Emergent Mechanism

The mechanist is intimately convinced that a precise knowledge
of the chemical constitution, structure, and properties of the vari-
ous organelles of a cell will solve biological problems. This will
come in a few centuries. For the time being, the biologist has to
face such concepts as orienting forces or morphogenetic fields.
Owing to the scarcity of chemical data and to the complexity of
life, and despite the progress of biochemistry the biologist is still
threatened with vertigo.

—A. Lwoff 1950

That the adoption of the mechanistic view has had profound and
far-reaching consequences for the whole of society is an historical
fact which gives rise to the most divergent opinions. Some com-
mend it as a symptom of the gradual clarification of human
thought. . . . Others, though recognizing the outstanding impor-
tance it has had for the progress of our theoretical understanding
and our practical control of nature, regard it as nothing short of

disastrous in its general influence.
—E. ]. Dijksterhuis 1950




In Part II we saw that the rejection of localization and decomposition
tends to accompany the rejection of a mechanistic program. Providing a
mechanism involves describing distinct components, each of which makes
a contribution to the performance of the system. This requires both func-
tional and physical independence. In the simplest cases, these compo-
nents are thought of as making their contributions independently: nature
is simply decomposable and embodies an aggregative organization. In
slightly more complicated cases, the components are thought to make
their contributions sequentially, or linearly, and to retain an integrity of
their own: nature is nearly decomposable. As we saw in Part III, a wide
variety of organizations may be revealed by beginning with an assumption
of near decomposability. The resulting models may not retain the integ-
rity of the components, but may describe what we have termed an inte-
grated system. In such a system nature is at best only minimally decom-
posable. If organization becomes even more dominant in explaining the
behavior of the system, and we appeal less to different and distinctive
functions performed by the components, we reach a point where decom-
position and localization in any recognizable form have to be surrendered.

While, historically, forgoing decomposability seemed to require giving
up mechanistic approaches, this is not the only possibility. Formal model-
ing techniques have made it possible to explore the behavior of systems in
which the components play very minor functions; the explanation of how
the system behaves lies in the way these components are organized. Com-
ponent behavior can be very simple, given a complex and interactive or-
ganization. Such connectionist systems represent an alternative way of
elaborating a mechanist program without assuming decomposability or
near decomposability. In Chapter 9 we briefly explore three cases in
which researchers have pursued connectionist models and look at the
modes of reasoning that support this alternative conception of mecha-
nism.

We begin with a description of the contributions of John Hughlings
Jackson, a late-nineteenth-century neurophysiologist who rejected the lo-
calizationist programs of Broca and others. Jackson was no vitalist, and
dualism played no significant role in his scheme. His opposition to the
localizationist program of neo-Phrenologists thus stood in sharp contrast
to that of Flourens. Jackson denied discrete modules in the cortex control-
ling specific functions, just as Flourens did. Jackson did propose an alter-
native decomposition of the nervous system into lower and higher levels,
but, unlike phrenologists or neophrenologists, these levels were not spe-




lesion data, but, given the resources ot the time, it was very dithicult to
develop into a precise theory of how the nervous system worked.

We are now capable of modeling such systems. Until recently research-
ers in artificial intelligence have taken a computer that processes informa-
tion in accord with rules to simulate, and perhaps to realize, thought. A
new generation of researchers is exploring how connectionist systems
might explain a variety of cognitive phenomena. Instead of viewing cogni-
tion as involving the processing of information according to rules, cogni-
tive behavior is seen as the “emergent” product of a system that consists
of simple units and controlled by simple learning rules. According to this
approach, computers are employed not to realize rules or procedures per-
formed on symbols, but rather to solve the equations that characterize the
behavior of systems with large numbers of components. These simulations
allow the computer to show how behavior might emerge from the interac-
tions of simple components. These connectionist systems are apparently
capable of overcoming some of what have seemed to be the greatest liabil-
ities in more traditional artificial intelligence, and they do so without as-
suming that cognitive tasks can be decomposed into discrete subtasks, or
that the system is organized into modules; instead, organization and inte-
gration supplant compartmentalization.

Our third example of the emergence of connectionist thinking comes
from a quite different domain, work on genetic regulation. In recent years
biologists have developed increasingly complex models of gene regula-
tion, positing genes having the function of regulating other genes in a
localizationist fashion. In an evolutionary framework, however, this be-
comes quite problematic. The more complex a system, the stronger the
evolutionary pressure would have to be to maintain it in the face of muta-
tions. Stuart Kauffman’s recent work is directed toward explaining how
evolution can maintain such a regulatory system; however, he has ended
up redescribing the phenomenon to be explained, in something like the
manner of the case discussed in Chapter 8. Kauffman develops an ab-
stract, formal model of a genetic system to simulate the regulatory pro-
cess. a model remarkably like the connectionist systems developed to sim-
ulate cognition. These model genetic regulatory networks function by
allowing units to excite and inhibit each other until a stable pattern of
activation is achieved. Kauffman equates these stable patterns with cell
types. Random perturbations will disturb the system’s behavior, but it
turns out that while it is nearly impossible for selection forces to maintain
a large and complex system against mutation in an arbitrarily defined opti-
mal state, some systems will evolve toward a stable state where mutations




over, it takes tremendous’selection pressure to move the system out of
these stable states. This suggests an answer to the original problem, but
one that requires changing the question. Rather than asking how selection
could maintain a complex regulatory system, Kauffman claims that the
regulatory system is inherently stable and does not require selection to
sustain it. The result of developing a connectionist system to model gene
regulations suggests that what was a pressing issue when the system was
assumed to be nearly decomposable does not even require explanation.

In Chapter 10 we place the description of theory development we have
built using the cases discussed in Chapters 3-8 within a broader context.
We have focused on a number of choice-points confronted in the develop-
ment and elaboration of mechanistic programs, points which describe the
kinematics of theory development. The informal flow chart falls short of a
fully dynamic model, though it is a useful step in that direction. It is also
useful in suggesting the general directions that a realistic account of dis-
covery might take. Following the lead in Chapter 2, our primary focus has
been on psychological constraints and, in particular, on the heuristics of
decomposition and localization. In examining the cases in Parts IT and III,
we have explored how these heuristics came into play in shaping research
programs. It is clear from the cases discussed in Part III that the heuristics
of decomposition and localization underdetermine the result. There are
several directions development takes, depending on other contingencies;
the heuristics do not operate in isolation.

In a more speculative vein we will identify three general factors that
feature, in conjunction with heuristics, in explaining the dynamics of the-
ory development. These include phenomenological regularities, opera-
tional constraints, and physical constraints. We have no detailed account
of the character of these constraints, nor of their interaction. A fully elabo-
rated description of how these factors, and others still not identified in any
detail, figure in the course of theory development lies beyond the scope
of this book. Until these factors are detailed we doubt it will be possible to
develop a complete normative account of the history of mechanistic re-
search programs, much less a comprehensive normative account of theory
development. Having examined some of the factors affecting theory de-
velopment, though, we can begin to glimpse what a more adequate ac-
count of discovery would look like.




“Emergent Ihnenomena in interconnected
Networks

1. INTRODUCTION: DISPENSING WITH MODULES

The more complex localizationist explanations we examined in Part I1I are
still recognizably mechanistic. Tasks involved in performing a function are
divided between components, and system behavior is explained by show-
ing how it is accomplished through the combined performance of the com-
ponent tasks. Although one might prefer explanations in which the com-
ponent tasks can be thought of as following a linear, sequential order, so
that the contributions of each component can be examined separately,
natural systems are not always organized in such a manner. Component
tasks are often dependent on one another, so we cannot understand the
operation of the system by imposing a linear order on it. Cyclic rather
than linear organization occurs when the activity of any given component
is dependent on a variety of other components that, in turn, depend on it.
In integrated systems, the explanation of the behavior of the whole system
depends in a nonlinear way on the activities of the components and on the
modes of interaction found within the system.

To the extent that organization is important in affecting system behav-
jor, a system is nondecomposable. As we discussed in Chapter 2, there is
a continuum of cases. At one end are simply decomposable systems for
which the major explanatory task is to identify the components and under-
stand their behavior. These include the kinds of cases considered in Chap-
ter 4, in which a single part is held to be responsible for the behavior of the
whole system. Toward the other end of the continuum lie cases of inte-
grated systems in which the behavior of the system is largely due to the
interaction of the components. In all of these cases, the operations of the
components can, nonetheless, be understood in terms of the operations
performed by the whole. Conversely, the behavior of the whole is ex-
plained in terms of the behaviors of component parts. There are other
systems, yet farther out on the continuum, in which localization and de-
composition appear to be hopeless, or even misguided. The hallmark of
these cases is that, given a principled structural analysis, the activities of
the parts seem to be different in kind from, and so far simpler than, those
performed by the whole. The parts can be so simple, in fact, that they do
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With systems in which the parts do not seem to be performing intelligi-
ble subtasks contributing to the overall task, classical mechanistic strate-
gies—and, in particular, decomposition and localization—fall short. What
alternatives are there to pursuing a program of mechanistic explanation?
In Chapter 5 we considered one possibility: rejecting the mechanistic pro-
gram and settling for descriptive accounts of behavior. But this is not a
strategy for developing an explanation; it is a denial of any explanation. In
this chapter we consider an explanatory strategy that abandons localiza-
tion and decomposition. We leave open whether it constitutes a properly
mechanistic approach.

We examine three cases in the following sections. Hughlings Jackson
provides a transitional case. Jackson rejects the localization of Broca and
proposes a complex, hierarchical model of the nervous system in which
control of tasks was distributed over different neural structures at differ-
ent levels, with higher-level systems regulating and modulating perfor-
mance of lower-level systems. Our other two cases come from contempo-
rary research, which use newly developed formal mathematical tools for
modeling the behavior of complex systems. These two cases are, respec-
tively, models of cognitive performance and genetic regulation. In these
cases performance depends primarily upon the interaction of the compo-
nents in the system. The components do not perform tasks that would
appear in a functional decomposition of the system.

2. HIERARCHICAL CONTROL: HUGHLINGS JACKSON'S ANALYSIS
OF THE NERVOUS SYSTEM

In the late nineteenth century, John Hughlings Jackson developed a hier-
archical model of the nervous system that was intended as a repudiation of
the kind of localizationist claims advanced by Bouillaud and Broca.” These
latter “neophrenologists,” as we have seen, constructed localized models
on the basis of correlations between neurological lesions and pathological
symptoms such as the loss of coherent speech. Losses of specific capacities
were traced to injury or destruction of specific regions. While such corre-
lations certainly can be found, they are not as precise as would be required
to justify the strong conclusions of these localizationists. The clinical syn-
dromes are not simple, and the neurophysiological disorders rarely corre-
late precisely with the syndromes. For example, aphasia—in at least one
of its myriad forms—is commonly described as a deficit affecting the ver-
bal expression of language, but not affecting cognitive abilities. However,
these “expressive” aphasias do not affect the whole range of verbal expres-




cal deficits are not neatly circumscribed. Considerable inference and con-
jecture are required to draw conclusions concerning the locus of the
damage. Expressive aphasias are accompanied, as one would expect, by
damage to the third frontal convolution; but damage from either external
trauma or stroke is not clearly limited or localized.

One response to this lack of precise correlation between cerebral dam-
age and pathological syndromes is to reject the search for a mechanistic
explanation. As we saw in Chapter 5, when Flourens failed to substantiate
Gall’s correlations between craniological structures and psychological ca-
pacities, he denied the localizationist program and gave up the search for
mechanisms governing the higher cognitive capacities. This was not an
option Jackson could accept. He was committed to understanding the
neurophysiological operations of the brain, convinced these would explain
the associated psychological deficits. This required making sense of how
the brain accomplished its operations through the interaction of its parts.
As a good clinician, the complexity of the symptoms was always before
him. He was led to a different explanatory approach.

Jackson found the key to developing an alternative interpretation of the
operation of the nervous system in a different pattern of deficits, this time
in epileptic seizures (see Jackson 1884; Melville 1982). Epileptic seizures,
or the more extreme cases at least, are generalized, affecting the entire
body to varying degrees. Jackson saw three levels of seizures (cf. Jackson
1884, pp. 57ff.). The first and least severe is analogous to a dream state.
The second is accompanied by a loss of consciousness. The third leaves the
patient comatose. These three levels increase in severity, with the third
most encompassing and the first least so. As a consequence of his complex
symptomology, Jackson maintained, the epileptic discharge must begin in
a region that affects the body as a whole—including the highest levels,
such as volition. It must begin in cortical structures. A mild seizure is the
analogue to dreaming. A more severe discharge affects the lower levels
and also disrupts consciousness. In yet more severe cases, the functioning
of more central structures are also disrupted. In an analogous manner,
Jackson thought expressive aphasias deprive the patient of the ability to
use complex forms of language, but leave the more automatic uses rela-
tively intact. Jackson accordingly maintained that there are “higher” and
“lower” uses of language: the intellectual and emotional uses—or, as he
later referred to them, the superior and inferior forms of speech. The
former were genuinely expressive of thought; the latter were not. The
intellectual, or superior, functions are the most labile, but even when
severely impaired, some use of language and some residue of emotional
expression are preserved. What these patterns of pathology suggested to
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the manifestations, he thought, required more development than others;
for example, representational speech demanded more sophisticated de-
velopment than did emotional speech. As he analyzed the syndromes,
typically the least-developed mode of the function was maintained, while
its most-developed or sophisticated use was lost.

Jackson’s appeal to multiple control was influenced by two further
sources: associationist psychology and evolutionary theory (see Smith
1982a). As we shall explain, the first source reinforced his repudiation of
a localizationist program and his search for a different mode of explana-
tion; the second provided a theoretical basis for his hierarchical model.
Jackson derived both of these themes from Herbert Spencer’s Principles
of Psychology (1855, 1872).°

The associationist program in psychology assumed a variety of forms
throughout its long history.* The crucial element in associationism was the
idea that complex knowledge was built up from smaller units—ideas, in its
classical formulations—through a limited number of general principles of
association. Thus, for Locke, “simple ideas” become the atoms of knowl-
edge, which can be held before the mind, compared, and compounded. In
Hume's hands the principles of association were more clearly and rigor-
ously circumscribed. He says in his Treatise (1888) that the “qualities,
from which this association [of simple ideas] arises, and by which the mind
is after this manner convey’d from one idea to another, are three, viz.
RESEMBLANCE, CONTIGUITY in time or place, and CAUSE and EFFECT’
(p. 11).

When applied in the neurological realm by Jackson, the associationist
program mandated the abandonment of localization, rejecting the faculty
psychology upon which the localizationist program of Gall, Bouillaud, and
Broca had been built. According to the associationist program as Jackson
inherited it, just as complex ideas are produced from simple ideas by the
processes of association, so also complex mental operations must be com-
piled operations composed of simple sensory-motor associations. Any dif-
ference between higher and lower cognitive operations will involve sim-
ply more associations between lower-level sensory-motor processing, and
not a unique cognitive faculty. The cognitive faculties posited by classical
localizationist approaches could not be among the basic capacities, and
localization would be fruitless (Richardson 1986a). “Will, memory, rea-
son, and emotion,” Jackson tells us, “are simply artificially distinguished
aspects of one thing, a state of consciousness” (1884, p. 66).

Having abandoned a faculty psychology, Jackson was also committed to
abandoning the localization of specific faculties. Whereas Broca had taken
the “faculty of articulate language” to be one of many discrete and primi-




so-called rtaculty o1 language has no existence [ jackson 1o, p. lzo).
Associationism left no room for organology, and without organology there
was no room for classical cerebral localization.

The evolutionary commitment provided the positive dimension to Jack-
son’s account of neuropathologies. As he said at the outset of his seminal
lectures, “We shall be very much helped in our investigations of diseases
of the nervous system by considering them as reversals of evolution, that
is, as dissolutions” (Jackson 1884, p. 45; cf. Jackson 1882). Evolution here
was not the simple “descent with modification” defended by Darwin;
rather, the evolutionary views of Herbert Spencer are what inspired Jack-
son. Unlike Darwin, Spencer embraced an orthogenetic, progressive
view of the evolutionary process. Evolution was the expression of an in-
herent tendency toward development from lower to higher forms, or from
less to more complex forms of organization. Evolution, according to this
vision, was “a passage from the most simple to the most complex” and
“from the automatic to the voluntary” ( Jackson 1884, p. 46). The culmina-
tion and natural result of evolution was consciousness. Yet these later,
higher forms were not to be constructed de novo; they were, rather, fur-
ther modifications of the basic plan provided by the lower, less complex
form.?® This would typically involve the imposition of a control mechanism
on the early products of evolution, allowing utilization of these devices for
more complex functions.

When he turned to the pathological syndromes, Jackson proposed that
the nervous system was organized in a hierarchical manner, with different
levels representing different stages of evolutionary development.® The
higher levels are more recent and are connected with volition and con-
sciousness. The lower levels are more primitive and are connected with
habit and reflex. Each higher level, Jackson thought, must work through
the lower levels. Thus, in animals arising later in phylogeny, newly
evolved neural structures would arise that would modify and regulate the
performance of brain components that had emerged earlier. At the base of
this hierarchy are parts of the nervous system that directly respond to
sensory stimuli or control motor output. These basic mechanisms are spe-
cialized and task-specific, each representing some specific movement of a
specific part of the body. Here is the only point in the hierarchy where we
can find neural structures able to work independently to perform a func-
tion, and, hence, the only point where we might try to decompose the
operation of the whole in terms of component operations. The kinds of
operations performed by these components, though, are not the sort that
would suffice for localizing cognitive capacities. These mechanisms, ac-




nents for planning or reasoning about actions. At the middle level we have
motor centers that are less specialized and less task-specific. Each center
represents some complex movement, compounded of simpler movements
represented directly by the lower level. These middle-level centers effect
associations between lower-level components. These centers are less or-
ganized in that they are less automatic and more receptive to modification
by experience. Part of what is critical about these systems, however, is
that they do not work independently, not representing within themselves
the information they require to perform their tasks. They achieve their
effects by regulating, modifying, and integrating the operation of the
lower-level components. Motor centers at the highest level each repre-
sent to some degree the entire body or movements of it. Their function is
to coordinate complex movements. But, once again, these are not inde-
pendent structures; they are mechanisms for regulating lower-level struc-
tures. Jackson summarizes this tripartite view and offers an anatomical
interpretation:

The lowest motor centres are the anterior horns of the spinal cord, and also the
homologous nuclei for the motor cranial nerves higher up. . . . The lowest cen-
tres are the most simple and most organised centres; each represents some
limited region of the body indirectly, but yet most nearly directly; they are
representative. The middle motor centres are the convolutions making up Fer-
rier’s motor region [just anterior to the central sulcus]. These are more complex
and less organised, and represent wider regions of the body doubly indirectly;
they are re-representative. The highest motor centres are convolutions in front
of the so-called motor region. . . . [They] are the most complex and least organ-
ised centres, and represent widest regions (movements of all parts of the body)
triply indirectly; they are re-re-representative. (1884, p. 53)

What higher units do, from Jackson’s perspective, is coordinate what is
directly represented in distinct lower-level components and regulate the
activities of these components. This is what Jackson means by re-repre-
senting or re-re-representing what is already represented at the lower
level.”

Schematically (Figure 9.1) we may conceive of (S, S, - . .. S, as
specialized organs at the lower level. Each controls a single movement,
and loss of the organ results in paralysis of the corresponding part of the
body. Loss of § , would mean the loss of a specific behavior—perhaps the
ability to move an arm, or to flex a finger. Similarly, (S,,, S, - - - > S,,)
occupy the second level and re-represent the movements represented at
the lower level. These involve an intermediate level of integration and
coordination. Each exerts some control over a variety of movements,




Figure 9.1. A Schematic Representation of a Control Hierarchy of the
Sort Proposed by Hughlings Jackson (1884). Higher-level units exert
a broader control, while lower-level units are more specific. Units at
level 1 (S ,...,S ) control specific behaviors. Units at levels 2 (S

18 7
, S, )and 3 (S,. S,) coordinate the more specific behaviors of

24 2
level 1. Breadth of the lines is meant to correspond to the strength of
the connections; for example, S_ is strongly tied to S through S
but only weakly connected to S _or § .

though the amount of causal influence they exert over units at the lower
level is variable: S coordinates activity of three more specialized units
(S50 S0 and S ). Lossof S| would entail a loss in the coordinated activity,
but would not result in any paralysis, because each of these units can be
activated by other higher-level units. Units at the highest level (S, and
S,,) produce the highest level of integration, but in so doing they exercise
the least specific influence. They coordinate and integrate the activities
controlled at lower levels; in Jackson’s terms, they re-re-represent the
movements represented at the lowest level and re-represented at the in-
termediate levels, and their degree of causal influence is also variable.
This hierarchical structure reflects our evolutionary heritage. By pre-
serving the lower-level structure and function that was present in their
evolutionary ancestors, higher, more developed organisms reflect the ev-
olutionary history of the species; they recapitulate their evolutionary his-
tory. This preservation is most clearly revealed when the higher levels of
the nervous system are destroyed or damaged. Jackson insists that symp-
toms will be both positive and negative. On the negative side there will be
a loss of capacities: Some aphasics lose the ability to comprehend spoken
speech; others lose the ability to speak. Epileptics may lose conscious-
ness. This would mean that epileptics or aphasics would suffer a loss of the
coordination and fine modulation of lower-level functions, but would not
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tive mental symptoms answering to the dissolution. . . . [All] elaborate
positive mental symptoms . . . are the outcome of activity of nervous ele-
ments untouched by any pathological process” (1884, p. 46). What would
be left following the destruction of higher centers would be the more auto-
matic, reflexive forms of behavior typical of lower organisms. Jackson re-
fers to this process as the dissolution of the nervous system and claims to
see it exhibited in the pathological syndromes such as aphasias. As evi-
dence for this interpretation of the neuropathological syndromes, he
points to the nature of the symptoms, which are typically negative. As we
noted earlier, Broca's patient, Tan, was still capable of some vocalizations,
but these were limited, simple, and automatic utterances such as oaths or
simply “Tan.” This is typical: voluntary applications of speech suffer more
dramatically than do more automatic ones, and the latter suffer more than
the applications used in emotional expression. With damage to the cere-
bral lobes, Jackson reasoned, the higher, voluntary uses of language
would be lost and the lower functions would accordingly come to predom-
inate. The patient would lose the ability to “convey propositions” through
symbols, but would still have the ability to relate feelings.® This, from
Jackson’s perspective, reflects the maintenance of lower-level motor con-
trol despite the loss of higher levels of control over speech.

In one respect Jackson has simply repartitioned the nervous system into
functional units, offering a different decomposition. His division into units
crosscuts the division of the organologists. But the differences are more
far-reaching than that would suggest. The localizationists divide the brain
horizontally into a number of processing components, each operating at
roughly the same level and in relative independence of one another. Each
component has its own specific function. Jackson partitions the system
vertically, with higher-level components operating on and modulating the
behavior of the lower-level components. Only at the lowest level do we
have specialized and independent modules. Moreover, the higher levels
cut across the lower levels in their mode of operation, so we do not have
a neat division of the cerebral lobes into regions responsible for regulating
single, lower-level processes.

As we explained in Chapter 6, localization requires there to be a physi-
cal analysis corresponding to a projected cognitive organization. Even on
Jackson’s view, basic motor control is localized in this sense: there are
physically discrete regions of the brain exercising limited control over
specific behaviors. But Jackson’s approach does not allow localization of
cognitive capacities, and the more complex these capacities are the less
localization will make sense. It is in this sense that his approach is non-




3. PARALLEL DISTRIBUTED PROCESSING AND COGNITION

Cognitive science is one area of research in which the decomposition of
complex tasks into component tasks has been widely applied in recent
decades. For the most part this has had a top-down orientation, with little
attention to the details affecting realization. At its most extreme it has
been antagonistic to physical details. The dominant metaphor is that cog-
nition is information processing. The primary approach has been to ana-
lyze complex information processing tasks into simpler information-proc-
essing tasks and to seek simple mechanical realizations for the most basic
tasks. As William Lycan, somewhat colorfully, portrays the program of
research,

We explain the successful activity of one homunculus . . . by positing a team
consisting of several smaller, individually less talented and more specialized
homunculi—and detailing the ways in which the team members cooperate in
order to produce their joint or corporate output. (1987, p. 40)

In Lycan’s hands it is homunculi as far down as psychology can see. Even
the simplest component tasks in such cognitive theories remain ones of
transforming information. In some accounts the information is understood
as being represented in the system in symbolic structures. Processing is
the transformation of symbolic structures into other symbolic structures;
the symbols, in turn, are construed as semantically interpretable—that is,
as referring to objects and having associated meanings (Fodor 1975). The
resulting explanations describe the overall task in terms of operations that
are intelligible given the semantic interpretation. For example, in a com-
puter program that plays chess there may be operations that propose pos-
sible moves, and other operations that project the resulting board posi-
tions and evaluate them. The representations are of pieces and positions
in a space defined by the board and the rules of chess. The operations are
the legal moves. Since the symbols may refer to actual pieces and the
operations to actual moves, we can readily understand how the program
goes about playing the game.

This approach to cognitive behavior is commonly known as the symbolic
approach, or, sometimes, as one relying on rules and representations. It
is not the only possible strategy. When cognitive science was in its early
infancy, another approach briefly emerged and then lay fallow. This com-
petitor focused on networks composed of simple entities, supposedly sim-
ilar to neural units, which exchanged activations and inhibitions (Ro-




unctions without operations on tormally represented symbols. Some net-
work models, such as Selfridge’s Pandemonium, employed a homuncular
representation of the overall task, decomposing it into significant sub-
tasks. Other systems, such as Rosenblat’s Perceptron, did not. A Per-
ceptron takes in one pattern of activations and outputs another, with each
input unit linked to an output by weighted connections. The network ap-
proach nearly disappeared with the publication of Minsky and Papert’s
Perceptrons (1969), which attempted to establish inherent limitations in
network models. Recently, however, the network approach has re-
emerged and goes by such names as connectionism, parallel distributed
processing, or neural networks. Whereas the symbolic approach epito-
mizes a variation on decomposition and localization, network models pre-
sent a significant alternative program, proposing to explain cognitive func-
tions without employing decomposition and localization.

It should help to develop the contrast more fully. The return to a cogni-
tive psychology—that is, one acknowledging internal cognitive proc-
esses—after decades of dominance by behaviorism was inspired by two
developments: the introduction of the digital computer, and Chomsky’s
(1957) defense of a generative grammar. The focus on formal systems in
which symbolic structures are manipulated according to sets of rules is
critical in both of these domains. Computers are often construed as list-
processing machines, wherein lists of symbols coded in digital form are
manipulated either by the hardware’s configuration or by instructions
stored in other lists of symbols that constitute the program. Chomsky’s
linguistics proposed to represent the set of grammatical sentences availa-
ble in a natural language in terms of a finite structure. This would come in
a set of rules that operate recursively on sequences of symbols, transform-
ing these sentential representations while preserving grammaticality.
Chomsky subsequently attempted to extend his analysis as a general ac-
count of human language. The basic idea has now been generalized into a
wide-ranging set of models of human cognition in which the information
to be processed is represented symbolically, and rules are introduced to
manipulate these symbols. From our vantage point, what is important is
that these rules and representations embody an attempt to account for an
overall performance of the cognitive system by decomposing that task into
simpler tasks.

One of the widely employed types of design for achieving cognitive
performance within symbolic systems is the production system (Anderson
1983; Newell 1973). In production systems information is encoded sym-
bolically in working memory (a variety of information can be encoded at
any given time). The rules are conditionals: the antecedent specifies a test
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tions, each of which is governed by a set of rules operating on symbolic
information. It has produced cognitive models successful in accounting for
many features of human cognition; moreover, for many years it seemed
the only option in developing an account of cognition.

A growing number of cognitive scientists have begun to explore the
possibility that what appears to be rule-following behavior might only be
described by these rules and that it might be feasible to explain cognitive
performance without mirroring the rules in the mechanisms that explain
that performance. The reemergence of network models, and the mount-
ing evidence that more complex network architecture can perform tasks
that previously seemed beyond the ability of the networks,” have led to a
reexamination of the view that cognitive processes must be decomposed
according to a rule. In this line of research, then, the decomposition of the
symbolic approach is lost.

To illustrate why a network architecture is a significant alternative to
the symbolic architecture, and how it promises to explain cognitive per-
formance without engaging in the sort of decomposition that has been
characteristic of the symbolic approach, it will be useful to describe briefly
some common features of connectionist architecture and present two sim-
ple examples of connectionist systems. The basic components of a connec-
tionist system are simple processing units able to assume varying states of
activation and connections of varying strengths through which they can
excite or inhibit others. There is tremendous variability in the network
designs currently being considered, but what is common to all is that the
units are simple and their interactions are critical. Activations can either
be limited to discrete values (for example, 0 and 1), or can vary within a
continuous range (say, from 0 to 1 or —1 to +1). Units can be connected
with each other in various ways. They can be layered so that units within
one layer project only to units in adjacent layers. Or, the network can be
completely interconnected. Typically the input to a unit is determined by
summing over the products of the activations of other units connected to
it, and the weights associated with the connections between those units
and the target unit. In Figure 9.2, the input to unit A is determined by
multiplying the activation of B, C, and D by the weights connecting them
to unit A, and then adding those values; this yields a net input to unit A of
.24. The activation of A may then be determined by a variety of formulas.
Some take the prior activation of A into account; some do not. The func-
tions, moreover, may involve either linear or nonlinear functions in deter-
mining the activation level of A.




Figure 9.2. A Simple Connectionist System.
In this case the input to A is an aggregative
function of the activation levels of B, C, and D
and their connection strengths to A.

One important source of variation arises in determining how the
weights associated with the various connections are decided. They can be
preset, but much of the interest in these networks stems from their ability
to alter their own performance by changing the weights. This is done by
using a variety of algorithms. Operations for changing these weights
model learning in the networks; accordingly, the algorithms used are
commonly referred to as learning rules. The simplest learning rules are
variations on a suggestion by D. O. Hebb (1949). These are basic associa-
tionistic principles, requiring an increase in connection strength between
units when they are simultaneously excited. For example, one variation
might require increasing the strength of the connection between units in
proportion to the product of their activation levels.™

In addition to determining the actual mechanics of a network, a re-
searcher must also specify how these networks are to be construed as per-
forming a cognitive function. This is usually spoken of as providing an
interpretation for the activities of the network. There are two general
approaches to interpreting the activity of such systems. The simplest is to
let each unit represent a hypothesis or a goal. Since each unit has its own
representational function, this approach is referred to as localist. The
more complex, but potentially more interesting, interpretation is to treat
a particular pattern of activation over an ensemble of units as serving the
representational role. In such systems one pattern of activation over a set
of units may receive one interpretation, while another pattern over the
same set of units receives another. Since it is the pattern of activations
that determines the interpretation, this approach is referred to as dis-
tributed.

The crucial move common to all network models is that of explaining
cognitive performance without casting the explanation in terms of rules




overall cognitive task. Network models do account 1or the cognitive per-
formance, but often they do so without providing an explanation of com-
ponent operations that is intelligible in terms of the overall task being
performed. The network is a cognitive system; the compoaents are not.
The result is that we do not explain how the overall system achieves it
performance by decomposing the overall task into subtasks, or by localiz-
ing cognitive subtasks.

In order to show how network models provide an explanation that does
not involve decomposing the overall task, we will briefly describe two
simulations. The first involves a two-layer network learning to recognize
patterns.!’ The overall process is one that could figure either in basic per-
ception or in categorizing objects already perceived. The network consists
of eight input and eight output units, with each input unit connected to
each output unit (see Figure 9.3). The activation (a) of an output unit j is
the sum over the products of the input activations for each of the i units,
and the weights of the connections linking them to the output units (w,)
a = Zaw, . The input arrays can be viewed as representing objects be—
longlnfr to four different categories. We will suppose arbitrarily that these
are cup, bucket, hat, and shoe. Table 9.1 shows the input patterns that
correspond to a prototypical instance of each category, and the target out-
put patterns that the network is trained to approximate. The target out-
puts can be thought of as the system’s names for the four categories. For
example, the input array for a prototypical bucket is (=1, —1, +1, +1,
+1, —1, —1, — 1), and the output array for “bucket” would be (-1, —1,
—1, =1, +1, +1, +1, +1).

The goal of the network is to learn the association between the input
array and the “name.” In training the network, the actual inputs and target
outputs were distorted by a randomly chosen amount between —0.5 and
0.5 to capture the fact that we do not always encounter prototypical ob-
jects or undistorted names. Thus, where the pattern designated for the
prototypical cupis(—1, —1, =1, —1, +1, +1, —1, — 1), an actual input
on one trial might be (—0.76, —0.89, —1.21, —1.01, +1.33, +0.99,
—0.65, —0.92). The network was trained over fifty epochs, or training
sets. During each epoch the network received a distorted version of each
input and its corresponding distorted target output. The network used the
delta rule, which adjusts the weights (w J) of each connection leading to
‘each output unit on each trial by an amount proportional to the product of
the difference between the actual output (a) and the target output (t) and
the activation of the relevant input unit (@) on that trial. This can be repre-
sented as Aw“ = (125 (t — ai) a. If the target output for Uis —1. 0, and
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Cup -1 -1 -1-1+1+4+1 -1 -1 -1 -1-1-1-1-1-1 -1
Bucket -1 -1 +1 +1 +1 -1 =1 -1 -1 -1 -1-1+4+1 +1 +1 +1
Hat -1 41 +1 +1 -1 +1 —1 +1 -1 +1 -1 +1 -1 +1 -1 +1
Shoe +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1

Table 9.1. Prototypical Inputs and Outputs for Two-Layer Pattern-Recognition Network
with Eight Units per Layer.
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Figure 9.3. A Two-Layer Pattern-Recognition Network. All units at
the lower level are connected to each unit at the higher level, with no
intervening levels. For simplicity, not all connections or connection
weights are shown.

its actual output is —0.8, then the above input array would adjust the
weights of the connections to U5 from the input units up or down by the
following amounts: (+.00190, +.00223, +.00303, +.00253, —.00333,
—.00248, +.00163, +.00230). In this instance the rule increases the
strength of the connection weights from input units having the same sign
as the target output, and decreases the rest.

After training through the full fifty epochs, the network was tested on
three different types of input: the actual prototype of each category, an
instance randomly distorted in the way described above, and an input for
which the sign of one of the input units of the prototype was reversed. The
test inputs are detailed in Table 9.2. When presented with an actual pro-
totype, or with a distorted version of the input, the outputs were all within
.5 of the target output. Even when given a pattern in which one
of the eight input values was reversed in sign from the prototype, the
system produced outputs that were positive or negative as appropriate in
all but one case.
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quite difficult for symbolic systems. Consider how one would design a
symbolic system to perform this task. The input pattern for an object is
simply an arbitrary array of activations produced in units of the system. In
more realistic situations, this array would be produced by a set of feature
detectors in the visual system, and the values in the array would represent
values on these features. For example, a positive value on an input unit
might indicate the presence of a feature or the activation (confidence)
level of the corresponding feature detector. The values of the output units
would likewise represent features of either the word or the mental repre-
sentation of the object. A symbolic system would begin with encodings of
the features of the input and seek to develop rules that would produce the
symbolic representation of the output. The rules would have to specity
what set of features would constitute, for example, a shoe. Since there is
significant variability between shoes, the rules would have to specify the
various combinations of features in the input that should still result in
recognizing the object as such. The attempt to produce such rules has
overwhelmed Al investigators."

A connectionist approach, by contrast, does not set out to identify rules.
Rather, the connections in the network are allowed to adjust during the
training phase until the network can efficiently distinguish the objects in
the domain. For the network to accomplish this, it must have structure.
This is found in the connections, which serve the function of rules in a
symbolic system. We sometimes can interpret the connections as provid-
ing rules for how to identify, say, balls as opposed to shoes on the basis of
features. It is important to recognize how these rules are obtained. They
are not developed by specifying the conditions under which an object of
a given sort is present. Instead, the rules result from the network’s discov-
ering the correlation between features and objects. Each weight repre-
sents the reliability of a specific feature as an indicator within the class of
objects. Thus, in the array given in Table 9.1, a positive value for I_is a
good indicator for a shoe, while a positive value for I, tells us less (since it
is ambiguous between hats and shoes). The learning rule allows the sys-
tem to adjust dynamically to find a set of weights that achieves the best fit,
given the class of inputs. What is important for understanding the contrast
is that, except in the limiting case in which the weight to an output unit is
0, each input feature contributes something to the net output, and gener-
ally none is individually sufficient to determine the output. Thus, no de-
composition into meaningful subtasks is needed.

Two-layer networks of the sort we have just described are able to learn
to compute many relations between inputs and outputs, but there are




AND and inclusive OR, it cannot compute a function such as exclusive or
(XOR). A two-layer network is unable to compute a function for which the
target outputs cannot be linearly separated.

Two steps are required to surmount this sort of difficulty. The first is to
insert one or more layers of units between the input and output layers.
The second is to use a nonlinear activation function such as the logistic
functiona = 1/ (1 + e~ ret) where net(i) is the sum of the products of
input activations and connection weights. The second network we will
describe uses multiple layers and the logistic activation function. Our in-
terest in multilayer networks, however, is not due simply to their greater
computational power. The intermediate layers of units—generally re-
ferrel to as hidden units—can be viewed as performing component proc-
essing steps: they process information received from earlier layers and
then provide this new information to units in later layers for further proc-
essing. But if the network can learn, then the determination of the compu-
tations performed by the hidden units, as well as what the hidden units
represent, are dynamically determined by the system. Moreover, the in-
formation represented by these units does not precisely correspond to the
type of information that would normally be employed in a symbolic de-
composition of the overall task.

This is clearly seen in a network designed by Hinton (1986), which
learns information about the two isomorphic family trees, one English and
one Italian, shown in Figure 9.4. The information in these trees can be
encoded in 104 simple relational propositions of the form (person R per-
son_) (for example, Colin has mother Victoria). Hinton constructed a net-
work containing 36 input units and 24 output units. Twenty-four of the
input units stand for the individuals in the two families and are the values
that can be assigned for “person .” The other 12 input units give the possi-
ble values for R. The twenty-four output units also represent the individu-
als, though this time as the possible values for “person,.” In Figure 9.5,
modified from Hinton (ibid.), we show the two sets of units representing
individuals (PI through P24) and the twelve indicating geneological rela-
tions (RI through RI2). Because a single unit stands for a person or a
relation, this is an instance of a local representation. In this system, in
addition, there are three layers of hidden units. The first layer consists of
12 units, 6 of which (H1 through H6) receive inputs from the 24 units
coding for person , while the other 6 (H7 through HI2) receive inputs
from the 12 units specifying the relationship. The second layer also con-
sists of 12 units, which receive inputs from all 12 units in the first hidden
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Figure 9.4. Two Isomorphic Family Trees. Hinton (1986) ex-
amines a connectionist network designed to deal with informa-
tion concerning family relationships learned from the two iso-
morphic family trees depicted here.

layer. The final layer of hidden units consists of 6 units. The fact that the
24 units coding for person, must feed their information through a bottle-
neck of 6 hidden units forces the network to find a distributed representa-
tion of the different individuals that captures whatever information about
the individuals the network requires to complete its task. The same prin-
ciple operates with respect to the 6 hidden units receiving input from the
12 units specifying the relationship.

The network was trained to identify the correct person, when given
person , and the relationship for 100 of the 104 relational propositions
using the back-propagation algorithm as the learning rule.® After 1500
cycles of training,'* Hinton’s network not only learned to complete all 100
training propositions, but was also able to generalize to the four remaining
propositions.'> How the network accomplished this is significant. We can
determine the representational function assumed by the first set of hidden
units (6 are connected to the person, units, and 6 to the relationship units)
by examining the weights between the inputs and this layer. In Figure 9.6
the 6 hidden person units and the weights coming into them from the 24
person units are displayed. White boxes indicate positive weights on a
connection: black boxes indicate negative weights. The size of the boxes
represents the strengths of these connections. It is clear that the hidden
units have extracted useful information about the individuals, despite the
fact this information was never explicitly provided to the network. Thus,
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Figure 9.5. Five-Layer Network. A schematic representation of the network
used by Hinton, with three layers of hidden units. P1 through P24 represent
the individuals in Figure 9.4. R1 through R12 represent geneological relation-
ships. The existence of a bottleneck forces the network to utilize a distributed
representation.

unit 1 and (to a lesser degree) unit 5 identify family membership, while
the remaining units are all generally indifferent to family memberships.
Units 2 and 3 appear to encode the individual's generation (unit 2 re-
sponds most positively to older members, unit 3 to younger members).
And units 4 and 6 seem to be representing membership in the two root
families in each tree (unit 4 favoring the right side of the two trees, unit 6
the left).

Two comments are in order. First, it is the network, not the theorist,
that determines what information to represent in the hidden units. Sec-
ond, while it is often possible, as in this case, to label the hidden units in
terms of what they represent, these labels are approximate; typically, it is
difficult, and sometimes impossible, to fix these labels. For example, if
unit 1 does indeed represent the English branch and unit 5 the Italian,
they do not treat all members of the respective families equally. Penelope
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Figure 9.6. Six Hidden Units with Inputs from Twenty-Four-Person
Units. Each node in the 6 hidden units represents one of the 24 indi-
viduals. The right-hand column in each of 1 through 6 represents a
British individual, as indicated. The left-hand column within each
represents the corresponding Italian family member (see Fig. 6.4).
White boxes indicate a positive weight, so that, for example, inputs
from any British name will tend to produce positive activation on all
the units within the right-hand column of unit 1, while inputs from an
Italian name will not. Black boxes indicate a negative weight, and box
size indicates the level of activation. (From Hinton 1986.)

is treated by unit 1 as more of an English person than Charles, and Fran-
cesca is treated by unit 5 as more Italian than Emilio. In the six units
encoding relationships (see Figure 9.7), unit 10 seems to represent the sex
appropriate for the target person, but for others, such as units 9 and 12, it
is difficult to specify what information is represented. Thus, while some-
times we are able to assign labels to the information-processing activities
of the hidden units, these labels are partial and approximate. Moreover,
the particular information-processing task a unit carries out may not be
one we can describe at all. Thus, while we can construe multiple-layer
networks as decomposing the information-processing task, the decompo-
sition is not one advanced by the theorist and perhaps not even one the
theorist can describe, at least not in the vocabulary in which the overall
task is defined.

Connectionist models explain performance without explicitly or neces-
sarily decomposing that performance into intelligible subtasks. Insofar as
cognitive scientists accept connectionist simulations as explaining cogni-
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Figure 9.7. Units Recording Relationships and
the Apparent Representation from Hidden
Units. Projection from the 12 input units that
represent relationships to the 6 in the second
layer. In this case the representational func-
tions are far less evident. (Also from Hinton
1986.)

tive performance, they are making a significant break with the decompos-
itional strategy of traditional mechanism. It is still too early to determine
how successtul the connectionist strategy will be. It may be that connec-
tionist approaches will only be useful for modeling low-level cognitive
tasks such as visual perception and will fail in domains of reasoning and
linguistic performance (c¢f. Fodor and Pylyshyn 1988; Pinker and Prince
1988). It is not important that we take a stand on the ultimate viability of
connectionism as a framework for cognitive theorizing in order to make
our main point: connectionism represents a break with traditional mecha-
nism, pointing toward a different category of models and employing an
alternative strategy for developing them. This alternative emphasizes sys-
tems whose dynamic behavior corresponds to the activity we want to ex-
plain, but in which the components of the system do not perform recog-
nizable subtasks of the overall task. As with the case of Jackson’s model,
the decomposition of the system fails to correspond to cognitive organi-
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composition and localization.

4. DISTRIBUTED MECHANISMS FOR GENOMIC REGULATION

Stuart Kauffman (1986; forthcoming, chs. 9-13) has developed a network
model for examining the structure and origin of genomic regulatory sys-
tems. His work can be understood as directed, in part at least, to the
question of how genetic regulatory systems can be maintained in the face
of genetic mutation and recombination.'® One result of research on the
mechanisms of gene expression in recent decades has been the recogni-
tion of complex sets of genes that regulate the expression of other genes.
The activity of regulatory genes is probably relatively specific, but what is
indicated by this work is a fairly complex network of genes connected
either directly or indirectly; as a consequence, any mutations or transposi-
tions affecting regulatory genes would alter the expression of the genetic
system as much as—indeed, more than—would mutations in nonregula-
tory genes. The changes in these genes should have complex ramifications
downstream. The more complex and interactive the regulatory system is,
the more unstable and delicate it would seem to be, as it would offer more
loci where the effects of mutation could have widespread effects.
Kauffman claims that unrealistically high selection pressures would be
required to counter the mutation rates and maintain a regulatory system,
once it becomes sufficiently complex. To give a definite form to the claim,
he develops models with an arbitrarily defined set of “correct” connec-
tions and takes fitness to be a function of the frequency of such connec-
tions. If we assume a fixed mutation rate and a basal fitness of 0, then the
class of fitness functions is given by W_ = (G /T)*,, where T is the total
number of regulatorv connections in the network and G is the number of
the “correct,” or “good,” connections. The value of a corresponds to three
ways fitness can vary with changes in the frequency of good connections:
If a = 1, then fitness falls off linearly as the frequency of bad connections
increases. If a > 1, the fitness function is concave, falling off steeply at first
and then leveling off. If @ < 1, the fitness function is convex, falling off
slowly at first and then more rapidly. If we suppose the mutation rate is
constant, then, Kauffman reasons, because fitness is inversely propor-
tional to T, increasing the number of regulatory connections will mean a
decrease in the significance of selection; that is, increasing T will decrease -
the absolute fitnesses of alternatives and thereby decrease their absolute-
fitness differences.'” Mutation pressures will then be more likely to over-




someone with a more conventional viewpoint would perceive the com-
plexity as an adaptation maintained in the face of selection and would
confront the problem of identifying suitable forces, from Kauffman’s van-
tage point the stability of the regulatory system may not be something that
requires a special explanation in terms of selection. Kauffman suggests
that, in fact, the genome is spontaneously self-organizing. To support this
suggestion he again examines statistical features of systems with multiple
interconnections. He shifts from seeking a highly localized explanatory
unit to exploring the power and structure of a distributed system. Decom-
position and localization would assume that one could identify discrete
genetic units responsible for specific characteristics of the system, includ-
ing regulatory control. Accordingly, some researchers have tried to iden-
tify specific connections between regulator genes and the genes regu-
lated. Kauffman looks instead at the patterns of interactions between
genes, not at the specific effects of any genes. In many cases, he says, the
self-organizing pattern of connections in the genome may be the critical
determinant of the genome’s behavior, rather than any gene or set of
genes that must be maintained by selection. -

Kauffman’s model networks have a fixed number of “genes,” treated as
nodes in the model, with a set number of random connections between
them. These connections provide the vehicle for one gene to regulate the
behavior of another. Kauffman then analyzes the properties of such net-
works. The ratio of the number M of connections to the number N of genes
affects the expected number of genes any one gene potentially influences
directly. This in turn affects (1) how many steps are required for a gene to
communicate to all that it regulates and (2) the chances of a given gene
receiving feedback, via a loop, from itself. In networks where M exceeds
N, connected circuits typically form: some genes have regulatory influ-
ence on most others, many genes lie on feedback-loops and eventually
receive activation from themselves. Just beyond the point where the ratio
of M to N exceeds 1.0, both the average radius of effect of each such gene
and the mean length of feedback-loops between genes increase. If M then
becomes much larger than N, however, both the average radius and mean
length of feedback-loops fall as more and more genes are connected
directly.

Kauffman’s model regulatory networks (forthcoming, ch. 5) rely on sim-
ple Boolean operations. That is, he confines himself to networks where
each unit (gene) is limited to one of two values (on, off ) and in which there
are deterministic transitions according to Boolean operations. He focuses
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phage are governed by such Boolean functions (1986, p. 174).'® He then
shows that even when such systems are confronted with random altera-
tions—that is, mutations—they will exhibit highly ordered regulatory be-
haviors. There will be a spontaneous, natural order to the system.

As a simple illustration, consider the three-unit system depicted in Fig-
ure 9.8: each unit sends activation to the other two, and the response of
each to the incoming signals is a Boolean AND or OR operation. The value
of unit 1 is + if the values of both units 2 and 3 were + on the previous
cycle; otherwise it assumes a — value. Unit 1 is governed by an AND
function. Units 2 and 3 will record a + value if any other unit assumed a
+ value in the previous cycle; otherwise they will assume a — value.
Units 2 and 3 are governed by an OR function. Both functions are canalyz-
ing, as unit 1 will go to — if either unit 2 or unit 3 is — on the previous
cycle, and units 2 and 3 will go to + if either of the other units are + on
the previous cycle. A system with three Boolean nodes has eight possible
patterns of activation. Assuming the network is synchronously updated—
that is, a pattern at time ¢t completely determines the new pattern to be
found at ¢ + 1—then, because there are a finite number of states, and
deterministic transitions, the system will inevitably encounter cycles.
Once it enters a cycle, it will repeat it indefinitely. These cycles are what
Kauffman calls dynamical attractors or attractor state cycles. For exam-
ple, the alternation between (— — + ) and (— + —) is a stable cycle.
Which cycle a given network will settle into depends totally upon the
starting point.

Kauffman suggests that Boolean nets have a number of properties that
make them suggestive for understanding genomic regulation. If we limit
our attention to cases in which M/N > 1 and to relatively large systems in
which N is on the order of 10 or 10°, then these cases will also find dynam-
ical attractors. It turns out that such systems have parallels with the be-
havior of eukaryotic cells. For example, the number of cell types in an
organism and the number of attractor state cycles in a network are both
roughly the square root of the number of constituent genes. More impor-
tantly, both turn out to be very stable in the face of mutations. Kauffman
has carried out computer simulations in which mutations occur as random
alterations in the wiring diagrams of a population of 100 networks. Given
appropriate values for M and N, the stability in the model networks is so
great that 90% of possible perturbations in these networks leave no net
change on the overall stable state of the network. Even when units are
deleted from the network, only 10-15% of other units alter their pattern
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Figure 9.8. A Simple Boolean Network with Three Nodes. In this
case we have three nodes influencing each other. Unit 1 computes an
“and” function, assuming a + value at step n+ 1 if and only if both
units 2 and 3 assume a + value at step n. Units 2 and 3 compute “or”
functions, assuming a + value at step n+ 1 if and only if at least one
of the other two units assume a + value at step n. The system will
exhibit simple cycles, or attractors; for example, both the case where
all units are on and the case where all are off are stable, or attractor,
states.

of expression. The reason for the stability of such systems and their ability
to migrate to only a few alternative states is that a majority of the units in
the system settle into fixed activation states that do not alter as the system
cycles, thereby producing large forcing structures which inhibit propaga-
tion from other units through the system. Only the remaining isolated
networks are capable of undergoing change, so they alone determine the
range of variability in the system.

If the genome consists of large ensembles of genes mutually influencing
and regulating one another, then there will be a stable, inherent order to
the system independent of the influence of selection. The networks of
genes will tend to be stable, independently of selection. As Kauffman puts
it, given “statistical theories of the expected structure and behavior” of
genomic regulatory networks, then those aspects of structure and behav-
ior that would be predicted constitute “typical or generic properties of the
ensemble of genomic regulatory networks” (forthcoming, ch. 11).
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power to natural selection, viewing it as capable of generating almost any
possible genetic state that is highly adaptive. In contrast, Kauffman con-
tends that the null state has quite powerful properties which selection is
generally powerless to overcome:

A general implication of [this class of models] is that a sufficiently complex ge-
netic regulatory wiring diagram will approach arbitrarily close to the typical
organizational properties of the unselected system. Thus, for sufficiently com-
plex genomic systems, predications from the typical properties to be expected
in the absence of further selection to those actually found in organisms would be
reasonably accurate. (1986, p. 180)

Kaufmann’s vision of the genetic regulatory system is close in spirit and
method to connectionist models of psychological functioning. In both, it is
ultimately the statistical pattern of the connections in the system, and not
the jobs performed by specific units in the system or outside the system,
that is critical to the behavior of the system. One respect in which the case
examined by Kauffman is interestingly different from that discussed by
connectionists is that, on the basis of his network model of the genetic
regulatory system, Kauffman argues for a need to revise the question of
what needs to be explained. What appeared to require explanation was
the ability of selection to maintain the regulatory system. If Kauffman is
correct, however, this will turn out not to be an issue. To the degree the
regulatory system is stable, it is so independently of selection; the stability
turns out to be due to self-organizing features of the genetic network it-
self. What requires explanation through selection is not how the system
maintains its stability, but how it can be transformed from the stable state.

5. CONCLUSION: MECHANISTIC_ EXPLANATIONS WITHOUT
FuncTIONAL DECOMPOSITION AND LOCALIZATION

We have briefly described three cases in which researchers have pushed
beyond classical mechanistic views. In Part III we saw that traditional
mechanism, guided by localization and decomposition, explains why a
system behaves as it does in terms of the behavior of its individual compo-
nents. Even the explanations of complex systems with a variety of inte-
grated circuits still make a major appeal to the contributions of specific
modules in the system. In the cases sketched in this chapter, by contrast,
this strategy is abandoned; instead, the approaches attempt to show how
the properties of the system emerge simply as a result of the connectivity




surprising feature of these networks is that the pattern of connections re-
sults in systemic properties that would not be anticipated by focusing on
the contributions of component units.

While network models are not classical mechanistic models, there is
still a clear sense in which they are mechanistic. The behavior of the sys-
tem is a product of the activities occurring within it. All the components
are simple mechanical units, and their interactions are all characterized in
simple mechanical terms. If the models are well motivated, then compo-
nent function will at least be consistent with physical constraints. The
difference is that what is important in determining the behavior of the
system in a network model is not the contribution of the parts, but their
organization. In simpler network models the parts are interchangeable;
indeed, they are typically simple on/off units. Their role is to excite or
inhibit the activities of other units in the system. The connections within
the system determine the patterns of behavior that are observed in the
system. There is clearly no case here for abandoning a mechanistic per-
spective. Nonetheless, these systems defy the approach to mechanism
that we charted in earlier chapters, because these systems are neither
decomposable nor even minimally decomposable, and systemic functions
cannot be localized. Whether we are interested in cognitive capacities or
genomic regulation, analyzing the components of the system in isolation
throws no light on the phenomenon under investigation. One can only
produce the phenomenon in the whole (or nearly whole) system. Analytic
techniques that focus on the behavior of individual components through
excitatory or inhibitory studies will fail; moreover, synthetic approaches
are not liable to reveal component structure or organization. As a conse-
quence, localization and decomposition break down with network
systems.

Connectionist systems thus defy some of our traditional tools for study-
ing natural systems, for these tools rely on being able to decompose the
system, work on components singly, and then build up again to under-
stand the whole. It should not surprise us that there are such connection-
ist systems when we recall the fallibility of heuristics. For many problems
localization and decomposition have been highly successful, either in giv-
ing accurate accounts of how certain systems work, or accounts that con-
stitute good approximations. When natural systems are not nearly, or at
least minimally, decomposable, then those heuristics will lead us astray.
Human cognition and genetic regulation may turn out to be processes for
which localization and decomposition fail. Insofar as connectionist sys-
tems are intrinsically parallel systems, it is not possible to understand
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dergoes, the operating principles and architecture are fundamentally dif-
ferent. To understand the behavior of these systems it is necessary to
understand that a multitude of such changes occur simultaneously. "

The development of network models is likely to alter our conception of
machines and mechanism in radical ways. In particular, it may alter our
understanding of the respects in which properties of a mechanistic system
can be said to be emergent (cf. Bechtel and Richardson 1992). Advocates
of emergentism have maintained that certain kinds of systems are capable
of giving rise to radically new properties not present in the components of
the system. Such appeals to emergence have struck many as mysterious,
others as trivial. On the one hand, it is too easy to see that when a certain
degree of complexity is reached in a system, new properties will appear:
a square has properties none of the component line-segments have. On
the other hand, emergence is vacuous unless we have some account of
how the organization matters. In network systems we can understand how
emergent properties appear without waxing mysterious. In calling the
systemic properties of network systems emergent, we mark a departure
from the behavior of simpler systems and indicate that traditional mecha-
nistic strategies for understanding network systems may simply fail. But
the behavior of the system is not unintelligible or magical; it follows from
the nature of the connections between the components within the system.

The emergent behavior of connectionist systems may be mysterious in
another sense, however: We may not be able to follow the processes
through the multitude of connections in a more complex system, or to see
how they give rise to the behavior of the system. We may fail in the at-
tempt to understand such systems in an intuitive way. To quote Simon
once again, complex systems that are not hierarchical and decomposable
“may to a considerable extent escape our observation and understanding”
(1969, p. 219).




