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Abstract

To study the evolution of complex network with dynamical units, in this paper we consider
the development of the network with chaotic units. By the addition of new nodes continuously
and the adaptive rewiring of the connections according to the dynamic coherence of the activity
patterns in the network, we can obtain that the growing network self-organizes into a complex
network of which the connectivity distribution reveals a power law, at the same time, the network
has a high clustering coe4cient and small average shortest path length. The importance of chaos
in the emergence of this type of scale-free network is investigated through comparing it to
systems of periodic and stochastic units. The functional advantage of the self-organized network
with dynamical units is revealed by showing the robustness of the spatiotemporal dynamics of
the complex network.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

A distinctive feature of complex systems is the emergent order resulting from their
many interacting elements. Emerging order in system behavior as well as in structure
have been studied extensively. For biological systems, it is natural to assume that
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behavior shapes structure and structure conditions behavior. This principle is applied
here to the study of network structures. Important hidden regularities have been found
in network structure, following the study of small-world networks by Watts and Stro-
gatz [1]. Small-world networks are featured by the combination of a high clustering
coe4cient and small characteristic path lengths.
Recently, Barabasi and Albert presented the scale-free network, of which the dis-

tribution P(k) of vertex connectivity, the number of connections for each unit in the
network, decays as a power law, that is, free of a characteristic scale [2]. Scale-free
distribution of connectivity provides networks with robustness with respect to random
perturbation or removal of a proportion of the network connections [3]. Robustness is
a highly desirable characteristic for real networks. Accordingly, a diversity of systems
such as the world-wide web, social networks, the metabolic networks of life-sustaining
chemical reactions inside cells, and protein interaction networks all belong to the highly
heterogeneous family of scale-free networks [4–7].
In most of these systems, the structure has emerged spontaneously, rather than by

design. In this perspective, an important issue is how this could have happened. In the
initial study, Watts and Strogatz created small-world networks by randomly rewiring a
regular network with probability p. Starting from initially regular conditions may be a
useful strategy for artiFcial system design, it is implausible however for natural system
development and evolution. For the scale-free networks, Barabasi and Albert proposed a
model based on two mechanisms: growth and preferential attachment [2]. Growth means
the cumulative addition of new units; preferential attachment means that the probability
of attachment of a newly created node is proportional to the connected degree of the
target nodes, thus richly connected nodes tend to get ret richer. More recent models
in addition allow nodes to age so they can no longer accept new links, or vary the
form of preferential attachment in such a manner that a node acquires new links with
other monotonically increasing function not limited to linear preferential attachment
functions [8–10]. In Ref. [11], a model was presented to take into account the case
that in real systems new nodes of growing network will process only information
concerning a subset of existing nodes. All of these features purport to enhance the
realism of network development.
Despite the realistic features added, none of these studies have used the resources

of the dynamics as provided by network itself in order to explain the emergence of
structure. However, in some real biological networks such as the neuronal, genetic, and
metabolic network models, units with oscillatory activity are very common [12–14]. For
this reason it may be of great interest to study if such scale-free networks could emerge,
resulting from spatiotemporal activity in a growing network with dynamical units. Some
systems are always organized in a hierarchical way. For example, in visual system, the
visual cortex is connected hierarchically for diIerent areas. For the scale-free network,
the connections of the network is inhomogenous and hierarchical. So, the emergence
of a scale-free network may help us, in principle, to understand the development of
the visual system. Some studies have shown that developing neural circuits undergo
a period of rewiring, through which some connections are eliminated while others are
added and this rewiring of connectivity depends on the coherent electrical activity in the
circuit [15]. This process of growth and adaptive rewiring according to the dynamical
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coherence is the subject of our study about the development of complex network with
dynamical units.

2. The model about the evolution of the network with dynamic units

We present a model for growth combined with adaptive rewiring according to the
oscillatory dynamics of the network units. Our simulation studies demonstrate that a
scale-free network with a high clustering coe4cient is obtained if the oscillatory activity
is chaotic. Chaos is a common phenomenon in nature, and it has been proposed to
account for adaptive information processing in brains [16–18]. In Ref. [19], the study
showed that for the globally coupled chaotic map with variable connection weighs,
the units spontaneously separate into two groups, with one group possessing especially
many outwardly directed connections to the other group. In Ref. [20], the authors
suggested a role for chaotic neurons in determining network properties, i.e. the topology
of interconnections. Here, we go further and propose that complicated chaotic behaviors
are also important for the formation of the common scale-free complex networks.
In this study, for the purpose of the computational convenience, we use the chaotic

logistic map. The logistic map shown in Eq. (1) is one of a generic family of one-hump
maps, which has widespread relevance as a prototype of chaos and could be considered
as a highly simpliFed model of neuron Fring and population dynamics [21,22]. Coupled
logistic maps are described by Eq. (2),

x(n+ 1) = f(x(n)) = 1− ax(n)2 ; (1)

xi(n+ 1) = (1− 
)f(xi(n)) + 

Mi

∑

j
j∈B(i)f(xj(n)) ; (2)

where xi(n) is the activity of the ith (16 i6N ) unit at the nth time step. Where N
is the total number of units in the current network. In the present study the number N
of the current network is increased by adding new nodes one by one. B(i) denotes the
set of all the neighbors of the unit i, and Mi is the number of the units in the current
set B(i). The neighbors of the unit i are those units that have direct connections with
unit i. The connections are bi-directional, this means that if unit i is a neighbor of
unit j; j is also a neighbor of i. 
 is the coupling strength. Throughout the paper, the
coupling strength is Fxed to be 
=0:4. The parameter a is the system parameter which
controls the dynamics of the each unit. We deFne the coherence dij(n) between unit i
and unit j as the absolute value of the diIerence between the activation values of the
units, as follows:

dij(n) = |xi(n)− xj(n)| : (3)

We start from a sparsely, fully connected, small random network with the total
number of units M0 linked by a number of connections L0. A model for growth com-
bined with adaptive rewiring according to spatiotemporal dynamics of the network with
dynamical units is described as follows:
(I) Add a new node in with m connections to m diIerent nodes in the current network

randomly.
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(II) Choose random initial activation values in the range (−1; 1) for all units of the
new network. Calculate the state of the system according to the Eq. (2), and discard
an initial transient time T .
(III) Then the dynamical coherence at time T + 1, between the new added node in

and all the other units in new current network dinj(T +1) is calculated. We obtain the
unit j = j1, for which the value dinj(T + 1) is minimum amongst all the other units.
Furthermore, we obtain the unit j= j2 for which dinj2 (T +1) is maximum amongst the
neighbors of new unit in.
(IV) If unit j1 is one of the neighbors of the unit in, then no change in the con-

nections is made. Otherwise the connection between units in and j2 is replaced by a
connection between units in and j1.
(V) Go to step (II) and repeat the algorithm for K0 times.
(VI) Go to step (I) and repeat adding a new node.

3. The evolution of the network

In the following study, M0 = 50, m = 14, L0 = 850, K0 = 75, T = 2000. To obtain
chaotic activity in the network units, in Eq. (2) we choose parameter a= 1:796. Note
that our result does not change qualitatively by using other values within the chaotic
range. After t iterations of the model, a complex network with M0 + t nodes results.
Fig. 1 shows the distribution of its connections for t = 1700. The connectivity in the
network reveals a heavy-tailed distribution. The network has evolved into a scale-free

Fig. 1. (Log–log plot) Distribution of the connections of the self-organized network with chaotic units when
t = 1700. The dashed line is obtained by the least-squares Ft of the original data.
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state with the probability a node has k connections, following a power-law p(k) =
k−�, with the exponent � = 3:09 ± 0:17. The clustering coe4cient and the average
shortest path length of the Fnal network are calculated according to Watts and Strogatz
[1]. We obtain for our network the clustering coe4cient C1 = 0:15, and the average
shortest path length L1 = 2:70. It has been found that many real networks present
a clustering coe4cient much larger than the corresponding random graph. In order to
compare with the corresponding random graph of the self-organized scale-free network,
we generated a random graph by connecting nodes randomly, making sure that the
numbers of nodes and connections between them are the same as those of the obtained
self-organized network. For the random graph, clustering coe4cient and shortest path
length, respectively, are C0 = 1:7 × 10−2, D0 = 2:56. We observe that C1�C0, and
D1¿D0, that is, the clustering coe4cient is much larger than the corresponding random
network, and the shortest path length is close to that of the random network. We may,
therefore, conclude that a growing network with chaotic units, according to our model
produces a scale-free network with the characteristics of small-world network. We have
also run our model by diIerent values for m; k0, and T , and obtained the similar results.
Preferential attachment of growing network is a very common feature of realistic

growing networks [2,12]. We use the manner similar to that presented in Ref. [23]
to study the preferential attachment in our model. For our model about the growing
network with chaotic units, we consider the set of nodes at time t, and record the
connections for all the nodes in the set. The connections for the set of nodes are
denoted by Ki (16 i6M0 + t). At time t +Lt, Lt�t, we measure the connections
Ji of the set of nodes at time t. So we can obtain the increasing connections for the
set of nodes at time t, which are Lki = Ji − Ki. In Fig. 2, we show the histogram of
the average increasing attachment for the set of nodes at time t, the values for t and
Lt are t = 1650, and Lt = 250. We can see that there is the preferential attachment
for our model about growing network. In the earlier models preferential attachment is
accomplished by attaching the new node to the target nodes according to their degree
of connectivity [2,8–10]. Thus, the decision where to attach a node is based on detailed
knowledge about the connectivity distribution of the entire network. It seems the new
node knows the whole distribution of the connectivity. This is an unlikely requirement
for real large-scale networks. By contrast in our model with dynamical units preferential
attachment is an emergent property based on information about network dynamics. It
might be considered more plausible for dynamical networks that this decision can arise
from within the system itself.
In order to investigate the mechanisms responsible for the emergence of the scale-free

network, we study some variants of our model. The Frst variant is one in which the
dynamics of the units is periodic. For this purpose we choose in Eq. (2) the control
parameter a = 0:51, making that the units are in a period-1 state. The second variant
is one in which the dynamics of the single unit is stochastic. For this purpose we use
the random generator to take the place of the logistic function. For the two variants,
we start from the same small random network and run our model for the same number
of times as for the chaotic model in the above study. We calculate the distributions
of the connections for the two variants. The results are shown in Fig. 3. Clustering
coe4cients (C) and average shortest path lengths (L) of the two variants are shown in



684 P. Gong, C. van Leeuwen / Physica A 321 (2003) 679–688

Fig. 2. The average increasing attachments versus the number of the connections at time t, where t = 1650,
and Lt = 250.

Fig. 3. (Log–log plot) The distribution of the connections for the self-organized network with diIerent
dynamical units: (a) periodic units when t = 1700; (b) stochastic units when t = 1700.

Table 1. For comparison, the clustering coe4cient and average shortest path length of
the corresponding random graph with the same units and connections are also shown
in Table 1.
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Table 1
Clustering coe4cient (C) and average shortest path length (L) for some cases

C L

Periodic units 0.024 2.61
Stochastic units 0.025 2.69
Chaotic units 0.152 2.70
Random graph 0.017 2.56

For the periodic units, we observe that the distribution does not have a scale-free
structure. Moreover, the clustering coe4cient in Table 1 is shown to be still close to
the corresponding random graph. The same is true for the stochastic units. For the
stochastic units, the distribution of the connections, however, has at least a scale-free
part, be it with a cutoI. The study of these two variants, therefore, indicates the
unique importance of chaotic activity for the emergence of a scale-free network with
small-world network characteristics.

4. Robust feature of spatiotemporal dynamics

Locally and globally coupled chaotic maps have been studied extensively and some
interesting dynamics have been found [13,24]. For scale-free small-world networks, the
connectivity is of a distinct kind, intermediate between locally and globally coupled,
and between random and regular and this topology may add some distinctive charac-
teristics to the dynamics of coupled chaotic maps. We investigate the dynamics of our
scale-free network of coupled maps for its robustness. The robustness of the structure
of scale-free network has been studied in terms of the change of average shortest path
length under lesioning [3]. But for the purpose of studying the evolution of a network
with dynamic units, the spatiotemporal dynamics characteristics of the networks are of
central importance, because these are to provide the functional signiFcance of the net-
works. For instance, the spatiotemporal oscillatory dynamics supporting by the neural
circuits is very important for information binding and integration [25].
For a randomly coupled map lattice, there is no exact synchronization phase [26],

but mutual fuzzy synchronization or fuzzy dynamical clusters are very common. Within
the fuzzy dynamical clusters the units are coherent and almost synchronized. In a fuzzy
dynamical cluster, for every pair of elements in the cluster i; j, their distances satisfy
|xi(n) − xj(n)|¡�. In our study, the value is chosen as � = 0:05. For the scale-free
network obtained in the above section, after discarding a long time transient, the size
of each dynamical cluster (the number of participating units) is calculated for every
iteration. The distribution of the sizes of the dynamical clusters are calculated over a
long time period (100,000). The result is shown in Fig. 4. We observe in Fig. 4 that
the distribution has a power-law part followed by an exponential cut (black line). We
then remove 6% of the nodes randomly, and obtained the distribution shown in Fig. 4,
red line. We observe that the distribution is almost same to that of the original network.
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Fig. 4. (Log–log plot) The distribution of the sizes of the dynamical clusters in a very long time period
for the self-organized scale-free network. The black line gives the distribution of the original self-organized
network, and the red line gives the distribution of self-organized network when as many as 6% of the nodes
are removed.

Thus, for the scale-free network with dynamical units, the spatiotemporal dynamics of
the complex network is robust. The robustness of the saptiotemporal dynamics of the
self-organized scale-free network is based on the robustness in the structure of the
network [3]. In the scale-free network, a small number of nodes with large numbers
of connections certainly play a very important role in the spatiotemporal dynamics.
Random lesioning is unlikely to have much eIect, as long as it does not involve these
nodes.

5. Summary

In conclusion, we investigate the development of networks with chaotic units. By the
addition of new nodes one by one and adaptive rewiring of the connections according
to the dynamical coherence of the nodes, the network self-organizes into a scale-free
network. At the same time the self-organized network has a high clustering coe4cient
and small characteristic path lengths. Moreover, the spatiotemporal dynamics of the
network appear to be robust with respect to random lesioning.
In an earlier study, we presented model in which adaptive rewiring was performed

on an initially random network without growth [27]. In this study, a small-world net-
work was obtained which, however, did not have scale-free characteristics. Instead, the
connectivity showed a Poisson distribution. From both studies it may be concluded
that, whereas the chaotic dynamics of the units and the connections according to the
unites’ dynamic coherence are essential for obtaining small-world networks through
self-organization, for scale-free networks in addition growth is needed. More detailed
analysis about the spatiotemporal dynamics of the scale-free network in a broad pa-
rameter space is now under way and its results will be reported in due course.
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The emergence of a scale-free network with dynamical units is based on chaotic
dynamical behaviors, growth, and adaptive rewiring according to the dynamical coher-
ence of the nodes. The model may be used to help us to understand the formation of
the structured networks in some real systems with dynamical units. For example, the
role of adaptive rewiring according to the spatiotemporal activities of neural circuits
is very important for neural development [15]. On the other hand, it is well known
that chaotic behaviors are very common in neural systems. Chaos has been observed in
some spatial hierarchies of neural systems [28,29], and many diIerent views have been
given on the function of chaotic behavior. In the present study we show that chaos is
essential for the emergence of a common scale-free network structure. We hope that
our study can incur more interest in the role of chaotic behaviors in the formation of
structures of some complex systems such as the brain.
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