) simulated robots and environment, and (c) a hybrid strategy in which 
controllers dcn:loped for simulated robots wcre inserted mto real robots for the last 
30 of a total of 330 generations. The robots again were Khepera, but the cnviron
ment and tasks were a little different than those of Nolfi, Miglino. and Parisi and the 
networks~ erc simpler and did nut learn. In the hybrid study, performance tempor
arily declined immediately aftt:r the network was transfcrred mto a real robot, but 
then quickly recovered. They noted several way~ in which the simulation procedure 
differed from the real one, and recommended the h}brid strategy as offering an 
efficient \\ ay to get dfectiYe controllers. 

This last study brings us a skp closer to reality. Unlike many artificial organisms, 
Khepera is embodied . Though its controllers exist as computer code, the robot irsdf 
has a physical body that registers light ;~nd rakes actions in an a~·tual arena. Sampling 
thesl' physical events lent a degree of r~:alism to l':olfi:\IP's computer simulation of 
Khepc:ra, hut only by hookmg thL· controller net\\ork into an actual robot would 
compktel~ rcalistic connections between p<lrtlcular sensory and motor patterns _get 
made. \\"hen a real Khcpera makes a mon·, It will vary slightly from the planned 
mm·cmt:nt and '' h;1t is seen nc:~:t " ill depend upon the actual mo\'ement. By en•l
' 'ing nemorks in real robots and cm·ironmt·nts, we assure that they must cope with 
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constraints and variation that cannot be perfectly simulated. Work of this kind pro
vides grounding for those studies that use simulated or hybrid strategies for evolving 
controllers. 

Nonetheless, many aspects of life are still merely simulated in the studies using 
actual robots. The robot is itself a silicon model of a hypothetical organic being. Its 
controller simulates a real nervous system, the evolution of its controller simulates a 
simplified version of biological evolution, and its learning procedures are intended 
to simulate key properties of learning in real organisms. Langton 's synthetic 
approach to understanding life brings tradeoffs between realism and the degree to 
which the investigator can manipulate the components of interest and interpret the 
results. The various studies by Nolfi and his colleagues make different choices about 
those tradeoffs, and the investigations of cellular automata are even more extreme in 
their preference for manipulability over realism. There is something to be learned 
from each of them, and more to be learned from comparing them. 

9.5 The Computational Neuroethology of Robots 

We have not yet discussed one of the major benefits of using artificial neural networks 
as robot controllers: investigators can analyze the behavior of their components in 
much the same manner as neuroscientists use cellular recordings to analyze the 
activities of individual neurons in real brains. This enables researchers to discover 
the mechanisms that determine the behavior of the robot in its environment. Such 
robot studies are part of the field of computatiorral nturoethology, a term coined by 
Dave Cliff (1991 ). The corresponding studies of living organisms are situated in the 
parent field of neuroethology. (A complete account of the nomenclature and range of 
studies comprising computational neuroethology would be much more complex; for 
example, Randall Beer independently coined the term in presenting his studies of 
artificial insects, as did Walter Heiligenberg for his computer models of real animals.) 

To exhibit the potential of this approach, Cliff, Harvey, and Husbands (1997) 
reported on studies they conducted on networks evolved to control robots movin1 
about in rooms. The robot, the room, and for that matter the network (as usual) 
were simulated. The robot specifications include a cylindrical shape and three wheels 
-two in the front which drive it and one in the rear to provide stability. Each of the 
wheels can tum at five different speeds: full forward, half forward, off, half reverse, 
and full reverse. The robot has six tactile sensors: bumpers in front and rear and 
whiskers positioned partway forward and partway back on each side. It is also 
equipped with two photoreceptors, whose d irection of view and angle of receptivity 
are under evolutionary control. The architecture of the controller networks was 
evolved through a variation on the genetic algorithm, with an evaluation procedure 
based on the ability of the robot to move rapidly to a predesignated part of its 
environment. This placed an emphasis on evolution of the photoreceptors to guide 
behavior. (No learning procedure was incorporated in these simulations.) 

The networks that Cliff et al. evolved in this manner are rather complex, with 
many backward as well as forward connections. They noted that the networks were 
very different (better) than what would be created by a human engineer. To simplify 
the networks for purposes of analysis they removed from consideration all redundant 
connections and units with no outputs. (The genome itself determined which connec
tions were actually present, in contrast to Nolfi et al. 's inclusion of developmental 
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processes for that purpose as described in section 9.4.2.) They then performed the 
equivalent of multi-cell recording in real animals- that is, they recorded the activa
tion level of a number of units (in fact, all of them) while the robot performed the 
activity of interest. To further simplify analysis, they eliminated from consideration 
those units that were largely inactive during the behavior. This still left a relatively 
complex network, but one much reduced from the original and in which it was 
possible to provide a (still complex) description of the ftow of activation. To give the 
flavor, we quote just one portion of the analysis of one robot controller: "Initially, 
relatively high visual input to unit 6 excites unit 2, which inhibits unit 12, so units 12 
and t 3 stay inactive. Meanwhile, the effects of visual input arriving at unit 11 give a 
low-radius tum. Eventually, the robot turns towards the (dark) wall and the visual 
input falls, so unit 2 no longer inhibits units 12" (Cliff, Harvey, and Husbands, 
1997, p . 140). They then commented on how such analysis is similar in character to 
the analysis one would give of a biological nervous system: 

The task of analysing an evolved neural-network robot controller is similar to the task 
of analysing a neuronal network in a real animal. The techniques we have employed 
bear some resemblance to those used in neuroethology, and they give broadly similar 
results: a causal mechanistic account of the processes by which perturbations in the 
system's inputs give rise to alteration in the system's outputs. That is, the internal 
mechanisms of the agent are not treated as a black box, and so it is possible to under
stand how the observed behaviour is generated. (pp. 149-SO) 

In addition to a mechanistic analysis focusing on individual units, Cliff et al. also 
developed a quantitative dynamical analysis that revealed how one controller net
work, which turned out to be successful in many environments other than the one in 
which it was evolved, developed dynamical attractors which governed the nerwork's 
behavior. Like Beer's analysis, this combination of mechanistic and dynamical ana
lysis has the kinds of advantages we discussed in section 8.5.3. Because the analysis 
involved a much larger network, though, it is harder to extract a higher-level de
scription of the mechanism. 

9.6 When Philosophers Encounter Robots 

The various research programs that we have surveyed in this chapter - most of 
which used the genetic algorithm to evolve cellular automata or network controllers 
for robots- fall broadly under the rubric of artificial lift. Like the more established 
sciences, artificial life has attracted the attention of philosophers. Most see it as 
raising new philosophical questions (or new variations on traditional philosophical 
questions), but at least one (Daniel Dennett) sees it as offering a new method for 
addressing philosophical questions. 

9.6.1 No Cartesian split in embodied agents? 

For many who have cast a philosophical eye on work in artificial life, one of the most 
notable features is the emphasis placed on embodying cognitive agents and locating 
them in environments. For Wheeler (1996), this challenges one of the fundamental 
Cartesian splits - that between mind and world - that modem cognitivists have 
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- is rejected by both artificial-life and cognitive researchers, who generally agree that 
the mind is simply the activity of the brain. Thus, the axis on which the two clusters 
differ is that the mind is isolated from the world m cognitivism but coupled to the 
world in artificial life. 

To pursue this distinction, cognitivists view the mind as involving operations over 
internal representations and develop models of this abstract kind of thinking with
out giving serious consideration to the ongoing activities of the host organism in ita 
environment. They assume that some sort of interface to sensory transducers and 
motor effectors will provide links to the environment, but that incorporating theae 
links is not crucial to developing a good cognitive model. In contrast, artificial-life 
researchers take as their starting point an organism situated in an environment. 
The primary function of internal processes is to use sensation to control action, 80 

the Cartesian separation of mental processes from worldly events is avoided. If more 
abstract processes develop, it is assumed that their form and functioning would be 
inftuenced by the more basic sensorimotor processes; they would not be studied in 
isolation. Moreover, insofar as the internal control systems constantly engage with 
the physical body and environment (e.g., by receiving new sensory input as a result 
of moving the body), the last vestiges of the Cartesian scheme are overcome. Instead 
of a Cartesian scheme, Wheeler suggests that such artificial life embodies a 
Heideggerian perspective wherein agents begin by being actively engaged with their 
world through skills and practices; whatever cognitive reftection occurs, it is grounded 
in this activity. 

9.6.2 No rep~ntatioos in subsumption architectures? 

For roboticist Rodney Brooks (1991 ), pursuing this program has generated some 
fresh ways of thinking about the mind's architecture. He builds a separate control 
1ystem for euh task a robot must perform; each is a hard-wired finite state machine 
which Brooks calls a layer (a very different use of the term than in connectionism). 
For example, in his simplest robot the first layer specializes in avoiding obstacles, 
the second layer generates wandering (randomly determined movements), and the 
third layer generates exploration (moving towards a particular location). Each layer 
is a complete system extending all the way from sensation to action and is capable of 
acting alone. Typically, however, they can be active simultaneously; minimal circuitry 
between layers manages when one layer will suppress another, or sometimes calcu
lates a compromise direction of movement. Brooks calls this a subsumption architec
ture, and it follows from deciding to decompose activities horizontally by task rather 
than vertically by function. A function such as visual perception may be carried out 
separately and differently within several layers of the system; there is no overall, 
shared vision module in the sense either of Fodor or of traditional AI. This means 
there are no central representations. Even within a layer, information is accessed 
from the real world as needed, obviating the need to construct and keep updating an 
internal model of the world. Brooks argues, moreover, that the states of the various 
registers of the finite state machine constituting each layer do not even qualify as 
local representations: they do not involve variables or rules, and individual states do 
not have semantic interpretations (rather, the whole layer is grounded in the world it 
moves in). 

most forms ot antelllgent Denllvau• , ... ,""A" ...... v~ .. --eo· 

97 percent). Kirsh (1991), for example, allowed that it could suffice for an activity 
such as solving a jigsaw puzzle. A person might look at the ahape required at a 
particular gap and compare it to the shapes of available pieces, and might attempt to 
physically position each of the pieces in the gap if necessary; the task requires 
minimal cogn.itive activity and no complex models. But he argued that a host of 
important activities cannot be accomplished through such direct linkages to the 
environment - activities that require: (1) predicting the behavior of other agents; 
(2) taking into account information not presently available (e.g. , precautionary activ
ities to produce or avoid future outcomes); (3) taking an objective, not an egocentric 
point of view (e.g., obtaining advice from other agents); (4) problem-solving prior to 
action; and (5) creative activities (e.g., writing poetry). 

The objections raised by Kirsh (and similarly by Clark and Toribio, 1994) seem 
telling against extreme antirepresentationalist positions such as that of Brooks and 
some others engaged in the artificial life movement. But what if a Brooks-style 
architecture were used as the starting point for a new system responsive to Kirsh's 
objections? Its designers could build sensorimotor controllers specialized for various 
activities in the world as a foundation, but then add the capacity to reason and solve 
problems in ways that partially decouple the internal system from the environment. 
Such a system could develop plans and strategies that enabled it to respond more 
effectively to situations that arose, and thereby enhance its evolutionary prospects 
(for a suggestion along these lines, see Grush, 1997a). 

9.6.3 No intentionaUty in robots and Chinese rooms? 

One attractive consequence of starting with an embodied system acting in the world 
is that whatever cognitive, representational processes are built on top of that will 
have their representations grounded in the world. Researchers taking this kind of 
hybrid approach might thereby hope to overcome the problem of accounting for 
intentionality in AI systems that was posed by john Searle (1980). The term inten
tiorrality refers to the character of linguistic utterances or thoughts as being about 
something and in that respect having meaning (e.g., the thought that john Searle 
teaches at Berkeley is about the actual person John Searle). Searle makes his case 
against AI systems by offering his Chinese Room thought experiment, in which a 
person or machine simulates the behavior of a speaker of Chinese using Chinese 
characters to engage in a written interaction. The simulation is accomplished by 
repeatedly consulting a handbook of rules for manipulating the Chinese characters 
as formal symbols (i .e ., shapes with no meaning). Searle contends that the person or 
machine engaging in such symbol manipulation, because they do not understand the 
Chinese characters they are responding to or producing, does not have the (inten
tional) thoughts of the real Chinese speaker being simulated. If embodied artificial 
life systems are elaborated so as to develop representations that stand in for aspects 
of the environment with which they are interacting, then, unlike the purely formal 
system operating in Searle's Chinese room, these representations might be credited 
as exhibiting intentionality. 

Beyond those projects using actual robots as embodied artificial organisms, much 
of the research in artificial life relies on simulation techniques. Even Nolfi, Miglino, 
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and Parisi's (1994) work on evolving network controllers for Khepera relied upon 
off-line samples of the actual robot's experiences (a kind of simulation). If control
lers for simulated robots are viewed as employing representations in their hidden 
layers (which Brooks might deny but many others would assert), Searle's objection 
would seem to arise again - the representations are completely formal and l.adt 
content. If indeed the network controllers evolved in such simulations tum out to 
be virtually equivalent to those evolved in real robots, on one view, this draws into 
question the intentionality of the representations in the real robots as well. This ia 
likely the view Searle would adopt, since he uses the Chinese Room thought experi
ment to demonstrate, by contrast, the causal powers of real brains in producing 
intentional states. But an alternative interpretive stance on the simulated controllers 
would regard their internal states as representations insofar as they evolved in 
response to the evolutionary and learning conditions imposed by their simulated 
environment (the similarity to controllers evolved for real robots would be due to 
similarities in those conditions). We cannot hope to settle here the issues concerning 
the intentionality of representational states that develop in simulated and real robot 
controllers. However, this aspect of robotica clearly exemplifies how artificial life 
research can engage long-standing philosophical concerns. 

9.6.4 No armchair when Dennett does philosophy? 

Perhaps the most radical suggestion about artificial life is Daniel Dennett'a (1995) 
proposal that it offers not just a new domain that philosophers can pounce upon and 
subject to their usual methods of analysis and criticism; more interestingly, it can 
provide a new method for doing philosophy itself. One of the traditional methods, u 
just illustrated by Searle's Chinese Room, is to pose thought experiments. The 
philosopher generates interesting circumstances (often fanciful or contrary-to-fact, 
but regarded as diagnostic) and reasons about their likely consequences. The results 
generally are far from definitive; philosophers with different intuitions, biases, and 
other limitations arrive at different consequences. Dennett suggests that building 
artificial life simulations offers an improvement upon this method, because it offere 
a way for elaborate thouaht experiments to be not merely created but also rigorously 
tested. If what the philosopher imagines can be realized (implemented) in the design of 
an artificial life simulation, then running the simulation will reveal the consequences. 
Philosophers inspired to add this technique to their toolkit will be able to break new 
ground in posing and testine ideas. As one example, Dennett points to the question 
of how a complex phenomenon like cooperation might emerge. If a philosopher's 
tentative answer can be realized in an artificial life simulation which indeed produces 
cooperative behavior (e.g., that of Ackley and Littman, 1994), this should be a more 
convincing way to evaluate the proposal than to reason about why the tentative 
answer might or might not succeed (the time-honored, perhaps time-worn, arm· 
chair method of doing philosophy). A similar issue that Dennett indicates might 
lend itself to investigation through artificial life modeling is whether highly purposive 
intentional systems with beliefs and desires might evolve gradually from simpler 
automata. The further the method is stretched beyond its biological roots, the wider 
is the range of traditional philosophical issues that can be opened to new insights. 

We have touched on several ways in which successful simulations are likely to help 
advance philosophical inquiry; of these, Dennett's rethinking of thought experimenta 
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probably has the greatest implications for philosophy as a discipline. However, it 
can be expected that many philosophers will respond to simulation results by ques
tioning whether the apparent cooperative behavior or intentionality are real instan
tiations of these constructs, or are pale imitations of uncertain consequence . Do the 
simplifications and abstractions involved in any simulation compromise the epistemic 
status of its outcome? Many rounds of argument could emerge from a skeptical 
comment of this kind, and they would remind us that simulation or any other new 
method would only augment, not replace, reasoning and debate as a way of doing 
philosophy. 

9.7 Conclusion 

The networks we d iscussed in previous chapters had been hand-crafted by humans 
and employed to solve problems that had been encoded by human designers on their 
input units. In this chapter we have explored early efforts to expand the scope of 
connectionist research so as to avoid these two constraints. By installing networks 
into robots as controllers, they are not restricted to what the researcher wants them 
to learn; they incorporate the regularities in an actual environment whatever those 
tum out to be. The genetic algorithm provides a way of evolving network designs; 
these evolved designs may tum out to be far more brain-like than those created by 
human designers if their early promise is realized. The final point considered here 
was that the lines of research discussed in this chapter are also ripe for philosophical 
analysis, both by raising philosophical questions such as whether the representations 
developed in embodied robot controllers achieve genuine intentionality and by offer
ing a vehicle for carrying out philosophical thought experiments. 
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CoNNECTIONISM AND THE BRAIN 

10.1 Connectionism Meets Cognitive Neuroscience 

lt is clear from the last few chapters that connectionist networks have had a broad 
impact in the cognitive sciences, often on their own as models of cognitive systems 
but increasingly in combination with other new approaches. We have seen, in par
ticular, that artificial life researchers have evolved networks to control robots, and 
dynamicists have analyzed state changes in networks as trajectories to stable attractors 
or chaos. Not everyone engaged in these enterprises likes the term connectionism and 
the entire package of commitments it tends to suggest. Some prefer the terms t~eUral 
network or artificial neural network (ANN), which are more neutral in some respects 
but do carry a strong reminder that the oldest and most prominent roots of network 
modeling lie in the neuroscience of the mid-twentieth century. As we saw in chapter 
1, McCuUoch and Pitts ( 194 3) added simplifying assumptions to the neurophysiology 
of their day in order to define simplified, abstract "neurons" and connected them at 
"synapses" to obtain networks that, they demonstrated, amounted to logic circuits 
capable of computing propositional functions. But that presses the issue that is the 
focus of this final chapter: what is or should be the relation between connectionism 
and studies of the brain? We begin by quickly reviewing the trajectories of these two 

enterprises and their intersections. 
McCulloch and Pitts's idea of regarding the nervous system as a computational 

system gave rise to a field that is now known as computational neuroscience. Ita 
investigators have employed a variety of mathematical, engineering, and simulation 
techniques, of which the best· known products are the first wave of neural network 
models. Their designers generally shared an ultimate goal of a better understanding 
of the brain, but they differed in shorter-term strategy and emphasis. Those trained 
in neurophysiology aspired to biological realism - sometimes focusing their model• 
on specific brain areas such as the hippocampus (Marr, 1971) or primary visual cor· 
tex (Bienenstock, Cooper, and Munro, 1982; von der Malsburg, 1973)- but they had 
to make idealizations and compromises in order to achieve computationally tractable 
models and to bridge gaps in biological knowledge. Those whose background wu 
in computation or formal systems, in contrast, put their emphasis on demonstrarin1 
or improving the computat ional capabil ities of networks. First-wave designers of 
either orientation were modest in the types of tasks for which they designed net
works: sensorimotor functions, simple memory functions, pattern completion, and 
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the like (e.g., j . A. Anderson, 1972; Grossberg, 1982, 1988; Kohonen, 1972, 1989; 
Little and Shaw, 1975; Rosenblatt, 1958; see section 1.2}. 

As empirical knowledge in biology as well as computational modeling techniques 
advanced, computational neuroscientists turned much of their attention to precise 
models of neural mechanisms. The most microscopic models targeted structure, 
functioning, or learning within an individual neuron or at synapses (e.g., Abbott and 
LeMasson, 1993; Bower, 1992; Collingridge and Bliss, 1987; Koch, 1990; Shepherd, 
1990); others explored how networks of neurons function (e.g. , Amari and Maginu, 
1988) or develop and learn (e.g., Miller, Keller, and Stryker, 1989). Bugmann (1996) 
argued that fairly abstract models of networks of neurons can be useful if they respect 
the properties of individual neurons. Some investigators ventured into even less 
familiar territory, adding surmises and extrapolations to existing knowledge to make 
very general, provocative proposals concerning how brain circuits work. Among these 
were neural Darwinism (Edelman, 1987; Reeke and Edelman, 1988); the concept of 
routing circuits (van Essen, Anderson, and Olshausen, 1994); and the idea that 
synchrony in neural firing might solve the binding problem (Singer, 1994; von der 
Malsburg, 1996). Other investigators continued to make advances in modeling spe. 
cific brain areas (e.g. , prefrontal cortex: Braver, Cohen, and Servan-Schreiber, 1995; 
motor cortex: Lukashin and Georgopoulos, 1994). Work emphasizing computation 
rather than biology also took some new directions, including Bayesian·based ap
proaches to learning (e.g., Dayan, Hinton, Neal , and Zemel, 1995} as an alternative 
to more biologically based Hebbian learning. Recently, Eliasmith and Anderson 
(forthcoming) proposed a general framework for neural modeling in which multiple 
functions (e.g., vector funct ions and probability density functions), transformations 
(linear combinations of sets of functions), and levels (e.g., neurons and neural groups) 
can be combined. Overall, the field has become much more diverse and its models 
much more targeted and biologically realistic than during the first wave of neural 
network models. 

At the same time that computational neuroscience was moving beyond its roots in 
the first wave of neural network models, a second wave of researchers from cognitive 
psychology and artificial intelligence adopted neural networks as a medium for 
modeling human cognition. This intersection of two previously distinct trajectories 
in the early 1980s produced the distinctive approach to network modeling known as 
connectionism. The primary goal was to achieve a deeper, more complete account of 
cognition than had been obtained from the rules and symbolic representations of the 
information processing framework. Both neural plausibility and computational power 
were attractive to connectionists, but primarily as means to the end of modeling and 
understanding cognition. Connectionist networks were "neurally inspired" but did 
not need to resemble any particular parts of the nervous system. Backpropagation 
increased computational power, but that would have been of limited interest to 
connectionists if it resulted in learning outcomes unlike those of humans. When 
these researchers evaluated a network, the first priority was that it mimic human 
performance in tasks ranging from past-tense formation to story~schema extraction 
- tasks for which neither the biological substrates nor the optimal computational 
machinery are well understood, but for which human data exist to be compared to 
the performance of network models. ' 

Across the 1980s and well into the 1990s, most cognitive scientists (including 
connectionist modelers) and neuroscientists (including computational neuroscientists) 
pursued their own paths. Connectionists tended to hold neuroscience at arm's length, 
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in p;lrt because the !(n!in size of cognitive models had very limitt:d potential for 
dovetailing with available knowledge in neuroscience. Biological findings concern
ing subcellular mt>chunisms and neurochemical accounts of nc:un1l transmission wen:: 
too fin~:-graim:d for conn~:ctionists to use. Simple: localizations of global functions in 
brain areas, such as ncuropsycholo~-tical findings rc:garding language processing in 
BrOt:a's area, wen: too coarse-grained to guide modeling. Hubcl and Wiesel"s (1962, 
1 968) simplt> and complex cells in primary visual cortex caught the attention of cog
nitin: scientil>tS working on dsion, but few empirical results from neuroscience were 
.. just nght .. for those focused on higher cognition. (Goldilocks would understand 
this dilemma.) The most fruitful cont<lcts were hcmecn researchers in both camps 
who shared an interest in computational aspects of networks. 

Dunng this period, though, certain neuroscientists were making other advances 
that drew incn:ased attention from cogniti\'t: scicntists in the early 1990s . .:VIost 
notablt: ,,as the idea of obtaining PET scans from indtviduals performing cognitive 
tasks (Pett:rsen, Fox, Posner, i\lintun, and Rakhle, 1988). By comparin~ blood flow 
pattern ~ for related task~ . researchers could produce color-coded imagt>~ that were 
taken to indkate which brain arcas were most active m performing parti<.ular kinds 
of cognitive operations. For example, Petersen t't at. subtracted the pattern obtained 
while simply reading a word from the pattern obtained while performing a semantic 
operation on that word. Color-coding a brain image so that the areas with the largest 
di fferences were red, the most prominent ' 'hot spots" wen~ inferred to be involved in 
operations on word meanings. More recently, de,·elopments in fNIRI technology 
have enabled progress towards identifying the circuits in which these areas play a 
prominent but not exclusive role. Such neuroimajling techniques were at the right 
grain size to propel cognitive psychologists and neuroscientists into collaboration, 
and some of the new teams learned to take better advantage of neuroscience's other 
technologies (e.g., Neville and Lawson's 1987 use of evoked-response potentials 
(ERP' to study visual attention} and constructs (e.g., Cohen and Servan-Schreiber's 
incorporation of a parameter representing dop.1mme level m their 1992 simulation of 
schizophrenia). By the second half of the 1990s cugnit1t:e m:urom'e~rce was a thriving 
mterdtsciplmary rese.Jrch area that was attracting increased funding, students, and 
attemion, trends that are contmuing in the twenty-first century. 

One last trend is of particular importance: the boundaries between these already
interdisciplinary fields are beginning to blur. Established researchers in cognitive 
scient·e and neuroscience, especiallv those engaged in conne~.:tionist modehng, com
putational neuroscience, or cognitive neuroscience, are collaborating and reading 
ea.:h other's work. Younger scientists are emerging who ha"e competencies in more 
than one of these three specialized areas and interests that span them. Two of them 
rccently produced the first textbook that seamlessly covers all three areas (O'Reilly 
and Munakata, 2000). In large measure, '''t: ha,·e regained the synergistit.· energy of 
the 19+0s and 1950s, when the first neural network models were <lmong the products 
of collaborative work on intelligent s~·stems by physiologists, logicians, engineers, 
psychologists, and computer scientists. Connectionists have contributed to this re
newcd cooperation by de,·cloping network models that answer to both beha"ioral 
and neural e vidence. In section 10.2 we examine several cxcmplars of that work. 
Hc>wc,·er. there also is at least one ongoing source of di' ision: neuros.:ienrists tend to 
be conct."rned about tht." cxtenr to which connectionist modds, e,·cn those targeting 
brain processes, arc biologically unrealistic. In st·ction 10.3 we con!<idcr this com
plaint and ho\\ conncl·tionists respond to it. 
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10.2 Four Connectionist Models of Brain Processes 

In this ,;el·tion we will describe four diffcn•nt cndea,·ors by conncctioni;.ts t•> incor
poratt." specific findings from neuroscience in the dls1gn of a nt."twork model. The 
rest'archcrs are rooted in the connectionist tradition, hut each has made a partil·ular 
effort to incorporate certain aspe~:ts of what is known ahout neural stnll'ture and 
function or neuropsychological data. None of these net\\ ork,; should be ,·ie\\cd as 
~implr implementmg an accepted theory, h,·,;au~c in each ,-.~se there is considerable 
debate about theory. This has given network modders an opcnin.e; to contribute 
thcir own explanations and predictions, some of which ha\'e already had some up. 
take. As such models become mure numerous and more ~pccific, it will be inter~:st
tng to observe whether neuroscience changes network models more than the models 
l·hange neuroscience. 

10.2.1 What/Where streams in visual processing 

Our first example invol\'eS modeling an aspect of the neurobiology of vision. By the 
end of the nineteenth century, studies of lesions in dogs. monkeys, and humans had 
yielded sufficient eddence to conclude that the occipital lobe of cerebral cortex (at 
t he back of the brain) played a major role in visual processing- cspccially the area 
which later became known as stnate cortex or Brodmann's area 17 and more recently 
as primary visual cortex or VI. By the I 9()0s, IJa\ td Hubel and Torsten Wiesel \\·ere 
recording the acuvity of indtvidual neurons in cats and monkeys to determine how 
VI produced a low-le\'el anal}sis of visual input, and they and other resean.:her~ were 
tracing projections to extrastriate areas (anterior to VI). By the 1970s, researchers 
!;Uch as Semir Zeki were uncovering the functions of these areas by recording neur
ons in monkeys. Evidence of ~pecialization accumulated; for t'Xample, Zeki found 
that the area now known as V4 had cells responsive to color and area :\IT in the 
superior tt.>mporal sulcus had .:ells responsive to motion (see Zeki , 1993, and Bechtel, 
2001, for historical overviews). 

A major theoretical proposal regarding the organization of the brain's visual 
processing system was advanced by Leslie Ungerleider and Mortimer Mishkin 
( 19!!2). As illustrated in figure 10.1, visual processing beyond VI and V2 (OC and 
08 in the mapping system they used) was divided into two pathways, one proceed
tng ventrally (downwards) into the tempomllobe and the other proceeding dorsally 
(upwards) into the parietal lobe. Based on studJI!S of visual detictts in monkeys "tth 
lesions in etther the \·entral or dorsal pathway, Ungerletder and l\ lishkin proposed 
that the \'entral pathmsy an;1lyzed an object's properties and used this information to 
identtfy it, whereas the dorsal pathway was concerned with spatial relations and 
could encode the location of the same object. A substantial body of literature bascd 
on recording from cells in these two pathways supported the basic dtvision in visual 
proco:ssing. These have c:omt: to be known as the what and rchere pathways. 

Sub!<equent research complicated this neat picture. Li,·ingston and Hubel ( 11)88) 
identified a bifurc;ttion of pr<X·essing beginning even at the rctina and continuing 
through the latt.>ral geniculate nucleus of tho: thalamus to VI; they propolled this 
hifurcation connectcd into the ,·cntral and dorsal pathways. A more serious rc,·illiun 
of the ori!-flnal proposal came from rcs..:archcrs \\hose detailed ncu roanatomi~.:al 
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1-ittr~rr /fl. / Twn ,·,~ual pathwu~'S in th<" rht'!<us mnnk~y proposed by :\lishkrn and 
l nf.(erlclder Each lx-s:ins m area OC ( primar~ 'isu~l ··ortt'x, now ,·:clkd VI ) and projl.'cts 
'"'" prestriate areas 08 (\'2) and OA (VJ, \ '4, and ;\l'f) The rt•hat pathwny pr<>J~Cts 
\'t•ntrally mto inferior h:mpoml cortt·x (art•a~< TEO and TE), nnd tht: n hrrt' pathway projects 
dor:'llllly 1nto mferwr paru:tal curtex area (PG) lllustratton from :\\Jshk•n, L'nl(l'fll.'tder, and 
\Iacko (19M3). Repnntcd With pcrmrss10n. 

studies rcveuled that extensi,·e interconnectmns existed not only '~nhin the two 
path" ays but also between them . The crosstalk bet\\een tht' tiJIIat and where path
ways makes them more like processi11g streams (Felleman und \'an Essen, 1991) than 
like Fodor's (1983) encapsulated modules Other resc:ar<.:hcrs ha,·e questioned the 
interpretation of the function of the two pathways. In parricular, l'>;l\'id Milner and 
:VIelvyn A. Goodale (1995) proposed that the di,•1sinn is ba:;ed on the cognitive 
function for which the information 1s used rather than types of information and also 
made tentative suggestions regarding an additional s tream. On th1s account, the 
\'cntral stream is primarily concerned \\ 1th analyzing information required for per
ception and higher cognitiVe processes, includin~ot object reco~nition; the prcYiously 
identified dorsal stream (through the superior parietal lobe) is pnmaril~ concerned 
with visual guidance of action, indudmg eve mo\'l'ments; .1nd a th1rd stream (through 
the mferior parretalloh.:) is used for a varict)· of' isuosp.tti.tl purposes, including the 
encoding of location but also the transformation of imaJ(t'S (e.l<(., Turnbull, 1999, 
~ug~ests this strt'am's capacity for mt'ntal rot;1tion ma)' sometimes contribute to 
object recoJ(nition). 

E,·en these redsions to the original tt•hat,riJhere proposallea,·e mtact the intriguing 
question it ra ises: why \\Ould the b rain largely SCJ(rcgatc the processinj! of informa• 
tion when it all is derived from the same source and app<:ars un1fied in our phenom
enal experience? The development of connel tJOn ist modelm~ pmvided a way to 
• tddress this quesu on . Specifically, one line of connectionist s imulauon research has 
explored the consequences uf partiuonmg th~· flc)\\ uf processing in networks that are 
p resented with ,·isual patterns on an artific ial retina. In <1 fi rst effort, Jay G. Rueckl. 
K yle It Ca\'e, and Stephen Kol!slyn (I 9R9) desiJZnt:d rhn·l'- layer nc.-t\\orks with 11 5 X 

5 .trra\' of input units (tht:lr artitit ial retina) and m o sets of output un1ts Ct~hat un its 
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and tdu!rl' units). The networks were trained to perform a duul task when presented 
with an input p ;ttrern: they had to identify its shape on their tchat units and its 
lcx:atinn (a 3 x 3 subarea of the retina) on thei r tiJhu~ units. Rueckl and colleagues 
compared the success of two network d~'Signs. In the more distributed desi~n. 

uctivation was sent thruugh a single set of hidden units; po tentially, every hidden 
u nit l'ould contribute to both the tiJhat and rvher~ responses . In the more modular 
design. the connl'l'tivity pattern partitioned the hidden units into two sets: one set 
sent acti\·ation only to the u:hat units, and the other set sent acth·ation only to the 
rdll're units. The\' demonstmted that thl.' dual tnsk was learned more read ily b y the 
modular networks. If there is a computational advantage to segregated processing in 
a l'CIIlnectionist network, at ll.'ast during learnin~ and possibly thl•reaftcr, the same 
could he true in the brain as well . Hence, Rueckl and colleagues pointed the way 
towards a rationale not only for the original proposal of separate tc:hat/rl·here pltth
ways, hut also for the refined versions that followed and for instances of segrel(ated 
nt'ural processinp: clscwht're in the brain. 

But how does segregated processing arise? In the study by Rueckland colleagues, 
the dcsi~ners thcmsci\'CS did most of the work: they decomposed the task and 
desij!nat~d certain output units (as well as hidden units in the modular network) as 
specialists in tiJ!wt vs. where. Robert j acobs , Michael Jordan , and Andrew Harto 
( 1991 ) took a different approach , as shown in figure 10.2. Their design was m odular, 
but the S\'Stcm itself had to dt:termine how to use each module. The modult.-s were 
thrct.' l'.,·p~rt net f'•orks, each of '"bich received activation from th e same input units (a 
5 x 5 retina and a task-specifier unit) but had its own array of 9 output units. Two of 
the upert networks also had a hidden layer of 18 or 3b units. The system's task on 
each trial was set to rohat or wlzl're via the task-specifier unit, and one of Rueckl et 
al. 's shapes was presented ' "ithin a 3 X 3 area of the retina. 

j acobs and colleagues expected that the network with no hidden layer would come 
w specialize in the w here task (because it is linearly separable) and that one of the 
networks with hidden layers would come to specialize in the what task . The system 
had to produce a single o\'erall response on a final set of output units, however, and 
this was obtaint:d by adding a gating network that allocated influence among the 
three expert networks. (Tht' small squares in figure 10.2 indicate that tht' \'alues in 
each t'xpert network's output vector are multipled by a number bc:tween 0 and I , as 
determined hy the gating network; each number tends towards 0 or 1 across train
ing.) As part of the training of the whole system, the g-.tting ncrwork induced a 
compl.'tition between the expert networks in which only the winnmg expert network 
\\ould be furthe r trained by backpropagation (enabling it to become an even better 
expert on similar problems). As a n:sult of 1ts own traming, the gating network 
learned wh1ch of the expert networks WllS most likely to provide the best answer on 
a gi\'en type of problem; it could then selectively pass the output vector of just that 
network to the final output units. The system performed d S expected. By the end of 
training , tht: netwo rk with no hiddl.'n units had become expert in the tiJhere task and 
the netwnrk with 36 bidden units had bc\:ome expert in the what task. 

To appraise what benefits the modular design offered, Jacobs and colleagues 
comp.tred its performance to that of a sin~le nt:twork trained to perform both tasks . 
The modular svstem learned to perform the task faster and more a\:curately than thl' 
nonmodulnr s,:stem. :\lorcm·er, the nonmndular system's lea rning was impaired if 
the tdrat and ;l'l1er(• trials \\ere blocked (that is, )[rouped together rather than inter· 
mixed wirt'lln t•ach epcx:h). T his is a const:quem:c of catastrophic imnference - the 
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Fi~tuu 10.2 A modular syMem in whi<:h three networks <'<>mpt:tc: to respond to images 
on a 5 X S retina (Jacobs, Jordan, anc.l Barto, 1991 ). Large shaded arrows indtcat .. a full 
set of connt:.:twns between the units tn two layers; t:ach rei{Uiar arrow mdicntt:S a sinl(le 
conne.:tinn. The destred rt:sponse is the identtty or locauon of the tmage, depending 
whether tht: tttsk-spectlier unit is set to what or t~lltre. Tht: task spt:ctfit'ation is also sent 
to the gating network," hich dt:velops three gating weights (gl-g3) whKh regulate how 
much t:ach <·xpt:rt network influences the systt:m's overall responst:. In the stmulation they 
reported , tht' network Wtth 36 htdden units became c:xpert in tht: u·hat task and the network 
wah no hidden units b..camt: expert in the t~lttre task; the third nt:twork ac•tuired little 
influence. 

troublesome phenomenon that learning ~ubsequent items can change \\eights suffi
ciently that the network loses the ability to respond ('Orrectly to previously learned 
items (see section 2.2.4). [n contrast, the modular S\'Stem showed no deficits when 
tnals \\ere blocked. In thetr introduction , Jacobs. ~nd colleagues suggested addi
tional adv11ntages of modular de!:ign: more appropriate generalization (becaul:e each 
l'Xpcrt will be responsible for generalization onlv within its own task), den:lopment 
of more intelli!lible and u~eful representations (because the representations will be 
task-specific), and more efficient use of computational hardware (because each ex
pert network will have to represent only a limited set of dimensions) . 

Although they are very <>mall and simple in comparison to the brain's own net
works , modular connectionist networks have pro\'en to be useful tools for exploring 
segre_gatcd processing as one de~ign feature of the brain's architecture. The simu
lations discussed here showed that networks arc capable of de\'doping appropriate 
assil.{nments of tasks to modules and pinpointed such ad,·antage~ as rapid learning 
and avoidance of catastrophic interference. Perhaps the hrain it~lf e\'ol\'ed the 
rdwtft<·h~rt' deSI,I.{n to gain these same ad\·anra_ges. Confirming and expanding upon 
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this suggestion will requm: that neuroscientists J.!ain more tlctailcd information about 
the hram's pathways and that modelers incorporate the~ dct;tils m networks and 
compan: them \\ 1th c~lternati,·c destgns that nature rejected or used cls.:whcre. In 
this \\B)', network modds can contribute w the dl·,·elopmcnt of cxphmatur) theor
l' tical <~ccounts th.1t <1n: responsn-c to disco\ eric:. .thout the brain . 

10.2.2 The role or the hippocampus in memory 

/0 .1.!. 1 '/'Itt' basic du i'gn cmdfrmctions of the hippm·ampal system The hippocampus 
is a limhi<· stru.·ture located along the ventml medial surface of each temporal lobe, 
an area reached by startin~ot at the bottom of the temporal lobe and following its 
surface inwards and upwards as it disappears from 1\ight <.le~p in the middle of the 
hrain. It intcrcunnccts with nearby neocortical areas to form a hippocampal system 
whose functioning has defied simple characterization. On the nne hand, humans 
with lesions to the hippocampal s ystem exhibit profound amnesia that is primanly 
of the le,;s .;ommonly known anterograde \'ariet); thllt is, they n:member most of 
their h\'es before their injury but forget the new e\'ents of their post-injury lives. 
This has led some im·~stigators to focus on the contributions of the h ipp<>C'dmpus to 
form in~ new memories and transferring them to longer-term storage cls~wherc . On 
the other hand, rats with hippocampal lesions exhibit serious navigational deficits. 
This h al: inspired proposals that the hippocampus provides an allocentric representa
tion of space, a maplike representation in which locations have the same relation to 
each other regardless of the location and orientation of one's own body (in contrclst 
to cgo<.cntril: representations that arc anchoreJ by one's own body). Some advocates 
of each of these construals have turned to connectionist-S!) lc modeling. A major 
reason is that the hippocampus is anatomically very different from cerebntl cortex, 
and modeling has helped eluciJare how its structure might support the particular 
fun.: dons assigned to it . We will provide a quick uv~rview of that anatomical struc
ture before looking nt some of the models. 

The architecture of the hippocampus is basically a loop. Major components and 
connectrons arc shown schematically in the bottom half of figure 10.3. The con
nectionist models we "11l discuss ha\'c emphasizc:d the two-way street between 
the hippocampus proper and neocortex, as indicated in the top half of figure 10.3. 
The key to this interaction is three closely communicating areas of neocortex that 
t.omprise what we call the "gateway" to the htppocampus, or more properly, the 
parahipp<>campal rcg1on (parahtppocampal gyrus, perirhinal cortex, and entorhinal 
cortc:x or EC) . Inputs from " idespread area;, of the brain (includmg the amy!(dala 
and othcr limbtc structures in ddditton to' arious sensory and other art.'lls of neocortex) 
con\'erge on this ~otateway to get integrdted, compressed, and funneled into the 
hippocampus, which performs its own transformations and then returns outputs to 
the same areas. Though we are focusing ht:re on the gateway function, parts of the 
parahtppocampal region also have been credited with such function~ as mtc:grating 
information from different sensory modalitic:s, representing facts, and remembering 
\'isually presented objects long enough to recognize: thc:m after a delay. 

In mterpretmg studtes of "hippocampal" function, variations m definition and 
mclusivcnc:ss have been troublesome and should not be 1gnorcd. The core of the: 
htppoc:umpus IS Ammon's horn (CAl, CA2, und CAJ). \\'c: also include the dentate 
1o·rus (DG) when referring to the "htppocampus proper" (though some cxclude tt). 
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u 
FiRIIT~ 10 . .1 ~emauc di;~gram of rht: hipp<>campal system Information frum \\o.Jt:spread 
areas of ni.'O(·ortex com crgc on the parahippocampal regwn (parahippo<.•umpal l(yrus, 
p~:nrhinRI concx, and cntorhmal cortex, EC) to be funnde.J mto the proct:ssmg loops 
of the hippocampal formatton. Th~: ttghtest loop runs from EC into the core arc:-.v; of thc:
htppo<.ampus (C:A I and C:A3) and back; tht: loop through th~ dt:ntato: g\ ru~ .m.J the 
recurrent connections on C:\3 are also important; and tht: subtculum, whkh 1s not p;!rt of 
the hippocampus prop~:r, pro\ 1des an aht:rnam·•· n turn to EC: :"ot shu\\ n nrc a number of 
sul><:urttcal inputs Hn.J d~ta1ls of path\\ a)'s and their S) nupscs 

The "hippocampal formation" adds the subiculum (sometimes also the formx), and 
we add the three gateway structures as well when we refer to the "hippocampal 
system." The term "medial temporal lobe" is used ,;imilarly but somctimes is taken 
to mclude the amygdala as well (either "a~·. it rcfers to a rt•~tion chat cn.:ompasses 
both neocortical and subcortical structures). E\•cm the term "gatewuy" has multiple 
uses: the week we sent this book to the publisher, Gluck and :\flyers (2001) arrived, 
offering a guided tour of computational models of the hippocampal system, the 
llateway to .'VIemory. It makes especially salient a cautionary note that our anato~
u.al overview omits a number of direct and indirect pathways (e .~ .• \'Ia the fornix) by 
\\ hich certain more distant areas connect "ith the hippocampus proper and the 
subiculum . But enough ts included to suggest that the h ippocampal system receives 
input from and sends output to so much of the brain that it is well equipped to play 
a kc:y role. The challenge is to rt!llch some consen!IUS on tht: exact nature of that role. 

Three areas of the hippocampus ha\'e received the most attention: the dentate 
gyrus (DG), CA3. and CAt. The final gateway en~:odings recci\'ed from EC are re
encoded in the granule cells nf DG (which ha:. ten times as mllny neurons as EC, hut 
fewer firm~~; for a fZiven input). These sparse encodings are comprc:ssed into re
cn~:odings (even sparser and more distinctin: than those in DG) in the CA3 pyr<~m
idal cells. CA3 also receives some inputs directly from EC, :tnd is s imilar to DG (and 
to CA I) in 1ts numher of excitiltnr} neurons; all arells also have smaller numbers of 
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inhibitory intcrrKurons. CAJ's pyram1dal cells arc highly interconnected via recur
r~nt connet·tions (indic;ltcd by a small looping .urnw), ;md the same cells also send 
m:uvat10n foman.l to the pyramidal cells in CAl \ ' Ill the small CA2 area. CAl 
fon\ .trds 1t11 11\\ n rnmslation of the mput hack to EC, \\.h~re a high len: I of mor~ 
d1strihuted activit\' completes the loop. (Alternative!}, the loop t.·an be completed hy 
a less d irc:ct route through the ~uhu:ulum .) Of p;nticular intertost for modelers, 
whethl·r thcy emphasize spatial or episodic mr mory functions, is the 11\'crall loop 
:mucturc nf the hippocampus, the sparse encodings s~nt from DG to CAJ, and the 
extcnsin· rccurn:nt connectmns in CA3. 

10.2.2.2 Spatial nm·igation in rats The classic presentation of th~: view that the 
htppocampus is dedicated to alloceotric spatial r~:presentatinn was offered hy John 
O'Keefe and Lynn Nadel in their 197H book, The Hippocamprts as a Cognitit•e 1~/ap: 
"the hippocampus is the core of a neural memory system providing an objective 
sp;ttial frumework withm which the items and ev~:nts of an organism's cxpc!rience are 
located and interrelated" (p. I). This interpretation was inspired by outcomes thcy 
ohservcd after rcmovin~ thc hippo.:ampus bilaterally from rats. The lesioned rats 
exhibited sc\'ere deficits on a type! uf maze prublem that was easy for intact rats: 
nan~ating frum :1 novel starting point to a previously rewarded location. To do this, 
the r;tt must usc visual cues or landmarks in the room to orient itself in alloccntric 
space. :.\'lost studies use an eight-arm radial maze or a Morris water maze. In the 
latter the target is a platform submergcd in milky water. A normal rat released from 
a diffcrl'nt location from where it first found the platform will orient itself using 
room cues and swim directly towards the platform. A lcsioned rat instead swims in 
stero:otyp~:d circles (!'vlorris, Garrud, Rawlins, and O'Keefe, 1982). These findings 
\H' re explained in part by sin~le-cdl recording studies of CA3 which found place 
ctll$ - {·dis that fire only when the rat is in a particular location in a familiar 
cm·ironment (O'Keefe 11nd Dostrovsky, 1971). Though ca~:h place cell is itself fairly 
specific. from the mosaic of place ~:ells the hippol~ampus seems to achieve an overall 
maplike representation of a particular environment. Later it was found that an 
individual rat has a different map for each environment and that place cells huve 
different rcspunse properties for different maps. 

Those network modelers who huve taken their lead from thi s array of findings on 
spatial tasks typically have desi~~:ned models of how place cdls develop and how they 
fi~:ure in na\·igation. Sharp ( 1991) and Zipser ( I<JHS), among others, emphasized that 
place cdls in the hipp<IC<Impus dcpc!nd upon neocortical en~:odings of the animal's 
relation to landmarks in its environmcnt (its local view) . McNaughton and colleagues 
(e.f.!. , McNaughton and Nadel, 1990) added to this the idea th!!t the hippocampus 
implements a recurrent associative mt:mnry network m CA3. Via a feedback loop 
with panetal ~:ortex, this network could associate local \' lews With movements to 
compute trajectories through space (cf. Shapiro and Hetherington, 1 993). David 
Tourctzh llnd A. David Redish (1996; sec also Redish, 1999) developc!d a detailed 
nct\\ork model in which the parietal encodin~-ts of a rodent's local vie\\ as well as a 
\'ector n:prcscn tat1on of its position arc comhmed in OG. The sparse conne~:tions 
from !)(; to CAJ gt\'t: each new locatwn .t distmctive encoding, and the recurrent 
connections in C:\3 produce attractors in CA3 for these locations. They proposed 
that the direct pathway from EC to CA3 plays its role later by directing acti,·ity to 
the approprmte att ractor basin in CAJ when the rodent re-enters one of the now
familiar locations. Redish .tnd Touretr.ky ( I 91J7) implemented parts of th1s model in 
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a navigating robot, and Redish and Touretzky (1998) simulated a mechanism for 
using the CA3 attractors to replay spatial memories later in the absence of external 
input. Also, O'Keefe (1989) offered a computational model in which matrix opera
tions are used to manipulate an animal's location with respect to its environment, 
and suggested plausible localizations of operations within the hippocampal system. 

10.2 .2.3 Spatial vn-sus declaTative merrwTy accounts In their classic account of 
findings on rat navigation and other tasks, O'Keefe and Nadel (1978) viewed 
hippocampal lesions as impairing a locale system (for allocentric spatial functions) 
and preserving various non-hippocampally-based taxon systems (for taxonomic func
tions). There are different taxon systems in different domains, but each seeks clus
ters of similar items in support of categorization and generalization within its domain. 
Examples can be as diverse as Hullian stimulus-response learning, specialized sys
tems for face recognition and language, and the what and whn'e systems in parietal 
and temporal cortex respectively (for which there is preliminary evidence even in 
rats). Nadel (1994) discussed several dimensions on which the locale/taxon systems 
differ: learning (rapid/slow), use (Hexible{rigid), context (encoded/not encoded), 
representational principle (separation based on differences I generalization based on 
similarity), and motivation (exploration/reinforcement). However, he insisted that 
the hippocampus is fundamentally a Fodorian spatial module that evolved to store 
and use its particular kind of content, and that the abstract characteristics merely 
reftect the demands of that specialized task. To build theory around the abstractions 
rather than each content-specific system is to "put the cart before the horse" (p. 54). 

This raises an issue regarding the primary basis on which brain areas are organ
ized. Do different brain areas handle different kinds of contents (a domain-based 
modular view) or different kinds of global .functions (consistent with many information
processing models)? In hippocampal research, the latter approach has its foundation 
in Neal Cohen and Larry Squire's (1980) distinction between declarative and pro
cedural memory (knowing that vs. knowing how, now often referred to as explicit 
versus implicit memory). Declarative memory encompasses Tulving's (1972) epis
odic memory (memory for specific events including where/when/what, often said 
to be bound together in a "snapshot" encoding) and semantic memory (knowledge 
of the world that has been derived from one or more specific events but is no longer 
hound to spatiotemporal context: what without the where and when). Procedural 
memory involves skills that are used rather than explicitly recalled, such as how to 
kayak or play the saxophone. Applying these definitions has been troublesome; for 
example, Tulving would restrict episodic memory to humans, but researchers 
relating spatial navigation to claims about memory (e.g., Nadel, Redish) tend to view 
their tasks as episodic. Most researchers with a primary emphasis on animal models 
of declarative memory and amnesia produce lesions in animals who are learning 
objects, locations, or associations and do not try to distinguish episodic from semantic 
tasks. 

Further developing his construal of the hippocampal system in terms of func
tions, Cohen wrote a book with Howard Eichenbaum (Cohen and Eichenbaum, 
1993; see also Eichenbaum, Otto, and Cohen, 1994) in which declarative memory 
was viewed as comprising two anatomically distinct but coordinated processing 
stages: (1) intermediate-term storage of representations of individual items in the 
parahippocampal (gateway) region, which enables (2) comparing them to other rep
resentations and thereby creating relational representations that can be flexibly 
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accessed and manipulated; this second stage was assigned to the hippocampal forma
tion. They viewed O'Keefe and Nadel's cognitive maps as excellent exemplars of 
relational representations, but rejected the idea of limiting them to the spatial domain. 
For example, they did rat studies in which forming relational encodings of odors 
(same or different odor) was localized in the hippocampal formation . In yet another 
variation, Sutherland and Rudy (1989) proposed a "configura) association theory" in 
which the hippocampal system is involved in forming representations of combina
tions of cues. (Note that if the cues include an event's time and place, the combina
tion is an episodic memory.) Nadel (1994) accepted the idea that areas connected to 
the hippocampus proper (the subiculum and what we have called the gateway struc
tures) represent individual items or facts. However, he rejected characterizations of 
the role of the hippocampus proper as involving domain-independent relational or 
configura) encodings. Depending how you read him, the "bits and pieces" represented 
in nearby areas are hound with spatiotemporal context to create episodic encodings 
in the hippocampus (p. 54), or the hippocampus specializes in the maplike spatial part 
of episodic encodings (p. 53). O' Keefe (1989) adopted the first of theae interpretations. 

Some investigators who have emphasized function over content have the goal of 
reconciling the spatial and declarative memory approaches. Episodic memory can be 
viewed as exhibiting the abstract characteristics of the locale system and in that respect 
as a superordinate of spatial memory. The encoding of an episode - including 
nonspatial as well as spatial elements- is fast, 8exible, and context-specific. Likewise, 
procedural memory can be viewed as exhibiting the abstract characteristics of the 
taxon system- slow, rigid, and not hound to context. Redish (1 999) classified various 
aspects of rodent navigation as involving episodic memory (e.g. , using maps consist
ing of place cells) or procedural memory (e.g., the nonallocentric spatial navigation 
strategy of moving directly towards a visible landmark). Seeing the benefits of an 
animal model for human memory, he was especially concerned to identify what 
aspects of the hippocampal locale system might suit it to episodic memory more 
generally. He settled on two (p. 216): (1) the key step of reinstantiating an appropri
ate previous context when needed, whether it is a rat's map of a particular room in a 
laboratory to which it is being returned, or a human's encoding of a conversation 
that must be recounted to another person or re-entered after an interruption; (2) 
"replaying" memories that are in intermediate-term storage in the hippocampus 
(especially during sleep, according to work from McNaughton's laboratory). For a 
rat the replays would include recent routes traversed, and hence also the map by 
which the rat oriented itself to plot those routes. 

More speculatively, Redish notes that replaying recent memories may be crucial 
to their gradual incorporation into existing long-term memories in neocortex, a 
process called consolidation. Otherwise they may be lost, because of the generally 
time-limited nature of hippocampal storage.2 This proposal integrates numerous 
studies of the hippocampus's role in navigation by rats with the separate, longer· 
standing literature on memory and amnesia in humans. Recently Gluck and Myers 
(2001) have sought to integrate and provide computational models of a variety of 
human and animal findings, including studies of the role of the hippocampus in 
unsupervised associative learning and in cenain uses of context, with an under· 
standing of memory and amnesia in humans as one goal. In the next section we 
briefly describe the best-known case in the amnesia literature and then consider 
some models that seek to show why and how the hippocampus would play a role in 
consolidation. 



318 CONNECTIONISM ANO THE BRAIN 

10.2.2.4 Declarative memory in humans and monkeys The discovery that the 
hippocampus plays a crucial role in human long-term memory is credited to William 
B. Scoville and Brenda Milner (1957) and is a byproduct of surgeries Scoville 
performed on several patients in the 1950s. The clearest case was that of HM, who 
had large portions of his medial temporal lobes removed bilaterally in a successful 
attempt to relieve his intractable epilepsy. An unanticipated result was profound 
anterograde amnesia - a disorder of episodic (and possibly semantic) memory in 
which he could no longer form long-term memories of new events in his life. For 
example, he could not remember meeting someone if the person left and returned a 
few minutes later, and he has never learned to recognize even his regular medical 
caregivers. There appeared to be a disconnection between his short-term memory, 
which was normal, and his long-term memory. 

However, further investigation of HM and similar patients painted a more com
plex picture. On the positive side, HM's ability to form new procedural memories 
was normal. He could, for example, learn to solve Tower of Hanoi problems and 
then utilize this skill later (procedural memory) even while failing to remember ever 
having solved such a problem in the past (episodic memory). Hence, there was no 
global inability to form and retain new long-term encodings. On the negative side, it 
became apparent that HM's anterograde amnesia was accompanied by retrogratk 
amnesia, an additional type of long-term memory problem in which retrieval was 
compromised for events that had already occurred prior to his surgery. Moreover, 
the retrograde amnesia was graded: the probability of retrieval was essentially zero 
for events just prior to surgery but improved further back, approaching the normal 
range for events which had occurred more than three years earlier. Animal models of 
this intriguing combination of profound anterograde amnesia and graded retrograde 
amnesia have been achieved (with tasks and timeframes appropriate to the species), 
but in both animals and humans there are difficulties identifying which structures of 
the medial temporal lobe are responsible. Overall, as noted in the preceding section, 
it appears that some part of the hippocampal system serves as an intermediate-term 
storage area whose contents can gradually become consolidated into more per
manent storage in neocortex. Variations on this proposal can be found in Buzsaki 
(1989), Marr (1971), Rolls (1990), Squire, Cohen, and Nadel (1984), and Wilson 
and McNaughton (1993). 

A number of researchers have investigated how the design of the hippocampus 
enables it to play this role, and we will summarize just two paj,ers from that literature 
below. First, though, we will discuss a paper that focuses on why the hippocamput 
is involved. James McClelland, Bruce McNaughton, and Randall O'Reilly (1995) 
integrated and built upon the already-exten~ive literature on the hippocampus in 
addressing two questions: 

Why is the hippocampus involved in consolidation at all, rather than sending 
inputs directly to the neocortical areas in which they will eventually be retained 
as long- term memories? 

2 Why does this process of consolidation take as long as it does? 

They proposed that the key to answering both questions was to posit different 
architectures for the hippocampus and neocortex, which separately have their own 
limitations but together can form a viable memory system. They found it plausible 
that neocortical storage would employ many of the same design principles u 
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feedforward connectionist networks. As we have seen, such networks develop appro
priate weight matrices only after many epochs of training. Also, they find the general 
structure in a repeatedly presented corpus, maintaining no record of individual 
training trials. Most important, if the original training regimen is supplanted with a 
new one, they become subject to catastrophic interference. McClelland and colleagues 
suggested that learning directly from experience would be so risky for a feed forward 
design that a different kind of network has been interposed in the processing stream. 
Specifically, the hippocampus could use a sparse network to achieve a rapid but 
distinctive encoding of new items and then hold them in intermediate-term storage 
along with somewhat older ones. By interleaving new with old items in replaying them 
as a training regimen for neocortex, the hippocampus could direct a gradual change 
of weights in neocortex. Crucially, it would learn the new items in a way that incor
porated them into the structure already discovered in the old items rather than 
destroying that structure. In their terms, the hippocampus repeatedly retrieves the 
items for use in training trials that reinstate them in neocortex, with each reinstatement 
resulting in a small change of weights in neocortex. The hippocampal encodings 
could be allowed to decay with time, since their important features would be getting 
firmly established in neoconex in the course of consolidation. Thus, the answers to 
the two questions are: 

The hippocampus is involved "to provide a medium for the initial storage of 
memories in a form that avoids interference with the knowledge already acquired 
in the neoconical system." · 

2 The process of consolidation takes so long because new items must be repeatedly 
interleaved with older items. "If the changes were made rapidly, they would 
interfere with the system of structured knowledge built up" already from related 
items. 

(McClelland, McNaughton, and O'Reilly, 1995, p. 435) 

Although this was largely a theoretical paper, McClelland and colleagues included 
three simulations, They did not need to be precise about which kind of declarative 
memory or which areas of the hippocampal system were involved. They first invest
igated catastrophic interference (McCloskey and Cohen, 1989; Ratcliff, 1990), but 
instead of using arbitrary pairings they used Rumelhart's (1 990) semantically struc
tured materials to train a multilayer network. Once it had learned a number of facts 
(e.g., robins can fly) it was repeatedly trained on three new, inconsistent facts (pen
guins are birds and can swim but not fly). When the new facts were presented as a 
repeated block, they were learned rapidly but interfered with related older facts 
(though less abruptly than in studies using arbitrary materials). When the new facts 
were interleaved with the older facts, they were learned slowly but without inter
ference. This latter result showed why consolidation must take so long. 

Next they simulated two experiments on consolidation in which animals were 
trained on arbitrary materials and then lesioned to produce retrograde amnesia. 
Again the internal workings of neoconex were simulated by a feedforward network 
but the hippocampus (by which they meant the hippocampal system) was treated as 
a black box. That is, the investigators themselves played the role of the hippocampus 
by manipulating the content of training sessions in accord with their assumptions 
about its activity. They were seeking to approximate the following division of labor 
between brain areas. First, a variety of repetitive background events were already 
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consolidated in neocortex before the experiment begins and continued to be experi· 
enced. Then both neocortex and the hippocampus experienced items presented by 
an experimenter, but the hippocampus also repeatedly retrieved its encodings of those 
items on subsequent days and presented them to neocortex (interleaving them with 
that day's external events). Finally the hippocampus waslesioned, leaving neocortex 
to be tested on its own (control animals had access to both areas when tested). 

One of these simulations was based on a rat experiment by Kim and Fanselow 
(1992). We will focus on the other, which was a rough analog to Zola·Morgan and 
Squire's (1990) finding of graded retrograde amnesia in monkeys performing a 
discrimination task in which numerous pairs of "junk objects" were repeatedly 
presented. One object in each pair was consistently reinforced, and the monkey had 
to learn to choose the reinforced object each time. McClelland and colleagues repres. 
en ted each object as a random bit pattern across 25 input units (SO total input units) 
and each choice as the state of a single output unit (or1 to choose object 1 and off 
to choose object 2). Adding a 1 S·unit hidden layer completed their feedforward 
network model of neocortical encoding of this task. The network was trained by 
backpropagation, with each epoch corresponding to one day of the experiment. 

• In phase 1, a batch of existing memories was created by training the network on 
random subsets of 250 "background" items across 100 epochs (days). Though 
the hippocampus presumably would play a role in the initial consolidation and 
ongoing maintenance of such memories, the simulation was simplified by pre· 
senting the items directly to the feedforward network. They were never tested 
but mimicked the stable encoding in the monkey's neocortex of familiar ongoing 
events. 

• In phase 2, background trials continued but 100 "direct experience" items were 
added on a sequential schedule mimicking that of the actual experiment. Speci· 
fically, on a given day the external training focused on just 2 of the 100 direct 
experience items (14 trials per item), with one epoch of review and then a break 
from training after each subset of 20 items. However, the hippocampus was also 
presumed to be encoding these items and delivering its own "reinstated experi· 
ence" trials to neocortex (the feedforward network). Its role was mimicked by 
including in each day's training some repeats of trials that had previously been 
directly experienced. (Probability of reinstatement declined over time, simulat· 
ing decay of encodings in the hippocampus.) 

• Phase 3 occurred after all 100 items had been trained (directly, and most via 
repeated reinstatements as well). At this point in the actual experiment, training 
stopped, the investigators removed parahippocampal cortex, EC, and the hip· 
pocampus itself from the lesion subjects (controls had sham lesions), and two 
weeks later all were tested. These events were simulated by discontinuing both 
direct and reinstated training but continuing training on background items (for 
the control network, reinstated experience items continued during these twO 

weeks). At the time of the lesion, the five subsets of 20 items differed in how long 
they had been in the pool of items eligible to be randomly selected each day for 
reinstatement training (i.e., in the length of their consolidation period). Items in 
the five subsets (from first to last trained) averaged 15, 11, 7, 3, and 1 weeks of 
consolidation in both monkeys and network if lesioned, and 2 weeks longer for 
controls. The simulation had 200 "subjects" (runs) for each condition. For the 
lesion condition the final test was based only on performance of the feedforward 
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network, but for the control condition retrieval was first attempted from the 
hippocampus (by a simple calculation based on overall retrieval probability and 
decay) and only if that failed from the feedforward network. 

Performance on the final test was plotted as a function of the consolidation period 
for the monkeys and also the best·fitting simulation runs. Results were generally 
similar: lesioned monkeys and networks (relying only on corticalffeedforward encod· 
ings) performed poorly on items with the shortest consolidation period (1 week) 
and showed modest improvement across the five sets (ending at 15 weeks). Controls 
(initially boosted by their access to hippocampal encodings, which decayed over 
time) started well and showed modest decline. The two conditions had converged by 
15 weeks (about 70 percent correct). A mathematical model produced functions 
fitting the simulation data and (to the extent possible) the somewhat noisier animal 
data. McClelland and colleagues noted that the training schedules and rapid decay 
limited the extent of consolidation in the simulation, but it was sufficient to reveal 
graded retrograde amnesia. 

These simulations by McClelland, McNaughton, and O 'Reilly made assumptions 
about the output of the hippocampus in order to explore why it would be involved in 
training neocortex. The next step was to ask how the internal operations of the hip· 
pocampal system equipped it for that role. This question was addressed using math· 
ematical modeling by O' Reilly and McClelland (1994) and Treves and Rolls (1994) 
with similar results, and using network models by Alvarez and Squire (1994), Gluck 
and Myers (1993), and Rolls (1995). We will present O'Reilly and McClelland's 
version of the mathematical analysis and then the network model by Rolls. 

O'Reilly and McClelland focused on two requirements the hippocampus must 
satisfy but which initially appear inconsistent. On one hand, to ensure that new 
memories are formed for new events, the hippocampus needs to separate incoming 
items by giving each a distinctive encoding. On the other hand, to retrieve existing 
memories from imperfect cues (for current use and/or to reinstate them in neocortex), 
the hippocampus needs to be able to perform pattern completion. Their goal was to 
show how the hippocampus can mimimize the tradeoff between these requirements 
and perform both memory encoding and memory retrieval functions adequately. 

The ability of connectionist networks to complete patterns is one we have emphas· 
ized in earlier chapters, and now we see the hippocampus has that ability as well. In 
particular, the attractor basins created by the recurrent connections in CAJ seem 
ideally suited to complete the partial patterns entering the hippocampus via EC (see 
McNaughton and Nadel , 1990). This architecture would seem to undercut the 
capacity for pattern separation, however, since new patterns similar to incomplete 
old patterns could land in the old attractor basins rather than get a new encoding. To 
avoid this, some provision for increasing the separation between representations of 
similar events is needed. O'Reilly and McClelland proposed that the less direct 
pathway from EC to CA3 via DG can play precisely that role and offered a math· 
ematical analysis of each pathway's suitability for its function. 

Some of the major findings were that a network with high variance in its input 
signal, limited random connectivity, sparse activity (few neurons firing at any given 
time), and multiple layers (as found in the path from EC to CAJ via DG) would be 
well designed for the separation function. Hebbian learning (increasing the weight 
between an input and output unit if both are active) facilitates the opposing function 
of pattern completion. O'Reilly and McClelland found that separation could be 
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increased without reducing completion by also decreasing the weight on any con
nection between an inactive input unit and active output unit . As applied to actual 
neural processes in the hippocampus, this suggests that Long-Term Potentiation 
(L TP), a rapidly induced and long-lasting strengthening of excitatory synaptic ac
tivity, should be complemented by Long-Term Depression (L TO). (On LTP, see 
Brown, Kairiss, and Keenan, 1 990; on evidence for the more controversial L TO, 
see Levy, Colbert, and Desmond, 1990.) O'Reilly and McClelland also proposed 
another way to minimize tradeoffs between conflicting goals: designing pathways such 
that one is optimized for separation and another for completion. Their analysis of 
how to achieve this focused on two-layer networks in which there are limited ran
dom connections from the input layer to the output layer and a simple k-Winners
Take-All activation function. This means that the k output units with the greatest 
number of active input units connected to them on a given trial will themselves 
become active (the outcome is comparable to combining feedforward propagation of 
activation with lateral inhibition). The sparse activity of DG can be simulated by 
using a small value of k. They showed that with a smaller It there is more separation 
of outputs for similar inputs, and that additional separation can be obtained on the 
connections from DG to CA3 (depending on parameter values). Thus, they proposed 
that the direct pathway from EC to CA3 facilitates pattern completion, while the 
indirect pathway via DG facilitates pattern separation. A given input can be processed 
via both routes, thus achieving distinctive encodings as well as excellent retrieval. 

As mentioned above, Alessandro Treves and Edmund Rolls (1994) provided a 
similar mathematical analysis of the conflicting demands of separation and comple
tion and how they could be reconciled, and Rolls (t995) designed a network model 
to see if it could be made to work in practice. Both papers were put in a broader 
context in their recent book (Rolls and Treves, I 998). The challenge for Rolls (I 995) 
was to make a model hippocampus that could store a large number of patterns (via 
distinctive encodings) and then find the right one when needed (via pattern comple
tion). His design included every component in the bottom part of figure 10.3 except 
the subiculum (that is, EC, DG, CAJ, and CAt). Rolls used neuroanatomical informa
tion about the number of cells, synapses per cell, and proportion of cells typically 
firing in each part of the rat's hippocampal system (sparseness) as a rough guide in 
building his scaled-down model. For example, whereas the rat has approximately 
tO' granule cells in DG, Rolls employed 1,000 units in his model DG. Each granule 
cell in the rat's DG sends projections to at least 15 of the approximately 300,000 
CA3 pyramidal cells. In the model, each DG unit sent connections to 4 of the 1,000 
CA3 units. In all other pathways, each unit sent connections to either 60 or 200 units 
in the next component, and the number of units was 1,000 except in EC (which had 
just 600 units). Further, the sparseness of activity in each component was regulated 
by allowing only the units with the greatest net input to fire (5 percent of units, 
except in CAt only 1 percent were allowed to fire). 

The network had the task of storing t 00 random patterns presented just once each 
as inputs to EC; storage was accomplished by adjusting weights in the various 
components of the system by means of Hebbian learning. The architectural differ
ences just noted affected how each part of the network functioned. Thus, after 
training, competitive learning in the pathways from EC to DG and from EC and 
CA3 to CAl determined the activation patterns in DG and CAl; the pathways from 
EC to CAJ and from CA 1 to EC functioned as pattern associators, and activation 
also passed along the very sparse connections from DG to CA3. After getting initial 
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activation directly from EC and from EC via DG, CAJ ran 1 5 cycles on its recurrent 
connections to function as an autoassociative network. Activation then passed from 
CAJ to CAl and from there back to EC, completing the processing loop. 

Rolls measured the success of the model by its ability, when just part of each pattern 
was presented as input to the EC units, to regenerate the whole pattern on the same 
units (now as an output pattern). When the partial pattern was similar enough to the 
complete pattern - a correlation of just 0.40 was sufficient - the network could 
regenerate the complete pattern perfectly. In addition to obtaining this impressive 
overall result, Rolls was able to pin down some crucial design decisions. He already 
expected from the mathematical analysis and from the example of the rat hippo
campus that varying the number of connections and sparseness would provide both 
separation and completion capacities. He also expected the recurrent connections 
in CA3 to be important, and demonstrated that turning them off eliminated CA3's 
ability to complete patterns (the pathways beyond it could partially but not com
pletely compensate). Finally, he was surprised to discover that another way to elim· 
inate CAJ's pattern completion ability was to use an activation function that made 
the response of CAJ units binary rather than graded. On this basis, he suggested 
that neurophysiologists look for a bimodal distribution of firing rates in pyramidal 
cells of the hippocampus. 

The hippocampus has clearly provided a provocative arena for connectionist 
modeling in the 1990s. Both its spatial and declarative memory functions have been 
simulated in networks, but the more abstract accounts that might bring them closer 
(such as that of Eichenbaum) have not been implemented. It is still unclear to what 
extent the two functions should be separated, and exactly what role each part of the 
hippocampal system plays. Given the difficulty of obtaining precise lesions limited 
to one functional or anatomical component in animals (and the impossibility in 
humans), network models can provide a valuable medium for exploring various 
ways of designing components, assianing tasks to them, and then assembling them 
into overall performances on spatial and nonspatial tasks. Sometimes, as with the 
suggestion from Rolls to seek neurons with bimodal firing patterns, the models can 
suggest possibilities to be checked out in t he laboratory. Thus, modeling should 
both contribute to and benefit from progress in biological studies as cognitive 
neuroscience continues its rapid maturation. 

10.2.3 Simulating dyslexia io network models of readiog 

10.2.3.1 Doubk dinociati011S in dyslexia There is a long tradition in neuroscience 
of lesioning specific brain areas to determine which functions are subserved by esch 
area. As we saw in the previous section, this method runs into limitations as invest
igators try to zoom down to very specific components, such as those within the 
hippocampal system, giving connectionist modelers an opportunity to help sort 
things out. We now move to human functions - such as reading aloud - that cannot 
be studied using animal models. Instead of investigator-induced lesions, informa
tion about dysfunction comes from "experiments of nature" in which the brain fails 
to develop as expected (thereby producing developmental disabilities) or is damaged 
later in life (producing acquired disabilities). The interpretation of such disabilities 
is generally the province of neuropsychologists armed with test batteries rather than 
biologists bearing surgical instruments. 



324 CONNECTIONISM AND Tl-IE BRAIN 

Even when the sites of damage can be localized in the brain (sometimes they 
cannot), mechanistic accounts of the systems involved in distinctively human func
tions traditionally have been constructed at the cognitive level, with mapping to the 
brain deferred to the future. As noted in section 7.3, neuropsychologist& have con
tributed a method of constraining these accounts based on the behavioral profiles of 
two different disabilities. The goal is to find a double dissociation, in which two 
functions have opposite patterns of impairment vs. preservation. A classic example 
is the dissociation between syntactic and semantic processing in Broca's aphasia 
(syntax impaired, semantics preserved) versus Wernicke's aphasia (semantics im
paired, syntax preserved). The traditional interpretation of a double dissociation is 
that it "cuts nature at its joints" and thus the dissociated functions are subserved by 
independent mechanisms - modules whose operations are effectively encapsulated, 
as Fodor would have it. 

This strong interpretation has been challenged recently, making it evident that 
finding a double dissociation is just the beginning of the search for an explanation. 
Even if two mechanisms are inferred, what is the internal structure of each? Are they 
quite dissimilar, or is each a task-appropriate variation on the same basic architecture? 
Does a double dissociation really provide sufficient evidence that the mechanisms 
operate in relative isolation, or might this result be obtained even from mechanisms 
that interact as each performs its task? What additional kinds of evidence must a 
successful model address? In this section we will discuss how connectionists have 
sought answers for such questions by confronting the neuropsychological literature 
on acquired dyslexia. This is a family of reading impairments that adults may exhibit 
when certain brain areas are lesioned due to head injury or stroke or are impacted by 
a progressive neurological condition. No two cases are identical and, especially when 
damage is extensive, dyslexia may be associated with other disorders of varying 
severity. However, researchers have been able to identify major types of acquired 
dyslexia and their characteristic symptom complexes, three of which are relevant 
here. 

First, individuals with surface dyslexia make numerous regularization errors when 
they attempt to read aloud written words that have exceptional pronunciation. For 
example, they may incorrectly pronounce the exception word PINT to rhyme with 
the regular words HINT and MINT rather than accessing the irregular but correct 
pronunciation; another example would be pronouncing BROAD to rhyme with 
ROAD. The lower the word's frequency of use, the more likely it is to get regular
ized. Such responses seem to involve overreliance on typical letter-sound corres
pondences in preference to knowledge about the spelling and sound of the specific 
word as a whole (its surface form). This yields the wrong vowel in these examples 
but works very well on regular words and even on nonwords. In phonological dys
lexia, on the other hand, both exception words and regular words are pronounced 
correctly, but nonwords like ZAT often draw a blank (about half cannot be pro
nounced in mild cases, and none in the most severe cases). Individuals with this 
disorder have robust knowledge about specific words, but appear to be impaired 
in accessing typical letter-sound correspondences to construct a phoneme-by
phoneme phonological encoding of an unfamiliar written word or nonword. Surface 
dyslexia and phonological dyslexia present us with a double dissociation between 
exception words and nonwords that must be considered in evaluating any model of 
reading aloud. (Note that each disorder is named by what is impaired, as indicated 
here by italics.) 
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Deep dyslexia is more complicated. As in phonological dyslexia, individuals with 
deep dyslexia generally are impaired in reading nonwords, but additional symptoms 
suggest that the damage also goes deeper into the system. The most salient character
istic is a high frequency of semantic errors (e.g., reading PEACH as "apricot" or 
MOUSE as " rat"). This usually is taken to suggest that reading in deep dyslexia is 
mediated by a processing route through semantics which, though damaged, is more 
functional than the highly impaired knowledge of typical letter-sound correspond
ences. However, for many years no one could satisfactorily explain why certain other 
errors always accompany the semantic ones: visual errors (MAT _. "rat"), mixed 
errors (CAT--. " rat"), and derivational errors (BAKE.-. "baker"). It is particularly 
puzzling that mixed errors- the co-occurrence of semantic and visual errors- are far 
more frequent than expected by chance. This suggests that the mechanisms under
lying these errors are not independent, but it was hard to imagine why. Another 
symptom of this complex disorder is that abstract words (e.g., FACT, DEED) and 
especially function words (e.g., THE, WAS) show even greater impairment than 
concrete words, sometimes resulting in errors (WAS--. "and") but often just silence. 

The distinctive error patterns in different types of dyslexia have been invaluable 
in developing and testing general models of how people read aloud. We first encoun
tered connectionist models of reading aloud in section 8.3.2. As was illustrated in 
figure 8.4, two different teams of researchers each implemented just one of the three 
interactive networks that comprised the overall lexical processing system envisaged 
by Seidenberg and McClelland (1989). In the context of chapter 8, "Connectionism 
and the Dynamical Approach to Cognition," the development of attractors in these 
networks was of greatest interest: attractors for word meanings in Hinton and Shallice 
(1991) and for word pronunciations in Plaut, McClelland, Seidenberg, and Patterson 
(1996). In the current chapter, interest shifts to what happened next. Each team 
"lesioned" its chapter 8 network model in hopes of simulating one type of dyslexia; 
built on what was learned to create an expanded model (and, for Plaut et al., a 
revised account); and then lesioned the new model in a variety of ways to press 
towards a more refined account. 

Figure 10.4 provides an overview of the connectionist account of dyslexia that 
emerges when the full set of simulations is pieced together. It seeks to capture the 
double dissociation between exception words and nonwords as well as the distinctive 
errors of deep dyslexia. Three networks and three types of dyslexia are shown, but 
they are not associated one-to-one. Two of the networks are viewed as working 
together to comprise a semantic pathway and the third is a more direct phonological 
pathway from written to spoken words. Here are the types of damage that con
nectionists have proposed for different forms of dyslexia: 

• Phonological dyslexia is identified with damage to the phonological pathway (but 
perhaps just the phoneme units themselves in some cases). The rationale is that 
this pathway is the part of the system that uses componential attractors to con
struct pronunciations- a "soft" way to implement letter-sound correspondences.) 

• Surface dyslexia is identified with damage to the semantic pathway, contrary to 
the McClelland group's earlier proposals, but tentatively supported by their final 
1996 simulation. 

• Deep dyslexia is identified with damage to the phonological pathway (impairing 
nonword reading) plus additional damage to the semantic pathway (causing the 
word substitution errors that are distinctive to deep dyslexia). 
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SEMANTIC PATHWAY (Orthography-+ Semantics-+ Phonology) 
Can read all words but no nonwords 

SURfACE DYSLEXIA may mdicate damage 
• Some excepbon words regulanzed 
• Low-frequency words more likely to be regularized 
• Associated with impaired nam1ng (anom1a) and (usually) 

impaired reading comprehension 

Orthography ~ Semantics: Semantics -+ Phonology: 
Read1ng comprehension Nam1ng 

PHONOLOGICAL PATHWAY (Orthography - Phonology) 
Can read most words and all nonwords 

PHONOLOGICAL DYSLEXIA may indicate damage 
• Nonword reading impaired 

LEXICAL PROCESSING SYSTEM (PHONOLOGICAL+ SEMANTIC PATHWAYS) 
DEEP DYSLEXIA may indicate damage to both pathways 

• Nonword reading impaired 
• Semantic. visual, mixed, and derivational errors 
• Abstract and funct1on words especially impaired 
• Associated w ith impaired reading comprehension or 

(less frequently) anom1a 

F1{!r1re /O ,.J A conn.-~tionist framework for modeling the h~x1cnl pro<·cssing system. The 
inhl<'T w srcm has rwo pa(hwavs between sp.-llm!( (orthography) and sound (phonoln~Y), 
~hown using the m·erall n~twurk d<•sign su~~:gested b) :\kCldland and Seidenberg ( 19!\\1). 

;\lost wurds .:an be r<:ad :lloud usmg either pathway, but some words are cru-odcd only 
in th e: ~<:mnntic pathway (composed of two networks, as shown in the upper bo;<.) and 
nonw <1rds rdy on rh.- phonological pathway (one network, as shown in rho: lower hox). 
Different types uf dysl~:xia produce symptoms that sugg~:st d;tma~e to nne or both 

p.ith\\ ·· ~ s. 

The d airn that there is d <lmage to th~ semantic pathway in both surface and deep 
dys lexia is further supportt:d by the occurrence of collateral disorders (see Patterson 
and Lam bon Ralph, 1999). Anomia ( impaired nam ing, usually asst:sscd hy prcscnt
in.u; pictu res "f objects) ~IJ~~ests damage in semantics ~ phonology c)r perhaps 
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earlier in that parhw~1y. Anomia is se,·ere in "pure" surface dyslexia (sometimes 
called s<•mantic dyslexia), and may occur in milder form in deep dyslexia. Impaired 
reading comprehension suggests damage earlier in the pathw~ty - in the urthography 
-t semantics network - and tends to accomp;my both surface dyslexia (must se
,·ercly} and deep dyslexia (less sen:rely). In surface dyslexia, the spared phonolo
gical pathway enables patients to correctly read aloud many words that <lrc impaired in 
comprehension and naming. In dl·ep dyslexia, abstract and function words (usually 
a particular subset for a given patient) arc misread, misl·omprehendcd, and (not as 
well documented) omittcd from spontaneous speech. 

One overall lesson from the simulations should be stated up-front: t1mitting an) of 
the constituent networks has seriuus consequences. Precisely because it has heen 
denied that the networks act as isolated mel·hanisms, implementing just one of the 
three networks carries the implicit assumption that the others have been damaged 
beyond use. Unfortunately, training the full system shov.n in figure 10.4 was too 
computation-intensive ro be practicable on lahorator} computers in the last decade 
of the twentieth century. (Plaut, 1997, estimated that approximately six months of 
run time would be required on a Silicon Graphics R4-400 processor at l50Mhz.) 
Accordin~ly, phonological dyslex ia had not been simulated within this framework as 
of the completion of this chapter in mid-2000. Surface dyslexia was simulated with 
increasing success; the last and most complete model added a black-box abstraction 
of the semantic pathway to a completely simulated phonological pathway (section 
10.2.3 .3). Deep dyslexia, though the most complex disorder, was computationally 
the easiest to simulate: severe damage to the phonological path\\ay could be ap
proximated by stmpl}· excluding it from the implementation, and less se,·ere damage 
to the semantic pathway could be achieved by building network models of it and 
lesioning them. 

These connectionist models de\·eloped in the course of competition with the long
standing drwl-route theory which they aspire to replace. According to that theory, 
one route uses a lexical look-up mechanism for whole words and the other uses 
correspondence rules to determine each sound separately; these two dissimilar mech
anisms race against each other to supply the system's output. We will present the key 
conncctionist s imulations of deep and surface dyslexia before comparing them to 
dual-route theory. Spectfical\y, we examine the progress made by Geoffrey Hinton, 
Tim Shall ice, and David Plaut in simulating deep dyslexia and by james McClelland, 
Mark Seidenberg, Karalyn Patterson, and David Plaut in simulating surface dyslexia. 

10.:?.3.2 i\.lode/ing dup dysle:~;ia The simulations disl·ussed in this section have their 
routs in PDP:J, where Hinton, McClelland, and Rumelhart ( 1986) fortuitously 
picked the mapping from written words (orthography) to meanings (semantics) to 
illustrate the claim that arbitrary mappings between two domains can be learned by 
a thret:-h1yer network with distributed representations. Hinton !!nd Sejnowski ( 1986) 
in PDP:7 d id the actual implementation to test their Boltzmann machine learning 
procedure, and ensured deaned-up semantic representations (attractors) bv adding 
completc interconnections at that level. As a by-product of showing that the net
work was tolerant of damage, they obtained semantic errors that Hinton, i.\'kCiclland, 
and Rumdhart recognized HS akin to those in deep dyslexia. Hinton subsequently 
teamed up with neuropsychologist Tim Shalhce to do a more purposeful simulation, 
and the result was a 1991 paper (part ot which was discussed in section 8.3.2) that 
offered a non-ob\ inus, but elegant, explanation for the puzzling co-occurrence of 
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SEMANTIC 
SPACE 
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\ ·. 
lNG MUD 

F'R''" 10.5 Chan!(t:S tn rh" basin$ of attraction v.hen Hmron and Sh~lhce·• nerv.ork 1s 
I<'Stoncd h .. .- lcxt ) 

cermm errors in deep d yslexia. This was actually more than they had expected: thev 
targeted semantic errors (reading MOUSE as "rat") and \\ere surprised to al~ 
obram \·isual errors (reading C.4 T as "mat") and aho\'e-chance occurrence of mixed 
errors (reading CAT as "rat"). 

Hmton and Shallice began by implementmg the tirst half of the semantic pathway 
(orthography~ semantics), resulting m the network schematized on the left side of 
fi~ure 8.4-. To Simulate drslex id the> lesioned each part of the network in tum, using 
nnt: of two methods: remo\ ing a proportion of connedions (or units) or addmg noise 
tO the connections. After each lesiOn they tested the network on the 40 words on 
which 1t had bt:en trained, recording for each word the pattern on the sememe units 
after the netv.ork had settled. Rather than implementing the second half of the 
semantics pathway (semantics~ phonology), they assumed that the network would 
" rec1d aloud" the word whose semantiC' representation c'llme d usest to the obtamed 
pattern and thus s1rnply looked up and recorded that word themselves. Since the 
majonty of individuals with deep dyslexia are impaired in reading comprehension 
but not in naming, this \\as a reasonable simplification. (They also cannot read 
nt>nwords, and H inton and Shallice cited this nonfunctionality of the phonological 
pathway as justification for leavin~ it unimplemented.) 

Almost every lesion condition yielded all three characteristic types of error, in 
\ ;1rying proportion. Hinton and Shall ice noted: "Such a mixture of error types may 
be as much a s1gn of the operc1tion of a layered connectionist system with attractors 
as dissociatiOns are of modular systems" (p. 89). To see\\ hy, first look back to figure 
8 5. The poss1ble patterns on each layer of un1ts are represented there as points in a 
space 10 which each un1t corresponds to ooe dimension (though only two are shown). 
Th1s fac1litates thmkmg in terms of attrat:tor d ynamics. Diverging trajectories in 
semantic space lead to the point anr<~ctors labeled mug and mud (which actually 
denote two diffcnmt patterns across the scmeme units, not lexical ircms as such). 
The trajectories begin close together in semantic space due to lingering effects of the 
proximity ()f the written words ,'v!UG and ,'\t/1../D m orthographic space. The loca
tions of the anracwrs thcmscl\'es are based cntirdy on mc.ming, not ' Jsudl s imilarity 
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of the written '' nrds. Thus, the attractor labeled mug is located neor rup. not near 
mud. Long, narrow attrn~·tor basins nround these point attractor~ .1ssure that words 
m1tially landing m one part of the semantic space (as a ll·gacy of their \'i~ual form) 
\\ill follow a trajcctor) to the p<~rt of the space most appropriate to their meanings. 
At the network lcvd of analysis, this is assu red by the weights on the connections 
in\'olved in inter,tctl\'e prnceo;sinl{. Damaging those connectl()ns can change the 
shupe or location of the basins. 

As a hvpothctical example, remo\'ing 20 percent of the connections hctwt.'Cn 
scmemcs ~nd dean-up umts might ha\'c effects like those shown in tigurc 10.5. The 
original attractor basins are outlined with light lines and the di~rortcd ont'" with 
darker ones. First, the basin around mud has been stretched enou!(h that not only 

1YI UD, but also the visually similar i\11 UG, now lund in it. That is, interacti\'c pro
cessing in"oh·in~ the damaged weights will send both words on trajccturies to the 
attractor point labeled mud. For MUD this is the appropriate dean-up fum:tion. hut 
for MUG it is a traJe~:tory in the wron~ direction and produces a visual error when 
the word is read aloud (il1UG ~ mud~ "mud"). The hasin around mug has also 
t·hungcd; smaller and knocked upwards, it has not only lost the initial point nf entry 
from A1UG but also the attractor point mug that had hi!en at its tip. Now ~tny word 
tanding within this basin - perhaps a carelessly "ritten MUG that looks less like 
MUD than u!lual- " ill end up acti\·ating wp, resulting in a semantic error (1\tl UG ~ 
rup ~ "cup") . Although not illustrated, a system like this would also be very prone to 
make mixed errors (il1UG ~jug ~ "jug") s ince the relevant basins would be dose 
together at both ends. This elegant, moth·ated explanation for what had previously 
been a mysterious error profile has been widely accepted by dyslexia researchers. 

Plaut and Shallice (1993) used Hinton and Shallice's model as the foundat ion for 
creating a family of five models so that the importance of various architcl·tural 
variations could be assessed. All of them were trained and tested on their own, and 
then were attached to a newly implemented semantics ~ phonology network for 
further exploration (rather than simply assuming it was in working order, as above). 
The expanded modd most similar to the original is shown in figure 10.6. In t~e 
orthography layer, distributed representations over four ~roups of eight orth~grap~1c 
feature units replaced the o riginal locahst representations on grapheme umts; w1th 
this new design, the ,·isual similarity of letters like M and N \\Ould influence process
ing. The phonology layer was locslist, howe\'er, with one unit for each oft 3 onset, 11 
vowel , and 9 coda phonemes (a total of 33 phoneme units). In the semantics lay~:r 
the original interconnections between sememe units within the same group were 
removed, but the recurrent connections with clean-up units were retained. The 
semantic acti\'ation patterns produced by the resulting interactive processing now had 
a double function· tht)· were the outputs of the orthography ~ semantk-s network 
but also the inputs for the semantics ~ phonc>logy network. 

The two linked networks in figure 10.6 wm: Ycry similar. Both had feedfomard 
designs t>xccpt for their cl..-an-up units, "hich were :<~ufficient to produce attractors at 
ca~:h nutput layer. As an implementation of the semantic pathway, they differed 
from Seidenberg and \1cCielland's (19R9) o\'erall framework (figure 8.4, shown 
more schematically" ithin figure 10.4) m that dean-up un1ts rather than feedback con
nections were the means of achicvinl'! interacti,·e processm~ and ilttractor dynamics. 
However, this wa~ just one of Plaut and Shallicc's de:o;igns. In their other variations 
they experimented with feedback l'Onnection~. within-layer intcn:onncctions at \'ari
ous la~·crs, different numht>rs of units, and different d..-nsities of connccti,,ity ( 100 
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SEMANTICS 
(word meanings) 

ORTHOGRAPHY 
(spelling of written words) 

PHONOLOGY 
<pronunciahon of spoken words) 

Figur~ 10.6 One of the;: network mndds used by Plaut and Shallice (1993) tu simulate 
d.:ep dysl.:xia, Their design differs slt~hth from the semantic path\\ a}' shm\n in the 
upper half of figurt- 10.4, in that clean-up units rather than feedback connt'ctions arc: used 
tn •mplemenr interacth·itr. Oamagt' to almost an~ pllrt of the systt'm rc:~uhs m the semantic 
\·isual, and mixed errors rharac.'teristlc of cleep d\·~lt'Xla . Thill confirms and ext~·nds the ' 
nndings obtain.:d bv Hinton and Shalhce (l991) when they lesioned the nemork shown on 
the left ~de of figure;: MA ~ore that the lack of a phonolo~~:ical pathwav is part nf rhc: model 
L"ilpturin,~r the fact that non\\ord rt'admg as Se\'erdy impaired in de<'P dyslt·x1a. ' 

percent of poss ible connections implemented \ ' S. the original density of 25 percent). 
All of the destgns worked, and \~hen lesioned, all except one produced the various 
error types characteristic of dyslexia. Thts was het·ause all of the networks had 
sources of interacti\'ity that produced attractor dynamics. Different designs and 
d ifferent lesion locations merely affected the relative frequencies with which the 
error types were produced. These findings were not what would have been expected 
based on traditional approaches within neuropsychology in whk h the number and 
location of damage sites are emphasized, and prodded an almost irresistible demon
stra tion of the bendhs of computational mudding. 

In another simulation, Plaut and Shallic:e expanded their corpus by adding 
abstract words, whose meanings im·olve fewer active sememe units than those of 
concrete words. Tht:y used this corpus to train a network that included t:\·ery pos
sible kind of intera~:ti\'c connection and hence produced very strong attractors. When 
some of the ft'edforward connections bcrwecn orthographY and semantics were 
It-sinned, abstract words showed the greatest denemcnts in ~erformance. Howe,·er, 
when some of the connections between the semantic and dean-up units were lesioned, 
it "as concrete word!' that showed the greatest decrement. Although unusual, this 
rd ati,·e sparing of ubstract words has hcen obsen·cd in at least one: deep d\'slcxic, 
CA \ ' . Combined with the more t\'pic;~l pattern ohtamcd from feed for\\ <Jrd lc;ionin~. 
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this l'ounts a:< a double d1ss•x:iation between concrete and abstract '' ords. Dy the 
usual logic for intcrpretin~ double .1ssol.iations, it maght be infern·d that these t\\O 
kinds of words .Ire stored in separate components of the system. Plaut and Shallicc 
proposed an ahcrnatl\'e . \\'ith numerous scmcmc units imuh·cd in their l>Cmanric 
representations. nmcretc: W(>rds can still he id~:ntified if thc: conncc:tions into a few of 
thl:'se umts arc lost; hm\C\'Cr, damagin)! thl· dl:'lm· up part of the network can ll•ave 
some: of these \\Ords with no uttractors in the sem;~ntic layer. The sparser pattl'rns 
for ahstral·t \\ords ha,·c less need of the clean-up units hut also arc less robust under 
dllmilj.(C: to the fcedfur\\ard connel·tions. In shurt, the: same system \\orks dtffc:rcntly 
fur patterns with different l'haractt.·ristics; there is no need to posit sc:par.l!c systems 
fur concrete and abstract \\ords. 

/0 .2. 1 . .1 Mndeli11p surfoa dys!t-.>:ia L1kc the models of deep dyslcxm, connectionist 
models of surface d~~lexia ha,·e their computational roots m nne of the 1986 \'ol
umes, in thts case the chapter on past-tense fnrmattun by Humelhart and l\'kCidland 
m PDP: I X. The mappings from hase \'erh to past-tense \'t:rb and from spelling tu 
sound arc both quasi-regular (largely systematic, hut \\ ith excepuons), and both 
tasks requin: some sort of representation of spoken words. Thus, l-ieidenbt:rg .md 
j\lcCielland ( 1989) were able to usc Wirkl'lfeature phonologic.tl representations (ori
ginally developed for the past-tense model) in their model of reading aloud \'ia 
the phonological path\\~.ty (orthography ~ phonology). They dc,·cluped context
scnslti\'e, coarse-coded representations for orthography as well. From these they 
but It a feedfomard net\\ ork \\ ith 4-00 orthographic units, 200 hiddt:n units, and ~60 
phonolo~o:tcal units.' Presumably it could learn words of any length, because context
sensith·e units nt:ed not be position-specific, but Seidenberg and McClelland limJtt.·d 
themsc:hes to monosyllables like log and clasp. In a direct challenge to dual-mute 
theories, they sucxeeded in showing that a single mechanism could "read aloud" 
both regular and exception words. But a serious short~:ommg became apparent: the 
mapping from spdling to sound was so dispersed and context-spedfic that the 
network '~as poor at reading nonwords. 

Further problems emerged in the initial attempts to model dyslexia. :.;urfc~ce 

dyslexia has been characterized as "readmg without semantics" (Shall icc, V\"<~rrington, 
and McCarthy, J()!!J). The 1989 n~:t\\ork, as an implcmention of the phonological 
pathway an isolation from the semantic pathway, did just that - but dtd tt too 
successfully to ser\'e as a simulation of surface dyslexia. Patterson, Seidenberg, and 
:\ lcClelland ( 1989) therefore lesioned it, and the resulting modest impairment on 
exception words, mainly those of low frequcm·y, matched the primary symptoms of 
a patient denotl·d MP. Un~ike !\'IP, though, the network's errors did not tend to be 
regularizations and its nonword reading was poor. (:\IP made reuding errors on 7 
percent of high-frequency and 27 percent of low-frequency exception words but 
less than S percent of non words and regular words; 90 percent of errors were regu
larizations.) A more serious problem was the failure to approximate the more se,·cre 
surface dy~;Jexic pattem of another patit·nt, KT, hy making a larger lesion in the 
network. (KT made reading errors on 7~ percent of low-fre4uency and 53 percent 
of high-freqttency exception \\ ords, hut none on nonw()rds or high-frequency 
regular words and II pcrl·cnt on low-frequency regular words; 85 percent of errors 
were regularizations.) Because l\!P ,md KT present unusually pure cases of surface 
dysll•xht, they arc a touchstone in the: field and any successful model must account 
for both of them. 
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Retaining their commitment tu the geneml network architectun: in figure 8.4 
(shown more b-chematically in figure lOA), McClelland's group designed two new 
network models of the phonological pathway and used each in multiple simulations 
(Plaut, McClelland, Seidenberg, and Patterson, 1996; hereafter, PMSP). In rhe 
Pl'\'ISP model, Wickelfcatures were replaced by position-specific grapheme and phon
eme units. One network was feedforward (with connections from grapheme to 
hiddt·n units and hidden to phoneme units) and the other was made interactive by 
lidding feedback connections from phoneme to hidden units and a full set of collat
eral .:onne<.:tions between phoneme units. Also, the new training corpus was much 
larger. As discussed in section 8.3.2, both new networks, even the interacti\·e one 
"hich developed attractors, sucl·eeded in reading non words in addition to regular 
.md e:-.:ceptlon words and exhibited a frequency by regularity interaction.; . 

PMSP used their new networks to test two very different ideas about what kind of 
damage produces surface dyslexia. First they retested their original idea of damaging 
the phonological pathway by removing connections or hidden units or adding noise 
to the new interacti,·e network (simulation 4. part 1 ). The approximation to MP was 
now closer, with sparing of nonword reading and more (still not enough) regulariza
tions in the errors on high-frequency exception words. However, larger lesions still 
did not reproduce KT's pattern of se,·ere impairment on exception words but ::.paring 
of nom\ords and most rel{ular words. Therefore, PMSP developed a different idea 
about implementing "reading without semantics" within the overall framework of 
figure 10.4. As shm~n in figure 10.7, they proposed that the ~emantic pathway should 
be included in the simulation during training, just as indiv iduals with acquired 
surface dyslexia previously had access to semantics for many years. The damage 
producing surface dyslexia would then be simulated by disconnecting the semantic 
pathway and requiring the phonological path\\ay to read on its own (simulation 4, 
part 2). Thus, surface dyslexia could be simulated without damaging the phonolo
gical pathway, but it had to have been linked to the semantic pathway whz'le it learned to 
read. That enabled the system to conserve its resources by encoding certain excep
tion words (especially ti'lose of low frequency) only in the semantic pathway. In the 
resulting division of labor between the two pathways, the phonological pathway 
would be fully competent on regular words and non words but spotty in its encodings 
of exception words. The semantic pathway would encode all known words but have 
no non word capabilities. If this idea is right, damaging the semantic pathway would 
reveal which exception words the phonological pathway had not bothered to encode, 
revealing the extent of its dependency on the semantic pathway. 

A full exploration of thi~ re\'ised account would im·olve adding an implementation 
of the semantic pathway- perhaps from Plaut and Shallice (1993}- and running the 
simulation with both pathways in operation. Because this would be too computa
tion-intensive, P!VISP instead approximated the full system by adding a black-box 
semantic pathway to their feedforward version of the phonological pathway.'' That 
is, they assumed that the input to phonology from semantics would activate the 
appropriate pattern for the current word, and directly fed that pattern of activation 
to the phoneme units. The phoneme units combined that inHuence with activation 
Hm\ ing in from orthography ,·ia the hidden units. Thi~ interim step towards modeling 
a collaboration between different networks is illustrated in figure 10.7. Importantly, 
P~·ISP assumed that the strength of the inHucncc from semantics (S) would increase 
asymptotically O\'er the training period (simulating the effects of ~xtensin: practice 
with reading) and would be greater for high-fre4uency words (simulating the quicker 
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Figurt' 10.7 The tina( mudd ust:'d by Plaut, ;\kCiclland, Sl'idenh('f!(, and Pattcr!<On (lq9(J) 
tn simulate surfaCl' dy~lcxia (simulation ~. part 2). Beginnin)( with a feedfurw11rd nctwnrk 
,·.,rsion of the phunoln~~:ic:al pathway, they added a black-box semantic pathway by 
specifying that the str<:n~tth of the input from St:'mantics (S) was greatest for words of 
hi)!her frequ<:nC)' (/uq) and increased across epochs (I) at a rate dctnmm<:d bv tht· 
tim<: to a~ymptotc: (h) and asymptotic le\'el uf mput from ..emantics (g). Thi~ mmimal 
implt:mt:'ntation of the two pathways in tlgure 10.4 \\as chosen so thatu di' ision of labor 
hetw.:en them could be approximated without exceeding computational capacity. After 
training the phonological pathway under the influc:nct:' of the semantic;: pathway, a sc\'t:'te 
lesion of the st:mantic pathway was simulated by disconnecting it. Tho: phonological 
network, undamaged but now on its own, exhibited the key symptom~ of ~urfacc dysl .. xia; 
that is, it regularized low.frequcncy exception wnrds without losing the ahiluy ru 
pronounce non\\ ords. 

retrieval of their semantic representation:i). This produced a complicated learning 
traj~ctory that <.-an be roughly divided into four stages (percentages are based on a 
subset of the traming corpus from Taraban and :\lcCielland, l98i): 

• Epochs 1-200: The system iiS a whole gained the ability to activate the correct 
pronounciatlon for all 2,998 words m the t rain ing corpus. Error at indi\·idual 
phoneme units (discrepancy bct\\ecn desired and actual actl\'atton \'alues) was 
\\ ithin tolerances fur each word. Tested on its own, the feed for'" ard network was 
95.{ percent correct on nonword reading but was unable to handle some of the 
words in the t·orpus (almost half of the low-frequency and almost 10 percent of 
the high-frequency exception words). 

• Epochs 200-400: The fecdfomard network l'ontinucd t<.> adapt its wctghts, 
reducing its contributions to error at the unit level whcn the system w-as tested as 
a whole and reducing the number of words read incorrectly when tested on its 
own (30 percent of low-frequency exception words and Ycry few others). A 
comparison network rrained without scmantic influence had reached this lc\·el 
by epoch 200 rather than 400, dcmon~trating that e\en the relatively small 
amount of semantic intl.uenct: on the mdin network m t·arl~ epochs made it less 
attentive to exn·puon "ords. 

• Epochs 400-HOO: Although the S) stem as a ~'hole continued to read Ha\\ lcssly 
(m·ert beha' 10r), \·cry interesting cn•nts \\ere uanspiring withm tht! fecdfon\ard 



334 CONNEcnONISM AND THE BRAIN 

network (coven behavior). It actually lost a substantial pan of of the knowledge of 
exception words that it already had gained: when tested on its own at epoch 800, 
the feed forward network was incorrect on about 63 percent of low-frequency and 
25 percent of high-frequency exception words. 

• Epochs 800-2000: The feedforward network continued to give up knowledge, 
but at a much reduced pace. It may have stabilized by epoch 2000, when it was 
incorrect on slightly more than 70 percent of low-frequency and 45 percent of 
high-frequency exception words. 

How can the network's Joss of knowledge of exception words beginning around 
epoch 400 be explained? First, PMSP had included in the design of the network a 
weight decay process that produced a bias towards small weights. The main impact 
would fall on exception words, which need a few extreme weights to override typical 
spelling-sound correspondences, and these effects would accumulate over time. In 
early epochs the pressures to reduce error were stronger than the effects of decay, 
and the network had a net gain in knowledge. However, the increasing influence 
of semantics served to reverse this imbalance. By epoch 400 input from semantics 
had already attained much of its asymptotic maximum value (about half for low. 
frequency words and over two-thirds for high-frequency words). What error remained 
in the input to the phoneme units from the feedforward network became a smaller 
share of their total input, so their output pattems came much closer to the desired 
ones. This left less opponunity for the feedforward network (the phonological path
way} to fine-tune itself via backpropagation, and decay towards smaller weight~ 
became the predominant kind of change. The more extreme weights already devel
oped for exception words were gradually forfeited . In short, the semantic pathway 
pre-empted what would have been the natural course of teaming, had the phono
logical pathway been left to its own devices.1 Although not exactly comparable, this 
is reminiscent of the nonautonomous network in Beer (1995); coupled to a sensor, it 
became dependent on sensory feedback rather than fully incorporating other avail
able information in its weights (section 8.3.1). 

The method that PMSP used to determine what the phonological pathway 
(feedforward network) knew at each epoch was to test it while detached from the 
black-box semantic pathway (the equation in figure 10.7). This method of probing 
the system also counts as a test of the idea that surface dyslexia results from severe 
damage to the semantic pathway after the phonological pathway has become some
what dependent on it. Left alone to read aloud as best it can, the intact but only 
partly competent phonological pathway is viewed as simulating the brain of a patient 
with surface dyslexia. In fact, the performance pattem obtained by removing the 
semantic pathway after extensive training (epochs 800-2000 above} was very sim
ilar to that of KT, the patient who could not read most exception words. If the 
semantic pathway was removed earlier (epochs 200-400 above), a pattem like MP's 
was found instead. Contrary to the usual assumption that such patients differ in the 
extent of their brain damage, PMSP suggested that "differences among patients in 
their ability to read exception words . .. may reflect differences in their premorbid 
division of labor between pathways, with the patients exhibiting the more severe 
impairment being those who had relied to a greater extent on semantic suppon" 
(p. 98). Although differing amounts of reading experience (as roughly indexed by 
epochs in the model) could affect the division of labor in humans, so could reading 
instruction methods, computational resources, and many other factors. 
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Plaut (1997, simulation 1) further pursued individual differences by varying the 
strength of each pathway in figure 10.7 during training. Strength was positively related 
to g in the equation standing in for the semantic pathway and negatively related to 
the weight-decay parameter for the phonological pathway. He found that cenain com
binations assumed to be infrequent in people (e.g., both strong or both weak} produced 
the same atypical performance pattem in which patients exhibit severe semantic 
impairments but little or no surface dyslexia. This addressed a criticism of the 
1996 model that it could not account for two atypical patients, DRN and DC. The 
more typical finding of impaired reading of exception words and an interaction with 
frequency resulted from the parameter combination that had been assumed for 
experienced readers in the 1996 paper (semantic pathway stronger than phonological 
pathway}. Of course, what counts as a strong parameter value in the model is not 
predetermined, and emerges from plausible guesses and perhaps trying different values. 
By allowing these values to vary widely to capture different individual pattems, Plaut 
wrote a promissory note that someday will need to be paid by showing that patients 
matching the various predicted pattems indeed had premorbid differences for which 
these values are good surrogates. Meanwhile, just the possibility that the proposal is 
correct is an exciting development in the often frustrating enterprise of finding insight
ful explanations for individual differences in both intact and dyslexic individuals. 

10.2.3.4 Two pathways versus dtull routes We have told only half of a very complex 
story (and only some highlights of that half}. Connectionist models of reading aloud 
and dyslexia developed in the context of a vigorous competition with more tradi
tional dual-route theories. These had roots in Marshall and Newcombe's (1973) 
paper on dyslexia, and had matured into the dominant framework for studying 
lexical processing and disorders by the 1980s. Competition with connectionist ac
counts was under way by the end of that decade; the ensuing rapid change and 
development within both camps brought them closer together in some respects 
while leaving their fundamental differences intact. Here we will briefly look at the 
initial conflict and then consider the current version in which the two connectionist 
pathways in figure 10.4 compete with two or three routes. (The two terms have little 
intrinsic difference in meaning, but make it clear which account is being discussed.) 

In the classic form of dual-route theory (e.g., Colthean, 1985; Monon and 
Patterson, 1980), spellings are linked with pronunciations in two different ways. 
The nonlexical route offers general rules on how to pronounce each pan of the word. 
These are called grapheme-phoneme correspondence (GPC} rules, and they can be 
used to assemble a pronunciation for nonwords as well as regular words - but will 
produce errors on exception words, since these violate the rules. For example, the 
GPC rule 1-+fi/ yields the correct vowel sound for pronouncing the written word 
MINT but a regularization error for PINT. The lexical route passes through a 
lexicon that has an entry for every written word - but no nonwords. Looking up a 
word leads to its specific pronunciation, whether exceptional or not. For example, 
looking up PINT yields the correct /pint/, not the erroneous /pint/. (In the nota
tional convention used here, upper-case vowels represent different phonemes than 
lower-case ones.} One virtue of this account is that it provides a very simple account 
of the double dissociation between nonwords and exception words. If the nonlexical 
route is damaged, nonwords will be impaired (phonological dyslexia); if the lexical 
route is damaged, exception words will be impaired (surface dyslexia}. Regular 
words can be pronounced using whichever route is undamaged. 
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A major goal of Seidenberg and McClelland's (1989) model of reading aloud was 
to show that (1) a single mechanism is sufficient to handle both regular and exception 
words; and (2) this mechanism involves propagating activation through a network, 
not looking up whole words in a lexicon or applying rules to parts of words. Their 
model usually produced accurate pronunciations for both kinds of words, demon. 
strating the feasibility of the overall approach, but its poor reading of nonwords 
suggested that some of the functionality of GPC rules was missing from its solution. 
This was one target of Coltheart, Curtis, Atkins, and Haller's (1993) spirited critique, 
and was remedied in the 19% PMSP networks primarily by replacing the Wicket. 
feature representations. 

As noted above, the long debate triggered by this model of reading aloud was a 
variant of the debate over Rumelhart and McClelland's (1986a) model of past·tense 
formation in English (see chapter 5). Both of these are quasi·regular domains for 
which a classic account specified two dissimilar mechanisms. In the past-tense case, 
classically there was a rule "add -ed" for regular verbs, and a look-up procedure 
involving a lexicon for irregular verbs. The connectionist alternative was good enough 
to demonstrate the feasibility of using a single network, but the Wickelfeature rep
resentations (a common element of both models) were replaced by position·specific 
phonemes in later work. 

The representational and other changes in the 1996 PMSP simulations produced 
an even stronger demonstration that a single network could handle both regular 
and exception words, and this time the network exhibited the functionality of 
both routes of the dual-route theory. The first three simulations all did an excellent 
job of reading nonwords, and the interactive network (simulation 3) was shown 
to have done this via componential attractors. These were similar to GPC rules in 
their scope and effect but were dynamic, flexible, and adaptive. Moreover, the 
same network automatically developed attractors of greater scope to get the right 
pronunciations for exception words - a function handled by the lexicon in dual· 
route models. 

Having demonstrated the feasibility of a single network handling a quasi-regular 
domain, PMSP decided that this particular task nonetheless required more than one 
network. The impetus was the first part of simulation 4: when damaged, the inter
active network came closer to surface dyslexia than had the 1989 network, but not 
dose enough. PMSP's response was not to add a different kind of mechanism (the 
dual-route approach), but rather to take steps towards including the whole group of 
three interacting networks envisaged in 1989 (figure 10.4). Superficially this looks 
like a dual-route model. The phonological pathway, like the nonlexical route, can 
handle nonwords and most words; when it is damaged, the system as a whole is 
predicted to show symptoms of phonological dyslexia (not implemented). The 
semantic pathway. like the lexical route, can handle all words but no non words; when 
it is damaged, the system as a whole shows symptoms of surface dyslexia (tentatively 
supported by the partial implementation in simulation 4, part 2). But note the 
importance of the phrase "most words"- in the previous model it was "all words," 
and using the inftuence of semantics to take away from the phonological pathway 
some of the words it was capable of encoding was the key change for better simulat· 
ing surface dyslexia. It was exactly those exception words that the phonological 
pathway never learned or forgot that were predicted to be vulnerable. These tended 
to be low-frequency, but it was a soft boundary and (also to fit existing data) was 
proposed to show large individual differences. 
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Meanwhile, dual-route theory itself was changing. The DRC (Dual-Route Cas
caded) model of Coltheart, Rastle, Perry. Langdon, and Ziegler (2001) differs from 
classic dual-route theory in several ways. First and most important, parts of it have 
been implemented in a computional model. The lexical and nonlexical routes both 
operate in discrete time at rates set by parameters. Each sends its interim outputs 
across time to the same set of phoneme units, and generally the route that is fastest 
for a particular word will have the most inftuence on the resulting pronunciation. 
Latencies from the model are similar to latencies from people for lexical decision 
and reading aloud tasks. Second, the front end of the lexical route (mapping visual 
features to letters and letters to words) has been implemented using an adaptation of 
McClelland and Rumelhart's (1981) Interactive Activation and Competition (lAC) 
model - that is, a localist connectionist network rather than a look-up procedure. 
This signifies that Coltheart and his colleagues do not reject networks in the same 
way that connectionists reject rules. As dual·route theorists they seek different 
mechanisms for different tasks, and do not mind if one is a network. Third, dual
route theory actually has become a three-route theory (without changing its name). 
The lexical route was initially conceived as involving semantics, but in rare cases 
patients seem to have lost that route while retaining one that directly links whole 
written words to pronunciations. It is this lexical-nonsemantic route that has in fact 
been implemented, due to its relative simplicity. (There is a lexical unit for each 
spelling and also one for each pronunciation; activation is channeled from a spelling 
unit to the appropriate pronunciation unit via excitatory and inhibitory connections, 
and the rate of increase in activation is scaled by relative word frequency .) Fourth, 
the GPC rules have existed in some form for many years, but a different method for 
determining the precise rules was used in this new implementation. 

The differences that remain between the dual-route and connectionist accounts 
may seem subtle but in fact reflect fundamental differences between the two ap
proaches. First, and most obviously, the pathways of the connectionist account are 
networks (assumed to be interactive and often implemented that way) whereas the 
DRC account uses at least two different kinds of mechanisms. Methods of damaging 
the systems also differ: connectionists remove or add noise to microcomponents 
whereas Coltheart and colleagues primarily change the values of parameters in the 
DRC account. 

Second, the two approaches differ in which parts of the system and therefore which 
forms of dyslexia they have made greatest progress in simulating. Deep dysltxia has 
an elegant connectionist account by Hinton, Shallice, and Plaut. Coltheart and 
colleagues have declined to simulate it on the grounds that it reflects atypical right
hemisphere processing rather than a damaged left hemisphere (a localization that is 
in dispute; e.g., see Price et al., 1998, for evidence from PET of significant left
hemisphere activation in two patients). Hence, they have been able to defer imple
menting DRC's lexical-semantic route. One type of phonological dyslexia has been 
well simulated in DRC; both groups have plausible but unimplemented proposals 
about other types. Finally. mrface dyslexia was simulated earlier and more parsimoni
ously in DRC, but now has been simulated by PMSP and Plaut (1997) as well. 

The simulations of surface dyslexia currently are the main locus of competition. 
Both approaches predict that some proportion of exception words will be impaired, 
but the sources of the predictions differ in interesting ways. For dual· route theorists 
exception words are encoded exclusively in the lexical route, so extent of damage 
would be the main determinant of which words become impaired in surface dyslexia. 
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In the final PMSP model, the reason that some exception words escape impairment 
is that they have a back-up encoding in the phonological pathway. Those that do not 
are vulnerable when the semantic pathway is damaged. The membership of the 
impaired subset gets determined at the time of damage in one model and over years 
of reading experience in the other model. Direct evidence on these claims would be 
quite relevant, since currently they cannot be well discriminated empirically. 

In this section we have focused on models that can simulate unimpaired cognitive 
performance when intact but mimic the damage underlying dyslexia when lesioned. 
Considering such a broad range of data has been advantageous in several wa}'8. 
First, models of the intact system are better than they otherwise would have been; 
most recently, PMSP's difficulties in simulating surface dyslexia convinced them 
that the phonological pathway should not be trained in isolation - an important, if 
still tentative, claim. Second, models of the damaged system occasionally yield 
nonobvious clinical implications. For example, Plaut (1996) found that relearning in 
damaged networks is better when a disproportionate number of atypical items are 
included in the training set, a result that may carry over to human interventions. 
Third, such models make evident the need for a more nuanced way of interpreting 
double dissociations. Plaut and Shallice showed that a double dissociation between 
concrete and abstract words could be obtained by damaging different sets of connec
tions to and from a single layer of semantic units. PMSP ultimately found nonwords 
and certain exception words to be handled by different pathways, but argued this 
resulted from how the pathways interacted; the double dissociation would not have 
been obtained if the pathways had been trained in isolation. These are existence 
proofs that double dissociations need not imply independently operating modules 
(also see Cohen et al., 1994; Farah, 1994; Plaut, 1995; and Van Orden, Pennington, 
and Stone, 1990). But neither do they exclude them; a simple modular network like 
that of Rueckl, Cave, and Kosslyn (1989) for whatfwhne (section 10.2.1) presum
ably would produce double dissociations if different modules were damaged. 

10.2.4 The computational power or modular structure in oeocortes 

A general feature of neural organization in the cerebral cortex is the presence of 
columns of neurons which share certain response properties. These columns were 
first identified in somatosensory cortex by Mountcastle (1957) and in primary visual 
cortex by Hubel and Wiesel (1963). For example, when Hubel and Wiesel inserted 
an electrode to record cells at different depths, if they kept it perpendicular to the 
surface (i.e., remaining within a column) they encountered numerous cells that were 
responsive to lines of a particular orientation (e.g., 35 degrees). But if they inserted 
the electrode at an angle, the orientation to which cells were responsive rotated u 
they went deeper (e.g., 35 degrees might be followed by 25 degrees, 17 degrees, 
etc.); this was taken as evidence that the electrode was crossing from one orientation
specific column to another. Columnar organization also was found for eye preference 
(left vs. right) and directional preference. This semi-systematic assignment of dif
ferent sensitivities to different columns now is known to be characteristic of neocorteX 
more generally, but is especially well described for visual cortex. Along with 
retinotopic mapping (information from adjacent retinal positions is mapped to adjac
ent areas of cortex, preserving the 20 layout of the visual field), columnar organiza
tion cross-cuts the long-recognized organization of cortex into layers of varying 
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depth. Thus, within a column that is sensitive to a particular orientation, neurons in 
different layers (conventionally numbered I-VI) tend to differ in the type and size of 
receptive field and binocularity (and some are unresponsive to orientation). Short
distance connections, such as the synapses made by a basket cell axon in an adjacent 
layer of the same column, tend to be inhibitory. Long-distance connections, like 
those connecting a pyramidal cell to cells in other columns, tend to be excitatory. 

The discovery of columnar organization brought the realization that the generally 
modular design of the nervous system continues down to impressively small-scale 
structures. Inspired by this, a group of researchers at Leiden University and the 
University of Amsterdam designed modular networks to perform a task- unsuper
vised categorization of patterns - for which the fine-grained neural underpinnings 
are not yet known. They ventured the idea that the general design principles of 
columnar structure would apply to areas of cortex performing this task. Jacob Murre, 
R. Hans Phaf, and Gezinus Wolters (1992) called their networks CALM modules 
(Categorizing And Learning Modules). They viewed each module as roughly com
parable to a cortical column, and intended that they work together as specialized 
components of a larger system. In emulation of cortical columns, they placed 
excitatory connections between modules and predominantly inhibitory connections 
within modules. However, they did not make any more detailed attempt to simulate 
the six layers of cells within each cortical column. 

We will illustrate the internal structure and connections using just two CALM 
modules and one input module (figure 10.8). Modules are built from three types of 
nodes (their term for units): Representational (R), Veto (V), and Arousal (A). Within 
a module, each R-node has an excitatory connection to a corresponding V -node and 
to the single A-node for that module (heavy lines terminating in arrowheads). The 
V-nodes have inhibitory connections to each other, to each of the R-nodes, and to 
the A-node (light lines terminating in solid circles). All have predetermined, fixed 
weights (e.g., the negative weight from a V-node to its corresponding R-node is 
much weaker than those to the other R-nodes). In contrast, connections into a 
module from outside are excitatory, restricted to the R-nodes, and modifiable by 
unsupervised learning. Each large arrow indicates a full set of such connections to a 
layer of R-nodes: 

• It is the R-nodes that receive activation from the input units. 
• If a module is linked to external nodes (E-nodes), it is the R-nodes that receive 

activation from them. 
• Interaction between modules occurs via the R-nodes: the large bidirectional 

arrow at the center of figure 10.8 indicates that each R-node in the left module 
both sends output to and receives output from each R-node in the right module. 

As we noted in discussing competitive learning in section 3.2.4, internal inhib
itory connections serve to create a winner-take-all competition. Within CALM 
modules, V -nodes provide an indirect implementation of lateral inhibition between 
the R-nodes: as one R-node begins to win the competition its corresponding V-node 
suppresses the other R-nodes (and their V-nodes). The winning R-node is the 
module's categorization of the current input. In addition, a loop through the R-, A-, 
and E-nodes provides a mechanism for modulating this competition. When com
petition between R-nodes is intense, the A-node becomes more active and propagates 
that activation to the E-node (whose external status roughly simulates nonspecific 



340 CONNECTIONISM AND THE BRAIN 

Input units 

Ftgur~ 10.8 Two interconnected Catcgonzing and Learning i\lodules (CAL:\1 modult:s), 
which illustnltc: th<: basic d<:sign of the: larger modular S) stc:ms mvcstil(ated b,· :'ofurr<:, Phaf, 
and Wolters ( 1992). \V•thm each module, represl:ntatlonal nodes (R) engage Ul a \\inner
take-all competition to catcgonze mput patterns. Competitwn 1• implemented h~ mh1bitory 
connecllons from ~eparate 'eto nod<"s (\') ruther than direct latcrul mhibition between R
nodes. It ~~ modulated by th<: r~pons<: of ~:xtcrnal nodes (E), which s.:nd random t-Xcitation 
to each R· node in response to arousal nodes (A) . The large 6hadcd arrows indicat~ full sets 
nf modifiable connections to the R-nodes from the input units, E-nodes, and tht~ R· nodes in 
other modules. Vi:~ unsupervised learning, each module comt•s to ~pecialize in us O\\n way 
of catej!onzmg the same input 

subcortical activation). When the E-nodc becomes more actl\'e 1t (a) increases the 
l~:arning rate and (b} s~nds random excitations to each R-node. This R- A-E-R loop 
provides a state-dependent noise mechamsm whtch, by modifying the patterns on the 
R-nodes, serves to break deadlocks and (much hke the temperature parametcr in the 
fioltzmann machine) enables the system to escape local minima. As one R-node 
begins to win the competition, the rising activity in its V-node will send inhibition to 
the A-node at the same umc as the losing R-nodes are sending it less excirution. The 
CALM module gets co~lmcr as it settles into its responsc. 

Each CAL:\-1 module is thus a dynamrcal system in which ~ach R~node that has 
come to represent a cate!{ory durinl<: learning functions as an attractor. The shape of 
each basin of attraction is adapti\'dy determined by the \Wights on fhe modifiable 
connections (large arrows). These weigh_ts are adjustcd during the ongoing .tcth·ity 
of a module using a ,·ersion of Hebbian learning. (No learning oc~:urs within a 
module, since those weights Me fixed.) To gain an appreciation of this process, 
consider a single module with t\H> R-nodes which rcceh·e input from three input 
units and an E-node (the CAL!\·1 module on the right in figure IO.H). A number of 
different patterns arc presented in turn on the three input nodes. The\ can be 
continuously valued, hut somctimt"s arc: binary (e.g., tht: first four patterns may be 
101 010 100 001). \Vhcn the first pattern is presented, the random cxcit.ttion del
ivered from the E-node tu the R-nodcs assures that one of them will huppen to wm 
the competition. As it bcl{JOS to ''in, the \\'eights of tts connections to the at·tl\'e 
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input nod~s will gmdually strengthen \'ia Hcbbian learning. When the next pattern 
is pr~·sented (after all acti\'ations in the network have been reset to zero), a new com
petition ensues and generally the other R-oode" ill win the competition, leading to 
an incre,u;c in the connection weights between it and those input nodes that are now 
active. \\'hen either of these mo inputs is again presented. the R-notle that won the 
m1ttal competition should now ~'in more e.tsily. As wdl, thes~ two rounds of learn
ing will ha\'e created two attractor basins such that a new input pattern similar to 
one of the originals "11l tend to llctivate the same R-node. Continued 1-lcbbian 
learning serVl."S to refine the shapt: of the basins. 

In the brain, e\'cn though nt:urnns in indh idual columns have few connections to 
adjacent columns, they do send and receive connections from columns cbewhere in 
cortex. In those columns a different catc:gorization of the same input may be realized. 
This type of long-d1stance coupling is what is simulated hy the excitatory connec
tions between R-nodes (the large arrow at the center of figure 10.!!). Bart Happel 
and jacob i\lurre (199~) suggested that these couplcd networks are comparable to 
thc neural assemblies that Hcbb proposed Y.ould arise spontaneously in the nervous 
system. In an iniual study, they explon:d how coupled CALM modules might 
jointly carry out more accurate categorization than a single module. They found that 
the coarse-grained categorization made by a smaller module (one with fewer R
nudes) would ..:onstrain the categorization arnved at by a larger module to which it 
was coupled. Applying an invented example to figure 10.8, this would ensure that if 
the module on the right came to distinguish plants from animals, the module on the 
left would respect that division; that is, none of its four categories would mix animals 
and plants. In Happel and Murre's simulations, multi-module systems were more 
likely than single-module systems to generate categorizations in which the a priori 
similarity structure of the inputs was respected. These investigators went on to 
explore how larger numbers of CALM modules might be linked to perform more 
complex t.tsks; for example, they used a genetic algorithm to evolve a system of five 
CALM modules for reading handwntten digits. The pattt:rn of connectivity between 
modules was partly unidirectional and ordered, but some modules had bidirectional 
~·onnectlons that produced mteresting dynamics (includmg chaotic bcho~\·ior). 

The work on CALM modules illustrates how researchers can make good usc of 
neurally inspired architectural principles like columnar stru.:ture, and also employs 
notions we have de,·eloped in the last two chapters: processmg in dynamil.-al attractor 
m•tworks and the design of networks through simulated e\·olurion. What thcy ha\'c 
not done, howc,·cr, is to show that the processing done by differenr CALM modules 
corresponds to the dtstincti\'C activities of particular areas of cortex, a task that 
r~mains for the future. 

10.3 The Neural Implausibility of Many Connectionist Models 

In th1s t:haptcr \\e ha,·e emphasized the points of contact between t'onncctionist 
modclmg and studies of brain systems. But in pn:vious chapters we sa\\ that clas
sical connectionist modehng is only loosely mspircd hy ~tcncral characteristics of the 
nervous system. E\'en withm the proJects just described in section 10.2 as targeting 
specific nc:ural structures, the archit~·ctures and the extent of their biolog1cal realism 
'a ned considerably. In th1s l.tst section uf the book, we first re,·icw som.: ways in 
whkh cl;~sskal conn~·ctionist networks differ from real neuntl networks. Then we 
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discuss attitudes towards such differences, ranging from the functionalism of clas
sical symbolic modeling (the differences are of no concern) to the biological realism 
of computational neuroscience (the differences should be minimized), with connec
tionists tending to fall between these extremes. 

10.3.1 BioloJically implausible aspects of coD.DectioDist networks 

A number of practitioners and observers of connectionist modeling have been drawn 
to the question of how connectionist networks stack up against the real neural 
networks of the brain (e.g., Crick 1989). The original neural inspiration of the 
networks guaranteed some obvious similarities: the emphasis on numerous units 
(analogous to neurons) with different and changing degrees of activity; propagation 
of activity across connections between units (whose weights are analogous to synaptic 
efficiency); adaptive plasticity; graded responsivity; and tolerance to damage and 
noise. If the metaphor is pushed much further, though, it breaks down in a number 
of ways. 

First, there are substantial differences between units and neurons, of which three 
are particularly salient. 

• Units are assigned activation values, while neurons emit a spike train. 
• Connectionist networks use the single device of summing weighted activations 

to obtain net input, whereas connectivity in real brains is implemented chemic
ally via various neurotransmitters with different properties 

• In connectionist networks the inputs to a unit (each weight., a,) are simply summed 
to obtain a net input, whereas neurons seem to use a more intricate mechanism 
which relies in part on the specific location at which an axon synapses with a 
dendrite or cell body. 

Second, there are differences in overall architecture. 

• In a classical connectionist network every unit in one layer is connected to every 
unit in the next layer, but in the nervous system patterns of connectivity differ 
depending on cell type and location. For example, within the hippocampus some 
pathways are more sparsely connected than others. 

Third, there are differences in learning principles. 

• While backpropagation is one of the most widely utilized connectionist learning 
algorithms, there is no evidence of a mechanism for backwards propagation of 
error in the nervous system. Instead, learning relies upon a much more local 
signal. 

The neural implausibility of backpropagation has provoked the most comment and 
involves several dimensions of difference (Crick, 1 989; Phillips, 1 997; chapter 5 of 
Rolls and Treves, 1998). First, there is no evidence that a neuron computes an error 
signal that takes into account the contribution of all other neurons that synapse with 
it and weights them as in backpropagation. Second, even if a neuron did make this 
computation, it stretches credibility to suggest that it would send the result back-
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wards through the neurons that synapse with it and then further back through the 
neurons that synapse with those and so on. Third, backpropagation works as well as 
it does in part because the number of hidden units is kept low to force generaliza
tion, but neural architectures do not lend themselves to implementing informational 
bottlenecks. Fourth, as an algorithm for supervised learning, backpropagation re
quires that a target output pattern be specified on every trial, information that 
usually is not available inside the system itself. One solution to this problem, which 
we noted in section 9.3.2, has been to have networks predict their next input as part 
of their output. When the next input arrives, it can be employed as the target against 
which to assess the prediction (that is, the discrepancy between predicted and actual 
input would be used as an error signal for training). While this is a promising idea 
that might bear empirical investigation, currently there is no evidence that real 
brains employ this strategy. 

Given all these considerations, there has been no real dispute that the connections 
between neurons do not directly implement backpropagation. Disagreements arise 
in what to make of this, and to some extent reflect what goals have been considered 
most salient at different points in the short history of connectionism. When the 
specifically connectionist approach to network modeling began taking shape in the 
early 1 980s, the new networks were regarded as cognitive models, not brain models. 
What excited people was that they had advantages of flexibility and adaptivity over 
classical symbolic models of cognition - advantages gained by incorporating some 
very general characteristics of the nervous system within some very general , all
purpose architectures. However, the early networks suffered from rather severe 
computational limitations: they could be multi-layered or could learn, but not both. 
Then backpropagation was discovered- more than once independently, in fact, but 
it was the formulation by Rumelhart, Hinton and Williams (1986b) that had imme
diate and enormous impact. With this learning algorithm for multi-layered networks 
at hand, what connectionist models could learn was suddenly much closer to human 
abilities and made them serious competitors to symbolic models. However, this 
advance in computational efficiency and psychological reality came at the expense of 
biological reality. As neuroscience and especially cognitive neuroscience flourished 
across the t 990s, the question of how connectionist networks accomplished their tasks 
became more of an issue. Is biological implausibility a fatal flaw, or is there a valid 
role for connectionist networks which employ biologically implausible mechanisms? 

10.3.2 How important ia oeurophysiolopcal plausibility? 

In the eyes of biologically oriented researchers, any differences between mechan
isms found in the brain and those used in connectionist models point to shortcom
ings in the models. From this perspective, although compromises may be necessary 
in the short term, cognitive models ultimately rest upon or constitute neural models; 
that is, they should specify the structure and activity of just those neural pathways 
that c.arry out the specific cognitive task being modeled. Accordingly, facts about the 
brain's operation are relevant in evaluating models, and neural plausibility is a mark 
of progress. Whether implicitly or explicitly, this position rests on a theoretical 
commitment known in philosophy as mind-brain idnrtity theory. In the most com
mon version of this theory, type identity theory, particular types of mental states are 
identical to particular types of brain states (Smart, 1 959). Such an identity of mental 
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and neural states permits an alignment between accounts - at the limit, a reduction 
of cognitive theories to biological ones. 

At the other end of the philosophical spectrum, functionalimr. holds that cognitive 
models generally should be autonomous from brain models (Putnam, 1975b; Fodor, 
1974). For functionalists, mental states are characterized in terms of their inter
action with other mental states and their relation to inputs and outputs. Although 
mental states can be implemented in the human brain, they can also be implemented 
in computers or other mediums. There is no systematic or necessary relationship 
between mental states and brain states, and no point in trying to align cognitive and 
biological accounts. Functionalists typically have created and defended classical 
symbolic accounts in which rules are used to manipulate representations. Though 
functionalism potentially could coexist with a variety of cognitive accounts, there is 
Jess flexibility in the other direction: symbolic models do not have much affinity 
with brain models and it makes more sense to keep them at their own levels (the 
functionalist approach) than to try to translate between them (the identity approach). 

Most cognitive scientists have assumed some version of identity theory in theory 
but have been more or less functionalist in practice. That is, they assume that some 
day the neural underpinnings of cognition will all be worked out, but in the mean
time there are cognitive models to build and it would be a hindrance to try to make 
them biologically realistic. Connectionists have tended to be more concerned than 
other cognitive scientists about questions of biological realism, but vary consider
ably in their answers.• Paul Smolensky (1988) argued for a proper treatment of 
connectionimr. (PTC) that leaned towards the functionalist end of the spectrum. For 
him, connectionist models are subsymbolic- just a step below the symbolic level
and are evaluated by their ability to generate appropriate behavior, not their 
neurophysiological plausibility: 

it is better not to construe the principles of cognition beina explored in the connectionist 
approach as the principles of the neural level. ... To be sure, the level of analysis 
adopted by PTC is lower than that of the traditional, symbolic paradigm; but, at least 
for the present, the level of PTC is more explicitly related to the level of the symbolic 
paradigm than it is to the neural level. (1988, p. 3) 

Among the connectionists at this end of the spectrum, network models are generally 
regarded as abstract simulations of the processing that occurs in the nervous system. 
Those who come closest to a functionalist position are primarily concerned with 
developing the computational power and techniques that will best produce human
like intelligence, that is, they emphasize what result is achieved rather than hOf'IJ. 
Thus, enhancements to network designs can make them less brain-like if that is 
what does the job. For example, there is no prohibition against building in specific 
kinds of structure so as to account for rule-based reasoning involving variables 
(Shastri and Ajjanagadde, 1993). Other connectionists, though, lean towards the 
other end of the spectrum, biological realism. At a minimum they try to keep the 
how from conflicting with current knowledge of the nervous system, but increasingly 
they seek to incorporate some of that knowledge in connectionist networks. 

The differences between these leanings are evident in treatments of backpropaga
tion. (a) A relatively abstract, functionalist construal of back-propagation emphasizes 
that it is a gradient descent (error-reduction) procedure, and it does not matter 
which method of gradient descent is used to set the weights in a network. Once 

CONNECTIONISM AND THE IIIWN 345 

trained, the network can be independently assessed as a cognitive model. That is, 
even if such a simulation is completely wrong about how a task is learned, it may be 
right about how the task is performed once learned. In choosing among implementa
tions of gradient descent, computational considerations are more salient than bio
logical ones. These relatively functionalist connectionists might incorporate a more 
efficient procedure in their models, but would not adopt one that is more biologic
ally realistic but less efficient. (b) A connectionist taking a more moderate position 
between functionalism and mind-brain identity might use backpropagation as an 
interim implementation of gradient descent, but prefer to find an alternative which 
comes closer to mimicking the brain's own procedure. On this view, the legitimacy 
of using backpropagation to show what gradient descent might achieve rests on the 
expectation that biological research will uncover how the nervous system imple
ments gradient descent. It matten whether the nervous system has such a mechan~ 
ism. (c) Among those network modelers (including some connectionists) who place 
the highest priority on neurological plausibility, backpropagation has been aban
doned in at least some of their modeling endeavors. Instead, they generally prefer 
working with variations on the Hebbian learning rule, which relies only on locally 
available information and is consistent with other known characteristics of long
term potentiation. (For thoughtful discussions of the relation between Hebbian 
learning and L TP as well as other points of contact between networks and brains, 
see McNaughton, 1989; Rolls and Treves, 1998.) 

An approach that tries to satisfy goals at both ends of the spectrum has been 
proposed by O'Reilly (1996), building on Hinton and McClelland's (1988) recir
culation algorithm. In O'Reilly's generalized recirculation algorithm (GeneRec), an 
approximation to backpropagation is achieved using essentially Hebbian local com
putations as components. To do this, he takes advantage of the fact that brain areas 
linked by feedforward connections also tend to have plentiful feedback connections 
and divides the use of this bidirectional circuitry into two phases. Focusing on the 
hidden units in a network of three layers with connections in both directions, dur
ing the first phase an input initiates interactive processing. The system retains 
the eventual activation value of each hidden unit after settling, which reflects not 
just the pattern supplied to the input units but also is influenced by the response of 
the output units over time. In the second phase both an input and a desired output 
pattern are supplied to the network and again interactive processing ensues. The 
eventual activation value of a given hidden unit after settling is compared to its value 
at the end of the first phase. Taking the difference is a local computation, and 
approximates the difference in net input to the hidden unit over the feedback con
nections from the output units. To change the weight on each connection from an 
input unit to the hidden unit, the difference is multiplied by the activation of the 
input unit and the learning rate, which again is a local computation. In contrast to 
backpropagation, as derived in box 3.2, net input and the derivative of the activation 
function need not be calculated, and error need not be passed back through the 
layers of the network. Although this procedure gains the advantage of local computa
tion, making it generally more neurologically plausible than backpropagation, there 
is no specific evidence that the nervous system uses its feedforward and feedback 
connections in this particular way. The challenge of getting sufficient computational 
power while assuring biological reality will remain with us for some time. 

Another moderate construal of backpropagation was offered by David Zipser (1990), 
who was concerned with biological reality but found that it was more achievable for 
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what than how questions in his study. Providing a three-layer network with informa
tion about retinal location and eye position, he used backpropagation to train it to 
compute the location of an object using head-centered coordinates. Zipser discovered 
that the hidden units developed response properties very similar to those that Richard 
Andersen had found for neurons in Brodmann's area 7a in parietal cortex of the 
monkey (Andersen, Essick, and Siegel, 1985). About half of the neurons in this area 
employ a coding scheme that represents both retinal location and eye position. Despite 
wide variation in a number of parameters such as number of hidden units or learning 
rate, the network developed very similar coding schemes as the neurons that represent 
both retinal and eye position. Yet there was an intriguing difference: the artificial 
network achieved these biologically realistic hidden unit encodings in the course of 
being trained to produce head-centered representations on its output layer. How
ever, there was no evidence of neural encodings of head-centered representations in 
the monkey. Attempting an explanation, Zipser suggested that it may actually be the 
hidden layer patterns, not the output patterns, that get passed forward to networks 
carrying out further computations (in the brain's own network and hence in any 
model of that network). He was willing to leave unanswered the question of what 
other procedure, either evolutionary or developmental, could generate the same 
hidden encodings as he achieved using backpropagation: "The justification for the 
learning paradigm rests on the empirical observation that the internal representation 
generated by training actually resembles that found in the brain" (1990, p. 357). 

Eventual answers to the how question may include some that lie beyond the reach 
of current learning algorithms. Cognitive neuroscientists of the future may find that 
we have been endowed with much more efficient ways of learning which often 
replace gradient descent, and network modelers may learn to capture those alternat
ives. For example, existing networks might be copied and adapted (as suggested by 
Bechtel and Abrahamsen, 1991, p . 270), or might first be redescribed in a more 
skeletonized form and then copied and adapted (as suggested by Clark and Karmiloff
Smith, 1993). Abrahamsen (1993) and Bechtel (1993) pointed out problems in mak
ing this work in practice, and currently such dramatic alternatives to backpropagation 
lie closer to the realm of philosophy and functionalism than of biology. 

10.4 Whither Connectionism? 

Connectionists occupy a broad swath of a spectrum from functional ism (autonom
ous cognitive models) to mind-brain identity (biologically realistic cognitive models), 
typically avoiding the extremes. Neither traditional cognitive scientists nor cognit
ive neuroscientists are fully pleased with connectionist models or their placement on 
this spectrum. The disagreements are reminiscent of the controversy over the place of 
connectionism in the dynamical systems approach that we discussed in section 8.5. 
Some advocates of a dynamical approach argue that interactive networks are a half
hearted kind of dynamical system, and see little to recommend them over the real 
thing. Similarly, strong advocates of biologically realistic models tend to view con
nectionist nerworks as transitional at best. 

Connectionists have defended their stance as uniquely useful not only against 
dynamicists and neuroscientists but also against the symbolic theorists who occupy 
the other end of both of these dimensions of disagreement- the original competitors 
of connectionists. The best argument is not that connectionism can do a better job 
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than alternative approaches but rather that it can act as an honest broker between 
them. On a research landscape in which different methods, goals, and theoretical 
commitments pull researchers in different directions, connectionists can help create 
some special zones of confluence in which competition is subordinated to genuine 
integrations of knowledge. One example is the convergence of robotics, network 
models, simulated evolution, and the philosophical position of embodied cognition 
in the work on robot controllers discussed in sections 9.4 and 9.5. Even in the 
current chapter, the mere existence of the models in section 10.2 permits some 
optimism that the common formalism of neural network modeling will foster closer 
ties between neuroscientists and connectionists despite differences in commitment 
to neurobiological realism. Crucially, connectionists bring to those inte~actions an 
emphasis on cognitive function and familiarity with the very different formalisms 
of cognitive science. As the science of the mind of the early twenty-first century 
unfolds, who will bring together aspects of symbolic, dynamical, and biological 
approaches in multiply motivated models if not connectionists? 

NOTES 

Of course, any brief h istory like this oversimplifies . Connectionists, like computational 
neuroscientists, had a range of priorities. Some thought biological plausibility was an 
important goal whereas others viewed networks as models at a cognitive rather than 
biological level. Some focused on extending the range and computational power of net
work architectures and learning procedures while others were more concerned with whether 
these advances provided better fits to human data. Overall, though, the desire to account 
for cogmtion was a unifying theme. 

2 There is evidence for some exceptions to this characterization, but most of the models we 
will d iscuss include a decay parameter. 

3 The phonological pathway also develops attractors of larger scope, giving it a capacity for 
whole-word mappings from orthography to phonology that distinguishes it from the 
nonlexical route in the competing dual-route theory; see section 10.2.3.4. 

4 In fact, there was also one layer of feedback connections from the hidden to orthographic: 
units, but these did not affect the phonological output. 

S PMSP emphasized that consistency with neighboring words rather than conformance to 
general rules (regularity) is the key dimension. Even within regular words, those with 
inconsistent neighbors (e.g .. -INT words such as MINT have the exceptional neighbor 
P/N1) are named more slowly than those in consistent neighborhoods (e.g., -ODE words 
such as CODE and NODE have no exceptional neighbors). Like regularity, consistency 
mterac:ts with frequency (its effects occur mainly in lower-frequency words). Unlike re!fU
Jarity, consistency can be varied in nonwords and has effects like those in words, a finding 
hard to account for in dual-route models. 

6 PMSP had found in their first two simulations that the feedforward network better ap
proximated human data on consistency effects when trained with actual word frequencies 
{simulation 2) rather than logarithmically compressed frequencies (simulation 1). Since 
actual frequencies required more than four times as many training trials, here they com
promised by using a square-root compression (simulation 4, part 2). The resulting pre
lesion behavior was similar to that of the simulation they rerarded as most realistic:, that is, 
the interactive network with actual frequencies (simulation 3). 

7 This simulation can be viewed as a feasibility study assessing the relevance of a collabora
tion between different networks, as more fully envisaged in figure 10.4. Plaut (1997, 
simulation 2) built an alternative implementation in which all three parts of the system 
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were represented, though only by feedforward networks producing semantic outputs: 
orthography __. semantics and orthography -+ phonology __. semantics. A single hidden 
layer feeding into semantics was shared. Even this minimal feedforward architecture 
required almost tO days of CPU time for training. At that point, it could distinguish 
words from nonwords " without recourse to word-specific structural representations" 
(p. 14)- that is, it could perform a lexical decision task without a lexicon. It did so by 
computing a measure of the familiarity of each test item, which turned out to exhibit little 
overlap between words and nonwords. 

8 For a philosopher's-eye view of varieties of connectionism with respect to functionalism, 
see Lycan (1991). 
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APPENDIX B: GLOSSARY 

Note: Terms appearing in definitions which are defined elsewhere in this glossary 
are indicated in SMALL CAPITAL LETTERS. 

activation. activation function. activation rule: The activation of a UNIT is a 
value that indicates its current level of activity. It is calculated by an activation 
function (activation rule) from the NBT INPUT to the unit, and for some functions, 
also from the DECAY RATE, previous activation, and/or other factors. Typically 
nonlinear functions are used, e .g., a threshold or logistic function, and activations 
are binary (0 or 1) or continuous. Activations are calculated once for each presenta
tion of and INPUT PATTERN in a FEBDFORWARD NETWORK, Or once per CYCLE in an 
INTERACTIVI! NETWORK (i.e., many times per input pattern). They are calculated 
regardless of whether the network is in TRAINING MODE or TEST MODE (in contrast to 
WEIGHTS, which are changed only in training mode). The pattern of activations 
across the HIDDEN and OUTPUT UNITS indicates the network's construal of the input 
pattern. (See sections 2.1.1 and 2.2.2). 

attractor: An object in STATE SPACE (e.g., a point, cycle, or CHAOTIC TRAJECTORY) to 
which nearby TRAJECTORIES converge. (See section 8.2 for an introduction to differ
ent types of attractors.) 

attractor network: An INTERACTIVE NETWORK with multiple BASINS OF ATTRAC

TION in its STATE SPACE. 

autonomous d)'1lamical system: A DYNAMICAL SYSTEM that is unaffected by 
any other system. The control parameters in the set of equations specifying the 
~ystem will be constants, whereas those in nonautonomous systems vary due to the 
external influence of other systems. 

backpropacation, generalized delta rule: A LEARNING RULE that can be ap· 
plied to MULTI·LAYERBO NETWORKS by utilizing a generalization of the DELTA RULE. 

The ERROR measure, which is calculated at the output units, is propagated back 
through the network layer by layer. At each layer, WEIGHTS are adjusted according to 
the equation: liweight,. = Irate delta, a •. The delta, itself is calculated recursively by a 
function that utilizes the delta values and weights on the next-higher layer as well as 
the activation of unit i- (See section 3.2.2). 
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basin of attraction: The set of all initial states whose TRAJECTORIES converge on 
~n ~TTRACTOR. In ~ STAT£ SPACE PLOT (phase portrait), one or more basins may be 
md1cated by showmg sample TRAJECTORIES or by enclosing a region around each 
ATTRACTOR with a closed curve (20) or surface (3D). 

bias: A constant input to a unit which is provided regardless of the amount of 
acti~~tion pro.pag~ted from other units. It is sometimes simulated by introducing an 
a~d1t1ona~ umt ~1th a constant activation of 1.0 that has a CONNECTION only to the 
~tased umt. O~tlonall~, the WEIGHT of this connection can be adjusted during learn
mg. The negatton of b1as can be used as a threshold which the input to a binary unit 
must exceed in order for it to become active. 

bifurcation: A rapid transition in the values that are taken by a variable in a 
syst~m due to a small but critical change in the value of a control parameter. See 
secuon 8.2.2 for an explanation and for an illustration using a bifurcation diagram. 

Boltzm.aa.n machine: A type of INTBRACTJVB NETWORK proposed by Hinton and 
Sejnowski (1983, 1986). It has (a) UNITS that take binary ACTIVATION values; (b) 
an asynchronous update procedure; (c) a stochastic ACTIVATION RULE which is a 
probabilistic version of the logistic function; (d) a TBMPBRATURB parameter that is 
ty.pically ~owered across time by a procedure called simulated amreati,.,, by analogy 
With coohng schedules used to avoid faults in the formation of crystals. Character
istics (c) and (d) help to avoid the local minima to which Hopfield nets are subject. 
Harmony theory (Smolensky, 1986) specifies a similar type of interactive network. 
(See sections 2.2.2.2 and 3.2.3). 

case: The term we have used to refer to a particular pairing of an INPUT PATTERN 

with an OUTPUT PATTERN (which may be a DBSIRBD OUTPUT pattern); for clarity, we 
often use the term input-output case. A network is trained by presenting it with a 
series of cases, usually with many trials for each case (one per EPOCH). Its perform
ance can be tested using the same cases, or its ability to generalize can be tested 
using a new set of cases from the same universe of cases. 

ceUular automaton: A lattice (a network of cells in which only neighbors are 
connected) for which each cell is a finite automation that changes state on each time
step in accord with a rule table specifying allowable transitions in state. Artificial life 
researchers use cellular automata as simple abstract organisms. 

chaotic trajectory: A TRAJECTORY through STATESPACI! which appears random (it 
never repeats itself) but is deterministic (from each point, the next point is deter
mined by an algorithm). 

clean-up units: A layer of units which is connected in both directions with an
other layer and serves to sharpen its output patterns. Adding such a layer is one way 
of modifying a FEI!DFORWARD NETWORK tO Obtain an INTERACTIVI! NETWORK. 

cluster analysis: A method of analysis that is increasingly being used to charac
terize globally what information the HIDDEN uNITS have become sensitive to in a 
learning paradigm; it is often more tractable than trying to characterize each hidden 
unit separately. The method extracts regularities in the ACTIVATION patterns across 
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the hidden units across various input~utput CASES, and uses them to construct a 
tree structure representation that clusters together those cases with similar hidden 
unit patterns. (See section 6.4.3). 

coarse coding: An innovative means of achieving DISTRIBUTED REPRESENTATIONS . 
Each individual UNIT (called a rec~tor in this context) is designed to have many 
different INPUTS in its receptive field, and each input is in the receptive field of 
many different units. The coding scheme can be set up such that no two units have 
exactly the same receptive field . The presence of a particular input is inferred if 
there is a high level of activity across many of the units that are receptive to it. (See 
section 2.2.4.2). 

competitive learning: An UNSUPERVISED U!ARNING PROCEDURE in which a net
work is presented with a series of INPUT PATTERNS and must discover regularities in 
those patterns that can be used to divide them into clusters of similar patterns. In 
the simplest case, there is a set of input units and a set of what we refer to as detector 
units (which combine some of the properties of HIDDEN UNITS and of OUTPUT UNITS); 
there are INHIBITORY CONNECTIONS among the detector units to assure that just one 
unit will "win" the competition for a particular input pattern. The effect is to 
classify the inputs into n categories when there are n detector units. In more com
plex systems there may be multiple sets of detector units, or intermediate layers of 
units. (See section 3.2.4). 

connection: The UNITS in a network are linked by connections, which may be 
either unidirectional or bidirectional and either EXCITATORY or INHIBITORY. Each 
connection has a WBIGHT which indicates its importance and modulates the propaga
tion of ACTIVATION along that connection. (See sections 2.1.1 and 2.2.1 ). 

connectionism: An approach to cognitive modeling that has rather deep histor
ical roots, but that in contemporary usage refers to particular classes of computer
implemented models of human or artificiaJ intelligence. Most narrowly, it refers to 
LOCALIST NETWORKS such as those of Feldman and his colleagues at the University of 
Rochester. More broadly, it also refers to PARALLEL DISTRIBUTED PROCESSING net
works such as those of Rumelhart, McClelland, and their colleagues at University of 
California, San Diego; Stanford University; and Carnegie-Mellon University. 
SPREADING ACTIVATION models such as those of Anderson at Carnegie-Mellon Uni
versity could also be regarded as connectionist, but the term is not typically used in 
that context (primarily for reasons of sociology of science). Similarly, connectionist
style models by individuals with a neuroscience focus, such as Grossberg, are often 
referred to by such terms as neural networlts. Usage is not consistent; for example, 
some cognitive modelers prefer the term neural networlu. We have limited our use of 
the term connectionism to refer to localist networks in the Rochester tradition and to 
PDP networks, distinguishing between these when relevant. Most of our general 
material also applies to neural networks in neuroscience, but we do not specify those 
links. 

coupled networks: Networks that function as nonautonomous dynamical sys
tems because each receives input from the other continuously or repeatedly across 
time; cf. AUTONOMOUS NETWORK. 
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cycle: The updating loop in a synchronous INTERACTIVE NETWORK. One presents 
tion of an INPUT PATTERN results in multiple cycles of processing during which th• 
ACTIVATIONS dynamically interact until the network relaxes into a stable state (a state 
in which the INPUT to any unit does not change the probability of ACTIVATION of tht 
unit). The complete set of cycles is needed to yield a response (solution, stable state 
to a single input pattern; in contrast, in a FBBDFORWARD NETWORK a single pass o 
activation updates yields the network's response to the input. Cycles (which invoJV( 
computation of activations) should not be confused with training EPOCHS (whicl
involve computation of WEIGHTS). (See sections 2.1 .2, 2.2.2.2 and 3.2.3). 

decay: A decrease in ACTIVATION that occurs as a function of time or number ol 
events. For example, in an INTERACTIVE NETWORK with a synchronous update pro 
cedure, each UNIT can be set to decay once per timing CYCU! by including a decay tenn 
in the equation to calculate change in activation (611). (Feedforward networks typicallr 
do not include a decay term, as activations are computed in a single forward sweer 
across layers of units.) Often the decay term is obtained by multiplying a decay ratt· 
(a constant between 0 and 1) by some other value. For example, in equations 3 and 4 
of chapter 2, the decay rate of 0.1 is multiplied by the difference between the current 
activation and the resting activation. (See sections 2.1.2.2 and 2.2.2.2). 

deep dysle:da: An acquired reading disorder characterized by difficulty reading 
nonwords and semantic, visual, and mixed errors when reading some words. 

delta rule: A U!ARNING RUU! that utilizes the discrepancy between the DBSIRI!D 
and actual OUTPUT of each OUTPUT UNIT to change the WEIGHTS feeding into it . 
Specifically, Aweight..,= Irate (d.- a.) a,. The delta rule's incorporation of an error 
correction procedure makes it a prototypical example of SUPERVISED U!ARNING. The 
delta rule is guaranteed to find a solution if the input ppatterns form a linearly 
independent set and the input-output mappings are linearly separable, but it also 
works well at detecting regularities in input~utput mappings for nonindependent 
inputs. It is also known as the Widrow-Hoff rule and as the least mean squares 
(LMS) rule. (See section 3.2.1 .3). 

desired output: The ACTIVATION value for an OUTPUT UNIT that has been desig
nated as correct in certain SUPERVISED U!ARNING procedures, such as those utilizing 
the DELTA RULE or the GENERALIZED DELTA RULE. The pattern of designated values 
across all output units is the desired output pattern. Often the terms target output 
and target output pattern are used instead. 

distributed network. distributed representation: A distributed network is one 
in which each item of interest is encoded across multiple UNITS in the network (cf. a 
LOCALIST NETWORK, in which each item of interest is encoded by a single unit in the 
network). There are a variety of ways to obtain a distributed encoding. The least ex
treme approach is to distribute the representation across meaningful, context-free 
units at a lower level of analysis (e.g., phonemic distinctive features if recognition of 
spoken words is the task). Two ways of further distributing the encoding are (a) to 
make units like these context-sensitive (e.g ., Wickelfeatures) or (b) to use a learning 
paradigm to obtain HIDDEN UNITS whose behavior is not defined by the designer. 
Finally, COARSE CODING is an innovative means of obtaining highly distributed rep
resentations. (See section 2.2.4.2). 
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Dynamical Systems Theory (DST): A transdisciplinary field concerned with 
systems that can be specified by a set of equations in which one variable is time. One 
contribution of DST is the development of conventions for visually representing a 
system's possible states (its values on other variables) and changes in state (its values 
on other variables as a function of time) in STATE SPACE PLOTS. 

enthymeme: A logic problem in which some parts of a complete pattern or string 
representing an argument are left unspecified; when the incomplete pattern is pre
sented on the INPUT UNITS of a network, the task is to respond with the complete 
pattern on the OUTPUT UNITS. 

epoch: The training loop, usually with regard to FEEDFORWARD NETWORKS. When 
a network is in learning or TRAINING MODE, one way to schedule training is to present 
repeatedly the same set of training cases (input-output patterns) to the network. 
One run through the set of training patterns is one epoch of training; that is, the 
epoch includes one trial per training case. WEIGHTS may be altered either after each 
case within the epoch, or just one time at the end of the epoch (with almost equival
ent results). Generally, a large number of epochs is needed to arrive at weights that 
cannot be further improved. Note that an alternative way to schedule training is to 
present a large number of cases that are randomly selected from the universe of cases 
of interest; weights are changed after each case has been processed, and there is no 
organization of training trials into epochs. Variations on either method may be used 
in training INTERACTIVE NETWORKS, but if the TEMPERATURE parameter is altered (by 
simulated annealing) this additional factor yields a more complex training schedule 
in which the unit relevant to weight-changes is sometimes called a sweep. 

error: The discrepancy between the DESIRED OUTPUT and ACTUALOUTPUT of a UNIT 
in a SUPERVISED LEARNING paradigm. In McClelland and Rumelhart's (1998) exposi
tion of error correction procedures, the errors are squared and summed across all 
output units to obtain the pattern sum of squares (pss). Further, the pss values are 
summed across all input-output cases to obtain the total sum of squares (tss). The tss 
value is a measure of the network's current performance; alternative versions of pss 
and tss are obtained by dividing by 2 (see boxes 3.1 and 3.2). The goal is to drive error 
as low as possible (to a global, rather than local, minimum). (See section 3.2.1.3). 

e:~:citatory connection: A CONNECTION that tends to increase the activity of the 
UNIT into which it feeds INPUT, typically by means of a positive WEICHT. Excitatory 
connections are the means by which activation is propagated through a network. 
Many connectionist networks have INHIBITORY CONNECTIONS as well as excitatory 
connections. 

feature map: See Kohonen feature map. 

feedforward network: A network in which the UNITS are organized into separate 
layers, including at least an input layer and output layer and optionally one or more 
intermediate layers of HIDDBN 1JNITS, and activations feed forward from the input to 
the output layer. In the most typical version, each unit of a given layer has a 
unidirectional CONNECTION to each unit of the next (adjacent) layer. When an INPUT 
PATTERN is presented, units in one layer feed their ACTIVATION forward to the units 

.< 
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in the next layer until the output layer is reached; there are no iterative cycles of 
change in activation as in an INTERACTIVE NETWORK. Variations include: the addition 
of INHIBITORY CONNECTIONS within a layer; the addition of connections between 
nonadjacent layers; sequential networks; recurrent networks; and networks with 
downwards connections in order to achieve top-down constraints on activation. 
Note that the number of layers in a feedforward network can be expressed either in 
terms of the number of layers of connections (the most usual practice) or units (the 
practice in this book). (See section 2.2.1.1 ). 

generalized delta rule: See BACKPROPAGATION. 

genetic algorithm: An algorithm used to evolve successive generations of artificial 
organisms that become adapted to a specified task or tasks. As applied in chapter 9, 
it is used to obtain a network that can serve as the "brain" of an abstract or embodied 
artificial organism (e.g., a robot). The genetic algorithm may replace learning or be 
combined with learning as a means of obtaining a network adapted to its task. 

graceful degradation: The property of gradual decline of function when a sys
tem is overloaded or damaged. Nervous systems exhibit this property, and so do 
connectionist networks (particularly those using DISTRIBUTED REPRESENTATIONS). 
(See section 2.3.3). 

harmony theory: See BOLTZMANN MACHINE. 

Hebbian learning rule: A LEARNING RULE that specifies how much the WEIGHT of 
the CONNECTION between two UNITS should be increased or decreased in proportion 
to the products of their ACTIVATIONS: weightu~ = Irate a. a;. It builds on Donald 
Hebb's suggestion that the connection between two neurons might be strengthened 
whenever they fire at the same time. The Hebbian rule works well if the INPUT 
PATTERNS are uncorrelated (orthogonal), but this and other limitations are so severe 
that contemporary connectionist models often use different rules, or additional rules. 
One of the Hebbian rule's most important roles is as an ancestor of the DELTA RULE. 
(See sections 2.2.3 and 3.2.1.2). 

hidden units: The UNITS in a network which cannot be accessed externally; their 
operations are "hidden" from the environment. There are no hidden units in the 
simplest networks, such as a typical PERCEPTRON. In a multi-layered FEEDFORWARD 
NETWORK, the units in all layers except the INPUT and OUTPUT layers are the hidden 
units; in an INTERACTIVE NETWORK, units that do not function to receive input and 
deliver output are the hidden units. Units that are not hidden units are called 
VISIBLE UNITS. (See section 3. 2. 2 .1). 

Hopfield net: A type of INTERACTIVE NETWORK developed by physicist john 
Hopfield by analogy with a physical system known as a spin glass. It has (a) UNITS 
that take binary ACTIVATION values (0 or 1); (b) an asynchronous update procedure; 
(c) an ACTIVATION RULE that yields an activation of 1 if the net input is greater than 
zero. Hopfield showed that such networks can reach a stable state by tending to
wards an energy minimum. (See section 2.2.2.2). 



inhibitory coiU1ection: A CONNECTION that tends to reduce the act1V1ty ot the 
UNIT into which it feeds INPUT, typically by means of a negative WRIGHT. Inhibitory 
connections are often used to assure that just one unit of a set or layer of units will 
achieve a high degree of activation, as in COMPETITIVE LBARNINC. They are inspired 
by the phenomenon of lateral inhibition in the nervous system. Many connectionist 
networks have EXCITATORY CONNECTIONS but no inhibitory connections. 

input: The input., to a UNIT u is the product of the output, of unit i and the WEIGHT 

of the CONNECTION from itO U. That is, it is the propagated ACTIVATION from ito u, 
as scaled by the strength of the connection. All of the inputs to u are summed to 
obtain the net input to u. Inputs can be fed/rom INPUT UNITS or HIDDEN UNITS, and 
are fed to hidden units or OUTPUT UNITS. 

input units, input layer, input pattern: Input units are those UNITS that can 
receive ACTIVATION from the external environment (or from another part of the 
network), initiating the propagation of activation to other units. In a FEEDFORWARD 

NETWORK, units are organized into layers; the first layer is the input layer (which 
may itself be subdivided into sets of units that receive specialized types of input). In 
an INTERACTIVE NETWORK, the input units may perform double duty as OUTPUT 

UNITS and may simply be referred to as visible units. The input pattern is the pattern 
of activation across the n input units (which can be treated mathematically as a 
vector in n-dimensional space). Note that the term input alone is sometimes a short 
form for input pattern, but it properly (and distinctively) refers to the value being fed 
to a unit u along each incoming CONNECTION. 

input-output case: See CASE. 

interactive network: A network in which UNITS are bidirectionally connected to 
one another, and ACTIVATIONS change dynamically across a large number of CYCLES. 

A distinction is made between VISIBLE UNITS and HIDDEN UNITS. INPUT PATTERNS are 
typically presented to the visible units (or a subset of those units); OUTPUT PATTERNS 

are the activation patterns across the visible units after processing. Sometimes the 
input pattern is "clamped" on to a subset of visible units, and the output of interest 
is the pattern attained across the remaining visible units (i .e., pattern completion). 
Exemplars include HOPFIELD NETS, BoLTZMANN MACHINES, and HARMONY THEORY; 

also, the Jets and Sharks simulations in chapter 2 involve a LOCALIST interactive 
network. (See sections 2.2.1.2 and 2.2.2.2). 

Kohonen feature map: A self-organizing system in which a set of high-d imen
sional vectors (e.g., the patterns obtained on a layer of a connectionist network) are 
gradually mapped to a lower-dimensional space (the feature map) such that similar 
vectors tend to get mapped to neighboring units of the map. 

language of thought: Jerry Fodor's (1975) term for the innate language-like 
medium in which, he claims, thought is carried out. Like external language or any 
other means of symbolic representation, the language of thought has a compositional 
syntax and semantics. Connectionists typically would deny these claims. (See 
section 1.3.2). 

1eanun1 n.ale: An algoratllm or equat1on WllJcll governs cnanges tn tne WBit.;HTll 

of the CONNECTIONS in a network. A good learning rule is adaptive; that ia, it increases 
the appropriateness of the network's responses to a class of INPUTS. Many learning 
rules incorporate an error-reduction procedure, by which the weight changes tend 
to minimize the difference between the actual and DESIRED OUTPUT pattern across a 
set of training inputs. A learning rule is typically applied repeatedly to the same set 
of training inputs across a large number of training EPOCHs; error is gradually 
reduced across epochs as the weights are fine-tuned. (See sections 2.2.3 and 3.2). 

linear associator: A learning device obtained by applying the HEBBtAN LEARNING 

RULE in a two-layer FEEDFORWARD NETWORK with a linear ACTIVATION RULE. 

linear threshold unit: A UNIT that takes binary ACTIVATION values; if its NET 

INPUT exceeds a threshold (usually 0) the activation is set to 1; otherwise its activa
tion is set to 0 . 

localist network: A network in which each item of interest is encoded by assign
ing it to one UNIT in the network (cf. a DISTRIBUTED NETWORK, in which each item of 
interest is encoded across multiple units in the network). Generally, each individual 
unit of a localist network can be semantically interpreted. (See section 2.2.4 .1). 

microfeature, microstructure: See SUBSYMBOL. 

modular connectionist architecture: A system in which a division of labor is 
achieved by specifying multiple specialized networks (modules) and connecting them 
such that some modules send their outputs to others. Sometimes the term "modu
lar" is restricted to systems that satisfy stringent criteria specified by Fodor (1983), 
including informational encapsulation. 

multi-layered network: A FEEDFORWARD NETWORK that has three or more layers 
of UNITS (and hence, two or more layers of CONNECTIONS). We describe networks in 
terms of the number of layers of units; more frequently, networks are described in 
terms of the number of layers of connections. 

net input: The sum of all of the inputs to a UNIT u. The sum may be scaled by a 
constant, and separate sums and constants may be used if the same unit receives 

external inputs as well as internal inputs (from other units). Most simply: L input.,.. 

There is one internal input for each CONNECTION from another unit i. In the' simplest 
case activation;= output;. In all cases weight .. multiplied by output.,· yields input.;. By 
combining these inputs from all units i feeding into unit u, ACTIVATIONS propagate 
through the network. In some (interactive) networks, the net input to u is the major 
(sometimes the only) value that determines the activation of u (in accord with the 
ACTIVATION FUNCTION). Calculating net input is analogous to a neuron pooling the 
influences of all the dendrites from other neurons that contact that neuron. (See 
sections 2.1 .2.2 and 2.2.2.1 ). 

nodes: See UNITS. 
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output: The output; of a unit i is a function of the activati011, of UNIT i . In the 
simplest case it is the identity function: output;= activatiOfl;. One alternative is to set 

a threshold at zero so that outputs will never be negative. Unit i sends the same 
output value to every unit u to which it is connected, but the outputs are modified by 
WEIGHTS before they reach the units u; hence, some units will be more affected by 
the activity of i than others. The CONNECTIONS feeding out of i are sometimes called 
the fan-out of i. Each output is analogous to the activity sent along one dendrite 
leading out of a neuron. (See section 2.1 .2.2). 

output units, output layer, output pattern: Output units are those UNITS that 
deliver the network's response to an INPUT PATTERN, culminating the propagation of 
activation through the network. In a FEEDFORWARD NETWORK, units are organized 
into layers; the final (highest) layer is the output layer. In an INTERACTIVE NETWORK, 

the output units may perform double duty as input units and may simply be referred 
to as visible units. The output pattern is the pattern of activation across the n output 
units (which can be treated mathematically as a vector inn-dimensional space). Note 
that the term output alone is sometimes a short form for output pattern, but it 
properly (and distinctively) refers to the value being fed from a unit i along each 
outgoing connection. 

overregularization: See REGULARIZA n oN. 

parallel distributed processing (POP): See PARALLEL PROCESSING. 

parallel proessing: An approach to cognitive or computer system design in which 
computations are carried out in parallel, rather than serially as in the von Neumann 
architecture that characterizes contemporary digital computers. Although early ad· 
vances are being made in parallel hardware, most cognitive models that specify 
parallel processing are actually implemented on serial computers presently (at con
siderable cost in processing speed). All connectionist models, including LOCALIST 

models, specify that processing is carried out in parallel. The parallel distributed 
processing (PDP) type of connectionist model achieves extreme parallelism by com
bining parallel processing with DISTRIBUTED REPRESENTATIONS. It has been pointed 
out that certain rule models can also exhibit some degree of parallel processing (e.g., 
parallel matching of the conditions of production rules). 

pattern associator: A PEEDPORWARD NETWORK that has just two layers of UNITS: 

INPUT UNITS and OUTPUT UNITS. When is WEIGHTS are properly set, this type of 
network can respond to each of a variety of input patterns with its own distinctive 
output pattern; therefore it is sometimes referred to as a pattern associator. The best
known variety of pattern associator is the perceptron. (See section 2.2. 1.1 ). 

perc:eptron: In its narrowest sense, a two-layer network for which both the INPUT 

and OUTPUT UNITS take binary ACTIVATIONS, and the output units act as linear thresh
old units. Rosenblatt ( 1962) did much of the early research on these devices, and 
contributed the important perceptron covergence theorem. (See section 1.2). 

recurrent network: A variation on the FBEDFORWARD NETWORK architecture, in 
which the pattern obtained on a HIDDEN layer is copied on to special units in a lower 
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layer which feed back into the hidden layer. Typically the input is a string that ia 
presented sequentially rather than as a simultaneous pattern, and the OUTPUT UNITS 

are used to predict the next element in the sequence. For example, after processing 
the first element, the network has copied the pattern on the hidden units on to the 
special units. When the network then processes the second element, the hidden units 
will receive INPUT both from the regular INPUT UNITS and the special units. Hence, 
this kind of network is able to gather and utilize information about a sequence. (See 
sections 2.2.1.1 and 6.4.2). 

regularization, overregulari.zation: The application of a general rule to a vari
ety of items. When the scope of application is appropriate, the items have been 
regularized (e.g. , forming a regular past tense for the set of regular verbs). When the 
scope of application is overly broad, the items have been overregularized (e.g., form
ing a regular past tense for irregular as well as regular verbs). (See section 5.2.3). 

relazation, settling: Terms for the process by which an INTERACTIVE NETWORK 

approaches a stable state that maximizes constraint satisfaction and minimizes BRROR. 

A network has fully relaxed, or settled, when it reaches a global energy minimum. 
(See section 2.2.2.2). 

soft constraints: Refers to a situation in which multiple constraints compete, and 
the best overall solution is found by satisfying as many of them as possible. 
Connectionist networks are well suited to this task. A set of hard constraints, in 
contrast, must be completely satisfied; for example, in a traditional production sys
tem if no rule has all of its conditions met, no rule will fire. (See section 2.3.2). 

spreading activation: A term that, in its most narrow usage, designates the theory 
of activation embodied in a class of LOCALIST NETWORKS derived from semantic 
networks beginning in the 1970s. The most prominent examples are found in John 
Anderson 's (1976, 1983) ACT and ACT• theories. The ACTIVATION RULE in ACT• 
achieves nonlinearity by incorporating a negative exponential function, and shows 
other similarities to the propagation of activation within some connectionist networks. 
The activation funct ions differ in several respects, however, and ACT• is further 
distinguished by its hybrid architecture (a production system utilizes the network) 
and by its localist (rather than distributed) approach to encoding. In its broadest 
usage, the term spreading activati011 is used interchangeably with the connectionist 
term propagatiOfl of activation. The terminology and theory of spreading activation 
are antecedent to the 1980s era of connectionist models, and can be regarded as an 
early subclass of the localist variety of connectionist modeling. (See section 2.2.3). 

state space; An n-dimensional space in which each dimension corresponds to one 
of the variables in a system. Each possible state of the system has a corresponding 
point in the space. 

state space plot (phase portrait): A geometrical diagram in which ATTRACTORS 

and their basins of attraction in a STATE SPACl! can be indicated. In more complex plots, 
separatrices (indicated by closed curves or surfaces) may partition the state space 
into multiple basins of attraction. Other kinds of objects, such as repellors, saddle 
nodes, or CHAOTIC ATTRACTORS, may be indicated using special display conventions. 
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aubsymbol, subaymbolic paradigm: One way of characterizing PDP (PARAU.J!L 
DISTRIBUTED PROCESSING) models is to point out that they are subsymbolic rather 
than symbolic, and that PDP research adheres to a subsymbolic paradigm rather 
than the symbolic paradigm of the traditional rules and representations approach to 
cognition. Smolensky (1987) distinguishes between C071ceptual and subconceptual 
levels of analysis, and argues that subsymbolic models can capture either level exactly, 
whereas symbolic models can capture only the conceptual level exactly. Further, a 
number of competencies traditionally regarded as conceptual are claimed to require 
a subconceptual level of analysis. Subsymbols are also called microfeatures (see 
Rumelhart and McClelland, 1 986 ), and refer to encodings that are small-grained 
rather than large-grained; often they are designed to be context-sensitive as well. For 
example, Rumelhart and McClelland's (1986) Wickelfeatures are context-sensitive 
adaptations of phonological distinctive features (the smallest grain of traditional 
linguistic analysis). Subsymbols need not be derived from theories, however, some 
COARSE CODING schemes for INPUT UNITS have rather arbitrary receptive fields (e.g., 
Touretzky and Hinton, 1 988), and individual HIDDEN VNITS in trained networks are 
often difficult to interpret or label. Also, note that one way of thinking about subsym
bols would use grain size as a relative notion; whether the UNITS are subsymbols 
would depend upon whether they are at a smaller grain than usual for modeling per
formance on the task. (See section C.1.2). 

supervised learning: The class of LEARNING procedures in which the network is 
provided with explicit feedback as to what OUTPUT PATTERN was desired for a par
ticular INPUT PATI"ERN (and must compare that to its actual output); the DELTA RULE 
is one example. UNSUPERVISED LEARNING, in contrast, refers to the class of learning 
procedures in which the network gradually achieves, without feedback, a weight 
matrix that allows it to classify a set of inputs (by discovering the regularities exhib
ited by subsets of the input patterns). CoMPETITIVE LEARNING is one example. 

surface dyslexia: An acquired reading disorder characterized by difficulty read
ing exception words (they tend to get regularized) but preserved ability to read 
regular words and nonwords. 

target output: See DESIRED OUTPUT. 

temperature (T): A parameter in certain ACTIVATION RULHS for INTERACTIVE NET
WORKS (e.g., BOLTZMANN MACHINES); lower values of T generally make activation 
patterns change more slowly. When a simulated annealing schedule is used, temper
ature is slowly reduced to avoid settling into local minima. 

test mode, test trial: Relevant to a network in a LEARNING paradigm. When the 
network is in test mode, typically following a period in training mode, it is presented 
with a series of INPUT PATTERNS in order to observe its response to those patterns. 
They can be the same input patterns used in training, or may be a new set from the 
universe of input patterns in order to assess generalization. The purpose of test trials 
is limited to assessment of the performance achievable with the current WEIGHTS; no 
changes are made in the weights. (See section 3.2.2.1). 

training mode, training trial: Relevant to a network in a LEARNING paradigm. 
When the network is in training mode, it is presented with a series of training trials. 
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Each trial consists of one presentation of one INPuT-oUTPUT CASE; at the end of the 
trial (or at the end of the set of training trials constituting an EPOCH), the WEIGHTS 
of the CONNECTIONS in the network are altered in accord with a LEARNING RUU!. (Set· 
section 2.2.2. t ) . 

trajectory: A path through STATESPACI! traversed by a DYNAMICAL SYSTEM through 
time. Each state of the system (the current values of its 71 variables) is indicated by a 
point in an 71-dimensional space. In real time, a trajectory {or part of a trajectory) i!' 
a continuous curve; in discrete time, a sequence of points. If the trajectory takes tht 
system from an initial state to equilibrium, the nonequilibrium part of the trajectory 
is called the "transient". 

llllits, nodes: The elements of a network. Units receive INPUTS from other uniu: 
(or from the environment) and compute a function that determines what OUTPUT 
they send to other units. In some models they are intended to function as a simpli
fied neuron; in other models they are regarded as higher-level elements that do not 
correspond to neurons but are neuron-like or neurally inspired. (See section 2. 1.1 ). 

unsupervised learning: See SUPERVISED LEARNING. 

variable binding: A capacity of certain systems of symbolic representation that b 
challenging to achieve in connectionist networks. When a rule (or other symbolic 
expression) includes variables, in order to apply the rule each variable must be 
bound to (linked to, or replaced by) a constant. If there are multiple instances of th< 
same variable, each instance must be bound to the same constant. {See section 2.2.2). 

visible units: The UNITS in a network which can be accessed externally (e.g., from 
the environment). In a FEEDFORWARD NETWORK, the units of the INPUT and OUTPUT 
LAYERS are the visible units; in an INTERACTIVE NETWORK, the same units may func
tion both to receive input and to deliver output. Units that are not visible are called 
HIDDEN VNirS. 

weight: Weight is a variable that indicates the strength (importance) of the CON
NECTION between tWO UNITS. The OUTPUT of unit i (output;) is multiplied by the 
weight of its connection to unit u (weight.,) to obtain the input to unit u (i71put.). 
Typically weights range between - 1 and + 1, or between 0 and 1, but they may also 
be unbounded. The weights between two layers can be displayed in a weight matrix 
using rows for the units in one layer and columns for the units in the other layer. 
Weights can either be set by the network designer and left unchanged, or can be 
changed in TRAINING MODE according to a function that is computed each EPOCH. 
The weights (and optionally, the BIASES) are the means by which knowledge about a 
domain is retained in a network. Along with the more transitory activation values, 
they determine the network's responses (OUTPUT PATTERNS) to a variety of INPUT 
PATTBRNS. (See section 2.1.1). 

Wickelphones, Wickelfeatures: Elements of a system for phonological repres
entation. Wickelphones, proposed by Wickelgren (1969), are phonemic segments 
that have been made context-sensitive by indicating the immediately preceding and 
immediately following phoneme as well as the phoneme of interest, e .g., ~A • . 
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Wickelfeatures, an extension proposed by Rumelhart and McClelland (1986) in 
PDP:18, provide a lower level of representation. A Wickelfeature includes just one 
distinctive feature for each of the three phonemes comprising a Wickelphone. For 
example, (Back, Low, Front) is one Wickelfeature for the Wickelphone .A.,. 
Wickelfeatures are used to provide a DISTRIBUTED REPRESENTATION of the segmental 
phonology of a word. Their context sensitivity is a device for constraining the order 
of phonemic segments, since connectionist networks do not straightforwardly en
code serial order. (See section 5.2.1). 

XOR, exclusive or: A logical operation (propositional connective) of disjunction, 
meaning "one or the other but not both." That is , A XOR B is true if A is true and 
B is false, or if B is true and A is false; it is false if A and Bare both true, or if A and 
B are both false. These truth conditions are distinct from those for inclwit~e or (often 
written v), which means "one or the other and possibly both" and therefore is false 
only if both A and B are false. Iru:lwit~t or is the connective commonly used in 
propositional logic (along with tmd, not, if . . . then, and if and orrly if). Excltuitlt or 
has been of particular interest to connectionists because it cannot be computed by a 
two-layer network; this was one of the limitations of PERC1!PTRONS that were pointed 
out in the critique by Minsky and Papert (1969). The problem is that both-true and 
both-false are maximally dissimilar but must yield the same output (i.e., false). 
Inclusion of a HIDDEN layer solves this problem by permitting intermediate com
putations that produce a pattern with a more tractable similarity structure for use 
by the OUTPUT LAYl!R. (See section 3.2.1.5). 
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dynamie~l hypothesis, 270 
nonlinear, 47, 235, 240, 260 
nonSiationary,257-60 

dyslexia, 3 23-38 
acquired, 234, 324 
deep,3!3, 248,325-8,337 
double disaocations in, 323 
phonoiOJICal, 324-5, 327, 335-7 
11mulatine, 250, 323, 325 
surface (or semantic), 360, 248, 250, 

324-5,327,331- 8 

edge of chaoa, 289 
EEG, 258 
egocentric representation, 303, 313 
e1ocentric epeech, 190 
eliminauvism, 198 
embedded clause., 11, 87, 171, 173- 8, 184, 

186-90, 195- 6, 256 
embodied cognition, IS, 17, 243, 347 
emergent phenomena, 17, 26, 85- 7, 118, 

207,258,261,285-90 
empiricism, 54, 84, 87 
encapsulated modules, 31 0 
encoding, 5 I , 82, 89, Ill, 116 

compressed, 174 
distributed, 41, 91, 116, 125-7, 156, 164, 

311 , 348 
h1dden layer, 149, 256, 346 

localist, 48, 77, lOS, 116, 123, 189, 196, 
207, 248 

linguJsttc, 191 
poaiuonal, 178, 248, 251 
sparse, 314-1 5 
sub-symbolic, 193 
Wickelfearure, 122-3, 125- 6, 207 

energy parameter 
in Hopfield nets and Boltzmann machine 

35, 36, 164 • 
in Jets and Sharka net, 41 

entorhinal conex, 313-15, 320-3 
environment 

networka adapting to, 19, 246 
coupling cognition with, 15, 236, 242-3, 

275, 279, 282, 301- 4 
developine maps of, 315-16 
for robot simulatione, 292 
interaction with 1enotype, 296 
invarianu in, 100 
predicting furure state of, 294 
simulatine, 285, 295, 298, 304 
situated in, 102 
structured repreaentations in, 156, 191-4 

epoch of trainine. 35-4, 58-9 
equilibrium, reaching, 34, 35, 80, 238-9 
ERP, 16,308 
error, JS.f, 60, 63-5, 127; ste also aphaaia; 

dyslexia 
backpropagation of, 70 
correction procedures, 48, 60, 127; 

see also 1rad1ent descent 
measure used for trainmg, 60-1 
landscape or surface, 61, 79, 85 
overregularization, 131-4, 140-3 
pattern sum of squtres (pas), 60 
performance errors, 47, 138 
total sum of squares (tss), 60, 69, 76 

evolutiOn 
and nat1ve endowments, 85 
interaction of evolunon and learrune, 291 , 

293- 8 
simulated, 244, 283- 5, 290-3, 295 

evolutionary psycholoaiats, 205 
exceptions 

to rules, 47, 48, 121-2, 250-2, 324-5 
network modeling of, 127-8, 146-52, 

250-2, 331-8 
excitation, 2, 4 , 22, 31, 45 

lateral, 215, 246 
exemplars, 91-2 
exemplar modele, 42; see also categonea and 

categorization 

expen networka, 311 
explanations 

dynamical, 269 
mechanistic, 266-9 
deductive-nomoloaical or coverin1 law, 

' 267-9,275 
external inpuu, 26 
externalsymbola, 115, 117, 178-9, 190-2 
extrastriate conex, 309 

family treea, 207 
fault tolerance, 163 
feedback 

posuive, 27 
for leamina, 58 
environmental, 193, 2#, 283 
top-down, 205 
neaative, 235 
neural feedback loops, 315, 345 
and mtegrated systems, 267 

FGREP architecrure, 203, 206, 208, 
210-12, 217, 223,229-2 

finue state automaton, 186 
fit 

beat fit matches, 28, 164 
goodness of fit meaeure, 35 

fitnea function, 284, 298 
t'MRI, 152, 308 
functional composiuonality see 

compoaitionality, functional 
funcuonalism, 342, 344-6, 348 

Game of Life, 288- 90 
generalization, 14, 19, 22, 26, 42-4,46, 51, 

79, 91 , 101-2, 118, 124-6, 312 
and systernaticiry, 194-7 
overeeneralization se' overregularization 
strucrure sensitive, 176 

generalized delta rule "e backpropaaation 
generalized recirculation algorithm 

(GeneRec), 345 
genetic algorithm, 3!5, 234, 244, 28~-i, 

290,291 , 300,301,305,341 • 
genorypes, 290,296, 298 
graceful degradation, 355, 19, 48, 49, 163, 

168 
gradient descent, 52, 61, 76, 79, 81, 85, 257, 

344-6 
grammar 

Enghah, 138 
finite state, 10, II, 186, 302 
aenerative, 10, II, 56, 70 
harmonic, 16 

innate, 57 
mental, 120 
phrase structure, 10, 184, 254 
tnnaformational, 10, 11 
story, 15 
Universal, 56, 121 
ue also syntax 
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grammatical prediction error (GPE), 190 
granule ceUa, 7, 314, 322 
grapheme-phoneme correspondence rules 

(GPC), 251, 252, 335-7 

harmony theory, 16, 32, 103 
Hebbian learnina, 355, 39-40, 51-2, 58-60, 

64-9,83,345 
hidden unite s" unita, hidden 
hierarchy 

hierarchically ortaniatd ~. 224, 227, 
232 

pan-whole, 198 
specialization h1erarchy, 77, 309 
see also cluater analyaia 

hippocampua and hippocampal ayllem, 306, 
313-23 

CAl fields, 313-15, 322. 323 
CA3 fields, 313-16, 321-3 
dentate IYNI (DG), 313-15, 321-3 
place cella, 315, 317 
subiculum, 314, 315, 317, 322 
u' also memory 

HM (patient), 318 
homuncularity, 266, 267, 271 
Hopfield neta, 355, 32, 34-6, 61, 79 
hybrid systems, IS, 233- 4 

induction problem, 135, 139 
inference 

and AI, 10 
coherence of, 158-60, 169-70 
with compressed representations, 1 n 
deductive (truth preaervine), 8 
with external symbols, 194 
inductive, 8 
in story pro<:ea~ina, 201, 232-3 
loJical inference by networka, 106-17 
rules, 8 
and variable binding, 165-7 

information 
acceS$ina relevant, 278-9 
carrying, 272-5 
proceaine. 10-12, SS-7, 161-2, 198, 272, 

307, 316 
encapsulation, 205 
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inhibition, 2, 4, 22, 31 
lateral, 215-16, 246, 249, 322 

innateness see nativism 
inner speech, I 90 
input 

correlated, 59 
distorted, 49, 92 
excitatory, 3, 25 
external input, 21-6, 30 
inhibitory, 3, 23 
initial, 2, 34, 142 
internal, 23, 25 
net input,357, 23- S, 32-9 
orthogonal, 66 
partial, 42 
patterns set pattems, input 
sequential, 31 
strength parameter input, 23 
to a unit, 356, 22 
units, 356, 3, 4, 12, 13,29-31,33 
set also output 

input-output pairings, 31, 39, 43, 60, 74, 79 
linearly separable, 67 

intentionality, 303-5 
Interactive Activation and Competition 

model, 19, 337 
interactive activation model, 93, 95, 100, 

205 
interactive processing, 356, 98, 215, 243, 

251,329, 345 
Intermittency, 261, 262, 266, 289 
intuitive processor, 191 , 193, 194 
isotropy, 278, 279 

Jets and Sharks simulation, 19-29, 31-3, 41, 
42, 48-50 

Khepera robot, 295, 298, 299, 304 
knowledge 

declarative, 106 
engineering, 169 
expert, 193 
innate, 56, 84, 85, 121 
knowing how/that, 106, 316 
of scripts, 201 
procedural, I 06, 178, 179, 190 
publically accessible, 191 
re-representation of, 118 
tacit, 107, 121 

Kohonen feature maps, 356, 212-17, 223-8 
trace feature maps, 225 

KT (patient), 33 I, 3H 
Kuhnian revolution, 1, 236-64 

Lamarckian evolution, 293-4 
language 

creativity of, 10 
exceptions 10, 47 
ofthought,3S6, 11,157,232,277 
acquisition, It, 56- 7, 155, 193, 199 
machine, 276 
modular processes in, 204 
temporal dependencies in, 179 
Ste also grammars; competence and 

performance; compositionality; external 
symbols; linguastics; nativasm; 
productivity; rules, rule-governed; 
systematicity 

lateral geniculate nucleus, 309 
lateral inhibition, 356, 246, 249, 322, 339 
lattice, 32, 261, 286, 289 
learning, 357; see especially chapter 3 

algorithm, 69, 343 
associative learning, 42 
competitive learning, 58, 80, 81 
and empiricism, 54, 84, 87 
and evolution, 291-8 
language, 56, 84, 121, 181 
local control of, 67, 345 
machine teaming, 57, 327 
one trial, 39; 52 
paired-associate, 31, 90 
principles, 168, 342 
rate, 39, 59, 80 
and rationalism, 54-6, 84, 87 
reinforcement, 58, 81, 82 
reversal, 55 
reinforcement, 58, 81- 2 
rules or algorithms see delta rule; 

backpropagation; Hebbian 
supervised/unsupervised learning, 360, 

58,60,80-1 
theory and behaviorism, 55, 82, 84 
U-shaped curve, 130, 136, 139, 141-3, 

149, 1St 
units, 5, 7 
ue also gradient descent; hippocampus; 

output, desired; past-tense 
least mean squares rule see delta rule 
lesions 

and localization, 48,217,309,313, 
315-17, 323-4 

an networks, 248, 250, 319-20, 325-32 
less is more hypothesis, 199 
lexical route, 335-7 
limbic system, 313 
limit cycles, 239- 40, 244-6, 257-60 
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linguistics, 1, 10-tt, 16, 42, 54, 56-7, 
120-3, 135-8, 152, 156-62 

see also grammar; semantics; syntax 
local minima, 35-7, 79, 257 
locale system, 316, 317 
\ocalist representations (localist networks), 

357, 40-2,47-8,83,158-9,169 
localization of function, 203-5, 285, 308, 

316-17, 337 
logic 

and AI, 7-11 
as pattem recognition, 106-9, 115-16 
computation, 3 
deductive, 7, 8 
inductive, 8 
connectives, 7-8, 13, 68, 116 
learning, 106-12, 115-17 
network simulations of, 109-17 

logistic equation, 241 , 260-2, 286 
long term memory see memory, long term 
Long-Term Potentiation (L TP), 322, 345 
Lona-Term Depression (LOP), 322 

machine learning, 57, 327 
mapping, 264,276,309,324,327,331,337, 

338 
exceptions, 129 
many-many, tl3, 217 
patterns, 89-90, 128 
regular, 145 
retinotopic, 338 
topological, 217 
ste also past-tense 

Margie, 200, 201 
maturation, 297, 298, 323 
mechanistic explanation (models), 137-8, 

266-70,274 
memory, 246, 259, 263, 267, 306, 313-19, 

321 , 323, 348 
associative, 7, 143, 315 
consolidation, 3 t 7-21 
content-addressable, 19, 26,49-50, 223 
computer, 9 
declarative, 106, 316-19, 323 
episodic, 106, 202-3, 223-32, 315-18 
hologram theory of, 46 
long-term memory, 15, 179, 263, 318 
procedural, 316-18 
recursive associative, 171 , 315 
retrieval, 19-28, 143, 318, 321-2 
semantic, 179, 316 
short-term, 179-i!t, 199,263, 318 
spatial, 315-17, 323 

symbolic, 49 
working, 43-4, 87, 163-4, 218 
su also hippocampus 

mental rules, 107,108, 115, 122 
mere implementation, 46, 140, 141, 160-5, 

170 
metaphor 

computer, 46 
neural, 46, 342 

metastability, 260-6 
microfeatures, 42, 50, 83, 94, 100, 159; 

see also subsymbols 
mind-brain rdentity theory, 343-4 
model theory, 8, 157 
modular network architecture, 357, 17, 

chapter 7, 310-12, 341 
modules and modularity, 203-6, 246, 269, 

271, 279, 310, 316, 324, 338 
modwponens, 7, 107-11 
MOPs (memory organization packets), I 19, 

201 
motor coordmation, 235 
MP (patient), 111 , 331-2 
multiple constraints stt constraints 

nativism, 84, 85 
navigation, 198,313-17 
nearly decomposable systems see 

decomposing a phenomenon 
Necker cube, 260-1 
nervous system, 2, 45-6, 90, 235-6, 306, 

307,341-5 
as a computational system, 306 
as a dynamical system, 258, 260 
backwards propagation in, 78, 345 
columnar structure in, 339 
teaming in, 38 
for robots, 284, 296, 300, 301 

net input ste input 
NETtalk, 77-8, 268 
networks 

as dynamical systems, 2 
cascaded networks, 337 
as computational devices, 2-3 
and constraint satisfaction, 46-8 
distributed, 41-3, 159 
feedforward, 29-31 , 32-4, 58-79 
graceful degradation of, 355, 48-9 
history of, 2-7 
interactive networks, 29, 31-2, 34-7, 

79-81,93-101,243-57 
jets and Sharks set Jets and Sharks 

network 
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lesioning !te lesions in networks 
limitations of, 12-13 
localist, 357, 40-1 
multi-layer, 357, 31 , 69-79 
modular see modular network 

architecture 
recurrent, 358, 31, 179-81 , 217-18, 

251-6, 269 
re-emergence of network models, 13 
robot controllers Itt robots, neural

network controllers 
semantic networks, 15, 37-8, 41 
settling of, 359, 34, 79, 192, 215, 251, 

270, 345 
sequential networks, 31 
two-layer networks su pattern aS$0ciator 
see also architecture 

neural Darwinism, 307 
neural plausibility/implausibility, 19, 45- 6, 

78, 168, 292, 341-4 
neuroetholoer. 300, 301 
neuroimagine. 16, 152, 234, 308 
neurons, 3, 5, 38, 45, 244-5, 258- 9, 296- 8, 

300, 306- 9, 338-9, 341-3, 346 
neuropsycholoer, 204, 308-9, 323-4, 327, 

330 
neuroscience, 13- 15, 152, 162, 166, 309, 

323, 342, 343, 348 
see also cognitive neuroscience; 

computational neuroscience; 
neuroethology 

neurotransmitters, 45, 342 
nodes stt units 
notse, 5 

to break deadlocks, 340 
to stmulate lesions, 328, 332, 337 
tolerance, 44, 161, 342 
see also chaos 

nonlexical route, 335- 6 
nonlinear systems, 14, 240 
notation stt Appendix A 

occipital lobe, 309 
olfactory bulb, 257, 258, 260, 268, 271 
Optimality theory, 16 
or (logical connective) 

exclusive or, 13, 31 , 46, 68 
inclusive or, 68 

orthographical representation, 248- 50, 
327-32 

oscillator 
coupled, 263, 265, 268 
damped, 239, 241 

output 
actual output, 58, 60, 63-7, 87, 91, 92, 

175 
desired (tareet), 38- 40, 59-61 , 63-5, 

67- 9, 175 
distorted output, 92 
functions, 23, 33 
layer, 31, 33 
of a unit, 358, 33 
pattern, 30, 39-40, 58-60 
units, 358, 13, 29-34 
see also input-output case 

overregularization, 358, 122, 127-33, 142-5, 
147-8, 150-3 

pa (pattern associator program), 66-7, 
90-1 . 128, 146 

pandemonium model, 2, S, 12 
paradigm 

cognitive, 1 
computational, 236, 264 
connectionist, 29, 264 
dynamical, 257, 280 
Kuhnian Pl!radigrn, 1, 236, 264 
learning, 42, 81, 346 
symbolic, 1-2, 344 

paraphrasing stories, 201- 3, 206, 220-3, 
228-32 

parietal lobe, 309, 310 
past-tense acqu1sition, 90, 121- 53, 331, 336 
pattern (vector), 30-1, 34 

association, 66, 67, 90; see also networks, 
feedforward 

associator, 358, 30-2, 58-69, 122-30; 
see also pa program 

completion, 90, 99, 109, 321- 3 
connectivity of, 29-32, 168 
matching, 105, 192 
recognition, 3, 5, chapter 4, 191-2 
separation, 321-2 
transformation, 2, 89-90, 136, 140, 

177-8, 222 
linearly independent, 67- 9 
linearly separable, 68- 9 
separation of, 321-2 
sum of squares, 60 
see also input; input-output pairings; 

metastability; output; synchrony 
perception, 90, 99, 103, 260-S, 309-10 

theory-laden, 99-100, 207 
perceptron, 358, 2- 5, 12-13, 34, 68 

convergence procedure, 127 
Perceptron Convergence Theorem, 4 
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performance see competence and 
perform a~ 

PET (positron emission tomography), 124, 
152, 308, 337 

phase 
portraits, 239-41 , 243, 256, 258, 259 
transitions, 240 

phenotypes, 296 
philosophy, 1, 304-5, 343 

philosophy of science, 270 
see also intentionality; logic 

phoneme 
encodings of, 123-37, 149-50, 324-5, 

329, 332-7 
grapheme-phoneme correspondences, 78, 

251-2, 268, 335 
string, 16, 77,123, 131-2, 134, 137 
see also NETtalk; Wickelfeatures 

phonology, 16 
phonological dyslexia stt dyslexia 
phonological pathway, 249-53, 325- 9, 

331-2, 334-6, 338 
phonological rules, 139 
see also past tense; representations, 

phonological; Wickelfeatures 
phrase structure grammar, 10, 184, 254 
point attract or stt attract or, point 
positional encoding, 94, 178 
prefrontal cortex, 307 
primary visual cortex (VI), 168, 216, 267, 

308, 309, 338 
prtncipal components analysis, 253-4, 256, 

269, 280 
problem solving, 103, 272, 303 
procedural knowledge see knowledge, 

procedural 
procedural memory see memory, 

procedural 
processing 

bottom-up, 197, 205 
cycles, 22, 25, 29, 32, 37 
parallel distributed, 1, 14, 126, 135, 136, 

140, 169 
scrtpts, chapter 7 
serial or sequential, 19, 45, 192 
streams, 310 
symbol, 4, 11, 160, 163, 190-2 
top-down, 197. 205, 206 
vtsua\, 309-10 
see also information processtng; 

interactive processmg 
production systems, 15, 38, 43, 107, 120, 

122, 163, 164, 234; set also SOAR 

productivity, 158, 163, 169-70, 176-7, 190, 
193, 195, 197 

proof theory, 8, 157 
propositional attitude, 187, 189 
propoaitions, 7-9, 157-9, 171-8 
prototype, 92 

formation, 24, 26-8 
theory, 15 

psycholineuistics, 120 
psychology, 1, 2, 11, 46, 54, 83, 90, 284 

cognitive psychology, 1, 57, 162, 307 
developmental, 1, 56 
and disabilities, 323-4 
information processing, 11, 162 
see also neuropaycholoer 

purposive behavior, 291-2, 304 
pyramidal cells, 314-15, 322-3 

quasi-regular phenomena, 250, 331 , 336 

RAAM (Recursive Auto-Associative 
Memory) networks, 171-9, 279 

rationalism, 54-6, 87 
reading, 229-31, 246-51 , 308, 323-5, 341 

aloud, 78, 126, 152, 250, 251, 323-8, 
331-7 

reasonmg, 1, 8, 54, 55, 102-7, 117, 163-8, 
205, 272, 344 

see also logtc; pattern recognition 
receptive fields, 43-5, 263, 339 
receptor units, 43, 44, 164 
recognttton 

face, 316 
of in~ariants, 100 
object, 310 
odor, 259 
see also pattern recognition; word 

recoenition 
recording from neurons su cell recording cells 
recurrent connections, 179-80, 217-18, 246, 

253, 268, 315,321,323,329 
recurrent networks see networks, recurrent 
recurstve operations, 10, 13, 74-5, 82, 158, 

171-4, 180, 253,266,284 
embedding, 184-7, 190 
leaky recursion, 256 
rules, 120, 184 

reductionism, 162 
regularization, 359, 135, 143, 152-3, 324, 

335 
of past tense, 135, 143 
regulariution errors, 324, 331-2. 335; 

see also overregularization 
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reinforcement, 55, 271 , 316 
reinforcement learning, 58, 81-2 

relaxation stt network, settling 
repellors, 239, 257 

point, 240, 259 
su also attractors 

representation 
allocentric, 313, 315, 316 
analogue, S 
as carrying information, 273 
case role, 206, 219- 23,229- 31 
compressed, 100, 171- 8 
distributed, 353, 3, 41- 4, 49-50, 83, 91, 

159, 175, 178-9, 207 
coarse codina see coarse coding 
egocentric, 190, 303, 313 
external, 156, 179 
featural, 42 
functionally compositional, 170, 279 
geometrical, 235, 237 
innateness of, 85 
internal, 103, 178, 179, 203, 207, 302 
lexical, 203, 206, 208, 212 
localist, 40-2, 196, 207 
map-like, 313, 315 
mental, 56, 83, 121, ISS, 160 
misrepresentation, 272 
orthographic, 212- 13, 215-18, 223, 230, 

253 
phonological, 122, 124, 131, 135, 138, 

324, 331 
propositional, 7- 8 
recursive, distributed, 178 
rejection of, 270-5, 302-3 
re· representat1on, 118 
of rules, 43, I 21 
scr ipt, 220-3, 229-3 I 
semantic, 210, 212-13, 216-20, 223, 228, 

328, 331 , 333 
symbolic, 57, 92, 120, 156-7, 159-63, 

174,195, 198,266,279,307 
syntactically-structured (compositional), 

156, 165-6, 171, 174, 190-1, 232, 277, 
279 

tensor product, 165, 171 
translation invariant, 45 
su also intentionality; productivity; 

scripts; systematicity; Wickelfeatures 
retina, 90, 216, 273, 309-11 
retinotopic maps, 45, 216, 338 
robots, 15, 244, 282-4, 295-306, 316, 347 

neural-network controllers, 244, 272, 282, 
284, 290-1 , 295, 299-301 , 304, 305, 347 

evolutionary robotics, 269, 271 
Khepera, 295, 299 
simulated, 283, 284, 295, 298, 299, 304 
see also computational neuroethology 

rule 
and exceptions, 4 7-8 
brittleness of rule systems, 12, 113 
cellular automata, 286- 9 
conscious rules interpreter, 191, 193 
explicit rules, 43, 83, 152 
and expertise, II 5, 119 
governed vs. descn bed, 120- 1, 152, 157, 

276 
inference rules, 7- 8, 50-1 , 107, 115- 16, 

194 
learning rules (connectionist), 20, 32, 

38-40, 58-82 
learning as rule insertion and modification 

of, 108 
like behavior, 83 
0~ 78,69,127-9,146,153 
production system, 46, 107, 120, 163 
recursive, 10 
rewrite, 10 
parameters in, 108 
rules of composition (syntax), I, 160 
structure-sensitive, 163 
systems, 127, 164, 165, 191,196 
table, 286-90 
transformational, 11 
for transforming representations, 1- 2, 

9-10, 100, 102-3, 107, 120, 156-7 
su also grapheme-phoneme 

correspondence; past tense; 
productivity; recursion; Universal 
Grammar 

saddle nodes, 239, 281 
SAM, 201 
schemata, IS, 78 
schizophrenia, 308 
sc1ence 

disciplines, 54, 161, 1 52 
history of, 1 OS 
interdisciplinary, 1, 308 
philosophy of, 100, 270 
(Kuhnian) revolutions in, 1, 2, 82, 105, 

236, 264 
see also conscious rule interpreter 

scripts, IS, 17,200-2,217,220-5, 228-32, 
234 

self-organization, 261- 2, 289 
self-organi~d maps, 52, 213-16, 224- 5 
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semantics 
categories, 210, 246, 248-9 
combinatorial or compositional, 156-7, 

159, 162, 178 
of computational systems, 9 
d1mensions, 206 
errors, 325, 327-9 
feature representations, 208 
interpretation, I , 29, 41 , 157-8,247-8, 

302 
networks, 15, 37-8,41 
pathway, 248, 325-9, 331, 332, 334-6, 

338 
roles, 165 
space, 328-9 
set oW> dyslexia; memory; representation 

sensorimotor abilities, 15, 283 
separatrices, 239 
settling stt network, settling of 
SIMilarity 

and associations, 84 
criteria for , 84, 101 
groups, 295 
set also cluster analysis; generalization; 

pattern recognition 
simple recurrent networks (SRNs), 180-90, 

197, 217, 243, 253-6, 269 
simulated annealing, 32, 37, 79, 83 
single-cell recording see cell recording 
situated cognition, 243, 302 
SOAR, 15, 119 
speech 

adult to chrldren, 142, 145 
children's , 133, 142, 144 
egocentric/inner, 190, 303, 313 
see also NETtalk; past tense acquisition 

spike train, 342 
spreading activation su activatton, 

spreading 
stable state, 2, 79, 98 

and conscious awareness, 192, 262 
minima and local minima, 36, 41 , 47 
as solution, 35 
see also metastability 

stages 
in acquiring long-term memories, 316, 

333 
developmental, 86, 87 
learning, 125, 129, 152 
of object permanence, 87 
of past-tense acquisition, 121-2, 129, 135, 

139, 152- 3 
of training a Boltzmann machine, 79 

starting small, 185, 254 
state space, 359, 237-40, 242-5, 247, 269 

activation state space, 24 7 
exploring with chaos, 258, 261-2 
trajectories and state space plots, 359, 

253-6,269,272,276,278,280 
state transition table (rule table for cellular 

automata), 286, 288 
stimulua-respome modela, 243 
story grammara, 1 5 
subnetworks '"' modular netWorb 
sub•umption architecture, 302-3 
subsymbols, 360, 149, 157, 163, 193, 270 

subtymbolic: rule interpreter, 194 
subsymbolic level, 191, 3+4 
see also microfeaturea 

supervised learning see learning, supervieed 
surface dyslexia ut dyslexia 
symbols 

and computation, 2, 9 
and empiricism, 57 
and rationalism, 57 
composition of, 159 
symboli~; approach, 7, 11, 17 
external symbol, 115,117,156,190-4, 197 
internal, 115 
symbolic level of analysis, 16, 160 
manipulation, 1-2, 7, 9-12, 82, 84, 276 
physical symbol system hypothesis, 9 
symbolic paradigm, 1-2, 7 
su also intentionality; logic; 

representations; rules; semantic 
networks; semantics; syntax 

synchronous update, 34 
synchrony 

between oscillators, 261-5 
in connectionist networks, 166-9 
in neural firing, 166, 168, 307 
set also bindina problem 

syntax, 1, 8- 10, 279 
Broca's aphasia, 204, 324 
combinatorial syntax, 156-9, 162, 178, 

196 
optimality theory, 16 

synthetic strategy in artificial life, 284-6 
systematicity, 51, 158, 169, 170, 176-8, 

193- 7 
contesting in performance, 163 
strong, 196, 197 
weak, 195 

tabula rasa, 113, 117 
target output set desired output 
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temperature parameter in learning rules, 
360, 37, 79-80, 127 

temporal lobe, 309, 313, 314, 318 
tensor product s~t representataon 
testing a network, 360, 39-40, 57-67, 

79-82 
testing generalization, 101 

thalamus, 309 
thought experiments, 304, 305 
threshold 

for firing, 3, 7, 33-6, 92, 127 
linear threshold unit, 34 
stt also bias 

time, importance in dynamical systems 
accounts, 236-7, 275-6 

top down 
approach to network design, 163, 197 
s~t abo feedback, top-down; proceasing, 

top-down 
topological mapping, 217 
TOPs, 119 
total cognitive state, 276, 278 
tractably computable function, 276-8 
training 

epoch, 58 
mode, 360,40,57-8 
procedures, 4, 13-14, 57 
hidden units, 69 
trial, 58 
stt abo backpropagation; delta rule; 

Hebbian learning 
trajectories in state space, 361, 237-49, 

253-8 
chaotic, 240 
cyclic, 237, 238 
periodic, 237 
set also attractors 

transients, 239, 241, 289 
tree structure st~ duster analysis 
rypicality effects, 19 

understanding stories, 201 
units (nodes), 361, 2-5, 7, 12, 13, 19-38 

analogue, 5 
base, 5, 7 
binary, 3, 34-6 
dean-up, 248-9, 329-31 
content, 212, 228 
context, 180-2, 199, 218 
feature units, 93-5 
h idden, 355, 13, 21, 31, 33, 42,69-79,83, 

94 

input, 356, 3, 4, 12, 13, 29-31,33 
learning units, 5, 7 
linear threshold, 357, 34, 36 
local units, 57 
McCulloch-Patts, 4, 12 
motor, 4-5 
output,358, 13,29- 34 
sememe, 248, 249, 328- 31 
sensory, 5 
value, 112 
visible units, 21, 22 
stt also activation 

Universal Grammar, 56, 121 
unsupervised learning stt learning, 

supervised /unsupervised 
U-shaped learning set learning, U-shaped 

variable binding, 361, 162, 165-6, 178 
vectors, 30, 58, 159, 185, 210; stt also 

pattern 
verbs 

irregular verb classes, t 33 
irregular, 47, 121-2 
regular, 121-2, 130 
stem, 90, 121-3 
stt also past tense, acquisition 

visual processing, 94, 302, 308-9 
low. level, 216 
stt also what/where pathways 

visual attention, 308 
Von Neumann computer, 46, 161 

Watt governor, 273-S 
weights (weighted connections), 361, 16, 

20-3, 29-36, 38-43, 51-2, 57-61, 
63-82 

weights, matrix , 30, 39-40 
weights, space, 61, 85, 243, 257, 294 
see also learning; training 

what/where pathways, 309-12, 316, 338 
Wickelfeatures, 361, 122-7, 130-2, 134, 

137-8, 141,331-2,336 
Wickelphones, 361, 124-7, 131, 134, 137-8 
Widrow-Huff rule, 60 
winner-take-all competition, 332, 339 
Wolfram classes of cellular automata, 288, 

289 
word 

recognitaon model, 93-100 
word superioriry effect, 94 

xor,362, 13, 31,67-9,74-8 




