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Abstract 
As tools in science, diagrams not only serve as vehicles for 
communication but also facilitate and constrain scientific rea-
soning. We identify roles that diagrams play when computa-
tional models and synthesized organisms are used to recom-
pose mechanisms proposed to explain biological phenomena. 
Diagrams not only serve as locality aids for constructing 
computational models but also help in identifying ways to 
manipulate these models and interpret the results. Moreover, 
they serve as blueprints for constructing synthetic organisms 
and then guide the interpretation of discrepancies between 
these organisms and computational models. 
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Introduction 
Cognitive scientists have contributed analyses and exper-

iments on the roles diagrams play in reasoning and problem 
solving (e.g., Hegarty, 2004, 2011; Tversky, 2011) and have 
even designed new diagram formats that facilitate learning 
in math and science (Cheng, 2002, 2011). However, there 
have been only a few studies of the roles diagrams play in 
the natural sciences (Nersessian, 2008; Gooding, 2010). The 
most obvious role, evidenced by the ubiquity of diagrams in 
talks and publications, is communication of methods, re-
sults, and proposed mechanistic explanations (Perini, 2005). 
Less visibly, but crucially, diagramming is a tool that scien-
tists use to reason about phenomena (Bechtel & Abraham-
sen, 2012) and the mechanisms that might explain them 
(Sheredos, Burnston, Abrahamsen, & Bechtel, in press).  

In many fields of biology, such as cell and molecular bi-
ology, the primary goal of research in the 19th and 20th cen-
turies was to identify and decompose mechanisms to deter-
mine their parts (e.g., proteins) and operations (e.g., catalyz-
ing particular chemical reactions). As recognized in the new 
mechanistic philosophy of science, the organization of these 
parts and operations must also be determined to arrive at a 
basic mechanistic explanation of a phenomenon of interest 
(Bechtel & Richardson, 1993/2010; Bechtel & Abrahamsen, 
2005; Machamer, Darden, & Craver, 2000; Thagard, 2003). 
That is, to understand how the parts and operations contrib-
ute to producing the phenomenon, researchers must recom-
pose the responsible mechanism either conceptually or 
physically. Through most of the 20th century this involved 
proposing a simple sequence in which the operations might 
occur, perhaps using mental simulation to verify its plausi-

bility (Bechtel, 2006). By the last decades of the century, 
however, the operations of numerous biological mecha-
nisms were understood to display nonlinear, continuous 
dynamics and complex interactions. As sequential organiza-
tion broke down, so too did biologists’ ability to mentally 
track the functioning of the proposed mechanisms. Hence, 
they turned first to computational models and later to syn-
thetic organisms as tools for recomposing mechanisms, with 
an emphasis on investigating the complex dynamics and 
interactions of operations by which a mechanism generates 
a phenomenon. In this paper we identify some of the roles 
diagrams play in the design of computational and synthetic 
models of mechanisms in actual scientific practice.  

Computational modeling in biology, in contrast to that in 
much of cognitive science, has been grounded in considera-
ble knowledge of the physical parts and operations of the 
mechanisms being targeted (Bechtel & Abrahamsen, 2010). 
Diagrams showing how different parts are thought to oper-
ate on each other serve as locality aids that “group together 
information that is used together” in the mechanism itself 
and hence often in computational models of its dynamics 
(Jones & Wolkenhauer, 2012, p. 705). But such diagrams 
also figure centrally in conceiving how manipulations made 
to the computational model correspond to possible perturba-
tions of the mechanism, thereby relating experiments on 
models to experiments on actual mechanisms or to patholo-
gies known to result from damage to actual mechanisms. 
Moreover, as the efforts to recompose mechanisms increas-
ingly take a step beyond computational modeling to synthe-
sizing organisms, a diagram can serve both as a blueprint 
for synthesizing an organism and as a medium for adjudicat-
ing mismatches in behavior between organism and model.  

We focus on one domain of biology, circadian rhythms: 
the daily oscillations in a variety of physiological and be-
havioral processes in species ranging from bacteria and fun-
gi to plants and animals. The phenomena of greatest interest 
involve three characteristics of these rhythms: they are en-
dogenously generated, entrained to the day-night cycle on 
our planet, and sustained over time (not dampened). Their 
complex dynamics have made circadian rhythm research a 
model case for developing computational models and syn-
thesized organisms to determine how a proposed mecha-
nism might account for relevant phenomena. By examining 
specific exemplars of this research, we show how diagrams 
can play an important role in the reasoning that goes into 
computational modeling and synthetic biology.  
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Diagrams for Modeling “How-Possibly”  
Mechanisms 

Computational modeling of circadian rhythms began shortly 
after behavioral researchers determined that the daily oscil-
lations in organisms are endogenously generated, with a 
period varying slightly from 24 hours (Bünning, 1960). 
Since engineers had shown that negative feedback systems 
generate oscillations, biologists were attracted to the idea 
that feedback loops are involved in circadian oscillations. 
But most feedback systems dampen, settling into a steady 
state. The challenge was to determine how a biological 
mechanism might generate sustained oscillations, which 
entailed computational modeling of its dynamics.  

Goodwin (1963) accepted this challenge, and took as his 
starting point one of the first molecular feedback mecha-
nisms identified in biology: the lac operon. Jacob and 
Monod (1961) had specified how synthesis of the enzymes 
needed to metabolize lactose could be restricted via negative 
feedback to occur only when glucose levels are low. Alt-
hough the molecular parts and operations involved in the 
circadian mechanism had not yet been identified, Goodwin 
borrowed the architecture of the better-understood lac oper-
on to construct a diagram depicting a possible circadian 
mechanism (Figure 1). In it he included not only generic 
labels for the putative parts and operations but also associat-
ed variables and parameters relevant to their dynamics. The 
mechanism has five types of molecular parts, three of which 
undergo changes in their concentration. These concentra-
tions are represented by the variables X, Y, and Z. Arrows 
depict six operations that affect the concentrations: three 
(labeled) involve aspects of gene expression and three indi-
cate decay of a particular type of molecule, at rates associat-
ed with the parameters k1, . . . k6. Thus, X is the concentra-
tion of mRNA transcribed from the gene, Y the concentra-
tion of the enzyme resulting from translating the mRNA, Z 
the concentration of the repressor molecule whose synthesis 
is catalyzed by the enzyme, k4 to k6 the rates of decay, and 
k1, to k3 associated with rates of gene expression operations. 

There are three equations in the computational model. 
Each specifies the change in concentration of one molecular 
component  by subtracting  a term for its  decay from a term 

 
Figure 1. Diagram of the generic mechanism for feedback 
control of gene expression that Goodwin used as a locality 
aid in constructing his computational model of circadian 

rhythms (adapted from Goodwin 1963). 

for the impact of one of the operations in the feedback loop. 
Consulting the diagram, it is easy to see which variables and 
parameters should be in the same equation. Each variable 
has one arrow from it (its decay) and one arrow to it from 
another variable; its equation includes that variable and the 
parameters on those arrows. By providing these groupings, 
the diagram does service as a locality aid.   

dX
dt

=
k1

Zn +1
! k4X

dY
dt

= k2X ! k5Y

dZ
dt

= k3Y ! k6Z
 

Five of the terms simply multiply a concentration by a rate 
parameter. The first term is more complex: since the re-
pressor reduces synthesis of mRNA, its concentration (Z) is 
in the denominator and raised to the power n; known as the 
Hill coefficient, n represents the number of molecules that 
must interact. As the only nonlinear term, this first term is 
crucial for generating sustained oscillations. 

It is difficult to determine exactly how a mechanism will 
behave when even one component exhibits nonlinearity and 
also when appropriate parameter values are not yet known. 
For both of these reasons, it is important to run simulations 
by solving the equations with different initial values and 
parameter settings. Doing so on an analog computer, Good-
win concluded that such a mechanism could generate sus-
tained oscillations when n equaled 2 or 3. These are biologi-
cally plausible values, but when Griffith (1968) ran simula-
tions on a digital computer he determined that sustained 
oscillations resulted only when n>9, generally recognized as 
biologically unrealistic. Accordingly, he concluded that 
negative feedback with a single gene product operating on a 
gene could never “give rise in practice to undamped oscilla-
tions in the concentrations of cellular constituents” (p. 207). 
This reasoning highlights an advantage of grounding a com-
putational model in a representation of the associated mech-
anism. A biologist, having noticed that the term in question 
relates to molecules interacting to inhibit a biochemical re-
action, can draw on knowledge of such reactions to judge 
the plausibility of different parameter values. Lacking such 
grounding, the modeler has no independent check on the 
values obtained from parameter fitting.  

Diagrams for Modeling Known Parts  
and Operations 

Diagrams continued to serve as locality aids after research-
ers discovered some of the actual parts and operations of the 
circadian mechanism, and modelers turned to modeling their 
specific dynamics. As we will see, the diagrams also sup-
ported additional reasoning about the mechanism. 

The first component part of a circadian clock was discov-
ered by Konopka and Benzer (1971) through a process of 
generating mutant fruit flies with short, long, or absent cir-
cadian rhythms. They named the gene in which mutations 
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produced altered rhythms period (per). When cloning tech-
niques became available, Hardin, Hall, and Rosbash (1990) 
were able to measure the mRNA into which per was tran-
scribed and the protein into which it was translated. They 
determined that these concentrations oscillated over 24 
hours, with the peak concentration of the protein lagging 
several hours behind that of the mRNA transcript. They thus 
hypothesized a feedback mechanism whereby the protein 
PER fed back to inhibit the transcription of the gene per.  

This research physically identified some of the parts and 
operations of the proposed mechanism, but the “feedback 
hypothesis” left open the question of whether and under 
what specific conditions it could generate sustained oscilla-
tions. Goldbeter (1995) took up this question by developing 
a computational model, drawing upon Hardin et al.’s empir-
ical discoveries and inspired in part by Goodwin’s abstract 
model. Like Goodwin, he portrayed the mechanism in a 
diagram (Figure 2) in which each part and operation was 
accompanied by its corresponding variable or parameter. 
Shown within the dashed box is the operation occurring in 
the nucleus in which the PER protein inhibits per transcrip-
tion. The rest of the diagram shows the operations of tran-
scription and translation and an additional post-translational 
operation through  which the protein PER is phosphorylated 

 
Figure 2. Goldbeter’s (1995) diagram that guided his 

computational model based on the mechanism proposed by 
Hardin, Hall, and Rosbash (1990). 

(a step that had been determined to be necessary before PER 
could be transported back into the nucleus). 

Like Goodwin, Goldbeter then constructed differential 
equations, each characterizing the change in concentration 
of one of the molecular components. Again, the grouping of 
arrows around each variable served as a locality aid in de-
termining the equations. As a result of including additional 
nonlinearities in the terms representing decay, Goldbeter’s 
model exhibited sustained oscillations using parameter val-
ues deemed biologically realistic.  

In the same window of time during which Goldbeter was 
constructing his model, molecular researchers were search-
ing for additional parts to fill known gaps in the mechanism. 
They recognized, for example, that PER could not directly 
inhibit its own transcription since it lacked the needed bind-
ing region. Mammalian researchers identified a gene, Clock, 
in which a mutation could eliminate circadian function and 
whose protein contained a DNA-binding region (Vitaterna, 
King, Chang, Kornhauser, Lowrey, McDonald, Dove, Pinto, 
Turek, & Takahashi, 1994). In short order, it was found that 
CLOCK forms a dimer with BMAL1 that binds to the pro-
moter region of Per (as well as a second gene, Cry) and that 
by interacting with this dimer, PER and CRY inhibit their 
own transcription. Realizing that concentrations of BMAL1 
oscillate, researchers hypothesized a second negative feed-
back loop in which it inhibited the transcription of its gene. 
The introduction of this additional feedback loop raised the 
question of whether the results of Goldbeter’s (1995) simu-
lation were still applicable: would the two loops generate 
sustained oscillations? To address this question, Leloup and 
Goldbeter (2003) constructed a diagram (Figure 3) that in-
cluded a variable for the concentration of each molecular 
part and a rate parameter for each operation. Again, the 
grouping of arrows around each variable served as a locality 
aid. With 16 variables being tracked this time, the computa-
tional model consisted of 16 differential equations. 

 
Figure 3. Leloup and Goldbeter’s (2004) diagram of the mammalian circadian oscillator in which proteins are represented as 

ovals (labeled within) and operations as arrows (some identified in adjacent boxes, and all with rate parameters shown). 
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Leloup and Goldbeter employed their computational 
model not only to establish that the mechanism could gener-
ate sustained oscillations, but to determine as well whether 
it could account for other circadian phenomena. Of prime 
importance is the ability of circadian clocks to be entrained 
by light. Light had been shown experimentally to affect 
PER expression, and hence Leloup and Goldbeter incorpo-
rated light in their diagrams as a black box with an arrow 
feeding into the box for Per transcription. This in turn guid-
ed their strategy for simulating light exposure in the compu-
tational model: instead of a setting a single value for the 
parameter vsP, which set the maximum rate of Per expres-
sion, they used a square wave function to alternate between 
a high value (simulating light) and a low value (simulating 
darkness). Leloup and Goldbeter were then able to use their 
model to show that the mechanism’s responses to light ex-
posure varied with time of day in ways similar to the re-
sponses of mammals. 

Leloup and Goldbeter were also interested in whether the 
proposed mechanism could be perturbed in ways that corre-
spond to known circadian pathologies. Advanced sleep 
phase syndrome is a condition in which people naturally go 
to sleep around 7 PM and rise around 3 AM. Genetic studies 
of families with this pathology had revealed a mutation af-
fecting the interaction of PER with a kinase that phosphory-
lates it. The diagram includes the parameter v1P at this loca-
tion, and Leloup and Goldbeter showed that they could rep-
licate the characteristics of the pathology by altering it. 

In a subsequent paper Leloup and Goldbeter (2004) ex-
plored the sensitivity of the model to variations in all of the 
parameters. Here the diagram facilitated identifying which 
operations in the actual mechanism correspond to those per-
turbed by varying parameters in the computational model.  

A question researchers often ask when they encounter a 
mechanistic account is whether all of the parts are required 
for the phenomenon to occur. Leloup and Goldbeter ques-
tioned which of the two feedback loops in their diagram 
were essential for circadian rhythmicity, and explored this 
by setting the parameter governing PER synthesis to 0. The 
model ceased to exhibit oscillation. They then explored 
whether oscillation could be rescued by increasing parame-
ters regulating the synthesis of BMAL1. This restored oscil-
lation, but with a shorter period of approximately 19 hours.  

This question of what different components contribute to 
the generation of circadian rhythms remains one of great 
interest to modelers. Some have pursued the question using 
highly reduced models, but adopting Goldbeter’s approach 
instead, Relógio, Westermark, Wallach, Schellenberg, Kra-
mer, & Herzel (2011) included in their model all of the cur-
rently identified operations in the mammalian circadian 
mechanism. They developed the diagram in Figure 4 as a 
locality aid. Like the other diagrams, it includes variables 
and parameters adjacent to the relevant parts and operations. 
An innovation is use of a dashed line to differentiate two 
sub-mechanisms. By running the model with targeted varia-
bles set to constant values—first those for concentrations of 
parts above the line and then those below—they concluded 

that it was the feedback loops involving BMAL1 that were 
crucial to the generation of circadian rhythms. 

 
Figure 4. Relógio et al’s (2011) diagram of the mammalian 
circadian oscillator. They use a dotted line to differentiate 

two sub-mechanisms investigated in their model. 
  

The diagrams discussed in this section all serve as locality 
aids in constructing computational models, but then serve 
additional roles in determining which variables to manipu-
late in various simulations and in relating simulations back 
to the hypothesized mechanism.  

Diagrams of Mechanisms to be Synthesized 
Traditionally, biologists have been limited to analyzing ex-
tant mechanisms to determine what parts, operations, and 
organization are responsible for a phenomenon of interest. 
But the development of techniques for inserting genes into 
host organisms (typically, E. coli) has generated a new field 
of synthetic biology, in which researchers use computational 
models to help design regulatory networks, insert them into 
organisms, and assess the effects on behavior. As Cookson, 
Tsimring, and Hasty (2009) make explicit, diagrams play a 
central role in this research. In the first step “genetic wiring 
diagrams are translated into equations that can be analyzed.” 
After such analysis, “modern recombinant DNA techniques 
are used to construct gene-regulatory networks in living 
cells according to the design specification.” In this endeav-
or, diagrams are not only locality aids for developing math-
ematical models, but also blueprints for constructing an or-
ganism. Once the behavior of the synthesized organism can 
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be assessed, diagrams play a further role in analyzing that 
behavior and revising the network design in light of the ef-
fects discovered in the synthesized organism. 

This practice is illustrated in the efforts of Stricker, Cook-
son, Bennett, Mather, Tsimring, & Hasty (2008). They ex-
plicitly drew upon the mechanism understood to be opera-
tive in the fruit fly circadian clock to construct a synthetic 
clock in E. coli. Specifically, they added a lacZYA promoter 
to the naturally occurring araBAD promoter and then situat-
ed the hybrid promoter on the araC, lacI, and yemGFP 
genes (the last generates a green fluorescent protein used as 
a reporter of oscillations). Before inserting this mechanism 
into the bacterium, Stricker et al. constructed a diagram 
(Figure 5) from which they developed a computational 
model. Satisfied that the proposed mechanism would gener-
ate sustained oscillations under a limited set of parameter 
values (especially, of IPTG levels), they then employed the 
diagram as a blueprint for synthesizing the mechanism and 
as a guide to what components would have to be fine-tuned 
to generate sustained oscillations.  

 
Figure 5. Stricker et al.’s (2008) diagram, which they used 
both to develop a computational model and to synthesize a 

bacterium that could generate oscillations.  
  

The organism Stricker et al. synthesized did not behave as 
the model had led them to expect. Most surprising, it gener-
ated sustained oscillations under almost all parameter values 
tested. This led Stricker et al. to return to the mechanism as 
represented in the diagram and question whether processes 
that they had not represented in the diagram or in the equa-
tions of the model, such as protein folding, multi-
merization, and DNA-binding, were important to the pro-
cess. They constructed a new diagram (Figure 6) and com-
putational model that incorporated additional operations. 
The behavior of this model now corresponded closely to 
that of the synthesized bacterium. Stricker et al. concluded 
that the delays introduced into the feedback by these 
additonal steps were responsible for the oscillations.  

 In this example from synthetic biology, the diagram 
serves not only as blueprint for building the mechanism but 
also as a guide to determining why the mechanism did not 
behave as expected and then for proposing an alternative 
account of the mechanism. 

 
Figure 6. Stricker et al. (2008) revised diagram motivated by 

the discrepencies between the behavior of the synthesized 
organism and their computational model. 

Conclusion 
We have focused on one of the contexts in which diagrams 
provide the basis for reasoning in the development of mech-
anistic explanations—recomposing mechanisms through 
computational models and synthesized organisms. Through 
examples we have identified a widespread practice of con-
structing a diagram of the hypothesized mechanism that 
includes variables and parameters and using it as a locality 
aid in constructing equations to model the dynamics of the 
mechanism. But this is only the start. One of the interests in 
constructing a computational model is to experiment on it to 
determine whether the mechanism could explain various 
identified phenomena. A diagram can help with this, by 
guiding the selection of parameters to be reset or of varia-
bles to be given fixed values. When researchers set out to 
synthesize organisms, diagrams function both as locality 
aids in developing the computational models and as blue-
prints guiding the determination of components to include. 
When a synthesized organism fails to behave as the compu-
tational model suggested, researchers returned to the dia-
gram to explore alternatives. 

Our examination of published diagrams is only a first step 
in understanding researchers’ cognitive engagement with 
diagrams as they seek to recompose mechanisms. Although 
unlikely, we cannot rule out the possibility that the diagrams 
we have discussed are epiphenomenal—constructed after 
developing the computational model as a means of com-
municating it to others. Given the utility of the diagram for 
grounding the modeling and the experiments on the model, 
it seems most likely the scientists would have so used it. 
Having identified ways diagrams appear to function in re-
composing mechanisms, our hope is that other cognitive 
scientists will contribute to further understanding this aspect 
of scientific reasoning. One strategy would be ethnographic 
studies of modelers in which one can observe interactions 
with the diagrams in the process of developing and experi-
menting with computational models. Another strategy 
would involve experiments in which some modelers were 
allowed to create or consult diagrams while constructing a 
computational model and others were restricted from doing 
so. Such studies may help elucidate the cognitive operations 
that go into the construction of computational models. Fur-
ther, such studies can also go beyond what we have been 
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able to do and address the specific features of diagrams that 
serve the aims of developing computational models and 
whether different representations, including different dia-
gram formats, might serve these ends better. What we hope 
to have done is demonstrate a widespread practice of using 
diagrams in constructing and experimenting with computa-
tional models of biological mechanisms. 
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