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A theory of analogical reasoning is proposed in which the elements of a 
set of concepts, e.g., animals, are represented as points in a multidimensional 
Euclidean space. Four elements A,B,C,D, are in an analogical relationship 
A:B: : C: D if the vector distance from A to B is the same as that from 
C to D. Given three elements A,B,C, an ideal solution point I for A: B : : C : ? 
exists. In a problem A: B: : C : D, . . . , D,, . . . , D,, the probability of 
choosing D, as the best solution is a monotonic decreasing function of the 
absolute distance of Dd from I. A stronger decision rule incorporating a 
negative exponential function in Lute’s choice rule is also proposed. Both 
the strong and weak versions of the theory were supported in two experi- 
ments where Ss rank-ordered the alternatives in problems A: B: : C: D,,D,, 
DID,. In a third experiment the theory was applied and further tested in 
teaching new concepts by analogy. 

Despite psychologists’ considerable confidence that analogical rea- 
soning plays an important role in intelligent behavior (cf., Bartlett, 1958; 
Miller, 1966; Minsky, 1966; Oppenheimer, 1956; Polya, 1957; and Reit- 
man, 1964), analogy formation has received little systematic attention. 
Nearly all of the work done has been in the form of complex computer 
programs (cf. Becker, 1969; Evans, 1964; Reitman, 1966) without 
systematic comparisons of the programs with subject’s behavior (see 
Hunt, 1968). The present paper outlines a simple theoretical model for 
the understanding of analogical reasoning and evaluates the validity of 
the model by means of empirical test. 

To introduce our notion of analogical reasoning, it is useful to 
outline a definition of the word reasoning from which we can work. The 
term is used here to denote those processes in information retrieval which 
depend on the structure, as opposed to the content of organized memory. 
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Thus, one might answer the question “Who is the father of your coun- 
try?” in at least two different ways. In one case, the specific information 
that George Washington was the “father of our country” might be stored 
and used to answer the question. On the other hand, when specific 
information is not available, one can consult the stored meanings of the 
words in question and one’s knowledge of history to derive a plausible an- 
swer. The first of these methods might be called remembering, since 
retrieval depends on the specific information stored. The second method 
may be identified with reasoning, since in this case retrieval depends 
to a much greater extent on the form of the relationship among the 
words. The same act of reasoning (i.e., the same processes) could have 
been applied to the question “Who was the father of your state?” or 
“Who was the mother of your country ?“. It is not the specific content of 
the question but the form of the relationships among the words which 
determines the response. 

If one accepts this working definition of reasoning, then the theoretical 
problem in understanding any particular reasoning process becomes 
clear. We must (1) specify the form of the memory structure and then 
(2) determine the algorithm which is applied in the case of the reason- 
ing process in question. 

Perhaps the simplest reasoning task by our definition involves the 
judgment of similarity or dissimilarity of concepts. It is normally as- 
sumed that degree of similarity is not directly stored and thus “remem- 
bered” as such, but rather that it is derived from the memory struc- 
ture. The simplest view holds that judged similarity between concepts 
is a simple function of the “psychological distance” between these 
concepts in the memory structure. The “closer” two concepts are to one 
another in memory, the more similar they are. Thus, in the case of 
judging similarities, the two questions which we need to answer are: 
(1) what is the nature of the memory structure which underlies similar- 
ity judgments, and (2) what is the measure of “distance” on this psy- 
chological space? 

A recent paper by Nancy Henley (1969) illustrates one set of answers 
which have been given to these questions. Henley assumed (1) that the 
memory structure may be represented as a multidimensional Euclidean 
space and (2) that judged similarity is inversely related to distance in 
this multidimensional space. To test these assumptions in the semantic 
domain, Henley used the techniques developed by Shepard (1962), 
Kruskal ( 1967), and others to deduce the form of the space from sub- 
jects’ judgments of similarity and dissimilarity among the concepts. 

In one of her experiments, Henley used ratings of dissimilarity to de- 
duce the underlying “psychological space” relating common animal terms 
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to one another. She chose 30 of the most common mammals and asked 
subjects to rate all possible pairs of the 30 mammals as to their dissimilar- 
ity on a scale from 0 to 10. A value of 0 indicated that the animals were 
identical, a value of 10 indicated that they were maximally different. 
These data were used as input to TORSCA (a multidimensional scaling 
program developed by Young and Torgerson; 1967) to find the multi- 
dimensional solution with minimum dimensionality consistent with the 
observed dissimilarity data. 

Henley’s results showed that these 30 mammals fit reasonably well into 
a three-dimensional space (Kruskal’s stress index at 9.4%). Figure 1 
shows the three dimensions along with placements of some of the ani- 
mals. Henley employed several other methods including the method of 
triads to derive the semantic space and obtained remarkably similar 
results in each case. 

Henley’s work represents one of several current approaches to the 
problem of specifying the form of the memory structure and the method 
of deriving the structure from similarity judgments. Most of the work 
to be discussed in this paper depends on a similar set of assumptions. 
If we accept the view that at least portions of the structure of semantic 
memory can be represented as a multidimensional space, then in order 
to specify any particular reasoning process we need only specify the 
appropriate algorithm operating on this structure. The case of similarity 
judgments is a particularly simple one because distance is a particularly 

SIZE+ I 
I 

FIG. 1. The placements of a selected set of animals based on data from Henley 
(1969). 
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simple computation within the framework of a multidimensional 
Euclidean space. 

A little thought will show that analogical reasoning can itself be 
considered a kind of similarity judgment in which not only the magni- 
tude of the distance but also the direction must be indicated. Consider 
for example the assertion, A is to B as C is to D, the classic analogic 
paradigm. When we make this statement, we are simply asserting that 
the concept A is similar to concept B in exactly the same way and to 
exactly the same degree that concept C is similar to concept D. That 
is, in the multidimensional representation, we are asserting that the 
directed or vector distance between A and B is exactly the same as the 
directed or vector distance between C and D. Thus, in an analogy 
problem of the form A is to B as C is to what, the proper answer must 
be that concept which is most nearly the same vector distance from C 
as B is from A. These ideas are stated more formally and specifically in 
the set of assumptions listed below. 

Consider an analogy problem of the form A: B : : C : (X1,X2, . . . , X,) 
(to be read A is to B as C is to which of the following: X1,X,, . . . , or 
X,). It is assumed that: 

Al. Corresponding to each element of the analogy problem there 
is a point in an m-dimensional space. (We denote, for example, the 
point corresponding to element A of the problem as A and say that 
the coordinates of A are the ordered sequence {~j}~=~,~, where ai is 
the coordinate value of A on dimension i. ) 

A2. For any analogy problem of the form A: B : : C: ?, there exists 
a concept I such that A : B : : C : I and an ideal analogy point, denoted 1 
such that I is located the same vector distance from C as B is 
from A. The coordinates of Z are given by the ordered sequence 
{Cj + bj - Uj}j=l,ms 

A3. The probability that any given alternative Xi is chosen as the 
best analogy solution from the set of alternatives X1 . . . , X, is a 
monotonic decreasing function of the absolute value of the distance 
between the point Xi and the point I, denoted ]Xi - I(. 

To summarize, we assume that each element in an analogy can be 
represented as a point in an m-dimensional Euclidean space, that the 
ideal analogy solution is given by that point in the space which lies the 
same vector distance from C as B lies from A, and that, the closer a given 
alternative is to the ideal analogy solution, the higher the probability 
it will be chosen as the best analogy. 

The intuitions behind these assumptions can be further illustrated with 
reference to the eight kinship terms in Fig. 2. Each term corresponds 
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Fo ther 

Son 

+ Niece 

FIG. 2. Three-dimensional representation of relations among eight kinship terms. 

to a comer of the three-dimensional similarity space shown in the figure. 
The coordinates of each term are shown beside it. Consider, as an ex- 
ample analogy: Son : Daughter : : Uncle : ( Father, Nephew, Mother, Niece, 
Aunt). For simplicity, assume that the space shown in Fig. 2 satisfies 
Al. Then, under the assumption that the coordinates of Son are (O,O,O) 
and those of Aunt are ( l,l,l), from A2 we get the coordinates of I to be 

(dj + ei - Uj}j=l,s = (0 + 1 - 0, 0 + 1 - 0, 1 + 0 - 0) = (l,l,l) 

We observe that the term corresponding to the ideal solution for this 
analogy is Aunt, with coordinates (l,l,l). Thus, from A3 we conclude 
that Aunt should be the most probably chosen response. A second analogy 
is similar: Aunt: Nephew: : Mother: ( Son, Father, Uncle, Daughter, 
Niece). Here, Son with coordinates (O,O,O) corresponds to the ideal 
analogy solution. The predictions correspond fairly well with our in- 
tuitive judgment of the best solutions. 

The multidimensional space used here was a particularly simple 
one, composed of three binary dimensions which were assigned a priori, 
and the test was merely intuitive. We now turn to a more serious test 
of our assumptions. 

EXPERIMENT I’ 

Assumption Al of the theory requires a set of concepts located in a 
multidimensional space. The set chosen and used throughout Expts 

‘Experiment I was carried out by Sharon Wilson as part of an undergraduate 
research project under the sponsorship of the first author. 
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I, II, and III is the animal set scaled by Henley (1969) and described 
above. This set was chosen because the space seemed robust, because 
college student subjects are generally familiar with the set of words, and 
because we have Henley’s experiments with which to compare our re- 
s&s. All analogy problems in Experiment I were of the familiar form 
A:G: :C: (Dl,Dz,Da,D4). 

Procedtm 

Analogy problems were generated in the following way. Animal terms 
from the set of thirty were chosen at random without replacement. The 
first term chosen was the first element of the first analogy problem. The 
second chosen was the second element of the first analogy problem. The 
third chosen was the third element of the first problem. The fourth 
chosen was the first element of the second analogy problem, etc. This 
procedure was continued until the set of animal terms was exhausted 
(i.e., ten analogies were formed). All terms were then replaced in the 
pool of possible terms, and the procedure was continued until thirty 
unique analogy problems were formed. For each of the thirty analogy 
problems, four alternatives were chosen. One alternative was chosen 

TABLE 1 
Example Analogies and Solutions from Example I 

RAT:PIG: :GOAT:- 

A. CHIMPANZEE 
B. COW 
C. RABBIT 
D. SHEEP 

RANKS 1. B 
2. D 
3. c 
4. A 

FOX : HORSE : : CHIPMUNK: - 

A. ANTELOPE 
B. DONKEY 
C. ELEPHANT 
D. WOLF 

RANKS 1. C 
2. A 
3. B 
4. D 

CAMEL: DONKEY: : RABBIT: _ 

A. ANTELOPE 
B. BEAVER 
C. CAT 
D. TIGER 

RANKS 1. B 
2. c 
3. A 
4. D 

LION : WOLF : : GOAT : - 

A. CAT 
B. CHIMPANZEE 
C. GORILLA 
D. PIG 

RANKS 1. D 
2. A 
3. B 
4. c 
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at random from among those animal terms within 5 units of the ideal 
analogy solution (.5 units corresponds roughly to the distance between 
CAMEL and ANTELOPE in Henley’s scaling). If no animals fell within 
.5 units, the analogy was discarded and a new analogy was formed. After 
the first alternative was chosen, a second was chosen from among those 
animals between .5 and 1.0 units from the ideal solution. (One unit 
corresponds to the distance between DEER and ELEPHANT.) The 
third alternative was chosen among those animals from between 1.0 
and 1.5 units from the ideal solution. (A distance of 1.5 units corresponds 
to the distance between ELEPHANT and PIG.) The fourth and final 
alternative was chosen from among those animals more than 1.5 units 
from the ideal solution. 

Thirty-five subjects were recruited from a lower division psychology 
class at the University of California, San Diego. Subjects were run in 
two groups, one of 15 and one of 20 students. Each subject was given a 
five-page mimeographed booklet, The first page contained the instruc- 
tions and an example. Subsequent pages contained the thirty analogy 
problems. The four response alternatives were listed in alphabetical 
order. Examples of the analogy problems are given in Table 1. 

The directions were as follows: 

DIRECTIONS: 

An analogy task is one in which you recognize relationships of things or ideas 
to other things or ideas. In this task you will be given, the last term in the 
analogy will be missing. You will have four choices from which you will supply 
the term which seems to you to be the most analogous. Then you should in- 
dicate your second, third, and fourth choices, also. After that, you should in- 
dicate which of the terms you could consider to be analogous and which ones 
you think are not analogous by drawing a cut-off line between the two “groups.” 

Example: apple: tree: : grape: 
A. bush 
B. vine 
C. barrel 
D. ground 

1. B 

2. D 
3. A 
4. c 

The ordering of the relationship in an analogy is important. For instance, in 
the above example apple: tree: : vine: grape would be incorrect because the 
relationship of apple to tree is not the same as that of vine to grape. 

All of the terms in the following analogies are animal names. Feel free to go 
back and change any answer. 
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TABLE 2 
Subjects’ Rankings as a Function of Alt*ernative Distance 

Rank distance Subject-assigned ranks 
of the alterna- 

tive from I 1 2 3 4 

1 ,709 ,180 ,069 .046 
2 ,177 ,546 ,137 ,129 
3 ,086 160 .526 .226 
4 ,043 ,111 .243 .600 

Results and Discussion 

The basic results of Expt I are shown in Table 2. Table 2 gives the 
proportion of responses, averaged over subjects and analogy problems, 
for which Rank 1 was given to the ith closest response alternative. Thus, 
the upper left hand entry of the table implies that 70.9% of the Rank 1 
responses were given to the response alternative closest to the ideal 
point. Only 4.6% of the Rank 1 responses were given to the most distant 
response alternative. 

Although the theory outlined in assumptions Al-A3 made no specific 
prediction beyond the Rank 1 data, it is clear that the entire table is 
consistent with the ideas behind the theory. As it stands, assumption A3 
asserts only that a monotonic decrease in probability should be observed 
in the first column of Table 2. Before more specific predictions can be 
made, we require a more specific decision rule. The rule we propose 
is that developed by Lute ( 1959). We thus substitute for assumption 
A3 assumptions A3’ and A4 outlined below. 

A3’. The probability that any given alternative Xi is chosen from 
the set of alternatives X1, . . . X, is given by 

Pr(XilX1, . . * , xl) = pi = U(di)/ [ 2 U(dj)], 
i 

where di = IXi - II d enotes the absolute value of the distance be- 
tween Xc and I, and U( ) is a monotonically decreasing function of its 
argument. 

A4. v(x) = exp (-a), where x and (Y are positive numbers. 

Thus, A3’ is simply a restatement of Lute’s choice rule, and A4 is an 
assertion that the monotonically decreasing function of A3’ is an ex- 
ponential. The exponential was chosen for a number of reasons. It was 
chosen in part because Shepard (1957) found a good fit to an exponen- 
tial generalization function over a similarly derived “psychological 
space” and in part because it is a simple one parameter decay function. 
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Assumptions A3’ and A4 were stated separately because of the obvious 
possibility that A3’ be correct and A4 false. Stated in this way, it is easy 
to separate the Lute choice rule and the exponential decay assumption. 

Figure 3 is a plot of the predicted versus the observed number of 
subjects, ranking each of the four alternatives of each of the 30 analogy 
problems as the best solution to the analogy. The single parameter of 
the fit, 01, was estimated by a least squares procedure to be 2.9. A product 
moment correlation computed from these data show a correlation of 
.933 between the predicted and observed values. 

It appears from these data that the set of assumptions Al, A2, A3’, and 
A4 yield an adequate account of the first choice data. It is furthermore 
clear from the orderly nature of the data in Table 2 that a slight exten- 
sion of the theory to include a theory of rankings may well account 
quantitatively for the entire matrix of data displayed in the table. Given 
our use of Lute’s choice axiom in A3’, it is natural to accept Lute’s 
extension of his choice axiom to cover rankings. We thus add an addi- 
tional assumption, A5, to our list. 

AS. We assume that the subjects rank a set of alternatives by first 
choosing the Rank 1 element according to A3’ and, then, of the re- 
maining alternatives, deciding which is superior by application of 
A3’ to the remaining set and assigning that Rank 2. This procedure is 
assumed to continue until all alternatives are ranked. 

I) ?' I) ?' I I 
5 5 IO IO 15 15 20 20 25 25 30 30 35 35 

PREDICTED NUMBER OF SUBJECTS PREDICTED NUMBER OF SUBJECTS 

FIG. 3. Predicted versus observed number of subjects ranking each alternative ds 
the best analogy solution. 
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THIRD CHOICE 

t 

FOURTH CHOICE 

I2 3 4 I2 3 4 

RANK DISTANCE FROM I 

FIG. 4. Predicted versus observed mean number of subjects ranking each of the 
four response alternatives in each of the four ranks. 

Figure 4 is a plot of the predicted and observed mean number of 
subjects, averaged over analogy problems, to assign rank i to the ith 
closest response alternative, for Ranks 1 through 4. The value of (Y = 2.9 
used to generate the theoretical curves was taken from fit of the first 
choice data discussed above. No new estimate was made to fit the sec- 
ond-, third-, and fourth-ranked alternatives. 

Although the results of Expt I are certainly encouraging, it is some- 
what unfortunate that the design of the experiment required an extension 
of the original three assumptions into five before quantitative tests 
of the theory could be made. The second experiment was designed 
to get a test of the basic theory unencumbered by the added response 
assumptions. 

EXPERIMENT II 

The goal of this second experiment was to extend the results of Ex- 
periment I by finding evidence bearing more directly on the basic as- 
sumptions of the model. The strong implication of assumptions Al-A3 
is that the probability of choosing any particular alternative Xi as the 
best alternative depends on the ideal solution point Z and on the alter- 
native set (X,, . . . , X,), but not at all on the analogy itself, Thus, all 
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FIG. 5. Three-dimensional representation of two analogies with the same solution. 
The analogies are (a) GORILLA: DEER: : BEAR:? and (b) BEAVER: SHEEP: : 
DOG : ?. 

possible analogies with a given ideal solution point I and a given alter- 
native set (X,, . . . , X,) should yield the same distribution of responses 
over the Xi. Experiment II was designed primarily to test this implication. 

The logic of Experiment II is further illustrated in Fig. 5. The figure 
is a geometric representation of two analogies both with the same solu- 

tion. The analogies are GORILLA: DEER: : BEAR: ? and and BEAVER : 
SIIEEP: : DOG: ?. The response probabilities should depend on the dis- 
tances of the various elements of the response set from I and not on 
which of the two analogies were presented. 

Notice, incidentally, that an analogy is represented geometrically as 
a parallelogram in the plane passing through the three points correspond- 
ing to the three elements of the analogy. The insert shows the two 
analogies projected into the frontal plane. 

Procedure 

Twelve pairs of analogy problems of the type shown in Fig. 5 were 
constructed. Each pair had the same ideal point within a tolerance of 
.12 units (roughly the distance between a lion and a tiger). For each 
such analogy pair, two sets of alternatives (denoted set A and set B) 
were constructed. (Table 3 shows the analogy illustrated in the figure 
with its two alternative sets. Both sets are ranked in order of distance 
from I.) The alternative sets were constructed with the constraints 
that (1) there be no overlap (i.e., if an animal name appears in alterna- 
tive set A, it does not appear in alternative set B; (2) the ith closest 
alternative for one set is roughly the same distance as the ith closest 
alternative for the other set, for all i; and (3) alternatives of a given set 
must be about equally separated in distance from one another by 
either .2, .25, .35, .4, or .45 units. 

For each ideal point, the alternative sets were paired arbitrarily with 
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TABLE 3 
Two Analogy Pairs with Alternative Sets from Experiment IIa 

Analogy GOHILLA:DEER: :BEAR:- BEAVER:SHEEP: :DOG:- 
pair 1 

Alternative A B 
set 

1. COW 1. DONKEY 
2. PIG 2. CAMEL 
3. TIGER 3. ELEPHANT 
4. MONKEY 4. CHIMPANZEE 

Analogy CAT: SHEEP: : LEOPARD : - MOUSE:RACCOON: :COW:- 
pair 4 

Alternative A B 
set, 

I. HORSE 
2. DEER 
3. FOX 
4. RAT 

D Analogy pair 1 is also illustrated in Fig. 5. 

1. ZEBRA 
2. GIRAFFE 
3. LION 
4. CHIPMUNK 

the two analogies. The resulting 24 analogy problems were given to half 
of the 44 subjects. The 24 problems obtained by the opposite pairings 
were given to the other half. Hence, for each ideal point, a given sub- 
ject encountered both members of the analogy pair and both alternative 
sets, but in only one of the two possible combinations. 

The analogy problems were presented in booklet form with instruc- 
tions similar to those of Experiment I. The analogy problems appeared 
in random order, and the alternatives for each analogy were also 
scrambled. 

Results and Discussion 

The theory holds that the response distribution should depend only 
on the ideal solution point and the alternative set, and not on the 
particular analogy problem. This prediction was tested by computing a 
x2 between the response distributions given to the two halves of each 
analogy pair for each response set. These x2 values are shown in Table 4. 
The summed x2 reaches a value of 109.7, with 60 degrees of freedom. 
This value is somewhat larger than would be expected by chance if the 
theory were true. On the other hand, a close look at the table will show 
that most of the deviation is contributed by a few comparisons. If, 
for example, the two largest values are ignored, the summed x2 reduces 
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TABLE 4 

Analogy Alternative 
pair set x2 

Analogy Alternative 
pair set X2 d.f 

1 

2 

3 

4 

5 

6 

A 
B 
A 
B 
A 
B 
A 
B 
A 
B 
A 
B 

1.83 
11 

:39 
.93 

3 03 
7.66 
2.47 
3.39 

13.50* 
- 

25.71” 
2.12 

2 
4 
2 
2 
4 
4 
2 
4 
2 

4 
4 

7 A 7.336 2 
B 7.42a 2 

s il 1.68 2 
B 9.47 4 

9 A 6 70a 2 
B 10.47* 2 

10 A .86 2 
B .39 2 

11 A 1.47 2 
B .12 2 

12 A 1.65 2 
B 1.00 2 

Summed x2 = 109.7, clj = 60. 
a Value exceeds .05 significance level. 
* Value exceeds .Ol significance level. 
c In cases where the expected values of a cell was less than 5, cells were collapsed. 

Hence, the degrees of freedom in the various comparisons. 

to 84.0 with 54 degrees of freedom, a relatively more probable value. 
Considering all of the possible sources of error, it seems safe to conclude, 
at least to a first order of approximation, that subjects’ responses depend 
on the ideal analogy point and the alternative set, but not on the 
particular analogy problem, It should be pointed out, however, that in 
certain isolated examples, such as analogy pair 6, alternative set A, 
there is quite clearly an interaction between the particular alternatives 
and the analogy problem itself. 

Since, on the whole, assumptions AI through A3 are confirmed by our 
analysis, it makes sense to analyze these data with respect to the re- 
maining assumptions of the theory. It is possible in the context of Experi- 
ment II to get a direct look at the form of U(X) and thus a direct evalua- 
tion of assumption A4. To see how this is possible, consider assumption 
A3’. From A3’, we have 

Taking the natural logarithm of each side yields 

In pi = In U(dj) - In [i U(dj)]. 

j 
Now, if V(X) = exp( - (YX) as asserted, we get 
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4 

In pi = --adi - In 
[C 

exp(-adj) . 
I 

In words, we find that the natural logarithm of the probability that 
alternative i is chosen is a linear function of alternative distance from 
I with slope - (Y and intercept 1 - n[Zexp ( - Scudj ) 1. In Experiment II, 
alternative sets were designed such that several different analogy prob- 
lems had the same set of interalternative distances, thus allowing aver- 
aging over analogy problems. There are only five different configura- 
tions of interalternative distances. Figure 6 shows the straight line fit 
of each of the five groups of analogies. The value of (Y was estimated 
to be 1.63. For the most part, the fit of the straight line is quite good. 
The only serious deviation is depicted in panel E. This is the condition 
in which the alternatives are closest together and also contains the lowest 
number of observations. 

INTERALTERNATIVE 
DISTANCE : 35 

25 .50 75 100 125 1.50 I 25 50 .75 I 00 1.25 1.50 

DISTANCE FROM I 

FIG. 6. Predicted and observed values of the natural logarithm of the probability 
that each of the four response alternatives will be chosen as the best analogy sob 

tion for each of five sets of interalternative distances. 
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Although in our analysis to this point we have looked only at the 
first-choice data, subjects in Experiment II, as those in Experiment I, 
were asked to rank the alternative sets. Figure 7 shows the predicted 
and observed mean number of subjects to rank alternative i in position i 
for each of the five groups of analogy problems. The value (Y = 1.68 was 
taken from the fit of the first choice data discussed above. The figure 

First choice 

.63-q 

40 

E 
c I I , 
St 
z 

.20 

.09 - 
1 I I 

1 2 3 4 

Second choice Third choice Fourth choice 

A 
‘-3 , 

f- 

I 
\ 

\ 

fi 

1 I I I 

CI Theory , >-a Data 7 

HP /’ 
,4 0-d 

P. ,’ 
P L I 

I’ 
w 

PC I rp -4 
1 2 3 4 

Rorlk dlstonce from 

FIG. 7. Predicted versus observed mean number of subjects ranking each of the 
four response alternatives in each of the four ranks for five sets of analogy problems. 
The graphs are ordered from top to bottom in order of decreasing interalternative 
distances. These distances are given on the right hand side of each set of four graphs 
and vary from .45 to .20 units. 
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shows a qualitatively rather good fit between the predicted and observed 
values. Again, the case where the interalternative distances are the 
smallest shows the worst fit. The best fit occurs for the condition in 
which interalternative distances equals .35, a condition which in- 
cidentally has the greatest number of observations. 

In summary then, Experiment II allowed a nonparametric test of 
assumptions AI through A3. Although there were some exceptions, on 
the whole the results supported the model. In addition, Experiment II 
allowed direct investigation of the exponential function in A4 Again, 
the results supported the form of the model. Finally, a comparison of the 
entire set of rank data with predicted values lent more support to the 
entire set of assumptions AI-AS. 

EXPERIMENT III 

This research was originally conceived as an alternative approach to 
the problem of concept formation. It was felt that in natural settings 
much of concept formation involved learning by analogy, as opposed 
to instance generalization, the only form studied in the laboratory. Thus, 
Experiment III was designed to make use of the theory of analogical 
reasoning outlined above to facilitate the teaching of concepts. 

Assumption A2 implies that each statement of the form A: B: : C:? 
implies the existence of some concept3 I against which alternative sets 
are compared to find the best alternative. The logic of Experiment III 
was to give a name to this implied concept I and then to see if subjects 
are able to use this new concept with a new name in the same way that 
they are able to use concepts that they already know. For example, the 
experimenter might assert that A: B : : C : GOX where GOX is the concept 
to be learned. He would then ask the subject to use GOX in other cogni- 
tive task to see if the subject is able to manipulate it in the way he 
manipulates other concepts. The subject might be asked to solve 
analogies of the form A: B: : GOX: (X,, . . . , X, ), or to judge the simi- 
larities between GOXes and other animals, or to give a verbal description 
of a GOX. In short, we would expect that if the subject had actually 
understood the analogy A: B: : C : GOX he would be able to do anything 
with the concept GOX that he could with any other concept-he would 
have formed a new concept. 

Procedure 

Three points were chosen in Henley’s animal space. These points 
were labeled BOF, DAX, and ZUK and represented the three concepts 

‘This concept must be regarded as a potential concept because in general it 
hasn’t been named in the language. 
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FIG. 8. Three-dimensional representation of Henley’s animal space including the 
location of the three artificial animals, BOF, DAX, and ZUK. 

that the subjects were to learn. The points were chosen such that they 
occupied fairly remote parts of the space. Figure 8 is a three-dimensional 
representation depicting the location of the three artificial animals, BOF. 
DAX, and ZUK, relative to the thirty mammals scaled by Henley. Thus, 
a BOF lies between an ELEPHANT and CAMEL, a DAX near 
CHIMPANZEE, and a ZUK between FOX and WOLF. 

An anticipation method of teaching was employed. That is, subjects 
were first given an analogy problem of the form A: B: : GOX: (X1, . . . , X,) 
and then were asked to make a guess as to the best alternative. Following 
their guess, subjects were informed as to the correct alternative along 
with a ranking of the remaining alternatives from best to worst. After 
a period of study, the subjects were given another analogy problem of 
the same form, and the process was repeated. Table 5 shows an example 
of one trial of the analogy learning task. Response alternatives were 
chosen with the restrictions that the closest alternative was within .12 
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TABLE 5 
An Anticipation-Training Trial from Experiment III 

View 1 1. SHEEP: CAT 
BOF : ? 
(a) Rabbit 
(b) Chimpanzee 
(c) Leopard 
(d) Bear 

View 2 SHEEP: CAT 
BOF : BEAR 
BEST ANSWER: (d) Bear 
Second (c) Leopard 
Third (b) Chimpanzee 
Third (a) Rabbit 

units of the ideal solution point, other alternatives roughly trisecting the 
distance from the point to the most distant alternative. 

Applying the .12 unit tolerance, there were available in the space 20 
analogies to teach BOF, 18 to teach DAX, and 17 to teach ZUL. Each of 
25 subjects was given the training sequence on each of the three con- 
cepts. Following training, subjects were given rating sheets asking them 
to rate, on a scale from 1 (labeled “very similar”) to 10 (labeled “very 
different”), the dissimilarity of each of the three artificial animals with 
each of the 30 animals in Henley’s space and with each other. Following 
these ratings, subjects were asked to give a verbal description of each 
of the three animals. 

We thus have three measures of the degree to which the concepts 
which we have attempted to teach have in fact been learned by the sub- 
jects. First, we can observe their ability to solve analogies while they are 
learning the concepts. We expect that subjects will respond at chance 
level on the first trial of each training sequence and, thereafter, will 
approach more or less quickly the response patterns of subjects in Experi- 
ments I and II. Secondly, we can compare our subjects’ judgments of 
dissimilarity with those expected. Finally, we can look at their verbal 
descriptions to see the completeness of the concept and the extent to 
which different subjects describe the various artificial animals similarly. 

Results and Discussion 

Our first prediction regards the way in which these artificial animals 
are used to solve analogy problems. If the subjects have really learned the 
concepts of BOF, DAX, and ZUK, their behavior during the latter phases 
of the training sequences should be indistinguishable from the behavior 
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TABLE 6 
Predicted and Observed Mean Number of Subjects Choosing the ith 

Closest Alternative as the Best” 

Rank of alternative distance from I 

1 2 3 4 
Predb Obsd Pred Obsd Pred Obsd Pred Obsd 

12.4 13.3 6.6 8.2 3.1 2.5 1.6 1.6 

a Predicted values generated under the assumption that 01 = 1.68. 
b Pred, predicted; obsd, observed. 

of our subjects in Experiments I and II. Since it appeared that learning 
was complete after, at most, five analogy anticipation trials, the anticipa- 
tion data after the fifth trial should be the proper comparison. Table 6 
shows the mean number of subjects choosing each of the four alternatives 
as the best. The average is taken over all anticipation trials after trial five 
on each of the three concept problems. The predicted values are the aver- 
age across items of those expected based on the parameter value of G! = 
1.68 taken from Experiment II. The closeness of fit of these observed 
and expected values are definitely consistent with the idea that the con- 
cepts BOF, DAX, and ZUK can be manipulated and used just as the 
other animal concepts in our other experiments. 

In spite of the goodness of fit of these data, these comparisons are 
indirect. It would seem that the similarity judgments would yield a 
more direct measure of the extent to which we have actually succeeded 
in teaching the concepts we set out to teach. Since BOF, DAX, and ZUK 
are points exactly located in Henley’s similarity space, we can make direct 
predictions of dissimilarity ratings by measuring the distance between 
each artificial animal and each of the other animals in the space. We 
predict, in a strictly nonparametric way, that mean dissimilarity ratings 
will increase monotonically with distance in the space. Figures 9, 10, and 
11 are plots of our observed dissimilarity rating versus distance measured 
in Henley’s space. The product moment correlations were T = .95, .90, 
and .92 for BOF, DAX, and ZUK, respectively. The Kendal’s tau values 
were r = .79, .75, and .73 for the three animals. 

Although on a priori basis correlations between .9 and .95 seem good, 
it is not clear how good the correlation should be in order to be compar- 
able to real concepts. To help answer this question, Nancy Henley kindly 
supplied us with her raw data for comparison. We were thus able to 
compute similar correlation coefficients between her subjects’ dissimilar- 
ity judgments and her derived semantic space. These coefficients were 
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FIG. 9. Mean dissimilarity judgments between BOF and each of the 30 mammals 
as a function of the distance of the mammal from BOF. 

found to vary between T = .98 for CAMEL, CHIPMUNK, and SQUIR- 
REL, and T = -86 for GORILLA. The values of tau varied as low as 
7 = .58 for BEAR. Furthermore, of the 30 animals, 11 had values of 
r higher than .95, and 6 had values lower than .90. The remaining 13 
had values between .90 and .95. The conclusion thus seems clear. The 
dissimilarity judgments given by our subjects comparing BOF, DAX, 
and ZUK to each other and to each of the other 30 animals are every 
bit as predictable as are subjects’ responses with real animal names. 

One final computation of interest was carried out with the dissimilar- 
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FIG. 10. Mean dissimilarity judgments between DAX and each of the 30 mammals 
as a function of the distance of the mammal from DAX. 
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FIG. 11. Mean dissimilarity judgments between ZUK and each of the 30 mammals 
as a function of the distance of the mammal from ZUK. 

ity data. We added our subjects’ data to that of Henley, thus increasing 
the number of animals from 30 to 33. We then inserted the data into a 
version of TORSCA4 to obtain a revised scaling. Figures 12 and 13 show 
a superposition of the revised scaling on Henley’s original semantic 
space. The arrows show the migration of each of the points from the 
first scaling to the second. A value of Kruskal’s index of stress of 10% 
was obtained in the resealing as compared to a value of 9.4% in Henley’s 
original scaling. Of special interest is the movement of the three 
artificial animals. The origin of the arrow indicates the intended location 
of the concepts as indicated by the resealing, BOF moved a total of 
.153 units, DAX moved .277 units, and ZUK moved .132 units. The 
largest movement of the animal concepts occurred with ELEPHANT, 
which moved .094 units. The fact that the artificial animals moved more 
than the real animals should not be surprising on three counts. First, 
and most obviously, the vast majority of the data going into the rescal- 
ing was the same data which determined the location of the animals 
in the first place. Secondly, it should be recalled, the training analogies 
were correct with a tolerance of .12 units. Hence, our training procedure 
insures that we will teach what we want only within .12 units. Thirdly, 
although the scaling procedure requires that the same monotonic trans- 
formation be applied to all of the dissimilarity judgments in a given 
scaling, our procedure tended to promote context effects. That is, our 
subjects were given a sheet asking them to judge the dissimilarities of 

‘Thanks are due to Richard Meltzer who provided a copy of TORSCA and was 
otherwise instrumental in carrying out this analysis, 
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FIG. 12. A superposition of dimensions 1 and 2 (“size” and “ferocity”) of Henley’s 
original scaling and the scaling generated from including data from Experiment III. 
The arrows indicate change from original to revised scaling. 

DAX and ANTELOPE, DAX and BEAR, etc., down to DAX and 
ZEBRA. Then a similar procedure was used for the BOF judgments, 
etc. It is quite likely that this systematic presentation of pairs to be 
judged results in different standards of judgment being used from one 
block of judgments to the next. A glance at Figure 9, 10 and 11 indicates 
the problem. Although the regression line fits very well in all three cases, 
the slope for DAX is about 50% higher than for BOF and ZUK. The 
reason seems to be that DAX is a relatively central animal, and thus 
there are no animals very distant from it. Nonetheless, the entire range, 
l-10, is used. Hence, the higher slope. 

The final datum from Experiment III is the verbal descriptions. It is 
never clear what should be made from such data; nonetheless, they 
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FIG. 13. A superposition of dimensions 1 and 3 (“size” and “humanness”) of 
Henley’s original scaling and the scaling generated from including data from Experi- 
ment III. The arrows indicate change from original to revised scaling. 

occasionally make interesting reading. To that end, Tables 7, 8, and 9 
give a compilation of subjects’ comments regarding their ideas of the 
three animals. 

GENERAL DISCUSSION AND CONCLUSIONS 

We began our discussion with an analysis of reasoning. We suggested 
that reasoning is the collection of processes or algorithms which operates 
on organized memory in various information retrieval tasks. Any particu- 
lar reasoning task, such as analogical reasoning, is the application of a 
particular type of data retrieval. The problem of characterizing a 
reasoning process is simply the specification of a data base from which 
information is retrieved according to a specific retrieval strategy or 



TABLE 7 
Verbal Description: BOF (18 Subjects) 

SIZE: 
5 Large 
5 Camel-sized 
3 Horse-sized 
1 Rather large 
1 Relatively large 
1 Fairly big 
1 Medium-sized mammal 
1 Bigger than donkey 
1 Very large antelope 
1 Somewhat smaller than elephant 
1 Larger than elephant 

SHAPE: 
1 Slender 
1 Heavy 
1 Visualize as big donkey 

APPENDAGES : 
1 Antlers or horns 
1 Probably has horns 
1 Small horns 
1 Horns or humps 

LEGS: 
5 Four legs 
1 Uses all four legs 
2 Long legs 
2 Hooved feet 

NECK: 
2 Long 
1 Extended but shorter than giraffe 
1 Shorter than giraffe 

HAIR: 
2 Short 
2 Fur 
1 Rather long (unlike camel, giraffe, 

cow) 

WILDNESS: 
2 Wild 
1 Completely domesticated 
1 Could be used as work animal 

MOVEMENT: 
1 Swift-moving 
1 Runs very fast (like antelope) 
1 Much more agile than camel 
1 Not as coordinated as giraffe 
1 Doesn’t move very swiftly 
1 Strong (like elephant or camel) 

LIVE: 
1 In desert or jungle 
1 On plains 

FOOD: 
1 Non-carnivore 
1 Probably eats plants 
1 Grazes 
1 Naturally eats grain and leaves 

TYPE : 
1 Mammal 

INTELLIGENCE : 
1 Not as intelligent as giraffe 

LIFE STYLE : 
1 Travels in herds with leader 
1 Fairly mobile (like giraffe or zebra) 

SIMILAR TO : 
6 Camel 

1 Features similar to camel 
1 Camel 
1 Cross between camel and horse 
1 Somewhere between giraffe and 

camel 
1 Similar to camel or giraffe, closer 

to giraffe 
1 Cross between camel, giraffe, zebra, 

elephant 
5 Giraffe 

1 Like giraffe but shorter neck (men- 
tioned camel first) 

1 Somewhere between giraffe and 
camel 

1 Similar to camel or giraffe, closer 
to giraffe 

1 Very similar to domesticated giraffe 
1 Cross between camel, giraffe, zebra, 

elephant 

2 Goat 
1 Cross between goat and deer but 

camel-sized 
1 Something like goat or sheep 

2 Antelope-Deer 
1 Very large antelope 
1 Cross between goat and deer but 

camel-sized 
1 Cross between camel and horse 
1 Visualize as big donkey 
1 Something like goat or sheep 
1 Cross between camel, giraffe, zebra, 

elephant 

2 Gorilla 
1 Characteristics similar to gorilla 
1 Possibly slight similarities to a 

primate 
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TABLE 8 
Verbal description: DAX (16 Subjects) 

SIZE: 
6 Small 
2 Medium-sized 
1 Rather small 
1 Very large 
4 Size of beaver 
1 Larger than beaver 
2 Size of rabbit 
1 Somewhat larger than rabbit 
1 Size of squirre 
1 Size of raccoon 

MOVEMENT: 
I Fairly quick 
1 Fast-moving 
1 Quick moving, agile 
1 Can climb trees well (like raccoon) 

LIVE : 
2 In forest (perhaps trees); doesn’t like 

water as does beaver 
2 Near water 

1 Often near water 
1 Dexterous in water, like beaver 

1 2-ftrlong 
1 20-30 pounds 

FOOD : 
1 Herbivorous or possibly omniverous 

LEGS : 
2 Four legs 
3 Can stand on two legs 

1 East young plant shoots 

TYPE: 

1 Can support self on two as well as 
5 Rodent family 
1 Mammal 

four 
1 Can manipulate with front feet 

while standing on real 
1 Can stand on hind legs 

1 Short legs 
I Has claws 

INTELLIGENCE: 
1 Clever 
I Dumb 

APPENDAGES : 
1 Long bushy tail 
1 Long husky tail 
1 Short tail 

PERSONAL CHARACTERISTICS : 
1 Industrious 
1 Cuddly 
1 Fairly timid, not aggressive 

SIMILAR TO : 
4 Rabbit 

HAIR: 
4 Furry 
1 Long fur 
2 Hairy (1 Like chimpanzee) 

2 Larger than rabbit, however 
1 Like rabbit in life and size 
1 Like rabbit 

2 Beaver 

FEATURES : 
1 Small ears, bright eyes, all that 
1 Large front teeth 
1 Big ears 
1 Features of rabbit 
1 Obviously green 

1 Larger than beaver, however 
1 Cross between beaver, chimp, 

raccoon 
2 Raccoon 

WILDNESS: 

1 Very similar to squirrel and re- 
sembles raccoon 

1 Cross between beaver, chimp, 
raccoon 

1 Squirrel 
1 Possibly domesticated 1 Very similar to squirrel and re- 
1 Close to being domestic; lives around sembles raccoon 

man (like mouse) 1 Chimpanzee 
1 Can be seen in wild or kept as pet 1 Cross between beaver, chimp, 

(like rabbit) raccoon 



TABLE 9 
Verbal Description: ZUK (19 Subjects) 

SIZE: 
3 Small 
3 Medium 
1 Medium small 
1 Largish 
2 Size of fox 
1 Same or smaller than fox 
1 Size of large fox; smaller than donkey 
1 Larger than fox; smaller than lion 
1 Size of dog 
1 Larger than dog 
1 Slightly smaller than wolf 
1 Size of raccoon or beaver, like DAK 

SHAPE : 
1 Similar in proportion to dog 
1 More like dog or cat than zebra in 

build and fur; maybe like a great big 
mouse 

HAIR: 
2 Furry 
1 Moderately hairy 
1 Probably has shaggy fur (longer than 

fox) 
1 Long-haired coat like goat and wolf 

1 More like dog or cat than zebra in fur 

APPENDAGES : 
1 Tail 
1 No horns; long flat tail 

LEGS : 
1 Four legs 
1 Four stubby legs 

FEATURES: 
1 Similar to dog in features 
1 Probably has unusual colorings 
1 Large front teeth 

WILDNESS : 
2 Wild 
1 Fierce 
1 Attacks smaller animals 
1 Clearly not domesticated; less wild 

than fox 
1 Fairly aggressive, or at least mis- 

chievous and prying 
MOVEMENT: 

1 Quick 
1 Fast runner 
1 Very fleet, swift-moving 

MOVEMENT: 
1 Not as fleet as fox 

1 Slow 
1 Agile like wolf 

LIVE : 
1 Probably in forest 
1 In woods; in ground or caves or hol- 

lowed trees; uses leftover tunnels 
1 Perhaps in large holes in ground 
1 Excellent on mountains, like goat 

LIFE STYLE : 
1 Not in packs like wolf; good family 

life 

FOOD : 
4 Predatory 

1 Seeks prey (like cat) 
1 Attacks smaller animals 
1 Preys on chickens and sometimes 

sheep, goats; problem to farmer 
2 Carniverous 

TYPE : 
1 Great cat family 
1 Probably canine; possibly feline 
1 Dog family 
1 Mammal 

INTELLIGENCE : 
1 Clever 
1 Not as intelligent as fox 

SIMILAR TO : 
5 Cat family 

1 Cat-like (size largish) 
1 More like dog or cat than zebra 

in build or fur 
1 Cross between cat and canine 

families 
1 Like lion or other large cat 
1 Maybe is cheetah 

4 Canine family 
1 Like dog 
1 More like dog or cat than zebra 
1 Cross between cat and canine 

families 
1 Like wild dog 
1 Cross between goat and wolf 

3 Fox 
1 Resembles fox 
I Cross between fox and dog 
1 Most like fox or any wild dog 

2 Farm Animals 
1 Cross between gout and wolf 

1 Horse-like 
1 Maybe lie a great big mouse 
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algorithm. We chose to characterize the data base for our theory of 
analogical reasoning as a multidimensional Euclidean space. Given that 
specification of the data base, our choice for a reasoning algorithm be- 
comes very natural. It would appear that the results of Experiments I, 
II, and III con&m the accuracy of our description of analogical reason- 
ing among animal concepts. There are many possible ways to generalize 
the results we have found. The most straightforward of these would be 
to search for other sets of concepts which are well embedded in a 
multidimensional similarity space and show that our theory also gives 
an accurate description for analogy formation among these concepts. We 
have, in fact, tried some other spaces. In particular, we have generated 
analogies from the Munsell color space and have found essentially similar 
results.5 Problems arise, however, when relations among words are not 
well represented in a multidimensional space. (Hierarchial relations are 
such examples. Where, for instance, would the word ANIMAL fit in 
Henley’s space?) These kinds of examples seem to demand a more gen- 
eral representation of memory structure which is capable of handling 
more complex sorts of relationships while still holding the multidimen- 
sional representation as a special case. It is interesting in this regard 
that Quillian’s ( 1969) Teachable Language Comprehender ( TLC ) 
seems to be such a generalization. Lexical information is encoded in TLC 
as a class name (superset) with several specializing modifiers (proper- 
ties).‘j The properties themselves are written as attribute-value pairs. 
Thus, ORANGE might be defined as a FRUIT ( superset) with proper- 
ties COLOR (attribute)-ORANGE (value), SIZE-MEDIUM, and 
TASTE-SWEET; whereas LEMON might be defined as a FRUIT with 
COLOR-YELLOW, SIZE-SMALL, and TASTE-SOUR. If Quillian en- 
coded a set of words, all with the same superset, and which differed 
from one another only with regard to values on a common set of attrib- 
utes, the words could be equivalently encoded with a multidimensional 
representation. It is perhaps not coincidental that the set of words 
Henley scaled have exactly these characteristics. 

In conclusion then, it should be clear that we are not suggesting that 
a multidimensional representation is sufficiently rich to encode all types 
of semantic relationships. Therefore, we are not proposing that this 

‘This experiment was carried out by Glenn Rice as part of a research project 
under the sponsorship of the first author. 

‘Although, in the illustration of TLC, we use only traditional sorts of attribute- 
value pairs in which attributes are dimensions and values are simple values on 
dimensions. Quillian’s general model allows both to be more general. Thus, he might 
define CANARY as a BIRD with COLOR-YELLOW, SING-( SONG-PRETTY): 
where the verb sing is considered an attribute, and the value is itself an attribute- 
value pair. 
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model of analogical reasoning is completely general. It seems rather that 
the semantic relationships among certain sets of concepts can be repre- 
sented by a multidimensional structure. Furthermore, whatever algorithm 
subjects actually employ in generating answers to verbal analogy prob- 
lems seems to be isomorphic to our “parallelogram” rule. It is, of course, 
not satisfying to stop with a model of semantic relationships with such a 
limited range of generality. We are, in fact, currently developing a 
more complex network representation of semantic information (cf., 
Rumelhart, Lindsay, and Norman, 1972) which might serve as a more 
genera1 representation on which we can propose and test more general 
models of analogical reasoning. 
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