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Preface

Cognitive science is an interdisciplinary research cluster which
emerged from the cognitive revolution that began in the 1960s and
matured in the 1970s. Its constituent disciplines, which include artifi-
cial intelligence, cognitive psychology, linguistics, and parts of neuro-
science, philosophy, and anthropology, have managed an uneasy unity
amid diversity, because they have shared certain core assumptions of
the symbolic approach to cognition. Cognitive science is still rather
young, but already this modicum of unity has been challenged by an
alternative theoretical approach that rejects those assumptions.

The new approach is variously referred to using the terms connec-
tionism, parallel distributed processing, or neural networks. (We shall em-
ploy the term connectionism as it seems most generic.) In keeping with
its varied designations, connectionism has a number of central theorists
who draw upon widely varying disciplinary backgrounds and advocate
somewhat different conceptions of their common cause. Among the
major investigators who have stirred interest in connectionism are
David Rumelhart, James McClelland, Geoffrey Hinton, James Ander-
son, Gerald Edelman, Stephen Grossberg, John Hopfield, Teuvo
Kohonen, Jerome Feldman and Terrence Sejnowksi.

Our own presentation emphasizes the work of the first three inves-
tigators, to whom we owe a considerable debt. One of us (Abrahamsen)
was Dave Rumelhart’s graduate student at the University of California,
San Diego, during the period when he worked with semantic networks
rather than connectionist networks. Not everyone has the opportunity
to follow the work of their dissertation advisor through not just one,
but two, revolutions in their discipline. She is grateful to have benefited
from his talents as an advisor, and for the example he has set as a
student of cognition. His deep curiosity, innovative approach to theory,
and careful but flexible use of research tactics are more than worthy of
emulation. Jay McClelland’s role in her initiation into connectionism is
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more limited but nevertheless appreciated: he graciously allowed her to
sit in on his research meetings when she was an intermittent visitor at
Carnegie Mellon University during the fall of 1987. His energy and
creativity, and that of his students as well, made for a very stimulating
group. (She is also grateful to David Klahr for making an office and
other resources available to her at CMU.) The other of us (Bechtel)
co-directed a workshop on connectionist models with Ulric Neisser at
Emory University in the summer of 1988. Geoff Hinton gave a first-
rate series of lectures during this workshop, and we both benefited im-
mensely from his deep understanding of networks and from his adept
handling of the astounding ideas which he comes by so naturally. Dick
Neisser did his usual superb job of holding gems of ideas up to the light
and examining them for their flaws and unexpected angles. In this
workshop he played the role of interested observer, rather than convert
to connectionism; however, we see a fit between his own neo-ecological
psychology and the future development of networks (as we discuss in
chapter 8). There are many other contexts in which we have benefited
from his wit and wisdom since we all came to Atlanta in 1983, and we
take this opportunity to express our appreciation. Finally, we issue the
standard disclaimer: None of these individuals is responsible for any
errors that we may have made in presenting their work or ideas in this
book; also, our interpretations of connectionist systems and their impli-
cations are our own except where we have specifically attributed a po-
sition to a particular individual.

This book is intended to provide a wide range of readers with a basic
understanding of connectionist networks, and with some appreciation
for the conceptual issues that networks raise with respect to our theor-
izing about the mind. For those with little or no previous exposure to
connectionist networks, chapters 2 and 3 are intended as a primer,
which can provide sufficient understanding to appreciate new proposals
and ongoing arguments about connectionism. (Appendix B offers a
glossary which should also be helpful for reference.) Subsequent chap-
ters focus on conceptual issues and implications of connectionism. In
particular, chapters 4 and 5 examine pattern recognition and nonpro-
positional representations of knowledge, respectively, as tasks that are
(a) more broadly relevant than is generally acknowledged, and (b) par-
ticularly suitable for connectionist modeling. Chapter 6 then presents
two connectionist simulations that were designed to model higher men-
tal capabilitics in the domains of language (development of past-tense
formation) and reasoning (making inferences about kinship relations).
Some representatives of the symbolic tradition have made vigorous
arguments against the viability of connectionist modeling. In chapter 7
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we review two well-known papers in this genre, and then consider three
avenues of response on the part of connectionists. Finally, in chapter 8
we explore the implications of connectionism for the various disciplines
that compose the cognitive science research cluster.

Connectionist networks are dynamical systems that are described by
mathematical equations. To make the mathematics as accessible as
possible, we have used a mnemonic notational system and have minim-
ized the amount of detail presented. To provide concrete experience

.with the functioning of connectionist networks, we have provided a

step-by-step guided tour of several running simulations. These simu-
lations have all been run using the software provided with McClelland
and Rumelhart’s Explorations in Parallel Distributed Processing: A
handbook of models, programs, and exercises (1988). Versions of the
software are available for both the IBM-PC (or compatibles) and the
Macintosh. Readers who are attracted to connectionist modeling are
advised to explore this software. There is no better way to begin to ap-
preciate the character of connectionist systems than to run some simple
simulations, and this software makes it quite easy to do so.

Because we refer so frequently to the three PDP books by David
Rumelhart and James McClelland, we use a special set of abbreviations
for these books. The two 1986 volumes entitled Parallel Distributed
Processing : Explorations in the Microstructure of Cognition are composed
of 26 chapters, each of which was written by some combination of
Rumelhart, McClelland, and the members of the PDP Research Group
at UCSD. We refer to these chapters by their authors, date of publi-
cation (1986), and by chapter number. For example, chapter 14 (which
happens to be in volume 2) is referred to as Rumelhart, Smolensky,
McClelland, and Hinton (1986, in PDP:14). The third volume, which
is the 1988 book described in the preceding paragraph, is referred to as
the Handbook. The PDP books use more than one notation, and it is
somewhat different from ours. Appendix A compares our notation to
that of PDP:2 and PDP:8, and also shows schematically at what point
in processing each equation is applied.

There are a number of people to whom we are specifically indebted
for their help with this project. Four people read the initial draft of
the entire manuscript and offered us detailed constructive advice:
Lawrence W. Barsalou, Robert N. McCauley, Robert C. Richardson,
and Paul R. Thagard. James Garson read and commented on chapters
5,7, and 8. Each of these individuals offered copious good suggestions,
many of which we have incorporated into the publication version of the
book. They also provided ideas and interpretations, which we gave up
trying to credit individually because they were so numerous. Also, Larry
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Barsalou wrote sufficient rude remarks on his copy of the manuscript
that we responded by giving increased attention to non-traditional sym-
bolic models in the publication version. We express our deep thanks to
these four individuals for their contributions. In addition, much of the
material in this book was presented informally to the Cognitive Science
Group at Georgia State University, which included James L. Pate,
Richard Thompson Putney, Paul Allopenna, David Washburn, Robert
Mankoff, and Quinton Gooden. Also, a study group at the University
of Cincinnati, consisting of Christopher Gauker, Kelly Hite, Melinda
Hogan, William E. Morris, and Robert Richardson, read the manu-
script during the fall of 1989. We appreciate the comments made by the
members of these groups, which helped to improve the manuscript. We
have benefited more generally from discussion of issues explored in
this book with a number of individuals, including Richard Billington,
Dorrit Billman, and Suge-Yuki Kuroda. Henri Madigan and Britten
Poulson provided valuable assistance in collecting bibliographical
materials that were used in preparing the text. We also wish to acknow-
ledge a Georgia State University Research Grant which provided com-
puter resources for the simulations presented in this book. Finally,
during fall 1989, one of us (Abrahamsen) was a visiting scholar at Skid-
more College, and is grateful for the college’s support and stimulating
discussions with a number of its faculty.

1

Networks versus Symbol System:s:
Two Approaches to Modeling
Cognition

A Revolution in the Making?

The rise of cognitivism in psychology, which, by the 1970s, had suc-
cessfully established itself as a successor to behaviorism, has been
characterized as a Kuhnian revolution (Baars, 1986). Using Kuhn’s
(1962/1970) term, the emerging cognitivism offered its own paradigm,
that is, its way of construing psychological phenomena and its research
strategies, both of which clearly distinguished it from behaviorism (for
overviews, see Neisser, 1967; Lindsay and Norman, 1972). This change
was part of a broader cognitive revolution that not only transformed
a number of disciplines such as cognitive and developmental psycho-
logy, artificial intelligence, linguistics, and parts of anthropology, philo-
sophy, and neuroscience; it also led to an active cross-disciplinary
research cluster known as cognitive science. As the cognitive paradigm
developed, the idea that cognition involved the manipulation of
symbols became increasingly central. These symbols could refer to ex-
ternal phenomena and so have a semantics. They were enduring entities
which could be stored in and retrieved from memory and transformed
according to rules. The rules that specified how symbols could be
composed (syntax) and how they could be transformed were taken to
govern cognitive performance. Given the centrality of symbols in this
approach, we shall refer to it as the symbolic paradigm.

In the 1980s, however, an alternative framework for understanding
cognition has emerged in cognitive science, and a case can be made that
it is a new Kuhnian (Schneider, 1987). (We shall be using the term cog-
nition very broadly to cover a range of mental processing, including not
just activities involving reasoning and memory, but also language, per-
ception, and motor control.) This new class of models are variously
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known as connectionist, parallel distributed processing (PDP), or neural
network models. The “bible” of the connectionist enterprise, Rumel-
hart and McClelland’s two volumes entitled Parallel Distributed Pro-
cessing (1986), sold out its first printing prior to publication and sold
30,000 copies in its first year. Clearly connectionism has become the
focus of a great deal of attention.

Connectionism can be distinguished from the traditional symbolic
paradigm by the fact that it does not construe cognition as involving
symbol manipulation. It offers a radically different conception of the
basic processing system of the mind-brain. This conception is in-
spired by our knowledge of the nervous system. The basic idea is that
there is a network of elementary units or nodes, each of which has some
degree of activation. These units are connected to each other so that act-
ive units excite or inhibit other units. The network is a dynamical sys-
tem which, once supplied with initial input, spreads excitations and
inhibitions among its units. In some types of network, this process does
not stop until a stable state is achieved. To understand a connectionist
system as performing a cognitive task, it is necessary to supply an
interpretation. This is typically done by viewing the initial activations
supplied to the system as specifying a problem, and the stable config-
uration produced at the end of processing as the system’s solution
to the problem.

Both connectionist and symbolic systems can be viewed as computa-
tional systems. But they advance quite different conceptions of what
computation involves. In the symbolic approach, computation involves
the transformation of symbols according to rules. This is the way we
teach computation in arithmetic: we teach rules for performing
operations specified by particular symbols (e.g., +, ~) on other sym-
bols which refer to numbers. When we treat a traditional computer as a
symbolic device, we view it as performing symbolic manipulations
specified by rules which typically are written in a special data-structure
called the program. The connectionist view of computation is quite dif-
ferent. It focuses on causal processes by which units excite and inhibit
each other and does not provide either for stored symbols or rules that
govern their manipulations.

While connectionism has achieved widespread attention only in the
1980s, it is not a newcomer. Network models, which were predecessors
of contemporary connectionist models, were developed and widely dis-
cussed during the early years of the cognitive revolution in the 1960s.
The establishment of the symbolic paradigm as virtually synonymous
with cognitive science only occurred at the end of the 1960s, when the
symbolic approach promised great success in accounting for cognition
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and the predecessors of connectionism seemed inadequate to the task. A
brief recounting of this early history of network models will provide an
introduction to the connectionist approach and to the difficulties which
it is thought to encounter. The issues that figured in this early contro-
versy still loom large in contemporary discussions of connectionism and
will be discussed extensively in subsequent chapters. (For additional
detail see Cowan and Sharp (1988) from which we have largely drawn
our historical account, and Anderson and Rosenfeld (1988) which
gathers together many of the seminal papers and offers illuminating
commentary.)

Forerunners of Connectionism: Pandemonium and Perceptrons

The initial impetus for developing network models of cognitive per-
formance was the recognition that the brain is a network. Obviously,
given the complexity of the brain and the limited knowledge available
then or now of actual brain functioning, the goal was not to model brain
activity in complete detail. Rather, the goal was to model cognitive
phenomena in systems that exhibited some of the same basic properties
as the network of neurons in the brain. The foundation was laid by
Warren McCulloch and Walter Pitts in a paper published in 1943,
They proposed a simple model of neuron-like computational units and
then demonstrated how these units could perform logical compu-
tations. Their “formal neurons’” were binary units (i.e., they could
either be on or off ). Each unit would receive excitatory and inhibitory
inputs from certain other units. If a unit received just one inhibitory
input, it was forced into the off position. If there were no inhibitory
inputs, the unit would turn on if the sum of the excitatory inputs
exceeded its threshold. McCulloch and Pitts showed how configu-
rations of these units could perform the logical operations of AND,
OR, and NOT. McCulloch and Pitts further demonstrated that any
process that could be performed with a finite number of these logical
operations could be performed by a network of such units, and that, if
provided with indefinitely large memory capacity, such networks would
have the same power as a Universal Turing machine.

The idea captured by Pitts-McCulloch “neurons” was elaborated in
a variety of research endeavors in succeeding decades. John von Neu-
mann (1956) showed how such networks could be made more reliable
by significantly increasing the number of inputs to cach particular unit
and determining each unit’s activation from the statistical pattern of
activations over its input units (e.g., by having a unit turn on if more
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than half of its inputs were active). In von Neumann’s networks each
individual unit could be unreliable without sacrificing the reliability of
the overall system. Building such redundancy into a network seems to
require vastly increasing the number or units, but Winograd and
Cowan (1963) developed a procedure whereby a given unit would con-
tribute to the activation decision of several units as well as being
affected by several units. This constitutes an early version of what is
now referred to as ‘‘distributed representation’’ (see chaper 2).

In addition to formal characterizations of the behavior of these
networks, research was also directed to the potential applications of
these networks for performing cognitive functions. McCulloch and
Pitts’ first paper was devoted to determining the logical power of net-
works, but a subsequent paper (Pitts and McCulloch, 1947) explored
how a network could perform pattern-recognition tasks. They were in-
trigued by the ability of animals and humans to recognize different
versions of the same entity even though they might appear quite diff-
erent. They construed this task as requiring multiple transformations
of the input image until a canonical representation was produced, and
they proposed two networks that could perform some of the required
transformations. Each network received as input a pattern of activation
on some of its units. The first network was designed to identify in-
variant properties of a pattern (properties possessed by a pattern no
matter how it was presented), while the second transformed a variant
into a standard representation. Because their inspiration came from
knowledge of the brain, they presented evidence that the first type of
network captured properties of the auditory and visual cortex, while the
second captured properties of the superior colliculus in controlling eye
movements.

Frank Rosenblatt was one of the major researchers to pursue the
problem of pattern recognition in networks. Like Pitts and McCulloch,
he worked principally with binary units in layered networks, that is,
networks in which one set of units receives inputs from outside and
sends excitations and inhibitions to another set of units, which may
then send inputs to yet a third group. He also explored networks in
which later layers of units might send excitations or inhibitions back
to earlier layers. Rosenblatt referred to such systems as perceptrons
(see figure 1.1). He supplemented McCulloch and Pitts’ networks by
making the strengths (commonly referred to as the weights) of the
connections between units continuous rather than binary, and by
introducing procedures for changing these weights, enabling the net-
works to be trained to change their responses. For networks with two
layers and connections running only from units in the first layer to
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Sensory
units

ORORCRS

Motor
units

Responses

Figure 1.1 An elementary perceptron, as investigated by Rosenblatt (1958). Inputs

are supplied on the four sensory units on the left and outputs are produced on the two
motor units at the bottom. The horizontal and vertical lines represent connections; the
diamonds at their intersections represent synapses whose weights can be modified if
incorrect outputs are generated. From J. D. Cowan and D. H. Sharp (1988) Neural nets
and artificial intelligence, Daedalus, 117, p. 90, Reprinted with permission.

those in the second, Rosenblatt’s procedure was to have the network
generate, using existing weights, an output for a given input pattern.
The weights on connections feeding into any unit that gave what was
judged to be an incorrect response were changed (those feeding into
units giving the correct response were left unaltered). If the unit was off
when it should have been on, an increase was made to all weights on
connections that had carried any activation to it (i.e., came from units
that had been active). Conversely, if the unit was on when it should
have been off, these weights were reduced. Rosenblatt demonstrated
the important Perceptron Convergence Theorem with respect to this
training procedure. The theorem holds that if a set of weights existed
that would produce the correct responses to a set of patterns, then
through a finite number of repetitions of this training procedure the
network would in fact learn to respond correctly (Rosenblatt, 1961; see
also Block, 1962).
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Rosenblatt emphasized how the perceptron differed from a symbolic
processing system. Like von Neumann, he focused on statistical pat-
terns over multiple units (e.g., the proportion of units activated by an
input), and viewed noise and variation as essential. He contended that
by building a system on statistical rather than logical (Boolean) prin-
ciples, he had achieved a new type of information processing system:

It scems clear that the class C7 perceptron introduces a new kind of information
processing automaton: For the first time, we have a machine which is capable of
having original ideas. As an analogue of the biological brain, the perceptron,
more precisely, the theory of statistical separability, seems to come closer to
meeting the requirements of a functional explanation of the nervous system
than any system previously proposed. ... As a concept, it would seem that the
perceptron has established, beyond doubt, the feasibility and principle of non-
human systems which may embody human cognitive functions at a level far be-
yond that which can be achieved through present day automatons. The future
of information processing devices which operate on statistical, rather than logi-
cal principles seems to be clearly indicated. (Rosenblatt, 1958, p. 449, quoted in
Rumelhart and Zipser, 1986, in PDP:5, pp. 56 7)

Oliver Selfridge (1959) was another of the early investigators of the
pattern recognition capabilities of network models. Unlike Rosenblatt,
he assigned a particular interpretation to each of the units in his net-
work. One of the pattern-recognition tasks he explored was recognition
of letters, a task that is made difficult by the fact that different people
write their letters differently. He called his model pandemonium, captur-
ing the fact that his model was composed of cognitive demons that per-
formed computations in parallel without attention to one another, and
each “‘shouted out” its judgement of what letter had been presented
(see figure 1.2). These cognitive demons each specialized in gathering
evidence for one particular letter; the greater the evidence the louder
they shouted. The decision demon then made the identification of the
letter on the basis of which unit shouted the loudest. The evidence
gathered by each cognitive demon was supplied by a lower layer of fea-
ture demons. Each feature demon responded if its feature (e.g., a hori-
zontal bar) was present in the image. The feature demon was connected
to just those cognitive demons whose letters contained its feature.
Thus, a cognitive demon would respond most loudly if all of its
features were present in the image, and less loudly if some but not all of
its features were present. One of the virtues of this type of network is
that it would still make a correct or plausible judgement about a letter
even if some of its features were missing or atypical (see Selfridge,

1959; Selfridge and Neisser, 1960).
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Cognitive demons

Figure 1.2 Selfridge’s pandemonium model. The demons at each level beyond the image
demon (which merely records the incoming image) extract information from the demons
at the preceding level. Thus, a given feature demon responds positively when it detects
evidence of its feature in the image, and a cognitive demon responds to the degree that
the appropriate feature demons for its letter are active. Finally, the decision demon
selects the letter whose cognitive demon is most active. From P. Lindsay and D. A.
Norman (1972) Human Information Processing, San Francisco: Freeman, p. 116.
Reprinted with permission.

Early researchers recognized that, in addition to modeling pattern
recognition, networks might be useful as models of how memories were
established. In particular, researchers were attracted to the problem of
how networks might store associations between different patterns. An
extremely influential proposal was developed by Donald [Hebb (1949),
who suggested that when two neurons in the brain were jointly active,
the strength of the connection might be increased. This idea was
further developed by Wilfrid Taylor (1956), who explored networks
of analog units that took activations within a continuous range (e.g., — 1
to +1). In the network he proposed, a single set of motor units was
connected to two different sets of sensory units (which we shall call the
base units and the learning units). The network was set up such that
each pattern on the base units was associated with a pattern on the
motor units. A different set of patterns was defined for the learning
units. No associations to the motor units were specified, but each learn-
ing unit pattern was assigned an association with one base unit pattern,
When the network was run, the associated sensory patterns were
activated at the same time. The eventual outcome was that the learning
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units acquired the ability to generaie the same motor patterns as the
base units with which they were associated.

Another researcher who pursued this type of associative memory net-
work was David Marr (1969), who proposed that .he cerebellum is such
a network which can be trained by the cerebrum to control voluntary
movements. The cerebellum consists of five different kinds of cell or
unit, with the modifiable connections lying between the granule cells
and Purkinje cells. The other cell types serve to set the firing thresholds
on these two cell types. The development of connections between the
granule cells and Purkinje cells, he proposed, underlay the learning of
sequences of voluntary movements in activities like playing the piano.
Marr subsequently proposed similar models for the operation of the
hippocampus (Marr, 1971) and the neocortex (Marr, 1970).

The early history of network models we have summarized in this sec-
tion indicates that there was an active research program devoted to ex-
ploring the cogmitive significance of such networks. It is important to
emphasize that while some of this research was explicitly directed at
modeling the brain, for Rosenblatt and some other researchers the goal
was to understand cognitive performance more generally. The relative
prominence of research devoted to network models diminished in the
late 1960s and early 1970s, as the alternative approach of symbolic
modeling became dominant. (Semantic networks, hybrid models that
place symbols in network structures, also arose and thrived in the
1970s; as discussed in chapter 4.) In the next two sections we shall
examine what made the symbolic approach so attractive to cognitive
researchers, and how network research (in the original tradition pion-
eered by Rosenblatt) declined until rejuvenated in the 1980s. Finally,
we shall sketch the relation between the network and symbolic models
of the 1980s.

The Allure of Symbol Manipulation

The symbol manipulation view of cognition has several roots. One of
these lies in philosophy, in the study of logic. A logical system consists
of procedures for manipulating symbols. In propositional logic the
symbols are taken to represent propositions or sentences and con-
nectives such as AND and OR. Generally, there is a clear goal in such
manipulation. For example, in deductive logic we seek a set of rules that

will enable us to generate only true propositions as long as we start with -

true propositions. A system of such rules is spoken of as truth pre-
serving. The simple inference rule modus ponens is an example of a
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truth-preserving rule. From one proposition of the form ‘“‘If p, then ¢”
and another of the form ““p,”” we can infer a proposition of the form “‘q”
{where p and ¢ are placeholders for specific propositions).

We have actually adopted two perspectives in the previous para-
graph, and it is the relation between them that makes logic, and systems
designed to implement logic, so powerful. From one perspective, we
treat the symbols for propositions as representational devices. For
example, we conceive of a proposition as depicting a state of affairs that
might or might not hold in the world. From this perspective, we speak
of a proposition as either true (if the proposition corresponds to the way
the world is) or false (if it does not correspond). This perspective is gen-
erally known in logic as a model theoretic perspective. We think of a
model as a set of entities and identify those propositions as true whose
ascriptions correspond to the properties that the entities in the model
actually possess. Within this framework we can evaluate whether a pat-
tern of inference is such that for any model in which the premises are
true, the conclusion will also be true. The second perspective, known as
the proof theoretic perspective, focuses not on the relations between the
propositions and the objects they represent, but simply on the relations
among the propositions themselves, construed as formal entities. When
we specify inference rules in a logical system, we focus only on the syn-
tax of the symbols and disregard what they refer to. What gives logic its
power is, in part, the possibility of integrating these two perspectives,
of designing proof procedures that are complete, that is, that will enable
us to derive any proposition that will be true in all models in which the
premises are true.

The relation between proof theory and model theory gives rise to a
very powerful idea. If intelligence depended only upon logical reason-
ing, for which the goal was truth preservation, then it would be possible
to set up formal proof procedures, which will achieve intelligent per-
formance. However, intelligence does not depend solely on being able
to make truth-preserving inferences. Sometimes we need to make
judgements as to what is likely to be true. This is the domain of induc-
tive logic. The goal of inductive logic is to establish formal rules, anal-
ogous to the proof theoretic procedures of deductive logic, that lead
from propositions that are true to those that are likely to be true. If
such rules can be identified, then we may still be able to set up formal
inference procedures that produce intelligent performance.

The crucial assumption in both deductive and inductive logic is that
in order to process a symbol, we only need to consider its formal prop-
erties. We can disregard its representational function, that is, whether it
is true or not, and if true, what state of affairs it describes. Thus, with a
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formal system, it is often possible to reinterpret the symbols that are
used (i.e., assign them a new representational role) without affecting
how the symbol processing system itself operates.

The idea that intelligent cognitive processes are essentially processes
of logical reasoning has a long history, captured in the long-held view
that the rules of logic constitute rules of thought. It is found in authors
such as Hobbes, who treated reasoning as itself comparable to math-
ematical computation and suggested that thinking was simply a process
of formal computation:

When a man reasoneth, he does nothing else but conceive a sum total, from ad-
dition of parcels; or conceive a remainder, from subtraction of one sum from
another; which, if it be done by words, is conceiving of the consequence of the
names of all the parts, to the name of the whole; or from the names of the whole
and one part, to the name of the other part. ... These operations are not inci-
dent to numbers only, but to all manner of things that can be added together,
and taken from one out of another. For as arithmeticians teach to add and sub-
tract in mumbers; so the geometricians teach the same in lines, figures, solid and
supcrlicial, angles, proportions, times, degrees of swiftness, force, power, and the
like; the logicians teach the same in consequences of words; adding together two
names to make an affirmation, and two affirmations to make a syllogism; and
many syllogisms to make a demonstration; and from the sum or conclusion of a syl-
logism, they subtract onc proposition to find the other. (Hobbes [1651], 1962,
p. 41)

The idea of thinking as logical manipulation of symbols was further de-
veloped in the works of rationalists such as Descartes and Leibniz
and empiricists such Locke and Hume, all of whom conceived of the
symbols as ideas, and formulated rules for properly putting together or
taking apart ideas.

With the development of automata theory and physical computers in
the mid-twentieth century, there was a burgeoning of more subtle and
varied views of symbols and symbol manipulation. From one perspec-
tive (well characterized in Haugeland, 1981), the digital computer is
simply a device for implementing formal logical systems. Symbols are
stored in memory registers (these symbols may simply be sequences of
1’s and 0’s, implemented by on and off settings of switches). The basic
operations of the computer allow recalling the symbols from memory
and executing changes in the symbols according to rules. In the earliest
computers, the rules for transforming symbols had to be specially wired
into the machine, but one of the major breakthroughs in early computer
science was the development of the stored program. The stored pro-
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- gram is simply a sequence of symbols that directly determines what

operations the computer will perform on other symbols. The relation
between the stored program and those other symbols is much like the
relation between the formally written rule modus ponens and the symbol
strings to which it can be applied. Like the formal rules of logic, the
rules in the computer program do not consider the semantics of the
symbols being manipulated, but only their form. This perspective has
been given a variety of renderings by such symbohic theorists as
Dennett (1978), Fodor (1980), and Pylyshyn (1984).

An alternative way to construe the semantics of computational
systems was offered by Newell and Simon (1981). For them, a com-
puter is a physical symbol system consisting of symbols (physical
patterns), expressions (symbol structures obtained by placing symbol
tokens in a physical relation such as adjacency), and processes that
operate on cxpressions. They point out that there is a semantics
(designation and interpretation) within the system itself; specifically,
expressions in stored list-processing programs designate locations in
computer memory, and these expressions can be interpreted by access-
ing those locations. They regard this internal semantics as a major ad-
vance over formal symbol systems such as those of logic, and argue that
intelligence cannot be attained without it:

The Physical Symbol System Hypothesis. A physical symbol systemn has the
necessary and sufficient means for general intelligent action.

By “‘necessary” we mean that any system that exhibits general intelligence
will prove upon analysis to be a physical symbol system. By “‘sufficient” we
mean that any physical symbol system of sufficient size can be organized
further to exhibit general intelligence. (Newell and Simon, 1981, p. 41)

Hence, with respect to the question of the autonomy of syntax from
semantics, some cognitive scientists have emphasized the continuity
between computers and formal logical systems, whereas others (such
as Newell and Simon) have viewed computers as enabling advances
beyond formal systems. A similar difference in perspective arises
with respect to what work the computer is regarded as carrying out.
From a continuity perspective, computers are powerful devices for
implementing logical operations; one can write programs that will serve
the same function as inference rules in a logical system. From an
alternative perspective (Simon, 1967), it took work in artificial intel-
ligence to show us that heuristics (procedures that might obtain the
desired result, often by means of an intelligent shortcut such as pruning
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unpromising search paths) are often more useful than algorithms
(procedures that are guaranteed to succeed in a finite number of steps
but may be inefficient in a large system).

Hence, work in artificial intelligence is rooted in formal logic, but has
achieved distinctive perspectives by pursuing the idea that computers
are devices for symbol manipulation more generally. Al programs have
replaced formal logic as the closest external approximation to human
cognition; programs exist, for example, not only for proving logical
theorems or performing logical inference, but also for playing chess at a
master’s level and diagnosing diseases. The (partial) success of these
programs has suggested to many researchers that human cognitive
performance also consists in symbol manipulation; indeed, this analogy
provided, until recently, a locus of unity among cognitive scientists.

Yet another root of the symbolic approach is found in Noam
Chomsky’s program in linguistics. In his review of B. F. Skinner’s Ver-
bal Behauvior, Chomsky (1959) argued that a behavioristic account was
inadequate to account for the ability of humans to learn and use
languages. Part of his argument focused on the ‘‘creativity’” of lan-
guage; Chomsky contended that any natural language has an infinite
number of syntactically well-formed sentences, and that its speakers
can understand and produce sentences that they had not previously
encountered (Chomsky, 1957, 1968). This ability did not seem explic-
able in terms of learned associations between environmental stimuli
and linguistic responses, even if these were augmented by such pro-
cesses as generalization and analogy. In Chomsky's view, Skinner had
not succeeded in adapting the constructs of behaviorism to the precise
requirements of a linguistic account, and a quite different approach was
needed.

In particular, Chomsky developed the notion of generative grammar
as an approach to linguistic theory: to write a grammar was to specify
an automaton that could generate infinite sets of sentences (this was
easily assured by including at least one recursive rule). To evaluate
such a grammar, the linguist must determine whether it generates all
of the well-formed sentences of the target language, and only those
sentences. Chomsky described and evaluated several different classes of
generative grammars with respect to natural languages. Of particular
importance, he argued that finite state grammars (those most consistent
with a behaviorist account), were too weak even when they included
recursive rules. They could generate an infinite set of sentences, but not
the correct set. Specifically, they were unable to handle dependencies
across indefinitely long strings (e.g., the dependency between if and then
in sentences of the form “if A, then B’ where A is indefinitely long).

Networks versus Symbol Systems 13

To handle such dependencies, at least a phrase structure grammar (and
preferably a transformational grammar) was required. These grammars
produce constituent structures by applying a succession of rewrite rules
(rules which expand one symbol into a string of subordinate symbols);
indefinitely long constituents can be embedded within a phrase struc-
ture tree without affecting the surrounding dependencies. Transfor-
mational rules (rules that modify one phrase structure tree to obtain a
related, or transformed, tree) provide additional power, but the most
important and enduring part of Chomsky’s argument is the rejection of
finite state grammars.

Chomsky viewed generative grammar as a model of linguistic com-
petence; that is, a model of the knowledge of their language that
speakers actually possess in their minds. Although he pioneered the use
of (abstract) automata for specifying grammars, he did not intend to
model linguistic performance (the expression of competence in specific,
real-time acts such as the production and comprehension of utter-
ances), nor did he implement his grammars on physical computers.
Hence, his version of cognitivism is somewhat more abstract than that
of information-processing psychology. Nevertheless, many psycho-
logists were influenced by Chomsky as they moved from behaviorism to
information processing, because his grammars suggested ways to model
human knowledge using linguistic-style rules (that is, formally speci-
fied operations on strings of symbols).

Although Chomsky focused on linguistic competence, he did make
some general, controversial claims about linguistic performance. One of
these claims, that a process of hypothesis testing is involved in language
acquisition, bore implications that were fruitfully developed by Jerry
Fodor (1975). Before we can test a hypothesis, such as that the word
dog refers to dogs, we must be able to state it. Fodor reasoned that this
requires a language-like medium, which he called the language of
thought. Further, since there is no way for a child to learn this language,
it must be innate. Thus, Fodor contended that procedures for formal
symbol manipulation must be part of our native cognitive apparatus.
Fodor’s argument represents a minority position within psychology,
but virtually all researchers in the majority tradition of information
processing assume some weaker version of a symbolic approach to
cogniton.

We have briefly reviewed two strands of the symbolic approach: a
strand leading from formal logic to artificial intelligence, in which
computers came to be viewed as symbol manipulation devices, and a
strand leading from linguistics to psychology, in which human cog-
nition came to be viewed likewise as consisting in symbol manipulation.
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In cognitive science, these two strands are often brought together in a
cooperative enterprise: the design of computer programs to serve as
models or simulations of human cognition. This raises a number of
interesting issues that we can only briefly mention here (a number of
penetrating discussions are available, e.g., Haugeland, 1985). Does a
successful computer simulation closely approximate mental symbol
processing at some appropriate level of abstraction, so that both the
human and the computer are properly construed as symbol processors?
Or should true symbol manipulation be attributed to only one of the
two types of system; and if so, to the human or the computer? On one
view, the human is the true symbol manipulator (because, for example,
the human’s symbols have causal relations to external referents), and
the computer is merely a large calculator or scratchpad that can facilj-
tate the process of deriving predictions from models of human perform-
ance (similar to the meteorologist’s use of computers to calculate
equations that describe the fluid dynamics of the atmosphere, for
example). A contrasting view holds that the computer is the true sym-
bol manipulator, and that human cognition is carried out quite
differently (in less brittle fashion, as might be modeled in a network, for
example). These issues, which have been troublesome for some time,
have gained increased salience with the re-emergence of network
models in the 1980s. We turn now to a brief history of networks as an
alternative to the symbolic tradition.

The Disappearance and Re-emergence of Network Models

By the 1960s substantial progress had been made with both network
and symbolic approaches to machine intelligence. But this parity was
soon lost. Seymour Papert has provided a whimsical account:

Once upon a time two daughter sciences were born to the new science of cyber-
netics. One sister was natural, with features inherited from the study of the
brain, from the way nature does things. The other was artificial, related from
the beginning to the use of computers. Each of the sister sciences tried to build
models of intelligence, but from very different materials. The natural sister
built models (called neural networks) out of mathematically purified neurones.
The artificial sister built her models out of computer programs.

In their first bloom of youth the two were equally successful and equally pur-
sued by suitors from other ficlds of knowledge. They got on very well together,
Their relationship changed in the early sixties when a new monarch appeared,
one with the largest coffers ever seen in the kingdom of the sciences: Lord
DARPA, the Dcfense Department’s Advanced Research Projects Agency. The
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Weapon was not the dagger but the mightier pen, from which came a book -
Perceptrons . . . (1988, p. 3)

or whether it was only a symptom.
Minsky and Papert’s objective in Perceptrons was to study both the
potential and limitations of network models. They used the tool of

and Papert recognized that XOR could be computed by such a multi-
layered network, they raised an additional problem: there were no
training procedures for multi-layered networks that could be shown to
converge on a solution. As we shall discuss in chapter 3, an adaption of
Rosenblatt’s training procedure for two-layer networks has now been

problem were overcome, would it be possible to increase the size of
networks to handle larger problems? In more technical terms, this is a

The inability of networks to solve particular problems was, for many
investigators, only symptomatic of a more general problem. For them,
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the fundamental problem was that the only kind of cognitive processes
of which networks seemed capable were those involving associations.
Within limits, a network could be trained to produce a desired output
from a given input, but that merely meant that it had developed
procedures for associating that input with the desired output. Associa-
tionism was exactly what many of the founders of modern cognitivism
were crusading against. Chomsky contended, for example, that finite
automata or simple associationistic mechanisms were inadequate to
generate all the well-formed sentences of the language. One needed a
more powerful automaton capable of performing recursive operations.
The identification of network models with associationism thus under-
cut their credibility and supported the pursuit of symbolic programs as
the major research strategy in cognitive science. As we shall see in
chapter 7, many advocates of the symbolic tradition continue to fault
modern connectionism on precisely this ground.

In the early 1980s the type of network research pioneered by
Rosenblatt began once again to attract attention. Papers that employed
networks to model various cognitive performances began to appear in
cognitive journals. Geoffrey Hinton and James A. Anderson’s (1981)
Parallel Models of Associative Memory offered an accessible presen-
tation of the re-emerging network research. At the 1984 meeting of
the Cognitive Science Society, two symposia presented the network
approach and debated its role in cognitive science. One, entitled
“Connectionism versus Rules: The Nature of Theory on Cognitive Sci-
ence,” featured David Rumelhart and Geoffrey Hinton advocating
network modeling (connectionism) and Zenon Pylyshyn and Kurt
VanLehn arguing that networks were inadequate devices for achieving
cognitive performance. Debate at that session and others during the
conference occasionally became acrimonious as the connectionists be-
gan to press their alternative and challenged the supremacy of the sym-
bolic approach.

Connectionist research has increased dramatically in the 1980s.
While opposition continues, a growing number of cognitive scientists
have either “converted” to connectionism or have added connectionist
modeling techniques to their repertoire as tools they will employ for at
least some purposes. An intriguing question is why connectionism
should have re-emerged so strongly in the 1980s. While we do not offer
a comprehensive answer to this question, there are a number of factors
that seem relevant.

First, powerful new approaches to network modeling were devel-
oped, including new architectures, new techniques for training multi-
layered networks, and advances in the mathematical description of the
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behavior of nonlinear systems. Many of these innovations can be di-
rectly applied to the task of modeling cognitive processes. Second, the
credibility of some of the researchers attracted to network research has
played a role. For example, in chapters 2 and 3 we discuss an important
mathematical insight into network behavior that was proposed by John
Hopfield, a distinguished physicist. Anderson and Rosenfeld comment:

John Hopfield is a distinguished physicist. When he talks, people listen.
Theory in his hands becomes respectable. Neural networks became instantly
legitimate, whereas before, most developments in networks had been in the
province of somewhat suspect psychologists and neurobiologists, or by those
removed from the hot centers of scientific activity. (1988, p. 457)

Third, cognitive science had remained, either intentionally or unin-
tentionally, rather isolated from neuroscience through the 1970s. In
large part this was because there was no clear framework to suggest
how work in the neurosciences might bear on cognitive models. But by
the 1980s cognitive scientists’ interest in the neurosciences had in-
creased, and network models were attractive because they provided a
neural-like architecture for cognitive modeling. Fourth, the interest in
neuroscience was one reflection of a more general interest in finding a
fundamental explanation for the character of cognition. Rule systems, as
they became more adequate, also became more complex, diverse, and
ad hoc. The desire for parsimony, which earlier had characterized beha-
viorism, re-emerged. Fifth, a number of investigators began to confront
the limitations of symbolic models. While initially the task of writing
rule systems capable of accounting for human behavior seemed trac-
table, intense pursuit of the endeavor raised doubts. Rule systems were
hampered by their “‘brittleness,” inflexibility, difficulty, learning from
experience, inadequate generalization, domain specificity, and ineffi-
ciencies due to serial search through large systems. Human cognition,
which the rule systems were supposed to be modeling, seemed to be
relatively free of such limitations.

These and other factors operated together to make networks models
attractive to some cognitive scientists, beginning with a few pioneers in
the early 1980s and reaching substantial proportions by the end of
the decade. During the same period, however, other cognitive scient-
ists were also concerned about the limitations of traditional symbolic
models; no one who models performance wants a brittle system, for
example. These investigators focused only on the fifth factor above,
rather than all five factors, and adopted the conservative strategy of
modifying the existing approach rather than initiating a new, relatively
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untried approach. Hence, if the symbolic approach is a target of criti-
cism on the part of network modelers, it is a moving target and there-
fore harder to hit. '

Most of the modifications incorporated in the most recent symbolic
models have narrowed the gap between symbolic and network models.
(It could even be argued that the real revolution is the develop.ment (?f a
variety of ways to overcome the limitations of earlier models, including
but not limited to connectionist modeling.) First, a large number of
rules at a fine grain of analysis (microrules) can capture more of the
subtleties of behavior than a smaller number of rules at a larger grain of
analysis. Second, rule selection, and perhaps rule application as well,
can be made to operate in parallel. Third, the ability to satisfy soft
constraints can be gained by adding a strength parameter to each rule
and incorporating procedures that use those values in selecting rules.
Fourth, resilience to damage can be gained by building redundgncy
into the rule system (e.g., making multiple copies of each rule). Fifth,
increased attention can be given to learning algorithms (such as the
genetic algorithm), knowlege compilation and *‘chunking”’ of rules into
larger units, and ways of applying old knowledge to new problems
(such as analogy).

The most comprehensive and successful nontraditional rule systems,
such as J. R. Anderson’s (1983) ACT* and Newell’s (1988) SOAR, in-
corporate some of these design features (and Anderson m?kes explicit
use of networks in addition to rules). Some differences with networks
remain, but their importance and consequences are not as obvio.us. as
those involving traditional symbolic models. One of the remaining
differences is that nontraditional symbolic models retain the use'of
ordered symbol strings whereas connectionist networks have no intrin-
sic ordering of their elements. In the most common architecture, th'e'
production system, these strings are rules of the form “If A, then B
where A is a Boolecan combination of conditions, and B is a set of
actions to be carried out when the conditions are met. Another
difference is that sequenced operations and nonlocal control are in-
herent capabilities of symbolic models but not of nctwork.s. There
presently is no adequate research base for determining what differences
in empirical adequacy might result from these differences, but tl.\e
differences are likely to be small enough that empirical adequacy will
not be the primary determinant of the fate of symbolic versus
conncctionist models. Within cither tradition, if a particular lnaq-
equacy is found, design innovations that find some way around the .fall-
ure are likely to be forthcoming. Personal taste, general assumptions
about cognition, the sociology of science, and a variety of other factors
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can be expected to govern the individual choices that together will de-
termine what approaches to cognitive modeling will gain dominance.

Given this state of affairs, in this book we shall draw our primary
contrasts between traditional symbolic models and connectionist mo-
dels. In this way we can convey, to some extent, why connectionists de-
cided to abandon the traditional symbolic approach as a medium for
modeling. In chapter 8 we shall present an argument that there are im-
portant tasks, other than modeling the cognitive mechanism, for which
traditional symbolic theories are the theories of choice. In our view,
connectionist and traditional symbolic inquiries should be carried out
as distinctive enterprises, each of which can make contributions to the
other; the availability of both approaches can strengthen cognitive sci-
ence by providing multiple perspectives. The key to successful cooper-
ation is that each approach be used for the tasks most suitable to it,
rather than fighting for the same turf. For example, linguistic theories
will always have a distinctive role to play, and presumably will remain
symbolic. These theories efficiently describe the domain in which a
connectionist (or other mechanistic model) must perform.

Within this framework, nontraditional symbolic theories do not have
the same role to play as traditional ones: they are indeed fighting for the
same turf as connectionism (that is, fine-grained modeling of the
workings of the cognitive mechanism). [However, the degree of polari-
zation is not as great as it may seem, and the future could bring
a pluralistic approach to mechanistic modeling within which connec-
tionist themes and techniques are more distributed than is currently the
case. Recent history provides some support for this scenario. Connec-
tionist networks, in their incarnation as cognitive models, have origins
in the symbolic tradition of the 1970s as well as in the neural network
tradition. Schema theory and story grammars (Rumelhart, 1975),
probabilistic feature models (Smith and Medin, 1981), prototype the-
ory (Rosch, 1975), and scripts (Schank and Abclson, 1977) all emerged
from the symbolic tradition but do not fully reside in either the sym-
bolic or connectionist camp. All can be given a connectionist im-
plementation, and these arguably are superior implementations. For
example, schemata should be flexible and easy to modify, but this is
much harder to achieve in a symbolic than in a conncctionist im-
plementation (Rumelhart, Smolensky, McClelland, and Hinton, 1986,
in PDP:[4d). Furthermore, semantic networks with spreading activation
(J. R. Anderson, 1983) are hybrid models that place symbols in net-
work structures that dynamically change their activations; they can be
regarded as a predecessor of connectionist models of cognition.

We shall point out where nontraditional and hybrid models are
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relevant at various points in the discussion. There is such a variety
of models, however, that we cannot provide a full treatment or make
detailed comparisons within a book of this scope. Also, although we are
favorably inclined to connectionist models, we decline to predict the
outcome of the competition between connectionist and nontraditional
symbolic models. The degree to which accommodation will be founc'l,
as in hybrid models or pluralism, simply is not known at this time. It is
clear, however, that the cognitive science of the year ZOOO.will be a
quite different cognitive science than would have emerged in the ab-
sence of the new connectionism.

2

Connectionist Architectures

Connectionist networks are intricate systems of simple units which
dynamically adapt to their environments. Some have thousands of
units, but even those with only a few units can behave with surprising
complexity and subtlety. This is because processing is occurring in par-
allel and interactively, in marked contrast with the serial processing to
which we are accustomed. To appreciate the character of these net-
works it is necessary to observe them in operation. Thus, in the first
section of this chapter we shall describe a simple network that illu-
strates several features of connectionist processing. In the second sec-
tion we shall examine in some detail the various design principles that
are employed in developing networks. In the final section we shall dis-
cuss several appealing properties of networks that have rekindled
interest in using them for cognitive modeling: their neural plaus-
ibility, satisfaction of ‘‘soft constraints,” graceful degradation, content-
addressable memory, and capacity to learn from experience. Connec-
tionists maintain that the investment in a new architecture is amply
rewarded by these gains.

The Flavor of Connectionist Processing:
A Simulation of Memory Retrieval

We shall begin by describing a connectionist model which was designed
by McClelland (1981) in order to illustrate how a network can function
as a content-addressable memory system. Its architecture is atypical in
some respects, but it conveys the flavor of connectionist processing
in an intuitive manner. The information to be encoded concerns the
members of two hypothetical gangs, the Jets and the Sharks, and some
of their demographic characteristics (figure 2.1). Figure 2.2 shows how
this information is represented in a network, focusing on just five of the
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The Jets and the Sharks

Name Gang Age Education  Marital Occupation
status

Art Jets 40’s J.H. Sing. Pusher
Al Jets 30's J.H. Mar. Burglar
Sam Jets 20’s COL. Sing. Bookie
Clyde Jets 40’s J.H. Sing. Bookie
Mike Jets 30's J.H. Sing. Bookie
Jim Jets 20’s J.H. Div. Bulglar
Greg Jets 20's H.S. Mar. Pusher
John Jets 20’s J.H. Mar. Burglar
Doug Jets 30’s H.S. Sing. Bookie
L.ance Jets 20’s J.H. Mar. Burglar
George Jets 20’s J.H. Div. Burglar
Pete Jets 20’s H.S. Sing. Bookie
Fred Jets 20’s H.S. Sing. Pusher
Gene Jets 20°s COL. Sing. Pusher
Ralph Jets 30’s J.H. Sing. Pusher
Phil Sharks 30°s COl.. Mar. Pusher
ke Sharks 30’s J.H. Sing. Bookie
Nick Sharks 30’s H.S. Sing. Pusher
Don Sharks 30’s COL. Mar. Burglar
Ned Sharks 30’s COL. Mar. Bookie
Karl Sharks 40’s H.S. Mar. Bookie
Ken Sharks 20’s H.S. Sing. Burglar
Earl Sharks 40’s H.S. Mar. Burglar
Rick Sharks 30’s H.S. Div. Burglar
0Ol Sharks 30’s COL. Mar. Pusher
Neal Sharks 30's H.S. Sing. Bookie
Dave Sharks 30's H.S. Div. Pusher

Figure 2.1 Information about individual members of two gangs, which is encoded in
McClelland’s (1981) Jets and Sharks network. From J. L. McClelland (1981) Retrieving
general and specific knowledge from stored knowledge of specifics, Proceedings of the
Third Annual Conference of the Cognitive Science Society. Copyright 1981 by J. L.
McClelland. Reprinted by permission of author.

27 gang members for readability. These figures are reproduced from
McClelland and Rumelhart’s Handbook (1988, pp. 39, 41), which uses
the gang database for several exercises; there is related discussion by
Rumcihart, Hinton, and McClelland (1986) in PDP:2 (pp. 25-31). In
this section we present the results of several different runs which we
performed on the Jets and Sharks network using the iac (interactive
activation and competition) program in chapter 2 of the Handbook.
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Figure 2.2 'The units and connections for five of the individuals in McClelland’s (1981)
Jets and Sharks network. From J. L. McClelland (1981) Retrieving general and specific
knowledge from stored knowledge of specifics, Proceedings of the Third Annual Conference
of the Cognitive Science Saciety. Copyright 1981 by J. L. McClelland. Reprinted with
corrections by permission of author.

Components of the Model

The most salient components of a connectionist architecture are: (a)
simple elements called units; (b) equations that determine an activation
value for each unit at each point in time; (c) weighted connections be-
tween units which permit the activity of one unit to influence the ac-
tivity of other units; and (d) learning rules which change the network’s
behavior by changing the weights of its connections. The Jets and
Sharks model exhibits components (a)-(c); we defer the important
topic of learning until later.

(a) The units  There are 68 units in the complete model: a unit for each
gang member (27 units); a unit for each gang member’s name (27
units); and a unit for each of the properties members can exhibit (14
units). The units are grouped into seven clusters (the “clouds” in figure
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2.2); within each cluster the units are mutually exclusive.! In addition
to two clusters for the members and their names, there are five clusters
for properties that distinguish the members (age, occupation, marital
status, educational level, and gang membership). Note that the names
are regarded as a special kind of property; the name cluster is just one
cluster among others around the periphery. Each individual gang mem-
ber is represented, not by his name, but by a person unit in the center
cluster that is connected to the appropriate name and property units.
As a notational convention in the equations that follow, any of these
units can be referenced by the variables u (the unit of interest) and i (a
unit that provides input to u).

(b) Activations Associated with each unit is an activation value, activa-
tion,. Initially each unit is set at a ‘‘resting activation’’ of —0.10. When
a simulation is run, the activations vary dynamically between the values
—0.20 and + 1.00, reflecting the effects of external input, the propa-
gation of activation from other units in the system, and decay over
time. External input is the activation of certain units by the environ-
ment (in practice, the investigator, who wishes to observe the effects).
It is only the property and name units, however, that can receive exter-
nal input; for this reason they are referred to as the visible units. The
person units cannot be directly accessed from outside the network, and
are therefore referred to as invisible or hidden units. Their only source
of change in activation, besides decay, is the propagation of activation
from other units to which they are connected.

(c) Weighted connections In this particular network, all connections
are bidirectional and are assigned a binary weight. Whereever there is
a connection from unit { to unit ¥ with weight,;, there is a converse
connection from unit u to unit i with weight;, of the same value.
(Conventionally, the order of subscripts is the reverse of the direction
of propagation of activation.) Specifically, for each person unit there is
a two-way excitatory connection (weight + 1) with that person’s name
and with each of his properties (one property unit per cluster). Hence, a
person unit propagates activation to all of its property units, and a
property unit propagates activation to all of the units for persons who
exhibit that property. Weights of —1 are used to form inhibitory
connections among units within a cluster; hence, activation of one
property tends to suppress the activity of other properties in its cluster.

1 Usually the word “cluster’” is used for sets of items that are similar in some way,
whereas here the items in each cluster form a contrast set.
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(However, we deleted the inhibitory connections between name units to
obtain certain generalizations across names.) For example, if the prop-
erty divorced is activated, the immediate effects are that the property
units single and married will become less active (due to their inhibi-
tory connections with diverced) at the same time that the person units
JIM, GEORGE, RICK, and DAVE will become more active (due to
their excitatory connections with divorced). Note that person units
(which are hidden units) are indicated by upper case.

Dynamics of the Model

The Jets and Sharks model exhibits a variety of interesting behaviors
when it performs memory retrieval tasks. To understand the dynamics,
it is important to work through the equations that govern the propa-
gation of activation through the network. In this section we introduce
the general task of memory retrieval and then describe the equations
that are involved in carrying it out. In the final section, we illustrate the
operation of the network by tracking its performance across several
specific memory retrieval tasks.

Memory retrieval in the Jets and Sharks network To simulate a memory re-
trieval task, we supply an external input to one or more of the viéible
units and observe the effects. For example, to simulate using Art’s
name to retrieve his properties, we can increase the input into “Art”
(Art’s name unit). The excitatory connections in the network will
propagate this activation first to the person unit ART, and from there to
the units for Art’s properties. This is only the beginning, however; the
increased activation will continue to reverberate through the network
across numerous cycles of processing, during which Art’s property
units will become increasingly active (in addition to other, less direc't
effects). At the same time, each active unit will send inhibitions to other
units in its cluster. Every change in activation produces additional
changes in other units, and the process of dynamically changing acti-
vation values can be repeated many times. For tractability, it is useful
to set up discrete processing cycles; once per cycle, the fixed amount of
external input is again supplied, and each unit sends and receives
excitations and inhibitions and updates its own activation. After a num-
ber of cycles, the system will stabilize so that the input to each unit will
be precisely that which enables it to retain its current activation. At this
point, only a subset of the units will have high activation values. In our
“Art” example, the units that would stabilize at high activations in-
clude ART, Jets, single, pusher, 40’s, and junior high. Thus, by
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querying the network with a name, we recovered the person’s other
properties.

The equations To explain how these effects are produced, we shall
present some of the relevant equations. We have made every effort to
make this material accessible even to those with some degree of math
anxiety. To enhance readability, we use English-like labels for variables
and constants; most are similar to those in McClelland and Rumelhart’s
(1988) Handbook. The subscripts that we use to index units are mne-
monic (and therefore idiosyncratic). It is fairly straightforward to trans-
late our equations into the Handbook’s relatively accessible notation. To
aid with tranfer to the somewhat less accessible notation in Rumelhart
and McClelland’s (1986) PDP volumes, we provide translations of im-
portant cquations in Appendix A. Notation varies widely in connec-
tionist modeling, and we leave it as an exercise for the reader to carry
out any additional translations when reading primary sources.

Most of the equations can be viewed as focusing on a particular unit,
for example, a unit whose activation is being calculated. We refer to
this unit as «. (Actually, in its usual use as a subscript, u is an index that
ranges over all of the units to which the equation will be applied.) Often
the equation refers as well to another unit (or units) that is feeding
into 1; we refer to such a unit as i. (This notation is not particular-
ly mnemonic here, but it will be later when we discuss feedforward
networks.) T'o propagate activation, each unit i sends an excitatory or
inhibitory output to every unit 4 to which it is connected. In the sim-
plest case, the output sent by a unit would be identical to its activation.
In practice, a variety of output functions have been explored. For the
Jets and Sharks model as implemented in the Handbook, the output is
identical to the activation if it is above a threshold of zero, and is set at
zero otherwise. That is:

output; = activation; if activation; > 0 and output; = 0 otherwise. (1)

When #’s output value is multiplied by the weight of its connection with
u, the resulting value serves as an input to w:

input,; = weight,; output; (2)

For the Jets and Sharks network, in which weights are either +1 or
— 1, the weight simply determines the sign of the input (whether it is
excitatory or inhibitory). In most models, the weight varies within a
continuous range, such as +1 to — 1, and therefore affects the magni-

tude of the input as well,
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Next, the concept of net input is needed. Unit u receives input from
all of the units to which it is connected. Usually these inputs are simply
added together, and the total multiplied by a strength parameter, to ob-
tain the net input to 1. (The strength parameter is simply a number that
is selected to scale down the input to a desired degree; the lower its
value, the more gradual are the changes in activation values.) However,
if u is in contact with the environment (as are the property and
name units in Jets and Sharks), it might also receive an external input.
In this model any external input is supplied at a value determined by
the modeler, which is then scaled by its own strength parameter. Th'e
two strength parameters allow for adjusting the relative influence of
internal input versus external input; we have used the Handbook's de-
fault values of 0.1 (internal) and 0.4 (external). (There is an option of
setting different internal strength parameters for excitatory versus in-
hibitory inputs; for simplicity we omit that distinction hc-re.) There-
fore, f.or the options we have taken, the equation for calculating the net
input is:

netinput, = 0.1 Z weight,; output; + 0.4 extinput, (3)
4

The term in this equation that begins with a summation sign (Z) with
an index 1 tells us that the input to u from each unit ; is calculated as in
equation (2) above, and that the inputs from all of the / units are then
?dded together for inclusion in the netinput. On the basis of the net
input, the unit will now either increase or decrease its activation accord-
Ing to a fairly simple activation rule, as shown in equations (4) and (5)
below. We shall use a, to represent the current activation,, and Aa, to
represent the net change to be made to activation,. There are two terms
in the equation. The first calculates the change that is due to the net in-
put (an increase for positive net input, a decrease for negative net
?nput). The second term is a decay term that decreases activation, even
in the absence of net input. (One effect of this is that external inpl,lt has -
its greatest effect when it is first presented to a unit.) Because the first
term depends on the sign of the input, there are two versions of the

equam'm. If the net input is positive (greater than 0), then the change in
the activation is given by:

Aa, = (max — a,) (netinput,) — (decayrate) (auw ~ rest) (€))

He're max represents the maximum activation value that a unit can take
.(1 in this case). Hence, the first term says that if we have a positive net
mp.ut, we scale it by a multiplier that depends upon how far the current
activation is from the maximum activation, and then increase the acti-
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vation by that amount. Thus, the greater the net input. and the lower
the current activation, the more we increase the activation. The decay
term, which is subtracted from that amount, is determined by the deca.y
rate (which is set at 0.1) and the difference between the current acti-
vation and the unit’s resting activation (which is set at —0.1). Thus, the
lower the current activation, the less we adjust for decay.- o
If the net input is less than or equal to 0, the change in activation is

given by:
Aa, = (a, — min) (netinput,) — (decayrate) (a, — rest) (5)

The decay term is the same as above. If the m?t inpu.t is 0, tl?e unit will
simply decay by that amount. When the net input is negative, on th.e
other hand, we shall determine how much further to decrease the acti-
vation by multiplying the net input by the difference between the cur-
rent activation and the minimum activation (which is set here at —0.2).
Hence, the greater the current activation, the greater is the effect of
negative input in decreasing that activation.

Illustrations of the Dynamics of the Model

With the basic machinery in place, we now can work though what
happens in the network when it performs memory retrieval tasks. By
varying the queries that we present to the Jets and Sh.ark‘s network, we
can observe it perform several different tasks: retrieving .propemes
from a name, retrieving a name from properties, categorization, proto-
type formation, and utilizing regularities.

Retrieving properties from a name This is the task that. we briefly .de-
scribed above. The investigator activates the “Art” unit (by supplying
it with external input), and consequently Art’s properties become
activated. On cycle 1, every unit’s current activation is eql{al t.o the
resting activation of —0.10. Equation (1) specifies that any unit with an
activation below the threshold of zero (0.0) produces an output of 0.0;
since this is the case for all units, their net inputs to other units are also
0.0 The name unit “Art” is supplied with an external inqu of 1.00,
with the result that it is the only unit with a non-zero net input. By

equation (3):

netinput s = (0.10) (0.0) + (0.40) (1.00) = 0.40
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This strong net input causes the activation of “Art” to increase. By
equation (4):

davarr = (1.00 — (-0.10)) (0.40) — (0.10) (—0.10 — (—0.10))
= (1.00 + 0.10) (0.40) — (0.10) (0.00) = 0.44 — 0.0 = 0.44

While all other units, including the hidden (person) units, remain un-
changed at the resting activation value:

4a = (=0.10 = (~0.10)) (0.0) — (0.10) (= 0.10 — (—.10))
= 0.0. = 0.0 = 0.0.

Because the current activation of “Art” for cycle 1 is —0.10, adding
0.44 yields a new activation of 0.34. For all other units, adding 0.0 to
—0.10 yields a new activation that is the same as the current activation,
—0.10. These new activations are used as the current activations for
cycle 2.

Beginning on cycle 2 the activation of “Art,” which now is positive,
sends excitatory (positive) input to ART, the person unit for Art. By
cycle 4, ART has climbed to a positive activation. At the same time
“Art” continues to grow in activation. This is partly due to the con-
tinued presentation of external input on each cycle, and partly (begin-
ning in cycle 4) from the input it begins to receive from ART. After
ART becomes positively activated, it begins to send excitatory inputs to
the units for Art’s properties. Thus, on cycle 5 the units Jets, 40’s, etc.,
start to become less negative and eventually become positive (on cycle
12). Once Art’s properties become positive, the competing properties
in their clusters, such as Sharks, 20’s, and 30’s, become slightly more
negative. The reason is that the units for Jets and 40’s send inhibitory
inputs to their competitors, thus driving them below the resting acti-
vation. These changes in activation are illustrated for the age property
cluster in figure 2.3.

Hence, the person unit ART becomes active during the early cycles
of processing, and by propagating activity to the property units to
which it is connected, enables the retrieval of Art’s properties. Begin-
ning with cycle 18, though, some other activities begin to appear in the
network. The person units CLYDE (and also RALPH, not shown), and
subsequently MIKE (and also FRED and GENE, not shown) become
less negative, and on cycle 25 CLYDE becomes positive. The reason
for this is that the units for Art’s properties begin to send positive
activations to the units for persons who share properties with Art.
Clyde, in fact, shares all of Art’s properties except for profession (he is
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Figure 2.3 The activation values across cycles of some of the units in the Jets and Sharks
network after the unit for Art’s name is activated by an external input.

a bookie whereas Art is a pusher). Mike shares three of five properties
with Art, and so his person unit too begins to rise in value, but not
sufﬁcienﬂy to achieve a positive activation.? Eventually the activation
on CLYDE becomes high enough that it sends a positive input to the
name unit “Clyde,” and it too becomes active. The result is that by
accessing the system through Art, we not only get back Art’s proper-
ties, but also the names of people similar to Art. One way to interpret
this process intuitively is to note that thinking about a person’s pro-
perties may tend to remind us of people who are very similar to that
person.

Retrieving a name from other properties 'The network is even more versa-
tile than this, however. Suppose we access it by supplying external
inputs simultaneously to several units, namely, the units for Art’s
demographic properties (40’s, junior high, single, pusher). These will
activate ART, which will activate “Art,” and in this way Art’s name
will pop out. This is the clearest illustration of what is meant by a con-

2 Infact, as processing continues, Mike's activation begins to drop again. The reason is
that as the units for Art and those individuals most similar to Art grow in activation, they
send even more strongly inhibitory inputs to MIKE, thus pushing down the activation of

his person unit.
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Figure 2.4 ‘The activation values across cycles for name and person units of various

members of the Sharks after the property unit for Shark is activated by an external input.

The name units become less active than the person units since the name units receive
activation only via the person units.

tent-addressable memory: the name is retrieved by supplying contents
(see discussion of content-addressable memory below). Generalization
comes free along with this capability; that is, names of persons with
similar properties will pop out also at a lower degree of activation.

Categorization and prototype formation ‘The same memory retrieval
processes can produce less obvious phenomena, which have been ob-
served in human categorization performance. First, the network can
recover category instances. If we supply external input to Sharks, for
example, that unit will activate the person units for the individual
Sharks. Second, as processing continues these individuals become
graded according to how well they exemplify the category (analogous to
the human ability to Jjudge the relative typicality of various category
members; see Rosch, 1975). Figure 2.4 shows the activation across
cycles for three of the person units and three of the name units after we
activated Sharks. Some names clearly acquire more activation than
others. For example, after 70 cycles of processing, “Phil” is most ac-
tive, “Don” is less active, and “Dave,” after being initially activated,
has dropped almost to its resting level. What causes this emergence of
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Figure 2.5 The activation values across cycles for the three age units after the property
unit for Shark is activated by an external input.

grading by typicality? The third capability, the extraction of proto-
types, provides a key part of the mechanism (and is exhibited by
humans as well; see Posner and Keele, 1968). Activating Sharks results
in the activation of the person units for the Sharks, which results in the
activation of the property units to which they are connected. The most
widely shared properties become the most active. Thus, in figure 2.5 we
see that the 30’s unit becomes quite active, while the 20’s and 40’s units
never rise much above their resting level. This is due to the fact that
nine of the twelve Sharks are in their 30’s. These activations are then
forwarded to those person units that exhibit the most frequent proper-
ties, thus creating a positive feedback loop which further sharpens the
prototype. The name units are too individual to regard them as part of
the prototype, but they change by the same process as the other proper-
ties, and their activations come to reflect the extent to which each indi-
vidual displays the prototypical properties (hence displaying the second
capability mentioned just above).

An interesting twist can be observed for the profession properties in
figure 2.6. Initially the units for all three professions rise in activation.
This is because the gang members are equally distributed in their
chosen careers. Nevertheless, subsequently the unit for pusher con-
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Figure 2.6 The activation values across cycles for the three profession units when the
property unit for Shark is activated by an external input.

tinues to grow in activation, while those for burglar and bookie drop
back below zero. This is due to the fact that those individuals who
provide the best match on those properties that are not equally distri-
buted grow in their activations, and so provide increased activation to
pusher, and it, in turn, inhibits both of the other profession units.

Utilizing regularities  As a final example of the variety of ways in which
the memory can be queried, we can activate two properties, such as 20’s
and pusher, and discover which individuals are most likely to fit that
scenario. The network will initially produce higher activations in the
person units for all individuals who possess any one of these properties,
with those sharing both properties (GREG, FRED, and GENE) getting
the highest activations. As person units become active, they not only ac-
tivate name units, but also other property units. The units for the most
widely shared properties (Jet, single, and high school) also became
more active than other units in their cluster. This leads to Pete’s person
and name units receiving significant activation even though Pete did
not fit the original description, since he is a bookie, not a pusher. Thus,
the network not only identified which individuals shared the initial pair
of properties, but what their other properties were likely to be, and who
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amongst those not possessing the initial pair show the best fit with
those who did satisfy the initial pair of properties. Making inferences
from known properties to other properties is a kind of behavior that is
familiar to social psychologists working in attribution theory.

The Design Features of a Connectionist Architecture

In the Jets and Sharks simulation we have presented one particular net-
work architecture that has some very nice characteristics for modeling
recall of information from memory and for illustrating some of the
capabilities of connectionist networks. However, this design is not suit-
able for most purposes, and work has proceeded using a variety of other
designs. In fact, connectionism as a research paradigm is still in its
infancy, and investigators are still in the process of exploring different
kinds of connectionist systems. Many of the design features are rather
complex, and require considerable mathematics to characterize. In
order to provide a general overview of the various types of systems, we
shall bypass material that is foundational but complex. (For example,
we make no direct use of vector notation3 or matrix algebra.) Also, we
limit ourselves to those architectures that are emphasized in Rumelhart
and McClelland’s (1986) PDP volumes, which can be consulted for a
more technical treatment. For other technical treatments of these or
other architectures see, in particular, Grossberg (1982, 1988), Kohonen
(1988), and Wasserman (1989). We can characterize the distinctions
between different connectionist architectures by considering four
issues: (a) how the units are connected to one another; (b) how the
activations of individual units are determined; (c) the nature of the
learning procedures which change the connections between units; and
(d) the ways in which such systems are interpreted semantically. We
use a mnemonic notation in these sections; see Appendix A for a trans-
lation into two different notations used by Rumelhart and McClelland
in the PDP volumes.

Patterns of Connectivity

The first decision in setting up a connectionist network is to determine
which units are connected to one another, that is, the pattern of connec-
tivity. ‘There are two major classes of patterns. (a) Feedforward networks
have unidirectional connections. Inputs are fed into the bottom layer,

3 The activation pattern across a layer of 7 units can be treated as a vector (directed line
segment) in an n-dimensional space.
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and outputs are generated at the top layer as a result of the forward
propagation of activation. (b) Interactive networks have bidirectional
connections. The Jets and Sharks exercises illustrate how interactive
networks change state gradually over a large number of processing
cycles, as dynamically changing activations are passed back and forth
over the two-way connections. We shall discuss each of these classes in
turn.

Feedforward networks In feedforward networks, units are organized
into separate layers, with units in one layer feeding their activations for-
ward to the units in the next layer until the final layer is reached. The
simplest such configuration consists of only two layers of units: nput
units and output units. There is a weighted connection from each input
unit to each output unit. When the weights (connection strengths) are
properly set, this type of network can respond to each of a variety of
input patterns with its own distinctive output pattern; therefore, it is
sometimes referred to as a pattern associator.

For example, consider a network with eight input units (i; — i), each
of which is connected unidirectionally to each of eight output units
(u; — ug), with output activations allowed to range over a continuous
domain (figure 2.7). Several input patterns are constructed, each of
which consists of a series of eight binary values (+1 and — 1). When a
pattern is presented to the input layer, each of its binary values is the
external input to one input unit, which takes that value as its activation.
In presenting the input pattern+1—-1+1—-1+1414+1+ 1, for
example, an external input of —1 is supplied to the second input unit,
(22), so its activation becomes — 1. The activations of the input units are
then propagated to the output units by an activation rule that can
supply a different weighted sum of the various input activations to each
output unit. Therefore, each output unit achieves an activation value
that reflects the activity of some input units more than others (see the
following section for details). The activation patterns across the input
and output units are, technically, eight valued vectors. We shall refer to
them using the more familiar term “patterns.”

It is informative to compare figure 2.7 with figure 1.1 in the previous
chapter. These figures illustrate the two approaches that are taken to
diagramming two-layer networks. In figure 1.1, the sensory layer is
drawn vertically and the motor layer horizontally. As a result, each con-
nection must be drawn with a change of direction from horizontal to
vertical, and its weight (not shown) can be placed at the junction, The
advantage is that the layout of the nodes for the weights is the same as
in a weight matrix (cf. the matrix for Case A below). In figure 2.7, the
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layers are parallel and the connections are indicated by straight lines; a
few of the weights are shown for illustration but it would be unwieldy
to include all of them. This latter format has the advantage, though,
that it can be adapted to more complex networks (see below).

The paradigmatic task for a pattern associator is paired-associate
learning in which the input-output pairings are arbitrary (e.g., supply-
ing names for objects). However, with appropriate weights it could in-
stead be used to reproduce each input pattern on the output layer, in
which case it would be a type of auto associator. Or, the output layer
could be used to represent a small number of categories into which a
larger number of input patterns would be sorted or classified. We shall
often use the term pattern associator generically for these varieties of
two-layer networks.

Pattern associators have many useful applications, and we discuss
several simulations that make use of them in subsequent chapters.
There are, however, problems for which a two-layer network is inad-
equate, as we shall discuss in chapter 3. A well-known example is the
Boolean function of exclusive or (XOR), which is a special case of parity
detection. To overcome the limitations of two-layer networks, it is
necessary to add hidden units to the system. These are units which serve.
neither as input nor output units, but facilitate the processing of infor-
mation through the system. We have already encountered hidden units
in the Jets and Sharks network (in that network, however, there was no
distinction between input and output units; all nonhidden units could
serve both functions). In chapter 3 we illustrate how the XOR problem
can be solved by a network with two input units, two hidden units, and
one output unit. Most tasks for which multi-layered networks are used,
however, require considerably more units in each layer. For examples,
see the discussion of NETtalk in chapter 3, the logic network in chapter
5, and the kinship network in chapter 6.

As a point of terminology, note that investigators frequently refer to
a network that has three layers of units as a two-layer network; in that
case, it is the number of layers of connections that is being referenced. In
this book we reference the number of layers of units, but reserve the
term multi-layered network for networks with hidden units (i.e., three or
more layers of units).

There is a number of variations that can be made on two-layer and
multi-layered architectures. One variation is to allow units in the same
layer to send inhibitions and excitations to each other as well as to units
in the next layer. A more interesting variation is the recurrent network,
which can receive input sequentially and alter its response appropri-
ately depending upon what information was received at previous steps
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in the sequence. It does this by feeding a pattern achieved on a higher
layer back into a lower layer, where it functions as a type of input
(Elman, 1988; see also the sequential networks of Jordan, 1986). We
shall discuss such a network in chapter 7 below. Finally, Rumelhart,
Hinton, and McClelland (1986, PDP:2) discuss the interesting idea
that multi-laver feedforward networks could be used for top-down
rather than bottom-up processing, by reversing the direction of the
connections without changing the units and patterns at each level. All
of these variations soften the design constraint that activations be
propagated exclusively in one forward pass. In the next section, we dis-
cuss a type of network that departs more dramatically from the basic
feedforward design.

Interactive networks For interactive networks, at least some connec-
tions are bidirectional and the processing of any single input occurs
dynamically across a large number of cycles. Such networks may or
may not be organized into layers; when they are, processing occurs
backwards as well as forward. A major exemplar of an interactive net-
work is the Hopfield net, developed by the physicist John Hopfield
(1982) by analogy with a physical system known as a spin glass. In their
review, Cowan and Sharp (1988) characterize a spin glass as consisting
of a matrix of atoms which may be spinning either pointing up or
pointing down. Each atom, moreover, exerts a force on its neighbor,
leading it to spin in the same or in the opposite direction. A spin glass is
actually an instantiation of a matrix or lattice system which is capable of
storing a variety of different spin patterns. In the analogous network
that Hophield proposed, the atoms are represented by units and the spin
is represented by binary activation values that units might exhibit (0 or
1). The influence of units on their neighbors is represented by means of
bidirectional connections; any unit can be (but need not be) connected
to any other unit (except itself). As with any interactive network,
activations are updated across multiple cycles of processing in accord
with an activation rule (sce below).

Hopfield (1984) has also experimented with networks taking continu-
ous activation values. Other examples of interactive networks include
Boltzmann machines (Hinton and Sejnowski, 1986, in PDP:7) and har-
mony theory (Smolensky, 1986, in PDP:6). As in the original Hopfield
nets, the units take binary activation values. We shall not discuss har-
mony theory further, but it uses a probabilistic activation rule and a
simulated annealing technique very similar to those of the Boltzmann
machine (see below).
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Activation Rules for Units

Networks differ not only in their pattern of connectivity, but also in the
activation rules that determine the activation values of their units after
processing. We have already encountered the major classes of possible
activation values. (a) Discrete activations are typically binary, taking
values of 0 and 1 (as in Boltzmann machines and harmony theory) or
~1and +1. (b) Continuous activations can be unbounded or bounded.
As examples of bounded ranges, —0.2 to + 1.0 was stipulated for the
Jets and Sharks network, and a range of —1 to + 1 is a common choice.
In figure 2.7, we used binary input activations and continuous un-
bounded output activations.

Even greater variation is found in activation rules, which specify how
to calculate the level of activation for each unit at a given time. In the
following sections we present some of these rules, first for feedforward
networks and then for interactive networks. Often the rules for the two
types of networks are quite similar, and we will find a rule used in the
interactive Jets and Sharks network useful as a framework for intro-
ducing our first feedforward activation rule.

fFeediorward networks Recall that for the Jets and Sharks network, the
activation rule for unit u made use of the net input to that unit:

netinput,, = 0.1 E weight,; output; + 0.4 extinput, (3)
1

Note that the net input has two components: the effects of activity in
other units to which u is connected, and the effects of external input.*
In a pattern associator (a two-layer feedforward network), the functions
served by these two components are divided between specialized sets of
units. As shown in figure 2.7 above, units in the input layer (i) are
specialized to reccive external input, and take the values of the input
patterns as their activations. The input unit’s activation depends only
on the external input, and therefore does not need to be determined by
an activation rule. Based on that activation, the input unit then sends an
output along each of its connections. In the simplest case, output, =
activation;, but other functions are possible.

Units in the output layer (u) are specialized to receive activation from
other units in the network (rather than receiving external input). The

4 The hidden units did not receive external input, so that term would always have a
zero value for those units.
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terminology now gets a bit confusing, because “input” and “output”
are used to refer to the transmission of values as well as to types of
units. Each input unit (i) sends output towards each output unit (u). To
convert the input unit’s output into the output unit’s input, output; is
multiplied by the weight of the connection: input,; = weight,; output;.
Adding these together for every unit i in the input layer yields the net
input to u (netinput,). The equation describing this is one component
of the preceding equation (3) that was used for the Jets and Sharks
network:

netinput, = 2 weight,; output; (6)

Optionally, a term bias, can be added to equation (6) in order to adjust
the responsiveness of each output unit individually; it can be thought of
as a fixed input supplied by a special unit that is not affected by what is
happening in the rest of the system. If the value of the bias is low or
negative, the output unit will respond conservatively to activation sent
from the input units; if it is high, the output unit will behave “im-
pulsively.” We consider this version of equation (6) in chapter 3.

Finally, an activation rule is applied which makes use of the net input
to determine the activation of each unit u. We shall refer to activation,
simply as a,. In the simplest case, the linear activation rule, a, =
netinput, (producing a straight-line, or linear, function). This rule is
very useful when two-layer networks are provided with patterns that
meet certain constraints (see chapter 3). The additional power needed
to violate those constraints can be obtained by adding one or more
layers of hidden units, but only if the activation rule is also changed to a
nonlinear function. Typically the function chosen is a continuous,
monotonically increasing (or at least nondecreasing) function of the in-
put for which a derivative exists. In particular, the logistic function has
been widely used (in two-layer as well as multi-layer networks):

- 1
- 1 + e—(netinputu-6,)/T (7)

ay

This function is sigmoidal in form (as figure 2.8 illustrates for the
stochastic version of this function in the section on Boltzmann
machines below). Within the exponent, 6, is a threshold that is
subtracted from the net input; it has the same effect on the activa-
tion value as adding a bias to the net input equation (6)
if 6, = —bias,. (In their 1988 Handbook McClelland and Rumelhart
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uniformly used a bias term, whereas in their 1986 PDP volumes they
usually subtracted a threshold from net input instead.) T is a parameter
which determines how flat the curve is across the range of net input
values. (When the number of input units that feed into each output unit
is large, the range of net input values also tends to be large. A higher
value of T stretches the function so that it will cover this range.)

Each of these activation rules can be adapted to obtain discrete rather
than continuous activation values, typically for use in networks in
which both input and output units are binary (on or off). For the linear
activation rule, the adaptation is to compare the net input to a threshold
value. If net input exceeds the threshold, the output unit’s activation is
set to 1 (on); otherwise it is set to 0 (off). With a zero threshold, for
example, positive net input turns the output unit on and negative net
input turns it off. A unit that uses a threshold in this way is called a lin-
ear threshold unit. A network with an output layer of linear threshold
units and an input layer of binary units is an clementary perceptron
(Rosenblatt, 1959). Linear threshold units can also be used in the hid-
den and output layers of multi-layered feedforward networks and in
interactive networks.

For the logistic activation rule, discrete activations can be achieved
by using a stochastic version of equation (7); this is presented as
equation (9) in the discussion of Boltzmann machines in the next sec-
tion. When equation (9) is used in a feedforward network of binary
units, presenting the same input pattern on different trials will not
always have the same effect on a given output unit; that is, the relation
between its net input and its activation becomes probabilistic. The
equation determines the relative frequency with which the unit will
turn on versus turn off. An example of a feedforward network with a
stochastic activation function is discussed in chapter 6 (Rumelhart and
McClelland’s (1986) past tense model).

Interactive networks The equations that govern the propagation of acti-
vation in feedforward networks can be used in interactive networks as
well. A parameter ¢ for time (or in some notations, n for cycle number)
must be included, however, because activations are updated many
times on the same unit as the system works towards settling into a sol-
ution to a particular input. (For readability, we show ¢ in our equations
only when it is necessary to distinguish it from ¢ + 1.) Interactive
networks may use a synchronous update procedure, in which every unit’s
activation is updated once per timing cycle, or an asynchronous update
procedure, in which there is no common sequence of cycles, but rather
a random determination of the times at which each unit separately is
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updated. Each update requires a separate application of the activation
rule. (In contrast, in a feedforward network there is just one forward
sweep of activation changes; the activation rule is applied just once to
each unit.)

In the original Hopfield nets (Hopfield, 1982), each unit is a linear
threshold unit. That is, the activation rule is the same as that of
Rosenblatt’s perceptron (but it is applied many times to each unit). On
each update, if a unit receives net input that is above its threshold, it
acquires an activation of 1. Otherwise, its activation is 0. (Alternatively,
values of +1 and —1 can be used if the threshold is adjusted appropri-
ately.) Hopfield employed an asynchronous update procedure in which
each unit at its own randomly determined times would update its acti-
vation depending upon the net input it received at that time. (This
helps to prevent the network from falling into unstable oscillations.)
Processing is initiated in a Hopfield net by providing an initial input
pattern to a subset of units (i.e., each unit receives an activation value of
1 or 0). Then, all units will randomly update their activations until a
state is achieved in which no unit will receive a net input that would
lead it to change its activation. If that occurs, the network is then said
to have stabilized or reached a state of equilibrium. The particular stable
configuration into which the network settles constitutes the system’s
identification of the initial input. (Some networks, however, never
stabilize; rather: they behave as chaotic systems that oscillate between
different configurations.)

Hopfield's analogy between this sort of network and a physical sys-
tem paid an important dividend when he showed that one could calcu-
late a very useful measure of the overall state of the network (energy, or
E)® that was equivalent to the measure of energy in a physical system
(Hopfield, 1982). A Hopfield net tends to move towards a state of equi-
librium that is mathematically equivalent to a state of lowest energy in a
thermodynamic system. Using the update rule described in the pre-
vious paragraph, each change in activation of any unit will result in an
overall lower (or same) energy state for the system. In our notation, the
global energy measure E is given by:

E=-Y weightyi a,a; + 2 6, a, . (8)

u<i u

To sce how the update rule lowers the value of E, consider one exam-
ple that focuses on just two units in a network of binary units taking

5 Hopfield’s E should not be confused with the measure of mean squared error that is
used in deriving the delta rule. In Boxes 1 and 2 of chapter 3 we call this measure Error,
but it is often called £,

Connectionist Architectures 43

activations of 0 and 1. If at the outset a, =0, aq; =1, weight,,;
= 1 and 6, = 0.5, then the contribution to E of these two units is:
—(I x0 x1) + (0.5 x0) =0. Now assume that unit u has been
randomly selected to have its activation updated. The input to unit u
from unit i equals weight,; a; =1 x1 = 1. Since this exceeds the
threshold of 0.5, unit « changes its activation from 0 to 1. We now
evaluate E for this part of the network as: —(1 x1 x1) + (0.5 x 1) =
—0.5. Therefore, the network has moved to a state with a lower value
for E. (Note that in actual practice, we must apply the update rule by
considering all inputs to a, not just that from a single a;. This insures
that we would change a, only if it would contribute to an overall lower
value for E.) Rumelhart, Smolensky, McClelland, and Hinton (1986,
PDP:14) emphasized that E indicates how well the network satisfies the
constraints that are implicit in the pattern of weights and the input to
the network. They therefore adapted Hopfield’s energy measure to ob-
tain GG, a measure of the goodness of fit of the state achieved by the net-
work to the constraints. G is the negative of E and may also include a
scparate term for input if the input is continuously supplied during
processing (a procedure that is referred to as clamping the relevant
subset of units to a constant activation value).

Hopfield nets are useful-for solving a variety of optimization pro-
blems. The connections literally constrain the possible stable confi-
gurations into which the network can settle. If we regard the initial
pattern of activation supplied to such a network as specifying a problem
and the stable state as a solution, then the connections will represent
conceptual constraints on the solution and the stable state should be the
state of the network that best satisfies these constraints. The travelling
salesperson problem is one type of constraint satisfaction problem
which has traditionally been used as a challenging case for developing
optimization procedures. The salesperson needs to visit a number of
cities and desires to travel the shortest distance. Hopfield and Tank
(1985; for a more recent model, see Durbin and Willshaw, 1987) devel-
oped a modified Hopfield net which offers quite good solutions to this
problem. Although it does not find the absolutely shortest route, its
performance is comparable to that of a (nonnetwork) computational
procedure for constrained optimization problems developed by Lin and
Kernighan (1973).

One of the difficulties confronted by the Hopfield net is that it can
settle into local minima, in particular, situations in which there would
not be sufficient net input to any given unit to get it to change its value,
but in which the system would still not have reached the optimal over-
all solution given the constraints imposed by the weights in the net-
work. That is, the stable state is not the state that would yield the
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lowest possible value of E (the global energy minimum). This may re-
sult when different parts of the network have settled into incompatible
solution patterns, each part of which is stable and unable to be altered
by the other partial solutions. The Boltzmann machine is an adaptation
of the Hopfield net that reduces this tendency.

The Boltzmann machine was proposed by Hinton and Sejnowski
(1983, 1986; see also Ackley, Hinton, and Sejnowski, 1985). Like the
Hopfield net, it updates its binary units by means of an asynchronous
update procedure. However, it employs a stochastic activation function
rather than a deterministic one. Specifically, it is a probabilistic version
of the logistic function in equation (7). On each update of a particular
unit u, the probability that it becomes active is a function of its net
input:

1
- 1 + e—(netinputu—&u)| T (9)

probability (a, = 1)

The effect of T is to alter the slope of the probability curve, as
illustrated 1n figure 2.8 (with @ = 0). When T is close to zero, the curve
approaches a discontinuous step function that jumps from 0 to 1 when
netinput, crosses the value 0.0 (i.e., it approximates a linear threshold
unit). When T becomes very large, the curve flattens, so there is more
variability in the unit’s response to a given net input value across
updates. At high values of T the network will jump quickly into a sol-
ution to a new input (that is, it will require relatively few updates) but
the solution is unlikely to be optimal.®

Equation (9) works best when a procedure called simulated annealing
is used to vary the temperature parameter during the processing of a
single input pattern. The procedure is based on an analogy from phy-
sics. Something comparable to local minima occurs in formation of
crystals when incompatible sets of bonds begin to form in different
parts of the crystal. If these bonds become fixed, the crystal will have a
fault in it. The common way to avoid such faults is referred to as
annealing. In this process, a material is heated, thereby weakening the
bonds and allowing the atoms to reorient, and then cooled very slowly
so that there is a maximal chance that as the bonds reform the atoms
will orient appropriately with each other. If the cooling is carried out
slowly enough around certain critical temperatures, the alignment

6 When equation (9) is applied to a feedforward network, temperature does not affect
the time to reach a solution (because each output unit's activation is calculated just one
time). If a learning rule is also being applied, however, high variability of response across
different presentations of the same input will make learning slower (which often is desir-
able).
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Figure 2.8 Probability that a unit takes an activation value of one as a function of net
input at five different values of T (temperature). Note that 8(threshold) is zero. From
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of cognition. Volume 1: Foundations, Cambridge, MA: MIT Press/Bradford Books, p. 69.
Reprinted with permission.

emerging in one part of the structure has the greatest opportunity to
affect that emerging elsewhere in the structure so as to develop one co-
hesive structure. The idea is carried over to networks by treating the
patterns of activation in different parts of the network as comparable to
the alignment of atoms. Raising the temperature value T has the effect
of increasing the probability that activations of units in the network will
shift. Reducing T very slowly at critical junctures allows time for
patterns of activation developing in one part of the network to affect the
patterns developing elsewhere so that one coherent pattern emerges as
the network settles into a solution.

Note that the equations just presented make no reference to the prior
state of activation of the unit. In contrast, the Jets and Sharks network
computed a change in activation (Aa,) which was added to u’s current
activation (a, ) to obtain #’s new activation{ay ¢+ 1):

Auivy = Qg + Aa, (]0)
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We left this equation implicit in the Jets and Sharks discussion, but did
present two equations for 4a, . In that case, the change in activation of
a unit depended upon its current activation a, (relative to the discrep-
ancy with its maximum or minimum activation), its net input, and the
ratc of decay with time. If the net input was sufficient to overcome the
decay, the activation increased; otherwise it decreased. A simpler rule
for capturing the same idea is:

da, = knetinput, — decay (11)

where & is a constant determined by the network designer, netinput,
represents the net input to the unit of interest, and decay represents a
function that specifies an amount by which the activation of each unit
will be decremented on each processing cycle. Note that this simple lin-
ear rule will not keep activations within a bounded range unless special
care is taken in crafting the decay function.

Finally, J. R. Anderson’s ACT and ACT* versions of spreading acti-
vation in (nondistributed) semantic networks (Anderson 1976, 1983)
utilize activation functions that are similar in many respects to some
of those used by researchers who work within the PDP tradition.
Anderson’s functions achieve nonlinearity by incorporating a negative
exponential function of current activation, they utilize a decay function,
and processing is interactive (vs. feedforward). Anderson’s models can
account for a variety of empirical findings, in particular, fact retrieval
(Anderson, 1974) and priming effects (e.g., McKoon and Ratcliff, 1979;
but see Ratcliff and McKoon, 1988, for an alternative account of
priming). An important difference, however, is that Anderson’s net-
work is used in the service of a production system; it enables a degree of
parallel processing within the production system architecture by mak-
ing a number of productions simultaneously active so as to compete
with one another, and allows a partially matching production to fire
if there is no stronger competitor (see also Thibadeau, Just, and
Carpenter, 1982). This is similar to the notion of soft constraints that is
discussed later in this chapter.

Hence, the parallel propagation of activation is an idea that has been
used to good cffect immediately prior to and during the current era of
connectionist research, by J. R. Anderson and other spreading acti-
vation modelers. At least three differences distinguish spreading acti-
vation from connectionist models, however. First, Anderson retains a
control structure (by means of a production system that utilizes his
network), whereas connectionists are committed to trying to model
cognition with no control other than the network’s own highly decen-
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tralized local control. The control becomes relevant in Anderson’s
model in a process of pattern-matching, in which the more active nodes
in the network are considered as matches to the conditions on produc-
tions and one production is ultimately selected and executed. For
example, in a categorization task the production would be one that
chooses the particular category that best fits the activation of features in
the network. Second, the most radical version of connectionism, PDP,
emphasizes the use of distinctive types of distributed representation
such as coarse coding (discussed in the section on semantic interpre-
tation which follows). Third, there are differences in the equations that
govern the propagation of activation.

As this sketch makes clear, there is a variety of options network
designers can use in determining both the types of activation a unit
might take and how that activation is determined. The common ele-
ment to all of these functions is that the new activation of a unit will be
dependent in some degree on the net input a unit receives from other
units. This net input is determined in part by the weights on the
connections. These can be hand-tailored, but much of the interest in
connectionist networks arises from their ability to modify their own
weights adaptively, that is, to learn. In the next section we consider the
basic idea of learning in such networks and introduce one quite simple
learning procedure. Active research in this area has generated a large
number of different learning procedures, however, and we shall devote
chapter 3 to a more detailed discussion.

Learning Principles

For a connectionist system, learning is accomplished not by adding or
modifying propositions, but rather by changing the connection weights
between the simple units. Since the weights of these connections partly
determine the state a network reaches as a result of its processing, these
changes in weights result in changing the overall characteristics of the
system. The basic goal is to provide a way of changing weights that
increases the ability of the network to achjeve a desired output in the
future. The challenge is to have the network figure out the appropriate
changes in weights without the aid of an external programmer or an
internal executive in the network. Thus, the control over weight change
should be entirely local. The information that is generally available
locally to any weight is the current value of that weight and the
activations of the units to which it is connected. If other information is
to be employed, it must be provided to the units involved so that it is
Just as available as the current activations of the units,
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One of the simplest such learning procedures for two-layer networks
draws upon an idea proposed by Donald Hebb, who suggested that
learning might occur in the nervous system by strengthening the
connections between two neurons whenever they fired at the same time.
Expanding on this idea for connectionist networks, the strength of
the connection between two units (the weight) can be increased or
decreased in proportion to the product of their activations. What is
now referred to as the Hebbian learning rule specifies this function:

Aweight,; = lrate ay a; (12)

where lrate is a constant specifying the rate of learning, a, is the acti-
vation of the output unit, and a, is the activation of the input unit.
Thus, whenever both units have the same sign (positive or negative),
the connection between them is increased proportionally to the product
of the two activations. But when the activations of the two units have
different signs, the weight of the connection is decreased proportionally
to the product of their activations.

To see how the Hebbian procedure can enable a network to learn, let
us consider a two-layer network that is using the Hebbian rule. Assume
that the activations of the output units u are determined by the simplest
linear rule; that is, the output of each input unit { is identical to its acti-
vation, the activation of each output unit u is identical to its net input,
and the net input to a given output unit « can therefore be obtained by
simply summing the products of each i unit’s activation by the weight
of its connection to u:

ay = X weight,; a; (13)

To train the weights using the Hebbian learning rule, we supply the
network with the paired input and output patterns that it is supposed to
learn (we shall refer to each such pair as a case). If the learning rate
(Irate) is set to 1/n, where n is the number of input units, the system
will exhibit “‘one trial learning.” That is, if it is presented with the
same input again on the next trial, its weights will already be adequate
to generate the appropriate output. To illustrate, suppose that a simple
network with four input and four output units is presented with Case
A, that is, input pattern A (1 1 —1 —1) paired with output pattern A (1
=1 —1 1). If it is allowed to set its own weights according to the
Hebbian principle, it will create the following matrix of 16 weights:
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CASE A4
Input Input Output unit
unit  activation e f g h
a 1 0.25 —-0.25 -0.25 0.25
b 1 0.25 -0.25 -0.25 0.25
c -1 -0.25 0.25 0.25 -0.25
d -1 —0.25 0.25 0.25 -0.25

Desired output activation 1.00 —1.00 -1.00 1.00

For example, the value of the upper left cell in the matrix was obtained
by multiplying the learning rate (1/4 =0.25) by the input value for unit
a (1) and the output value for unit e (1), yielding 0.25. We can readily
see that this weight matrix will enable the network to reproduce the
same output pattern if we now test it with the same input pattern. To
obtain the value 1 on unit e, for example, the input values on a and b
are each multiplied by 0.25, the input values on ¢ and d are each multi-
plied by —0.25, and the four resulting values are added together. (Note
that when we train the network, the input and output activations are
fixed and the weights are calculated. When we then test the network,
the input activations and weights are fixed, and the output activations
are calculated. Case A, above, is illustrated in training mode; the label
“desired output activation” indicates that this is a fixed output pattern
supplied to the network.

This same network can in fact learn to produce specified output
patterns for several different inputs without decreasing its performance
on those it has already learned. It can do this as long as the new inputs
are not correlated with those it has already learned. (Unfortunately, this
is a highly constraining assumption that is difficult to satisfy.) Consider
input pattern B: (1 —1 —1 1). We can verify that input pattern B is
uncorrelated with input pattern A by calculating that, with the current
weights, presenting input pattern B would cause the network to pro-
duce the output (0 0 0 0). This tells us that we could now train it to pro-
duce some designated output pattern B; let us specify (11 —1 — 1).
This training would result in the following modified weight matrix:
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CASEB

Input Input Output unit

unit  activation e f g h
a 1 0.50 0.00 -0.50 0.00
b -1 0.00 -0.50 0.00 0.50
c -1 —0.50 0.00 0.50 0.00
d 1 0.00 0.50 0.00 -0.50

Desired output activation 1.00 1.00 —-1.00 -1.00

With these weights, the network will still respond correctly if presented
with Case A again (because the new weights are an alternate solution to
that problem), but now it also will respond correctly to Case B.

While the Hebbian rule produces impressive results, we shall see that
there are sertous limits to what it can accomplish. Thus, in the next
chapter we shall explore a variety of different learning procedures that
are now employed in connectionist networks. The idea that links all of
them, though, is that learning involves changing weights in a network
and that this is to be accomplished using only information that is
available locally, that is at the units linked by the connection on which
the weight is placed.

Semantic Interpretation of Connectionist Systems

In designing a connectionist network to function as a model of human
. performance in a particular domain, attention must be given to the
question of how the concepts relevant to that domain will be
represented in the network. There are two approaches: in localist
networks each concept is assigned to one unit; in distributed networks
the representation of each concept is distributed across multiple units.
(The use of the term local here should not be confused with that in the
preceding paragraph.)

Localist networks The Jets and Sharks network exemplifies the localist
approach. Each concept (being a burglar, having the name “Art,” etc.)
is represented by one individual unit of the network. The semantic
networks of the 1970s were also clearly localist, and when these have
been augmented by equations that specify spreading activation, the
resulting models (particularly the network portion of J. R. Anderson’s
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(1983) ACT* theory) have been similar in many respects to localist
connectionist networks. Localist networks, from whatever research tra-
dition, share the advantage that units can be labeled in the
investigator’s own language to facilitate keeping tabs on what the net-
work is doing. This carries a danger: it is easy to forget that the label
conveys meaning to the investigator, but not to the network itself. The
correspondence between unit and concept relies on an external process
of semantic interpretation, which must be performed with care. When
the network is being used as a model of a particular domain, its success
will be limited by the designer’s intuitions of what concepts in that do-
main should be encoded (i.e., associated with a unit in the network) and
by his or her skill in setting up connections appropriate to that
encoding.

Despite these demands on the designer, it is generally even more
difficult to set up a distributed network. Therefore, a localist network
may be preferred when the task does not require the distinct advantages
of distributed encoding (which are discussed below). The task of mul-
tiple constraint satisfaction, for example, can be adequately performed
by an interactive localist network. Units represent concepts, and posi-
tive or negative connections between pairs of units represent
constraints between those concepts. A positive connection between two
units puts a constraint on the entire network to favor states (overall acti-
vation patterns) in which the two units have the same activation (e.g.,
both on or both off); a negative connection favors states in which the
two units have opposite activity. To run this procedure, each unit is
given a baseline activation value (often zero), and each connection
weight is fixed as positive or negative. External input is optional, and
acts as an additional source of constraint. The network then runs
interactively until it settles into a stable state (pattern of activation
values); if a global energy minimum is attained, that state will be the
state that best satisfies the constraints. One of the important features of
this procedure is that these are soft constraints. Even if there is a nega-
tive constraint between two units, if other constraints involving those
units favor their having the same state, the most stable solution may
have both units on or both units off (violating that one particular con-
straint but satisfying a number of other constraints).

Distributed networks In a distributed network, each concept is repre-
sented by a pattern of activation across an ensemble or set of units; by
design, no single unit can convey that concept on its own. To convert
the Jets’ and Sharks’ three occupations to distributed representations,
for example, we might continue to use three units, but arbitrarily as-
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sociate each occupation with a different pattern of activation values
across those units as follows:

111 = Burglar —1 =11 = Bookie 1 —1 —1 = Pusher

In this example individual units do not have a semantic interpretation.
Rather, each semantic interpretation is distributed over three units
(rather than assigned to one localist unit), and each unit is involved in
three different semantic interpretations.

An alternative way to achieve a distributed representation of a con-
cept is to carry out a featural analysis of the concept, and encode that
analysis across an appropriate number of units. Featural representation
is widely used in the psychological literature on concepts and cate-
gories, for example in exemplar models (see chapter 4). What is new
here is to situate the featural representation in a network architecture.’
The idea that this constitutes a distributed representation is often diffi-
cult to grasp, because the features themselves are typically encoded on
individual units. That is, there is a localist representation of the fea-
tures (one unit per feature), and a distributed representation of the tar-
get concept. In illustration, suppose that a large number of professions
are the objects to be represented. The network designer might craft a
set of 50 units in which each unit is interpreted as corresponding to
some feature that is salient to professions, and represent each pro-
fession as a pattern across those units. Those professions chosen by the
Jets and Sharks would all share the feature illegal, for example, but only
the pusher profession (like the pharmacist profession) would have the
feature involves drugs.

How does one obtain a featural analysis of a domain in order to build
these representations? One method is to let an existing theory guide this
work; for example, a particular linguistic account might be used as a
basis for representing words as patterns over phonemic units. In the
connectionist research program the interest lies, not so much in the par-
ticular features and assignments, but rather in how the system makes
use of its distributed representation once it has been built. We might,
for example, explore generalization or associative learning under the
conditions offered by such a representation. A second method is to let

7 This kind of representation has also been used by J. R. Anderson (1983) in ACT*
networks. For example (pp. 137-9), he has implemented McClelland and Rumelhart’s
(1981) featural decomposition of letters in his activation-based pattern matcher for recog-
nition of four-letter words. Both Anderson and Rumelhart and McClelland also had a
localist encoding of the letters themselves in a higher layer of units, however; exclusively
distributed encodings would lack this hierarchical structure.
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the system perform its own analysis of the domain. When a multi-
layered network is run in a learning paradigm (as described in chapter
3), the network designer specifies the interpretations only of the input
and output units; the input-output cases used for training are selected
with respect to this interpretation. The designer does not know what
aspects of the input—output cases each hidden unit will become sensitive
to; the learning process is in part a process of feature extraction, and
observing this is one of the most intriguing aspects of connectionist re-
search. Usually the hidden units do not arrive at a simple, localist rep-
resentation of the most obvious regularities (features) in the input.
Rather, each hidden unit is sensitive to complex, often subtle, regular-
ities that connectionists call microfeatures. Each layer of hidden units
can be regarded as providing a particular distributed encoding of the
input pattern (that is, an encoding in terms of a pattern of micro-
features).

One virtue of distributed representation is that part of the represen-
tation can be missing without substantially hurting performance. Using
the arbitrary distributed representations of three occupations displayed
at the beginning of this section, for example, we might specify an input
only for the first two units and leave the third questionable (1 1 ?).
Nevertheless, the network will treat this pattern similarly to a complete
burglar input (1 1 1), since this is the pattern to which the partial input
is most similar. The point is even clearer in networks with more units.
Consider, for example, a pattern associator network with two lavers of
16 units each. Each of the units in the input will be connected to all
of the units in the output layer, and depending upon the size of the
weights, will contribute either a little or a lot of the information needed
to determine the value of the output unit. Each output unit will be re-
ceiving inputs from 16 different input units. If there is no input from a
given input unit, or the wrong input, the activity on the other input
lines generally will compensate. The point here is that once we dis-
tribute information as a pattern across units, we also distribute the
resources used to process it. Thus, a distributed system becomes more
resilient to damage. Beyond this, we make it possible for the system to
learn new information without sacrificing existing information. For
example, without adding new units, we can teach the network to re-
spond to a new input that is different from any it has lcarned so far. It
often is sufficient to make slight changes to a variety of weights, which
do not significantly alter the way the network responds to existing
patterns. (There are limits to this capacity, however; in some circum-
stances teaching a new input disrupts previous learning to an unac-
ceptable degree. For a demonstration of “‘catastrophic’’ interference,
see McCloskey and Cohen, in press; for a connectionist response, see
Hetherington and Seidenberg, 1989.)
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see McCloskey and Cohen, in press; for a connectionist response, see
Hetherington and Seidenberg, 1989.)

For a final virtue of distributed networks, consider a distributed net-
work that has encoded a structured domain of knowledge, in which
there are regularities in the input-output pairings. If the network 1s
presented with a new input pattern, a reasonable response should ap-
pear on the output units. Humans often exhibit a similar capacity when
provided with only partial information about a new entity. Generally,
we infer some of the other properties the entity might have, based on its
similarity to entities we already know. In their discussion of distributed
representations, Hinton, McClelland, and Rumelhart (1986, PDP:3)
provide the following example: if we are told that chimpanzees like
onions, we shall probably revise our expectations about whether gor-
illas like onions as well. This reflects a general tendency of organisms to
make generalizations (and specifically exemplifies what Shipley (1988)
calls an over-hypothesis). Distributed representations are well suited to
producing and investigating generalization.

There is one additional approach to achieving distributed represen-
tations that is counterintuitive in many respects, but is ingenious and
exhibits some very useful properties. This is a technique known as
coarse coding. The basic idea is that, rather than deploying units so that
each unit represents information as precisely as possible, we design
each individual unit (called a receptor in this context) to be sensitive to
many different inputs (which constitute its receptive field). Each unit is
sensitive to (activated by) a different set of inputs, and each input has a
number of units that are sensitive to it. In this architecture, the fact that
a particular unit is active is not very informative; but if a high percent-
age of the units that are sensitive to a particular input are active, the
presence of that input can be inferred with high confidence.

To consider a concrete example, coarse coding was used by Toure-
tzky and Hinton (1988) in a connectionist system that they constructed
to implement a production system. One of their purposes was to show
that connectionist systems can indeed represent and use explicit rules:
for discussion of that aspect of their paper, see chapter 7. Their other
purpose was to illustrate certain advantages of coarse coding. The pro-
duction system that they implemented was designed to follow rules in-
volving meaningless triples composed from a 25-letter vocabulary. The
triples themselves were not directly encoded in the network; rather,
each coarse-coded triple was presented by turning on all of the units (28
on average) that were designated as its receptors in the “working mem-
ory” network that was one component of the system. Each such unit
was a receptor for a large number of different triples. For example, one
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of the units that was a receptor for the triple (F A B) was also a receptor
for any other triple that could be formed from the following receptive
field by selecting one letter from each column in the order shown:

Position 1 Position 2 Position 3
C A B
F E D
M H J
Q K M
S T P
W Y R

Hence that particular receptor unit was turned on (became active) if
(F A B) was to be presented; but the same unit would be turned on if
(C A B) or (S H M) or any one of 216 (6%) different triples was to be
presented. The particular sets of letters were determined randomly and
were different for each unit. For example, another of the receptor units

for (F A B) might have had the following receptive field:

Position 1 Position 2 Position 3

ESTARITAO>
CE2E—-mow

I
K
P
S
A%

From the perspective of the triple itself, those two receptor units and
their distinctive receptive fields were only two of the approximately 28
different units that would be activated as the means of presenting (F A
B) to the working memory network. From the perspective of a single
receptor unit, it might have been turned on as a means of presenting
any one of the 216 different triples in its receptive field. To know which
triple was actually being presented, one would neced to know the par-
ticular combination of 28 activated units and to consult the external
listing of their receptive fields (which would reveal that they had in
common only that F was one of the six letters in position 1, A was one
of the six letters in position 2, and B was one of the six letters in pos-
ition 3).

This may seem like a very strange way to design a memory, but Tou-
retzky and Hinton pointed out several advantageous or human-like
properties gained from coarse coding. First, the number of units
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needed to store all possible triples is minimized. There are 15,625 poss-
ible triples, about half a dozen of which are present in working memory
at any given time. But the working memory is composed of only about
2,000 different units. Second, the memory is tolerant of noise (i.e., a
few units can be in the wrong state without materially affecting per-
formance). Third, the memory does not have a rigid, fixed capacity;
rather, its ability to distinguish triples will gradually decline as the
number of stored items increases. Fourth, active triples will gradually
decay as new triples are stored. Fifth, a degree of generalization is
exhibited: if two of the triples that have been presented to the memory
network both happen to have F as their initial letter, more than the
usual number of receptors will be active for other F-initial triples.
Course coding is one of the most distinctive, nonobvious techniques
made possible by the use of distributed (rather than localist) represen-
tations. Hinton, McClelland, and Rumelhart (1986, PDP:3) provide
further discussion of coarse coding, including design considerations
that must be attended to (e.g., a tradeoff between resolution and accu-
racy in setting the size of the receptive fields). They also make the fol-
lowing intriguing suggestion, with which we shall close this section:

Units that respond to complex features in retinotopic maps in visual cortex
often have fairly large receptive fields. This is often interpreted as the first step
on the way to a translation invariant representation. However, it may be that
the function of the Jarge fields is not to achieve translation invariance but to
pinpoint accurately where the feature is! (1986, PDP:3, p. 92)

The Allure of the Connectionist Approach

One reason many people are attracted to network models of cognition is
that they seem to exhibit many properties found in human cognition
that are not generally found in symbolic models. In this section we shall
review, without much critical discussion, some of the properties that
have been cited.

Neural Plausibility

Certainly one of the major features that has attracted researchers to net-
work models is that they seem more compatible than symbolic models
with what we know of the nervous system. This is not surprising: Net-
work models are neurally inspired. Pitts and McCulloch, for example,
built their models using a simplified conception of how neurons work,

Connectionist Architectures 57

Hence, the state of activation of a unit (especially of units that only
acquire discrete activations, 0 and 1) was intended to correspond to a
neuron either resting or firing. The connections between units were
conceived on the model of the axons and dendrites of neurons. Thus,
the propagation of activation within a network 15, at least on this very
general level, similar to the kinds of processing that we observe in the
nervous system.

Of course, connectionist networks do not capture all features of
neural architecture and processing in the brain. For example, little at-
tention is paid to trying to model the particular pattern of connectivity
of neurons in the brain. Nor is there any attempt to simulate the
differences between various neurotransmitters, or the very intricate way
in which excitations to neurons are compounded to determine whether
the neuron will actually fire. Thus, networks only capture aspects of
the coarse architecture of the brain. Conversely, there are aspects of
connectionist networks that do not clearly map onto what is known
about the nervous system; the back-propagation procedure for learning
(chapter 3) is a particularly important example.

These differences present no difficulty, and in fact may be desirable,
if one focuses on connectionist models as cognitive (rather than biologi-
cal) models. Some investigators, however, prefer to push the neural
analogy as far as possible. For example, it is known that neural systems
carry out basic processing (e.g., recognizing a word) very quickly, that
is, within a few hundred milliseconds. Since it takes each neuron sev-
eral milliseconds to fire, it has been argued that basic cognitive tasks
cannot require more than a hundred steps of sequential processing
(Feldman and Ballard, 1982). This, it is claimed, poses a scrious prob-
lem for traditional symbolic architectures, since to model even simple
tasks often requires programs embodying several thousand instruc-
tions. But since network processing relies on performing many different
operations in parallel, it seems much easier for networks to satisfy the
100 step constraint. For example, the network described at the begin-
ning of this chapter could identify a gang member on the basis of some
of his properties and then determine the remainder of those properties,
well within 100 processing steps (assuming it were implemented on ap-
propriate, parallel hardware).

Neural plausibility is most obviously advantageous if one is con-
cerned with the interface between psychology and neuroscience, and
least advantageous if “mere implementation” is regarded as outside the
domain of concern for psychologists (see chapter 7). A middle position
is to view the neural metaphor as a source of ideas that may or may not
pan out, with its biological underpinnings favoring but not determining
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that it will succeed. Other useful metaphors might come from such re-
mote areas as physics (e.g., the hologram theory of memory). On this
view the ncural metaphor is superior to the extent that it inspires
models that deal nicely with particular problems or phenomena, such as
generalization. The further idea that the models work well because they
use necurally-inspired concepts (i.e., that there is a causal relation) is
speculative, but points the way to a potentially attractive bonus that is
not shared by most other metaphors, including the currently dominant
von Neumann computer metaphor.

Satisfaction of “Soft Constraints”

The existence of a connection between two units in a network consti-
tutes a constraint on the processing of that network. If that connection
is excitatory (has a positive weight), then, if the first unit is active, the
second unit is constrained to be active as well. Rules in a symbolic sys-
tem likewise serve as a constraint. If the antecedent of a production sys-
tem rule is satisfied so that the rule fires, then the consequent action is
constrained to occur. In this sense connections serve the same function
as rules: they determine the future action of the system. But there is an
important difference. Rules are deterministic so that if a rule fires, its
action is certain to occur. In a network, on the other hand, a given unit
receives input from many other units. If one unit delivers an excitatory
constraint while two others deliver inhibitory constraints of greater
total magnitude, the overall effect will be inhibitory (using the simplest
activation function). The unit finds the best overall solution to the
multiple constraints, and that solution may not be compatible with all
of the individual constraints. Thus, the constraints imposed by the con-
nections are often spoken of as soft constraints.

Note that this is not an absolute distinction; there are degrees of soft-
ness in constraints. Some rule systems allow for competition between
rules whose antecedents are equally satisfied, and even allow the resol-
ution of this competition to be probabilistic (MacWhinney and Bates,
1989). These systems exhibit some, but not all, of the advantages of
networks. As for networks, it is possible to design networks that (like
rules) exhibit relatively hard constraints; the trained XOR network in
chapter 3 provides an example. Hence, although connectionist net-
works offer a particularly natural way to achieve soft constraints, the as-
sociation is not exclusive or inevitable.

There are many tasks or domains in which cognition seems to be bet-
ter modeled by soft constraints than by hard constraints. For example,
in decision-making a person is often confronted with conflicting de-
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siderata and must choose among them. The most realistic preconnec-
tionist decision-making models have been mathematical rather than
purely propositional. They have been limited, however, by their re-
liance on linear functions. A localist interactive network, in contrast,
can be designed as a nonlinear dynamic system. Each possible desider-
atum may be modeled as a soft constraint between one of the units
representing different aspects of the situation and one of the units
representing possible actions. When a new situation is presented, we
can allow the network to settle into a stable state which represents the
best satisfaction of these constraints. Not all desiderata will be satisfied,
but the network will have efficiently identified the best outcome. The
use of soft constraints enables connectionist systems to account for the
competition between competing desiderata without having to specify
rules that arbitrate the competition, and without the limitations of lin-
ear models.

Soft constraints are also beneficial in designing systems to deal with
new situations that have not been envisaged in advance. If a new input
is provided to ‘a connectionist network, for example, it will respond
with no special effort using the connections it has already developed. If
the situation is like one on which the network had previously been
trained, it will generate a similar response. If the new situation shows
weaker similarities to a variety of old situations, the network will use
the connections developed in the old cases to construct a plausible new
response. Designers of rule systems have also shown increased interest
in developing strategies for flexible response to new situations; the next
few years should bring some vigorous discussion of the relative merits
of different approaches.

The naturalness with which connectionist networks implement soft
constraints is part of what enables connectionist networks to overcome
a common problem that confronts researchers in the symbolic tra-
dition. The problem is that rules tend to have exceptions. This is seen
particularly clearly in attempts to formalize principles of language,
where in fact we see two different kinds of exception. First, there are
the exceptions to generally applicable rules that nevertheless are recog-
nized as proper uses of the language. For example, many irregular
verbs violate the general rules for forming the past tense, but these ir-
regular forms are the correct forms for those verbs. To handle these
cases, symbolic theorists may write more complex sets of rules in which
the exceptions themselves are specified by rules of limited application.
The more exceptions there are, the less satisfactory is this approach.
(See Lakoff (1970) for a consideration of the problems posed by excep-
tions.) Second, there are the mistakes people make in actually speaking
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the language, which result in sentences that are more or less ungram-
matical. Chomsky’s competence/performance distinction has frequently
been invoked as a way of construing these cases. A speaker is assumed
to have a system of rules, which constitutes his or her linguistic com-
petence. Additional factors become involved when this competence is
expressed in specific linguistic acts, all of which create variations (e.g.,
in the timing of pauses in sentence production) among which are gram-
matical errors. Preferably, the errors would be accounted for within
the same mechanistic explanation that accounts for how we produce
sentences at all,

Connectionists, in fact, have some hope of accounting for both rule-
like and exceptional behavior by means of a single mechanism. In each
case, it is the set of connections in the network that determine the re-
sponse of the system. The particular set of constraints found in a net-
work may enable it to perform consistently with a general rule in some
contexts, but to select the appropriate exceptional response in other
contexts. Sometimes when we analyze a network we can find connec-
tions that can be interpreted as serving the same function that a rule
might serve in a symbolic system. But even when we find such an
interpretable connection, it is only a soft constraint that the system as a
whole might override. Hence, connectionism attempts to avoid some of
the problems posed by exceptions to rules by using a system of soft
constraints rather than hard rules. The goal is to account for exceptions
as well as regularities within the same system. (See chapter 7 for oppos-
ing views of the success of one such attempt.)

Graceful Degradation

One of the notable features of the human brain is that it seems to be
an cxtremcly reliable device. Like any mechanism, though, it has its
limits. It can be overloaded with too many demands or too much infor-
mation, or it can be impaired by physical damage. But when its limits
are exceeded, generally it does not crash. It simply begins to perform
sub-optimally. When confronting a task that makes too many demands,
it begins to ignore some of the demands or some of the information.
The more it is overloaded, or the more it is impaired, the less well it
functions. The same gradation of effect is found when some com-
ponents arc destroyed. In a very few situations, a clearly delineated
behavioral deficit will arise. For example, the classical work on aphasia
correlated particular lesions (e.g., in Broca’s area) with particular
behavioral deficits (inability to produce articulate speech). But in gen-
eral the brain is rather resilient in the face of damage. Nerve cells die
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everyday, but generally this does not leave a trace in terms of specific
impairment of performance. Loss of even large numbers of neurons
may lead not to specific losses but to a nonspecific gradual impairment
of function. For example, we do not forget how to divide 12 by 2 and
yet remember the rest of the division tables; rather, we gradually
become more limited in our numeric abilities. This characteristic
of gradually failing performance is generally referred to as graceful
degradation.

A traditional symbolic system does not exhibit graceful degradation.
If any of its elements are lost, the information they encode is no longer
available to the system. This is particularly clear if we consider what
happens if a rule is eliminated. The system is simply not able to re-
spond to any of the situations in which that rule was needed. It is poss-
ible to develop implementations of symbolic systems that are more re-
sistant to damage, for example, by storing information at redundant
locations or using error-checking techniques to recover from damage.
Such an implementation still may fail to exhibit the more subtle
phenomenon of graceful degradation.

A connectionist network, on the other hand, does exhibit graceful
degradation. Destruction of a few connections or even of a few units
(except in networks which only have a few units to begin with) gener-
ally does not significantly impair the activity of the system. In a localist
system, destroying a unit will destroy a particular piece of that system’s
information, with possibly serious consequences, but destroying con-
nections instead will result in graceful degradation. For example, using
the Jets and Sharks network which employs a localist encoding, we
destroyed at random 53 of the 1,062 connections in the network (5
percent of the total) and then explored its performance on the same
tasks that we discussed at the beginning of this chapter. On two of the
tasks its performance was qualitatively the same: it still correctly iden-
tified Art’s properties and it still correctly identified the individuals that
met the specification of being in their twenties and being pushers. It
did perform differently when queried about Sharks. It still responded
by activating particular Sharks, but it offered different Judgements as to
who were the most prototypical Sharks (Nick, Neal, and Dave). The
reason the network was still able to identify Art’s properties was that
none of the connections between Art’s person unit and his properties
happened to be broken. But as an additional experiment we broke one
of these connections (between ART and junior high education). The
network now answered incorrectly that Art had a high school educa-
tion. What is interesting is how it arrived at this answer: those indivi-
duals who were most similar to Art in other respects tended to activate
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the unit for high school education. Thus, even when disabled, the net-
work still offered plausible judgements. It did not crash.

In systems using distributed representation, we can eliminate a num-
ber of units in the system and the system will still behave in only a
slightly distorted fashion. For example, if an input normally consisted
of a distributed representation over eight units, and one of these was
disabled, the system will still respond normally to most input patterns.
With more damage, the system will increasingly make errors; however,
even these will not be random, but rather be associated with closely re-
lated patterns to which the distorted input is now more similar. Hence,
a connectionist cognitive system inherently displays graceful degra-
dation as a consequence of its own architecture. It will display that
property whether it is implemented in a nervous system, on a parallel
machine, or even on a serial computer.

Content-addressable Memory

The human ability to remember information is quite remarkable. Fre-
quently information that we need comes to mind spontaneously. We
identify a book that we need, and we remember that we loaned it to a
student. Sometimes, though, we need to work at recalling information:
we remember we loaned the book to a student, but now have to work at
trying to recall who the student was. This may involve retrieving cues
that will help us identify the person. Typically, we can retrieve the
same piece of information from a variety of different cues that consti-
tute part of the contents of the memory itself. Since such memory is
accessed through its content, it is generally termed content addressable
memory. Designing this type of memory access into a symbolic system
is a challenge, and requires maneuvering around the architecture of the
system rather than taking advantage of it.

A common model for a symbolic memory is a filing system; we store
information on paper, place the paper in a file folder, and position the
folder in a cabinet sorted according to some procedure we take to be
reasonable. If each folder is positioned by an arbitrary index, or by the
serial order of its creation, there is no content addressability in the
filing system. More frequently, each folder will be positioned in accord
with one or at most two aspects of its content. For example, suppose
that we keep track of students in our classes by placing information
about them in file folders arranged alphabetically. Sometimes this
works very well. If we want information on a particular student, we can
rapidly access the file with that student’s name. If, however, we seek to
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recover the information by taking a different route, the task is more
difficult. Suppose that the information we want to access about a
student is her name, and the cues we start with are what class she took
and what grade she got. Now we face a serious problem: since the infor-
mation is not organized in this manner, the only way to retrieve the
student’s name is to go through each folder until we find a student who
took the class in question and received the specified grade. If we had
known in advance that there might be different ways in which we would
want to access the information in our filing cabinet, we could have de-
veloped an indexing system that would have told us where information
satisfying certain descriptions would be found. For example, we might
have constructed an index identifying by name the students in each
class. But then it is necessary to identify in advance all the ways we
might want to access the file. Furthermore, if we make errors in
recalling the contents that are indexed (e.g., confusing our course on
research methods with our course on statistics), the index is of little
or no use,

The disadvantages of the filing cabinet system are exhibited in a
variety of memory systems. In computer systems, for example, in-
formation is stored at register locations, and the only way to access
information directly is by means of the address of the location. Sym-
bolic systems that are implemented on such computers often (although
not necessarily) make some of the same assumptions about storage and
retrieval. Serial search through separate items therefore figures promi-
nently in memory retrieval. Some such systems attain superior per-
formance by means of intelligent search procedures that mitigate this
difficulty.

Connectionist networks offer a relatively natural alternative means
of achieving content addressable, fault tolerant memory. The Jets and
Sharks network provides a simple illustration. Properties could be
retrieved from names, names from properties, and so forth. We might
even make a mistake on one property and still retrieve the right person. -
For example, we gave the network the task of remembering George'’s
name and we described him as a Jet, in his thirties, junior high edu-
cated, and divorced. As an experiment, we deliberately made a mistake
about one of George's properties (he is in fact still in his twenties). No
one, in fact, precisely fits this description. But, since the connections
only constitute soft constraints, the network proceeds to find the best
match. The units for Jim and George become most active (0.31 after 70
cycles), while Al is slightly less active (0.30). Jim and George actually
have identical properties and match on three out of four cued proper-



64 Connectionist Architectures

ties, while Al has different properties, but also matches on three out of
four. Thus, even with erroneous cues, the network has recalled the
persons who best match what cues were given,

The advantages of content-addressable memory are particularly evi-
dent in systems employing distributed representations; in such systems
it is often possible, given part of a pattern, to reconstruct the whole pat-
tern. A question arises, however, as to how we should characterize this
sort of memory. Within symbolic systems remembering is a process of
retrieving a symbol that has been stored away. But in connectionist
networks, remembering is carried out by the same means as making
inferences; the system fills in missing pieces of information. As far as
the system’s processing is concerned, there is no difference between
reconstructing a previous state, and constructing a totally new state
(confabulating):

One way of thinking about distributed memories is in terms of a very large set
of plausible inference rules. Each active unit represents a ‘‘microfeature’’ of an
item, and the connection strengths stand for plausible “microinferences” be-
tween microfeatures. Any particular pattern of activity of the units will satisfy
some of the microinferences and violate others. A stable pattern of activity is
one that violates the plausible microinferences less than any of the neighboring
patterns. A new stable pattern can be created by changing the inference rules so
that the new pattern violates them less than its neighbors. This view of memory
makes it clear that there is no sharp distinction between genuine memory and
plausible reconstruction. A genuine memory is a pattern that is stable because
the inference rules were modified when it occurred before. A “‘confabulation”
is a pattern that is stable because of the way the inference rules have been
modified to store several different previous patterns. So far as the subject is
concerned, this may be indistinguishable from the real thing. (Hinton,
McClelland, and Rumelhart, 1986, PDP:3, pp. 80-1)

Capacity to Learn from Experience

A final feature of networks that makes them attractive is their capacity
to learn from experience by changing the weights of connections. In the
next chapter we shall examine connectionist learning in greater depth,
so we shall make just one comment here.

The comment is that not all learning has the gradual character that
we have been emphasizing. At least in the case of human beings, some
information can be learned rapidly in one or two encounters. Also,
some information is encoded in relative isolation rather than as part of
a highly connected system. In illustration of both of these points, sup-
pose that I am told verbally, “To make this thing work, push a candy

Connectionist Architectures 65

bar through the slot in the center.” I am highly likely to remember that
rather bizarre instruction. It is this kind of learning that symbolic
models are best equipped to handle, and for which the relevance of
connectionist modeling is unclear at this point. In contrast, learning a
language or learning to do arithmetic is awkward to model symbol-
ically, but is natural (although challenging) to model using networks.
One would hope that a unified account will eventually be attained; but
at present it is not obvious how connectionism might handle some of
the most distinctively human capabilities for dealing with information.

Summary

In this chapter we have presented a simple connectionist network (the
Jets and Sharks network), and examined some of the basic architectural
features that can be employed in connectionist networks more gener-
ally. We have also examined some of the features of connectionist sys-
tems that have served to attract interest in them. In the next chapter we
shall examine in more detail the ability of connectionist systems to
learn before turning to a cognitive task, pattern recognition, for which
connectionist networks appear particularly adept.
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Learning

One of the features of connectionist systems that has been most attract-
ive to researchers is the capacity of these systems to learn. In this chap-
ter we first discuss alternative approaches to learning that were
developed earlier than, and compete with, connectionism. Second, we
describe and illustrate some of the principal learning strategies that
have been developed for connectionist networks. Third, we discuss two
essentially philosophical issues that are raised by connectionist learning
strategies.

Traditional and Contemporary Approaches to Learning

Treatments of learning generally divide along a major philosophical
distinction, that between empiricism and rationalism, Empiricism and
rationalism represent two major intellectual traditions that can be tra-
ced back at least to Plato and Aristotle. They were developed most sys-
tematically in the wake of the Scientific Revolution in the seventeenth
century, which overthrew the then current Aristotelian theories of the
natural world (according to which objects behaved in accord with their
natural forms or essences) and of the human capacity for knowledge
(which involved internalizing the forms of objects). The distinctive
claims of these two traditions have continued to divide contemporary
disciplines such as psychology and linguistics.

Empiricism  'The tradition of philosophical empiricism emerged in
Britain and is associated with such theorists as Bacon, Locke, Berkeley,
and Hume. The empiricists faulted the Aristotelian tradition for ex-
cessive dependence on established principles of reasoning and for in-
sufficient attention to our sensory experience of the world. For the
empiricists, such sensory experience provided the only authority that
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we could employ if we sought truth. The empiricists’ primary concern
was thus epistemological: knowledge must be grounded in Sensory ex-
perience. Also incorporated within their framework, however, was an
account of psychological processes that became known as associationism.
In this account, SENsory experience gave rise to simple ideas (e.g., red,
round), which then became composed into more complex ideas (e.g.,
apple). In this example, it is spatial contiguity that produces the associ-
ation. For Hume and others, temporal contiguity was also important,
because it was viewed as giving rise to our idea of causation. Once
associated, the idea of a cause could elicit the idea of its effect. Simi-
larity was an additional principle governing the formation of associ-
ations in most treatments. The associationist approach was further
developed by psychological theorists such as David Hartley in the
eighteenth century and James Mill, John Stuart Mill, Alexander Bain,
and Herbert Spencer in the nineteenth century. J. R. Anderson and
Bower (1973) offered a useful review that suggests four defining
features of associationism: the notion that mental elements become
associated through experience; that complex ideas can be reduced to a
set of simple ideas; that the simple ideas are sensations; and that simple
additive rules are sufficient to predict properties of complex ideas from
simple ideas.

A kind of associationism found expression in the behaviorist models
of classical and operant conditioning, which were developed in the
United States in the twentieth century. Here, the strategy was to limit
the entities involved in the posited associations to what could be
observed by an investigator: environmental events (stimuli, reinforce-
ments) and the behavioral responses of the organism. During the era
when behaviorism dominated psychology, learning was the central
topic of concern. Researchers actively investigated the efficacy of
different ways of arranging the environment (by varying the timing and
degree of reinforcement, punishment, contiguity, and the like). Some
used the tool of mathematical modeling to develop general theories of
learning. Learning was operationally defined as changes in the fre-
quency of a particular response. The major limitation of this work was
the lack of an adequate means of modeling what occurred inside the sys-
tem as it learned. In fact, this limitation was regarded as a virtue: learn-
ing theorists preferred to regard the organism as a black box. Some
investigators developed notions of mediated learning that referred to
internal stimuli and responses, but had no way of actually building
models of the internal events. They were intrigued, for example, by the
ability of older children (but not younger children or animals) quickly
to reverse the responses made to two kinds of stimuli when the exper-



68 Learning

imenter suddenly reversed the contingencies. “Reversal learning” was
regarded as a4 phenomenon that presented a challenge for learning the-
ory. Although no solution was directly forthcoming, the limitations of
behaviorism made some of its practitioners receptive to the information
processing approach that emerged in the 1960s. Hence, behaviorism
has lost its pre-eminence but endures as a research tradition within
psychology.

Rationalism The other major intellectual tradition that the cognitive
sciences have inherited is rationalism, represented by philosophers on
the European continent such as Descartes, Spinoza, and Liebniz. Ra-
tionalism rejected empiricism’s strong reliance on Sensory experience
and offered a different diagnosis of the problems with Aristotelianism
(in particular, the fact that it had not achieved true knowledge). Ra-
tionalists did not seek to restrict ideas to those grounded in experience.
Ideas, for the rationalist, were innate; what was critical in arriving at
true beliefs was the way we reasoned using these ideas. Rationalists did
not reject reliance on sensory experience altogether. They proposed
that it could tell us which of several possible coherent arrangements of
ideas were actually instantiated in this world. But they insisted that far
more basic than experience was careful reasoning using our native
ideas.

The rationalist tradition has had its major contemporary impact in
the discipline of linguistics. Rejecting the behaviorist foundations of
structural linguistics, Noam Chomsky (1957, 1968) embraced men-
talism and claimed that grammars are essentially cognitive theories. For
Chomsky grammars are models of human linguistic competence, and the
crucial core of that competence, Universal Grammar, is innate. Chom-
sky took a distinctly rationalist position with respect to learning. In his
well-known review of B. F. Skinner's Verbal Behavior, Chomsky
(1959) objected to Skinner’s claim that a behaviorist theory could ac-
count for language learning, and he further developed his position in
Language and Mind (Chomsky, 1968). One of Chomsky's main argu-
ments, known as the poverty of the stimulus argument, contended that
the amount of data a child receives in his or her early years is not suffi-
cient to determine uniquely the rules of the child’s grammar.,

In fact, two issues are combined in Chomsky’s attack on behaviorist
models of language acquisition. First, what role is played by innate
knowledge in language acquisition? Second, for those aspects of a
language that must be learned (e.g., particulars of the inflectional Sys-
temn), by what process does that learning occur? Language acquisition
researchers within the Chomskian tradition initially put forward the
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“little linguist” model: that the child formulates hypotheses and tests
them against data (typically not consciously). With changes in linguistic
theory that have occurred since then, Chomskian students of language
acquisition now are more likely to talk about the child using the in-
coming data to set parameters. On this view, the child is born with a set
of unmarked (default) parameters that can be reset on the basis of ex-
perience. For example, pro drop specifies that subject pronouns can be
omitted, and is assumed unless the child encounters disconfirming
evidence (as in English; see Hyams, 1986). There has been an ongoing
tension in developmental psychology between those adopting the
Chomskian approach, and those preferring an empiricist framework.
Neither group has been able to offer a detailed model of the mech-
anisms involved in language acquisition.

Contemporary cognitive science Chomskian linguists have continued
into the 1980s as the contemporary representatives of a rationalist view
of learning. Cognitive psychologists and artificial intelligence resear-
chers, in contrast, tended to ignore learning until recently. In formu-
lating an alternative to behaviorism, they addressed questions on which
immediate progress could be made using rule-based symbolic models:
how information is represented in the mind, what kinds of memory
systems are involved, and what processes operate on mental repre-
sentations. Several factors have resulted in increased attention to learn-
ing in the 1980s; prominent among these is the rise of connectionist
approaches to learning. Some symbolic-tradition researchers have also
exhibited a new interest in learning, but have expressed that interest by
designing rule-based systems that can learn. For instance, by the 1980s
there was new work on such approaches as learning by analogy and
by other inductive procedures (e.g., J. R. Anderson, 1981; Holland,
Holyoak, Nisbett, and Thagard, 1986).

Within artificial intelligence, an active research area known as mach-
ine learning has emerged, which pursues strategies for getting mach-
ines to learn from experience. Since rules are the major determinant of
behavior in symbolic systems, the strategies focus on modifying or
adding rules. One of the factors that makes this work challenging is
that altering rules can have fairly global effects on behavior; hence, a
rule modification designed to deal with one circumstance may inadver-
tently result in new, incorrect behavior in certain other circumstances.
A more general problem is that modifying or adding rules can be too
crude a techniques to capture the gradualness and subtlety of learning.
As research has proceeded, techniques have emerged to make much
finer adjustments to rule systems that overcome these difficulties and
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result in performance that is more human-like (see, for example, Hol-
land et al., 1986). Hence, a researcher interested in learning in the
1990s has a choice of approaches. The empiricist branch of the sym-
bolic approach (e.g., cognitive psychology and Al) offers increasingly
sophisticated methods for modifying rules and symbolic representa-
tions. The rationalist branch of the symbolic approach (e.g., linguistics
and Chomskian language-acquisition research) offers new interpreta-
tions of how adjustments are made to an innate grammar in order to
acquire a specific language. And connectionism offers new, powerful
learning algorithms that have revived interest in subsymbolic network
architectures as a vehicle for an essentially empiricist program. We turn
now to a more detailed consideration of how connectionist networks
learn.

Connectionist Models of Learning

In the previous chapter we have already provided an introduction to
learning in connectionist systems. Learning consists in changing the
weights of connections between units, so as to alter the way in which
the network will process inputs on subsequent occasions. When a net-
work is run in training mode, both activations and weights change on
each learning trial; after training, the network can be tested by pre-
senting inputs and observing their effect on the activations alone. It is
important to understand that although both weights and activations can
change in response to inputs, their roles are distinct. Activation values
are the vehicle for temporary state changes in a network that should tell
us which one of a set of possible input patterns has just been processed.
Weights are the vehicle for more enduring changes in a network that
make it capable of processing all of the various input patterns on which
it has been trained. In fact, some training procedures make the weight
changes only after the entire batch of input patterns has been processed
rather than on every trial; in the end, the results are very similar. In
contrast, it would not make any sense to change activations less fre-
quently than every trial (that is, every presentation of an input pattern).

One similarity between activations and weights is that their changes
are determined locally; that is, they are based solely on information that
is directly available to a particular unit or connection. In the case of a
weight change, the outputs (which are often simply the activations) of
each of the two units between which the connection is being adjusted
count as local. Any units other than those indexed in the weight’s
subscripts are remote, not local. In a multilayer or interactive network
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these remote units can affect the activation of the local units by means
of unit-to-unit (local) propagation of activity through the network;
hence they can affect the changes in weights as well. However, the
effects must come only via the series of local changes; it is somewhat
like playing a game of rumor (A whispers to B, B whispers to C) rather
than A simply talking to everyone at once.

A variety of learning procedures is now employed in connectionist
networks. The precise procedure chosen depends in part upon the
architecture of the network that is to learn. In this chapter we shall de-
scribe some of the most commonly used learning procedures. In order
to make clear the basic principles, we have chosen to provide a detailed
treatment of representative examples of learning in one class of net-
works (feedforward networks). Recall that in such networks, a pattern
of activation is provided across the units of the input layer, and the net-
work is supposed to produce an appropriate pattern of activation across
the units of the output layer. We shall begin with learning procedures
for two-layer feedforward networks (pattern associators) and then move
on to multi-layered feedforward networks. We must be briefer in our
treatment of other learning procedures, including those for the Boltz-
mann machine (as an exemplar of interactive networks), competitive
learning, and reinforcement learning. Note that learning procedures are
often classified as exemplifying supervised learning versus unsupervised
learning. In supervised learning, the network is explicitly told what out-
put was desired for a particular input (and must compare that to its
actual output). In unsupervised learning, the network classifies a set of
inputs without feedback. This distinction seems clear enough, but con-
siderable controversy has emerged regarding the proper application of
these terms; we shall refer to it only for the clearest cases,

Learning Procedures for Two-layer, Feedforward Networks

The goal of the learning procedure is to develop weights that enable
a network to respond appropriately to a set of cases. Each case is
composed of a pattern of activations across the units of the input layer
(the input pattern) and a pattern of activations across the units of the
output layer (the output pattern). These patterns technically can be
treated as n-dimensional vectors, where n is the number of units; how-
ever, we shall simply refer to them as patterns. Typically, the network’s
ability to learn is determined by running it in two different modes: a
training mode, in which entire cases are presented (input patterns with
their associated output patterns) and a test mode, in which only the in-
put patterns are presented. During training, the weights increasingly
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accommodate the constraints in the set of cases. Minimally, every case
would be presented once in the training mode (so that the number of
training trials would equal the number of cases); this is referred to as
one epoch of training. Depending upon the learning procedure used and
the difficulty of the set of cases, a large number of epochs may be
required to achieve satisfactory performance. If the training has been
sufficient, when the network is tested with the input patterns, it will
respond with the appropriate output pattern on its own.!

We shall consider two different learning rules that are variations on
this general scheme: the Hebbian rule (which we have already intro-
duced) and a more powerful variation known as the delta rule.

The Hebbian rule When a two-layer feedforward network incorporates
a linear activation rule, and applies the Hebbian rule to a set of input—
output cases, the result is a learning device called a linear associator. In
training mode, as described in chapter 2, a linear associator is presented
with each input pattern together with its associated output pattern.
(Since the Hebbian rule treats them identically, however, the input-
output distinction is not really relevant until test mode.) The Hebbian
rule tells the network how to change the weight of each of its con-
nections after each such presentation:

Aweight,; = lrate a, a; )]

That is, the weight change is obtained by multiplying the activations of
the two connected units along with a constant (the learning rate). If the
two units have similar activations (e.g., both positive or both negative),
the current weight will be incremented by the amount given by equ-
ation (1). If the activations are dissimilar (e.g., one positive and one
negative), the value of equation (1) will be negative and the current
weight will be reduced. The efficacy of the weight change can be evalu-
ated by running the revised network in test mode (that is, presenting
the input pattern alone and observing what output is obtained).

The Hebbian rule works well as long as all the input patterns are
uncorrelated.? However, it fails if we try to use it to teach patterns that

1 If the weights are updated every trial, on a given trial both the activations and the
weights would be changed. Alternatively, weights may be updated at the end of each
epoch. During testeng, only the activations change in order to evaluate the weights; on
each trial the weights are applied to the input pattern to obtain an actual output pattern.

2 A simple way to determine if two patterns are correlated is to compare the two
patterns position by position, and score + 1 every time the two patterns have the same
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are correlated. Consider what happens if we try to train the network de-
scribed on p. 48 above using an additional case C, after it had already
learned to respond to cases A and B. Case C’s input pattern is (1 1 —1
1) and desired output patternis (1 1 1 —1). Because its input pattern is
positively correlated with the input patterns in cases A (rtr -1 -1
and B (1 =1 —1 1), learning case C disrupts the ability of the network
to respond properly to cases A and B. For example, after one learning
epoch in which the three patterns were presented in the order A-B-C,
the weight matrix would look like this:

CASEC
Input Input Output unit
unit  activation e f g h
a 1 0.75 0.25 -0.25 -0.25
b 1 0.25 -0.25 0.25 0.25
c —1 —-0.75 -0.25 0.25 0.25
d 1 0.25 0.75 0.25 —-0.75

Desired output activation 1.00 1.00 1.00 —-1.00

To evaluate the success of these weights, we can run the network in test
mode. On input pattern C, it will produce the erroneous output pattern
(2 1 0 —1). Moreover, its performance on inputs A and B is also
diminished. For A it will now produce output pattern (1.5 —0.5 —0.5
0.5) instead of (1 —1 —1 1), and for B it will now produce (1.5 1.5
—0.5 —1.5) instead of (11 —1 —1). Furthermore, additional training
on the three patterns will not improve matters; the added trials will
only increase the size of the weights and hence the size of the output
values, without increasing accuracy.

The requirement that all input patterns be uncorrelated with one
another, in fact, imposes a serious limitation on what can be taught to
a linear associator. There are sets of cases (with correlated inputs) for
which a two-layer network can produce the correct responses on a test, if
the weights have been manually set (or have been determined by means
of a more powerful procedure than the Hebbian rule). However, when
the Hebbian rule is applied to muke the two-layer network a linear

value in a position, and — | every time they ditfer. If the total score after comparing all
positions is 0, the patterns are uncorrelated (orthogonal); if not, the patterns are
correlated (nonorthogonal). In the example which follows, there are four positions. The
score for case A versus B is 0 (the sum of + 1, =1, +1, —1 obtainced by comparing the
four positions), but the score for case A versus C is 2 (the sumof +1, + l-, +1, —1).
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associator (a learning device), there is no guarantee that it can learn to
respond to the same sets of cases.

The delta rule A far more powerful learning rule is the least mean
squares (LMS) or Widrow-Hoff rule (see Widrow and Hoff, 1960).
Rumelhart and McClelland (1986), who call this the delta rule, regard it
as a variant of the Hebbian rule, because it maintains the basic intuition
that each change in weight should depend upon what is happening at
the relevant input unit and at the relevant output unit. The delta rule is
more powerful than the simple Hebbian rule, however, because it di-
rectly utilizes the discrepancy between the desired output pattern and an
actual output pattern to improve its weights during the training phase.
Specifically, the network receives an input pattern, generates an actual
output pattern using the existing weights (a step that is omitted in
Hebbian learning), compares that to the desired output pattern, and
changes each weight based upon the difference at each output unit (re-
ferred to as the unit’s error or discrepancy). Thus, this procedure is an
error correction procedure, and it is regarded as a prototypical example of
supervised learning.

The error for the entire output pattern is referred to as pss (pattern
sum of squares) in McClelland and Rumelhart’s (1988) Handbook. It is
computed as follows: for each output unit u, compute the difference
(discrepancy) between the desired output of u (d,) and the actual output
of u (ay); square each of the differences; and add together the squared
differences over all of the output units:

pss = 2 (du — au)? (2)

By summing the pss values across all of the input-output cases being
learned by the system, we can obtain the value of tss (total sum of
squares). This is a useful indicator of how much room for improvement
remains to achieve perfect performance on the entire set of input-out-
put cases.

Five points should be noted. First, it is the use of the differences
(dy —a,) that motivates calling this the delta rule (Rumelhart, Hinton
and McClelland, 1986, in PDP:2, p. 53). Second, both d, and a, are ac-
tivation values (a desired and actual activation on output unit u, respec-
tively). Third, chapter 2 made a different distinction that we shall be
able to ignore here: the output of a unit was sometimes, but not always,
identical to its activation. In the learning procedures reviewed here, the
identity function output, = activation, always holds; we can therefore
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simplify matters by referring directly to activations. Fourth, most
presentations use an error measure, Error,, which is the same as Dss ex-
cept that the sum of squares is divided by 2. Using Error, simplifies the
derivation of the delta rule (see below); for all other purposes in this
chapter we find pss more convenient. Fifth, a more careful rendering of
most of the equations in this chapter would include a subscript p on
most variables, indicating that the equation applies to each output pat-
tern (or input-output case). For the sake of readability, we omit this in-
dex here and in the equations that follow.

The delta rule requires that each weight in the network be changed
according to the following equation:

Aweight,; = lrate (d, — a,) a; 3)

The underlying strategy is to change each weight in the network so as
to reduce the total error (as revealed in a test or during the next epoch
of training). If a particular unit produced the desired output, then
(dy — ay) equals 0 and so none of the weights feeding in to it is changed.
If there is an error on the output unit, we still do not change the weight
if the input unit for that connection had 0 activation, since that weight
could not have been contributing to the error. When there is an error
and the input was not zero, this equation causes a change in the weight
in the direction that would reduce the error.

A deeper understanding of this informal characterization can be
obtained by working through a derivation of the delta rule. Rumelhart
and McClelland (1986) note that there is a variety of ways of deriving
the delta rule. They select one that shows that the delta rule (which
changes weights) indeed achieves this minimization of total squared
discrepancies (which is the error measure). They do this by showing
that the derivative of the error measure with respect to each weight is
(negatively) proportional to the amount of change in the weights that
results from applying the delta rule. (They further interpret this as
an implementation of gradient descent in weight space, which can be
visualized as seeking the lowest point on a landscape of error values
across possible weights.) We recapitulate their derivation in Box 1,
translated into our notation and with some differences in exposition.
(We have placed this in a box to indicate that it is relatively technical
material that can be bypassed without loss of continuity.)

The increased power obtained by using the delta rule can be illus-
trated empirically by returning to the problem of learning input-output
cases A, B, and C. Recall that all three could not be learned by a linear
associator, which uses a simple Hebbian rule, because input pattern C
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BOX 1
Derivation of the Delta Rule

The general strategy underlying the delta rule is to start with a measure
of Error in the output

trror = 3 (d, — ay)?
u

and then to modify the weights in a way that decreases error. An initial
difficulty we face is that the error measure is calculated for the whole
pattern so that information about it is not available locally at each
weight. What we actually need in order to know how to change the
weights, however, is not the Error itself, but the partial derivative of Error
with respect to the activation of each output unit so that we can deter-
mine how Error will change with change in that activation. This partial
derivative can be evaluated locally. In fact, it is simply the difference be-
tween the desired and actual output activations (with appropriate sign):

5g;rm -~y — ay)

This tells us how much the activation of each output unit must change
in order to reduce to zero that unit’s contribution to Error. Now we
work backwards, because the relevant way to change the output unit’s
activation is to change the weight of each of its connections with an in-
put unit. (The irrelevant way would be to change the input activations.)
Therefore, the problem has become one of specifying how to change
the connection weights so as to reduce Error. This requires that we de-
termine the partial derivative of Error with respect to the weights. Here
we appeal to the chain rule:

OFrror - OFError da,
dweight,; day,  Oweight,,

We need now to evaluate the partial derivative of the activation with
respect to the weight. If we are using the linear activation function,

a, = Lweight,a;
!
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then this partial derivative is simply the activation of the input unit:

da, _
dweight,; a
Hence, the partial derivative of the error with respect to each weight
(with negative sign) can be computed by simply multiplying the discrep-
ancy by the activation of the input unit:

OError
dweight, do = aa

The delta rule now multiplies the negative of this derivative by the
learning rate to determine the change in the weight between units i and
u:

A weight,; = Irate (d, — a,) a

If weights are changed after the presentation of each case ¢, error is
calculated separately for each case. Alternatively, error can be summed
across cases to obtain an overall measure of error, on the basis of which
weights can be changed just once per epoch:

weight,; = Y lrate (dew — ac) ag
C
The latter method achieves true gradient descent with respect to the

overall error measure; however, weight changes made after each case
yield a very similar result if Irate is sufficiently small.

is correlated with input patterns A and B. To see how the delta rule
overcomes this limitation, let the network begin with all weights = 0
and lrate = 0.25. Case A specifies that input pattern (1 1 —1 —1)
should elicit the desired output pattern (1 =1 —11). When input pat-
tern A is first presented to the network, since all weights are 0, all four
output units will take activation values of 0. (See chapter 2 to review
how each input activation is multiplied by each weight, with the four
resulting quantities for each output unit summed at the bottom of the
column.) Hence, the actual output pattern will be (000 0). The error
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(discrepancy) for output unit e is obtained by taking 1 —0 = 1; for unit
/, the error is obtained by taking —1 —0 = —1; and so forth, resulting
in errors on the four output units of (1 —1 —1 1), The squared errors
are therefore (1 1 1 1); summing these would yield a pss of 4 for Case A.

CASE A, Training Trial 1

Input Input Output unit
unit activation e f g h
a 1 0.00 0.00 0.00 0.00
b 1 0.00 0.00 0.00 0.00
c -1 0.00 0.00 0.00 0.00
d -1 0.00 0.00 0.00 0.00

Desired output activation 1.00 -1.00 -—-1.00 1.00
Actual output activation 0.00 0.00 0.00 0.00
Error (discrepancy) 1.00 —-1.00 —-1.00 1.00

The delta rule is now applied to each of the 16 weights. To see how this
is done, consider just the upper left cell (the weight for the connection
between input unit @ and output unit e). The change in the weight is
obtained from equation (3), that is, by multiplying the learning rate
(0.25) by ¢’s error (1) by a's activation (1):

Aweight,; = lrate (d, — a.) ai, so Aweight,, = (0.25) (1 — 0) (1) = 0.25

This weight change (Aweight,, = 0.25) is added to the current weight
(0) to obtain the new weight (0.25). By applying the delta rule to each of
the 16 weights in the matrix, a new weight matrix is obtained. Although
a test mode trial would not ordinarily be inserted at this point, we do
so in order to observe the consequences of these new weights:

CASE A, Test Trial 1

Input Input Output unit

unit  activation e f g h
a 1 0.25 —-0.25 -0.25 0.25
b 1 0.25 -0.25 —-0.25 0.25
c -1 —0.25 0.25 0.25 —-0.25
d -1 —0.25 0.25 0.25 -0.25

Desired output activation  1.00 —1.00 -1.00 1.00
Actual output activation 1.00 —-1.00 -1.00 1.00
Error (discrepancy) 0.00 0.00 0.00 0.00
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This new weight matrix, and therefore the output activations, are the
same as those produced by the linear associator with its simple Hebbian
rule (although by a different computational path; see chapter 2). Fur-
thermore, the network will behave the same as the linear associator did
when we now present input-output case B in training mode. Specifi-
cally, the network will again produce 0 on all output units (and would

do the same for any input pattern that was uncorrelated with input
pattern A):

CASE B, Training Trial 1

Input Input Output unit

unit  activation e f g h
a 0.25 —-0.25 -0.25 0.25
b ~1 0.25 —-0.25 -0.25 0.25
c -1 —0.25 0.25 0.25 -0.25
d 1 —0.25 0.25 0.25 —0.25

Desired output activation 1.00 1.06 —-1.00 -—-1.00
Actual output activation 0.00 0.00 0.00 0.00
Error (discrepancy) 1.00 1.00 -1.00 -1.00

Applying the delta rule to obtain new weights that will work well for
case B (while not losing the ability to handle case A), we again obtain
the same new weight matrix as we did previously using the Hebbian

rule. Again inserting a test trial we exhibit the new weights and their
consequences:

CASE B, Test Trial 1

Input Input Output unit

unit  activation e f g h
a 1 0.50 0.00 -0.50 0.00
b -1 0.00 -0.50 0.00 0.50
¢ -1 -0.50 0.00 0.50 0.00
d 1 0.00 0.50 0.00 -0.50

Desired output activation  1.00 1.00 —1.00 -1.00
Actual output activation 1.00 1.00 -1.00 -1.00
Error (discrepancy) 0.00 0.00 0.00 0.00

The difference in power between the two learning rules becomes appar-
ent only when we present input-ouput case C to the network:
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CASE C, Training Trial 1

Input Input Output unit

unit  activation e f g h
a 1 0.50 0.00 -0.50 0.00
b 1 0.00 -0.50 0.00 0.50
c -1 —0.50 0.00 0.50 0.00
d 1 0.00 0.50 0.00 -0.50

Desired output activation  1.00 1.00 1.00 —-1.00
Actual output activation 1.00 0.00 -1.00 0.00
Error (discrepancy) 0.00 1.00 200 —-1.00

Again applying the delta rule and running a test trial on the new
weights, we obtain the following:

CASE C, Test Trial 1

Input Input Output unit
unit activation e f g h
a 1 0.50 0.25 0.00 —0.25
b 1 0.00 -0.25 0.50 0.25
C -1 —0.50 -0.25 0.00 0.25
d 1 0.00 0.75 0.50 -0.75

Desired output activation 1.00 1.00 1.00 —1.00
Actual output activation 1.00 1.00 1.00 —-1.00
Error (discrepancy) 0.00 0.00 0.00 0.00

For the first time, the weights are different from those obtained using
the Hebbian rule. Those feeding into output unit e are uncha'nged from
the preceding weights (after Case B), because thel"e 1s no .dlsc.repancy
between the actual activation of e and the desired actlvat?on;' the
Hebbian rule, working only with the desired outPut actlvat'lons,
produced a quite different set of weights for this unit. ‘The ngghts
feeding into output unit g do reflect changes to the previous Yvelghts,
but the changes are different from those produced by the Hebbian rule.
Finally, the weights feeding into output units f andh h ha'ppe.n to l‘)e.the
same as those produced by the Hebbian rule at this point in tr.ammg.
Over all 16 weights, therefore, half are the same and half are different
from those produced by the Hebbian rule.
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Table 3.1 Two learning rules contrasted

Epoch Output Pattern A Output Pattern B Output Pattern C

Desired pattern
NA 1.00 —1.00 -1.00 1.00 1.00 1.00 -1.00-1.00 1.00 1.00 1.00—1.00

Learning with the Hebbian rule

1 0.00 0.00 0.00 0.00 0.000.00 000 0.00 1.00 0.00 ~1.00 0.00
2 1.00 —0.50 —0.50 0.50 1.50 1.50 —0.50-0.50  3.00 1.00 —1.00 —1.00
3 3.00 ~1.00-1.00 1.00  3.00 3.00 —1.00 -3.00 5.00 2.00 —1.00 —2.00
4 450 -1.50-1.50 1.50  4.50 4.50 —1.50 -4.50 7.00 3.00 —1.00 —3.00
Learning with the delta rule
1 0.00 0.00 0.00 0.00 0.00000 000 0.00 1.00 0.00 —1.00 0.00
2 1.00 —0.50 0.00 0.50 1.00 1.50 0.00-1.50 1.00 0.50 0.00-0.50
3 1.00 —0.75 ~0.50 0.75 1.00 1.25 -0.50 -1.25 1.00 0.75 0.50 —0.75
4 1.00 —0.87 -0.75 0.87 1.00 112 -0.75-1.12 1.00 087 0.75-0.87
5 1.00 ~0.93 —0.87 0.93 1.00 1.06 ~0.87 ~1.06 1.00 0.93 0.87 —0.93
6 1.00 —0.96 —0.93 0.96 1.00 1.03 -0.93 -1.03 1.00 0.96 0.93-0.96
7 1.00 —0.98 —0.96 0.98 1.00 1.01 -0.96-1.01 1.00 098 0.96 —0.98
8 1.00 -0.99 -0.98 0.99 1.00 1.00 —0.98 ~1.00 1.00 0.99 0.98 —0.99
9 1.00 —0.99 -0.99 0.99 1.00 1.00 —0.99-1.00 1.00 0.99 0.99 —0.99

As for the pattern of activations on the output units, the 16 weights
produced by the delta rule have generated the correct output for case C,
an outcome not achieved by the Hebbian rule. As with the Hebbian
rule, however, trying to learn case C has disrupted the ability of the
network to generate the correct output for cases A and B. Running
these cases once again in test mode, the actual output patterns are now
(1.0 —0.50.00.5) instead of (1 =1 —1 1) for A and (1.01.51.0 —1.5)
instead of (11 —1 —1) for B. Fortunately, the discrepancies are not as
serious as those produced by the Hebbian rule, and additional training
epochs will gradually bring further improvement in the ability of the net-
work to respond to all three patterns. Table 3.1 contrasts the course of
learning across epochs for the Hebbian rule (which shows no improve-
ment) and the delta rule (which learns the patterns virtually perfectly
by epoch 9; this extended run was carried out using the pa (pattern
associator) program in McClelland and Rumelhart’s (1988) Handbook,
chapter 4). Hence, our exploration of cases A, B, and C illustrates that
the delta rule, unlike the simple Hebbian rule, need not be restricted to
sets of input patterns that are uncorrelated (orthogonal).

Having observed these differences in performance between the
Hebbian and delta rules, it is worth considering how the rules them-
selves compare. The two rules have in common that they use only in-
formation that is locally available at each connection as a basis for
changing the weight of the connection. Hence, there is no need to posit
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an executive; learning is under local control. Also, both rules make use
of desired pairings of input and output patterns that are determined by
the trainer. With the Hebbian training procedure, however, the desired
output patterns are imposed on the output units. The network is not
free to generate its own actual output, and therefore cannot use the dis-
crepancy between desired and actual outputs to guide its learning. In
test mode we can observe the network generating an actual output, and
as observers we can note how discrepant it is from the desired output,
but we have no way of telling the network about this discrepancy. The
innovation in the delta rule is that it offers a way for the network to
compute and utilize the discrepancies. The discrepancy can be re-
garded as a transformation of the desired output pattern (obtained by
subtracting from it the actual output pattern) that is more informative
than the desired output pattern itself. The delta rule is identical to the
Hebbian rule except that this transformation is carried out before mul-
tiplying the output value by the input value. Hence, the delta rule can
use the discrepancies to improve its weights, whereas in Hebbian learn-
ing the discrepancies can be obtained only while in test mode and are
used to evaluate, but not change, the weights.

Exactly how powerful is a two-layer network that is using the delta
rule? That is, how weak are the constraints that limit the sets of cases
that it can learn? The network is guaranteed to converge on a weight
matrix that is capable of producing the desired outputs as long as such a
weight matrix exists. The weight matrix will exist, however, only under
certain conditions. First, if you want the network to learn an arbitrary
output for each input pattern, you will have to construct the input
patterns in such a way that they form a linearly independent set. That is,
none of the input patterns can be derived as a linear combination of the
other patterns (e.g., by adding patterns together; see McClelland and
Rumelhart’s (1988) Handbook, pp. 95-6). For example, suppose that
you have a network with just two input units. If you choose 1 0 as one
input pattern, then you can also use the pattern 0 1 since neither pat-
tern can be derived from the other. But now you cannot introduce the
pattern 1 1 and teach an arbitrary output, since this input pattern is the
sum of the other two. Furthermore, the number of patterns you desire
to teach places a constraint on the size of the network that is required.
(In general, encoding # linearly-independent patterns requires » units;
see Jordan (1986), in PDP:9, pp. 370-3).

What if you ignore the first constraint, and design a set of input-
output cases for which the input patterns are not linearly independent?
Whether the network can learn the proper output patterns will then
depend upon whether the input-output pairs are linearly separable. To
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meet that requirement, there must exist at least one set of weights such
that the same weights can be used to generate the desired output pat-
tern for every input pattern. If such a set exists, the delta rule will find
it. (This is automatic when the inputs are linearly independent, but
must be determined when they are not.) For a simple example, suppose

we try to teach the following function to a network with two input units
and one output unit;

Pattern Input unit 1 Inputunit 2 Desired output
a 0 0 0
b 0 1 1
c 1 0 1
d 1 1 1

This is the logic function of inclusive or (OR). If the network has suffi-
ciently high positive weights on the connections, and the activation
function for the output unit is a threshold function, it can compute this
function perfectly. Even though pattern d is a linear combination of
patterns b and c, the weights that generate the desired output for b and ¢
happen to generate the desired output for d as well. But consider what
would happen if we changed the desired output for d; that is, suppose
we sought to teach the following function:

Pattern Input unit 1 Input unit 2 Desired output
a 0 0 0
b 0 1 1
c 1 0 1
d 1 1 0

This is the logic function of exclusive or (XOR), which exemplifies the
more general problem of parity detection that was one focus of Minsky
and Papert’s (1969) argument against perceptrons. This sort of prob-
lem cannot be solved by a network with two inputs and one output, be-
cause the input-output pairs are not linearly separable.? Just as for the
OR function, to handle patterns b and ¢ we need positive weights on
both connections between the input units and the output units. But that
means there is no way to obtain a zero output when the inputs are both

3 A two-layer network can compute the XOR function if the input patterns are recoded
across an enlarged input layer so as to yield linearly separable inputs. The problem itself
has then been altered, however; the relation betw

een the two sets of values is no longer an
XOR relation. #
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1, as required for pattern d". A graphical interpretation is provided be-
low. The output value for each combination of input values is placed at
their intersection. In the first diagram a straight diagonal line can be
drawn which will separate the three output values of 1 from the single
output value of 0. But in the second diagram no straight line can be
drawn to separate the 1’s from the 0’s.

OR XOR
1 1 1 1 1 0
Input unit 2 Input unit 2
0 0 1 0 0 1
0 1 0 1
Input unit 1 Input unit 1

What happens if we persist in teaching a set of input-output patterns
which are not lincarly separable? In this case there will be no set of
weights that can generate the correct outputs, and so the delta rule can-
not solve the problem exactly. But, unlike the simple Hebbian rule, the
delta rule will do the best job possible: it will converge on a set of
weights that minimizes total squared error (tss). Furthermore, its sensi-
tivity to dependencies (regularities) in the patterns can be useful. In
real life, patterns tend to cluster together, and similar input patterns
tend to be associated with similar output patterns. If presented with
cases that show this kind of structure, rather than cases exhibiting lin-
ear independence and arbitrary association, the delta rule will do a good
Job of learning the cases and will (as a free bonus) generalize to new in-
put patterns on the basis of their similarities to the training patterns.
You are not guaranteed that every input pattern will elicit exactly the
correct output pattern, but typically, output patterns will be similar (if
not identical) to the correct pattern. As Rumelhart, Hinton, and
Williams (1986a) point out in PDP:8 (p. 318), this kind of learning is a
task for which two-layer networks are well suited. For illustrations, see
our discussion in chapter 6 of two simulations from Rumelhart and
McClelland (1986) in PDP:18 (the rule of 78 and English past-tense
acquisition).

Even in the 1960s it was known that adding one or more layers of
hidden units was a means of overcoming the constraint of linear separ-
ability. Unfortunately, there was no known learning algorithm for set-
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ting the weights in these more complex networks. It was left to
researchers in the 1980s to devise procedures for training hidden units,
and by any reckoning the discovery of these procedures was a major ad-
vance for connectionism. One of the most widely-used procedures,
back-propagation, makes use of a more powerful generalization of the
delta rule. It was independently discovered by Rumelhart, Hinton, and
Williams (1986a, 1986b), who call it the generalized delta rule, by Le
Cun (1986), and by Parker (1985).

The Back-propagation Learning Procedure for Multi-layered Networks

In the previous section we noted that two-layer networks cannot be
guaranteed to learn sets of input-output cases when neither of the
following constraints is met: (1) linear independence of the input
patterns; (2) linear separability of the input-output assignments. We
have already cited XOR as one problem that violates these constraints,
and other violations are ubiquitous in the tasks that organisms must
carry out daily. Hinton (1989) makes this point nicely with respect to
the task of viewing an object (encoded in an intensity array, as on a
monochromatic television screen) and producing its name as the
desired output:

Consider, for example, the task of identifying an object when the input vector is
an intensity array and the output vector has a separate component for each
possible name. If a given typc of object can be either black or white, the inten-
sity of an individual pixel (which is what an input unit encodes) cannot provide
any direct evidence for the presence or absence of an object of that type. So the
object cannot be identified by using weights on direct connections from input
to output units. Obviously it is necessary to explicitly extract relationships
among intensity values (such as edges) before trying to identify the object. Ac-
tually, extracting edges is just a small part of the problem. If recognition is to
have the generative capacity to handle novel images of familiar objects the net-
work must somehow encode the systematic effects of variations in lighting and
viewpoint, partial occlusion by other objects, and deformations of the object it-
self. There is a tremendous gap between these complex regularities and the
regularitics that can be captured by an associative net that lacks hidden units.
(Hinton, 1989, pp. 5-6)

In order to solve problems like this, it is necessary to insert hidden
units betwen the input and output units that can preprocess the infor-
mation to obtain the pieces that are needed for the final solution of the
overall problem. This produces a more complex flow of information in
which intermediate results (such as the identification of an edge) are
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obtained by combining input activations in certain ways; it is then the
final set of intermediate results that is used by the output units.

The introduction of hidden units raises several questions that the
network designer must answer. First, how many hidden units should be
used, and in how many layers should they be arranged? There is no
easy recipe to follow to assure optimal performance. Second, should
connections be made only between adjacent layers, or should additional
connections be allowed (e.g., connect all hidden units to the output
layer as well as to the next hidden layer)? Third, what activation rule
should be used? Multi-layered networks are more powerful than two-
layer networks only if a nonlinear activation rule is used.* The logistic
activation function is a common choice, and is assumed throughout the
remainder of this chapter. In its simplest form it is:

R (4)

The final, and most interesting, challenge is to devise a learning pro-
cedure that can be applied to hidden units. The original delta rule is
inappropriate, for example, because it can be applied only to con-
nections that feed directly into output units for which an error measure
can be calculated. The generalized delta rule bypasses this limitation by
propagating the error measure that is calculated at the output units
back through the network (i.e., by back-propagation). Hence, on a given
training trial, activations propagate forward from the input units
through the hidden units to the output units, and then error and the
resulting adjustments to the weights propagate in the reverse direction
back through the hidden units to the input units. This must be done in
a way that solves the credit assignment problem. That is, for each lower
layer it must be determined how each of its units contributed to error
on the output layer, and the weights must be adjusted accordingly.

The equations used to change the weights are more complex in the
back-propagation rule than in the delta rule; this is due to the use of a
different activation function and to the addition of hidden layers. For
purposes of exposition, we shall assume a network with just one hidden
layer, and use 7, A, and u to refer to units in the input, hidden, and
output layers respectively. (For networks with additional layers, the
mnemonic value of our subscripts breaks down, and a more general no-

4 If alincar rule is used for both hidden and output layers, then one can construct from
the sets of weights used in the multi-layered network a set that will work for a two-layer
network. Thus, a multi-layered network with linear activations cannot overcome the
limitations of a two-layer nctwork.
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tation referring to arbitrary layers would be needed.) The equation for
changing weights that feed into the output units is the simplest one,
since that is the layer at which error is computed. First, delta, is
computed by multiplying the error (d, — a,) by the derivative of the
logistic activation function (see Box 2):

delta, = (dy — ay) a, (1 — a,) (5a)

This more complex delta value is then inserted in the otherwise familiar
equation for changing weights (here, the weight on the connection from
hidden unit 4 to output unit u):

A weight,, = lrate delta, ay, (6a)

Multiplying by a, has the effect of changing the weight on a particular
connection only to the degree that the hidden unit on that connection is
active; thus the weights are changed most on those connections that
contribute most to the error.

Additional machinery is needed to change the weights that lie deeper
in the network; in the case of our three-layer network those are simply
the weights that feed from the input units to the hidden units. We do
this by first apportioning to each hidden unit its contribution to the
overall error, yielding the value of a new function, deltay,:

deltay = an (1 — ay) X, delta, weiglt,, (5b)

Once deltay is obtained, the hard work has been done; we insert it into
the familiar equation for changing weights, this time for weighty, :

Aweighty; = lrate deltay, a; (6b)

It should be clear that values of delta can be computed recursively for
networks of any depth. For a derivation of the generalized delta rule,
which is adapted from the derivation in Rumelhart, Hinton, and Wil-
liams (1986a) in PDP:8, see Box 2.

An illustration It is useful to work through an example of how a multi-
layered network learns by means of back-propagation. Most such
networks are too large to follow the learning events in detail. However,
McClelland and Rumelhart’s (1988) Handbook (pp. 145-52) presents an
exercise on learning the XOR function by means of back-propagation.
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BOX 2
Derivation of the Back-propagation Learning Rule

The strategy underlying the back-propagation learning rule is much the
same as that for the delta rule. We begin with the same error measure:

Error =1 X (d, — aJ)?
u

Our goal is to determine the partial derivatives with respect both to
weights feeding into the output units and with respect to those feeding
into the hidden units and to adjust each set of weights accordingly. We
shall determine each of these separately.

Changing weights feeding into output units

We begin by taking the partial derivative of the error measure with re-
spect to the activation of the output unit:

Ofrror _ —(dy — a))

Jday
The next step is to determine Ja./dweightun, so that we can then use
the chain rule to determine the OFrror/Oweightys. But this is a more
complex task than in the case of the delta rule since we are employing
a nonlinear activation function (the logistic function):

1
du = 1 + e netinpuly
Since the logistic activation function is specified in terms of net input to
u, we shall work in stages. Let us first determine:

da
T—fy— = au“ —au)
¢netinputy
From this we can now use the chain rule to evaluate drror/Onetinputy
the negative of which is often referred to as delta,:

Gkrror _ OFrror day

——— = —dcla, = -
dnetinput, Y da, Cnetinput,

= —(dy — aJa, (1 — aJ)
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We now need to determine dnelinput,/dweightyn, for then we shall be
able to employ the chain rule to determine dError/dweightys. Since we
are employing the logistic activation function:

nelinput, = Zweighluh ap,
h
then:
Onetinput, __

dweightyn ~ dh

Now we employ the chain rule once again:

OFrror Onetinput,,
———— = —delta, -
Oweightyi dweighty

= —{dy, —ada,(1 —a)an
As with the delta rule, we shall now change weights leading to output
units proportionately to the negative of this partial derivative:

Aweight,, = Irate deltayan = —lrate (d, — a,) a, (1 — a) ap,

Changing weights deeper in the network

The major challenge at this point is to allocate Error among the units in
the system. For this we need to employ a recursive procedure. For ex-
pository purposes, however, we shall assume that we are dealing with a
three-layer network and shall use the subscript h to refer to hidden units
and i to refer to input units; the same procedure could be iterated if
there were additional layers of hidden units (with h now referring to the
previous i, and i to the next layer down). What we need first is to deter-
mine the derivative of Error with respect to the activation of units in the
hidden layer. We shall do this by distributing the delta, that we have
already calculated. Let us focus on a particular unit h and its connection
to a particular output unit u. We now determine what portion of the
Error assigned to u to allocate to h. We again use the chain rule:

OFrror — dnetinput,
Oan oap

Since

netinput, = 2weightun an,
h

89




90

Learning

then

dnetinput )
gneanputy We’gh[uh

dap
Thus, the part of dfrror/day, contributed by weight, is simply (— deltau
weightun). We now sum over all the connections from h to the output
level to determine

dError _ Y — delta, weight,

Jap u
With the value for dError/day, in hand, we now proceed as before to de-
termine —deltay, which equals the partial derivative of the error with re-
spect to the netinput to h:

OFrror _ OFrror  Qay,
Onetinputh, dap,  Onelinputy,

—deltay, =

= ay (1 — ap) X — delta weight,n

The partial derivative of the error with respect to weighty, is now readily
determined:

_OEMOr_ oy Q0CUMPU o
dweightp; dweighty,

and the weight of the connection from i to h is changed in proportion
to this derivative:

Aweighty; = Irate deltapa;
= Jrate an(1 — ap) 2. (— delta, weightup) aj

If we needed to apply this procedure to yet another layer, we would
start with delta, and distribute the error to the units in our current i
level. Thus, we have a recursive procedure for figuring the delta value
for units at each layer in the network and we can use this to determine
the change of all connections coming into these units.
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Figure 3.1 Initial state of the network that learns to compute the XOR function. Each
of the three layers has one or two units (circles). Except for the input layer, each unit has
a bias which is shown here as the weight on the connection from an additional unit with a
fixed activation of 1 (squares).

The simulation used a very compact three-layer network (figure 3.1). It
requires just two input units (I1 and 12), two hidden units (H1 and
H2), and a single output unit (U), and has a total of six weights to be
adjusted as the four input-output cases are repeatedly encountered
across training epochs. We ran this exercise using their bp (back-propa-
gation) program, and report it here in order to illustrate this learning
procedure.

Included in the net input to each of the hidden units and the output
unit is an additional source of incoming activation known as bias. Each
unit has its own bias, which has the effect of increasing or decreasing
the activation value that is computed on each trial. As noted in chapter
2, it plays essentially the same role as a threshold; together with the
logistic activation function, it introduces nonlinearity into the system.
For purposes of computation, it may help to think of the bias as coming
in from an extra unit that is connected only to the unit that it biases
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(and therefore not directly influenced by input patterns). The hypo-
thetical extra unit (rectangular in figure 3.1) is assumed to have a con-
stant activation of 1. (Sometimes this is referred to as clamping the extra
unit, because the activation is “‘clamped on’’ rather than fluctuating.)
The weight on the connection from the hypothetical unit can, however,
be adjusted by learning; when we speak of the bias on the unit, we are
referring to that weight. ,

The simulation begins by initializing the weights with a random set
of weight assignments,’ which is shown in figure 3.1. We specify a
learning rate of 0.50. Table 3.2 shows the activations that result when
we send each of the four input patterns through the network as a test
prior to training (that is, the activations at epoch 0):

Tuable 3.2 Results of testing the initial network with each input-output case

Trainer-defined values Actual activation values

Tnput Input Desired Hidden  Hidden  Output
Case Unit It Unit 12 Ouiput Unit HI Unit H2  Unit
Neither 0 0 0 0.43 0.40 0.60
Unit I1 1 0 1 0.53 0.39 0.61
Unit 12 0 1 1 0.54 0.40 0.61
Both 1 1 0 0.64 0.40 0.61

We shall calculate the activation values for the first row of this table
manually to make it clear how the network operates. Since both of the
input units are given the value 0, each of the hidden units receives input
of 0 from these units. The net input is not 0, however, because the bias
supplies an activation of —0.27 to Ilidden Unit 1 (H1) and of ~0.40
to Hidden Unit 2 (H2). Applying the logistic activation function
(equation 4), we obtain the activations for the two hidden units that are
shown in table 3.2. The activation of H1 is now multiplied by the
weight on its connection to the output unit (0.27) while the activation of
H2 is multiplied by its corresponding weight (0.08). These are summed
(0.12 + 0.03 = 0.15) and then are added to the bias on the output unit
(0.27) to generate a net input to the output unit of 0.42. When the logis-

5 The initialization procedure utihzes a pseudo-random number gencerator. The parti-
cular set of imtial weights used for the NOR exercise happened to be rather favorable to
learning XOR. Starting with the same weights and training the network on if and only iff
(IFT), the negation of XOR, required 540 training epochs, almost twice as many as
required to teach the network XOR. This is the case even though the solutions the net-
work generated to the two problems are essentially isomorphic.
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tic activation function is applied, an output unit activation of 0.60 is
obtained (rightmost column of table 3.2).

With the activations computed for the first input-output case
(“Neither”), each of the weights can be altered in accord with the ver-
sion of the generalized delta rule that is appropriate to its laver (or this
could be done at the end of epoch 1, that is, after all four patterns have
been presented). To continue with the example, we shall compute two
of the weight changes now. This requires first calculating delta for cer-
tain units. For the output unit, equation (5a) yields a delta, of —0.14
(=0.60 x 0.60 x 0.40 = —0.14). The delta, values for cach of the hid-
den units can now be calculated recursively from delta, using equation
(5b): multiply delta, by the weight of the connection, and then multiply
the result by the a, (1 — a3) term for that hidden unit. "This yields a
deltay, of —0.09 for H1 and of —0.02 for H2. Next, the delta values are
entered into the Aweight equation, and Aweight is added to the current
weight to obtain the new weight of the connection. For example, for the
connection from HI to the output unit U, equation (6a) specities that
the learning rate (0.50) is multiplied by the relevant delta (—0.14) and
by the activation of the incoming unit (0.43) to obtain Aweight iy,
(—0.03); this is added to 0.27 (obtained from figure 3.1) to vield a new
weight of 0.24. For the connection from I1 to H1, the calculation for A
weight 11 from equation (6b) is (0.50) (—0.09) (0) = 0. Thus, the new
value for weightsy; is 0.43 + 0 = 0.43. That is, there is no weight
change for this connection.

The network’s progress in learning the XOR problem is displayed in
table 3.3 (the changes in the weights and biases) and table 3.4 (the
changes in the output activation values). At first it learns very slowly,
By epoch 90 it has seen each of the four input- output cases once per
epoch, for a total of 90 learning trials per case. The resulting changes in
the weights have not improved the network’s ability to discriminate
among the inputs; the output unit produces an activation of 0.50 re-
gardless of which input is supplied. During this period most of the
change is concentrated in the upper part of the network (the output
unit bias and the weights between the hidden units and the output unit
all decrease somewhat). In effect, the system is temporarily lcarning to
ignore the input. The reason for this is that it is following a gradient
descent, seeking the most efficient way to reduce its crror. By simply
reducing its output activation from 0.61 to 0.50 on each unit, it has
indeed reduced its tss (total squared error across input output cases)
from 1.0507 to 1.0000. This still leaves a good deal of error, so the net-
work must adopt a different “‘strategy’ to continue reducing error.
Specitically, it begins gradually to increase the weights from both input
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Table 3.3 Weight on each connection at four points in learning

Connection Epoch 0 Epoch 90 Epoch 210 Epoch 289
Inputs to H1 0.43 0.45 217 5.72
H1 to output 0.27 0.12 1.71 6.40
Bias of H1 -0.27 —0.28 0.10 —2.16
Inputs to H2 0.00 -0.04 0.06 3.18
H2 to output 0.08 -0.04 —-0.44 —6.96
Bias of H2 -0.40 -0.48 —0.43 —4.82
Bias of output 0.27 -0.05 -1.17 ~2.82

Table 3.4 Activation of the output unit at four points in learning

Input pattern Epoch 0 Epoch 90 Epoch 210 Epoch 289
Neither 00 0.61 0.50 0.38 0.09
UnitIl 10 0.61 0.50 0.54 0.90
Unitl2 01 0.61 0.50 0.54 0.90
Both 11 0.61 0.50 0.57 0.10

units to H1 (averaged in table 3.3 because these weights are very simi-
lar), and from H1 to the output unit. Simultaneously, the bias on the
output unit becomes increasingly negative (in effect, raising its re-
sponse threshold so that it will require a fairly high net input to reach a
high activation value itself). After 210 epochs of training it is clear that
H1 is becoming an OR detector: it is serving to excite the output unit
when either of the input units is active, and especially when both are ac-
tive. When neither input unit is active, H1 propagates only its own
small bias to the output unit; combined with the negative bias of the
output unit itself this results in a negative net input to the output unit.
Applying the logistic activation function has the result that any net in-
put is scaled to a value between 0 and 1; for this particular case, the out-
put unit’s activation ends up as a somewhat low 0.38 (compared to
values above 0.50 for the other inputs).

With H1 moderately well established as an OR detector by epoch
210, H2 now starts to become an AND detector. This will permit
“subtracting’’ the AND cases (1 1) from the OR cases (10,010,101
at the level of the output unit, so that it can function as an XOR detec-
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tor (1 0), (0 1). Specifically, the weights from the input units to H2 be-
come increasingly positive, while the bias on H2 becomes so negative
that it will become active only if both inputs are active. (Hence, H2 is
now an AND detector.) Meanwhile, the weight from H2 to the output
unit becomes increasingly negative (so that when H2 detects AND, the
excitation of the output unit from H1 will be countered by inhibition
from H2.) Hence, H2 becomes active only when both inputs units are
active, and when it does become active, it inhibits the activity of the
output unit. This specialization of H2’s function occurs fairly rapidly
once it begins around epoch 210, so that by epoch 289 the network has
essentially learned the XOR function.

The learning sequence exhibited in this simple network is quite
characteristic of back-propagation generally. The first stage of learning
sets the weights in the network in such a way that the output units
adopt the mean of the various training states. Over subsequent training
epochs, the various hidden units begin to specialize; the output units
receive and coordinate the hidden units’ analysis of the input, and
therefore can respond differentially to different input patterns. In more
complex networks it is often difficult to determine precisely what infor-
mation each hidden unit is responding to, but analysis often does reveal
that individual units are identifying particular information in the input
that is germane to solving the problem.

Back-propagation provides a powerful training technique for net-
works with hidden units. One particularly impressive example of a net-
work trained by back-propagation is Sejnowski and Rosenberg’s (1987)
NETtalk model, a three-layer network which was trained to read
English text. The text (either separate words or connected discourse)
was presented letter by letter to the input layer, and a succession of
phonemes was produced by the network on its output layer and submit-
ted to a speech synthesizer. More specifically, what was supplied to the
input layer was a localist encoding of the target letter, plus the three
preceding and three following letters. Since spaces and punctuation
were encoded by three special characters in addition to the 26 English
alphabet characters, 7 x 29 input units were required. These units fed
connections to a single layer of 80 hidden units, which then fed into 26
output units. These output units provided a localist encoding of 23
articulatory features and three features for stress and syllable bound-
aries. Each phoneme was represented by a distributed pattern across
these 26 units.

In one simulation, the network was trained through repeated expo-
sures to a continuous speech corpus of 1,024 words, with desired
outputs determined by phonetic transcription of the speech of a child.
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After 10,000 training trials (approximately ten presentations of each
word) the network’s “‘best guess” (most active phonemic represen-
tation) was correct 80 percent of the time. After 50,000 words it
achieved 95 percent accuracy. It was then tested on a 439-word con-
tinuation of the text, and achieved 78 percent accuracy (Sejnowski and
Rosenberg, 1986). When the output was actually supplied to a voice
synthesizer, it produced recognizable speech, albeit with a few errors.
Subsequently, Sejnowski and Rosenberg (1987) analyzed the behavior
of the hidden units by first determining the activation patterns across
those units for each of the 79 grapheme-phoneme correspondences in
English and then performing a cluster analysis. The analysis revealed
that the hidden units differentiated vowels from consonants, and
produced grapheme-phoneme clusterings similar to those in standard
analyses of English, demonstrating that the hidden units had become
sensitive to theoretically-relevant features of language. These sensiti-
vities of the hidden units, it is important to recognize, were not directly
determined by the network builder, but rather were the product of
training through back-propagation and constituted the network’s con-
strual of the regularities involved in pronouncing English text.

Despite the power and versatility of the back-propagation learning
procedure, there are drawbacks. First, back-propagation can be an
extremely slow learning procedure. The XOR network, with only six
connections to train, required 289 epochs. Learning time increases
exponentially with the size of the network; NETtalk required 5,000
training epochs, consuming approximately 12 hours of CPU time on a
VAX. Hinton (1989) offered the estimate that the learning time in a
network simulated on a serial machine will be roughly proportional to
3, where c is the number of connections in the network. In response, it
can be noted that much of human learning occurs in domains for which
the amount of input over time is massive; to model this learning we
may want a network that requires large numbers of learning trials. Once
this learning has occurred, however, humans clearly have some very
efficient means of reutilizing its results in new domains or tasks (for
example, learning by analogy, by verbal instruction, and by coordina-
ting the functioning of previously independent schemata). If connec-
tionists wish to offer a general account of human learning, they will
have to learn how to incorporate these means in connectionist models.
Slow adaptive learning algorithms such as back-propagation either will
play no role in reutilization of already trained networks, or will operate
in a way that permits very rapid convergence in the new network. A
second response to this point is to agree that back-propagation as cur-
rently implemented on serial machines is too slow, but that more rapid
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computation will be achieved from parallel machines that are now
under development. (Hinton estimated a learning time for parallel
machines roughly proportional to ct)

A second drawback, for those whose attraction to connectionism js
based on its plausibility at the biological level, is that back-propagation

system in a manner that precisely adjusts the forward performance
of the system. The most straightforward response to this objection
is to make a clear distinction between levels of analysis, placing back-
propagation at the psychological level (i.e., at Marr’s algorithmic
level). On this approach, back-propagation is simply one mechanism by
which multi-layered networks can achieve gradient descent, that is,
learning by reducing the error in output. Back-propagation constituted
a breakthrough for psychological modeling since it overcame the re-
striction of gradient descent learning to two-layer networks and so
opened up the investigation of networks with hidden layers. The ques-
tion of how this sort of learning is implemented at the biological level
cannot easily be addressed at this time. For some suggestions, however,
see McNaughton (1989),

Boltzmann Learning Procedures for Non-layered Networks

In addition to feedforward networks, there are interactive networks
such as Hopfield nets and Boltzmann machines that have their own dis-
tinctive architectures. As we noted in chapter 2, one presentation of an
input pattern results in multiple cycles of processing in these networks;
across the cycles, the activations dynamically interact until the network
settles into a stable state. These cycles should not be confused with
learning epochs; they involve computation of activations, not modific-
ation of weights. They yield a response (or solution) to a single input
pattern, just as a single pass through a feedforward network yields its
response to an input pattern. We also noted in chapter 2 that one prob-
lem faced by interactive networks is the tendency to land in local
minima, that is, states that are stable but do not represent the best sol-
ution to the constraints, We described the technique of simulated
annealing, which the Boltzmann machine can employ to avoid these
local minima. This involves slowly decreasing the temperature para-
meter (T) in the stochastic activation function:

probability (a=1) = m @
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which has the effect of reducing the probability of the network settling
into a local minimum.

In PDP:7 Hinton and Sejnowski (1986) showed that Boltzmann
machines can be trained using a variation on Hebbian learning that
is conceptually similar to back-propagation. Here we adapt Hinton’s
(1989) exposition. Each unit is designated as either an input unit, output
unit, or hidden unit. In test mode, problems are posed by clamping cer-
tain input units so as to force them to maintain an activation of either 1
or 0; the network’s solution is the stable pattern of activation that is
reached on the output units.

In training mode, there are two stages. In stage one, each input-
output case i1s imposed on the network by clamping both the input
units and output units in the designated patterns. The units of the
network are selected in random order to update their activations using
the stochastic activation function in equation (7). As this processing is
occurring the temperature parameter T is gradually reduced to 1.
Processing stops when the network reaches a thermal equilibrium, that
s, a state in which units’ activations continue to change, but the prob-
ability of finding the network in a given global state (pattern of acti-
vation across units) remains constant and the most probable states are
the ones that best satisfy the constraints. While at equilibrium, each in-
put-output case is processed for a designated period of time. For each
pair of connected units, the proportion of that time that both are active
is measured. The proportions are averaged across cases to obtain the
expected probability <a; aj>+ that both units are active together
under these conditions. (Note that these are non-mnemonic subscripts;
the equations refer to any pairing of units, c.g., input input, output-
hidden, input-output.)

In stage two, only the input units are clamped, and the network
determines its own output (“‘runs free,” as in test mode). Except for
this variation, the process used in stage one is repeated. This time the
expected probability of joint activity is written as <a; a;>". The size
of the discrepancy between stages one and two determines how much to

- change the weight of the connection:

Aweight;, = Irate (<a;a;>* — <a; a;>") (8)

Ackley, Hinton, and Sejnowski (1985) showed that as long as the learn-
ing rate is set slow enough, this procedure will result in weights that
minimize the error on the output units (that is, the difference in their
behavior when they are clamped versus running freely).

The intuition underlying the Boltzmann procedure is similar to that
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of the delta rule and generalized delta rule; discrepancies between
desired (clamped) and actual (free-running) outputs are used to guide
changes in weights. If two connected units are jointly active more fre-
quently when the network is running with the desired output clamped
than when it is running free, the joint activity needs to be increased by
increasing the weight of the connection. Conversely, if they are jointly
active more frequently when running free than when the desired output
1s clamped, the joint activity needs to be decreased by decreasing the
weight on that connection.

As Hinton points out, the Boltzmann machine faces several diffi-
culties. Due to the time it takes the network to reach equilibrium after
being presented with each pattern, learning occurs very slowly. More-
over, if not enough cases of <a;a;>"* and <aia;>" are sampled, the
information used for weight change will be very noisy. For real-life
applications, however, the processing speed problem may be dealt with
by running the procedure on chips that are being tailored for this pur-
pose using analog circuits. Hinton notes that these chips can speed up
processing by a factor of one million over simulation on a VAX.

Competitive Learning

We now turn to a quite different learning procedure, competitive learn-
ing, in which no trainer is involved (hence, a form of unsupervised
learning). In competitive learning, a network is presented with a series
of input patterns and must discover regularities in those patterns that
can be used to divide them into clusters of similar patterns. In the sim-
plest case, there is one layer above the input layer, and each of 1ts units
is connected to every input unit. It is like a hidden layer in that its task
is to detect regularities despite receiving no direct feedback from a
trainer regarding the appropriateness of its activity. It is like an output
layer in that the activity of its units constitute the response of the sys-
tem to the input patterns. We shall simply call it the detection layer (not
a standard term). The number of clusters that this network detects is
determined by the network designer when the number of detector units
is set. If there are three units, for example, the best way of partitioning
the input patterns into three clusters will be sought (and in at least
some versions, will be attained by gradient descent). The activation
rule is set up to assure that on a given trial just one unit will “win:” the
activation of the unit with the greatest net input will go to 1, and the
other units’ activations go to 0. (That is, the winning unit inhibits the
others.) Learning now ensues. Each detector unit has a fixed total of in-
coming weights. The learning rule reallocates the weights of the win-
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ning unit, such that the weights on its connections from active input
units are incremented, while those from connections with inactive input
units are decremented by an amount that keeps the total of the weights
constant. The connections to the losing units do not change.

The effect of this is a positive contribution to the likelihood that the
same detector unit will become active the next time the same input
pattern is presented. (Of course, intervening patterns will have their
own effects on the rates which may themselves raise or lower that like-
lihood.) Furthermore, there is a negative impact on the likelithood that
it will become active for input patterns significantly different from it.
This increases the likelihood that different detector units will win the
competition on these significantly different patterns.

Competitive learning is a clear case of unsupervised learning, because
the designer has determined only the number of detector units; there
are no desired patterns of activation across those units of which they are
informed. (Of course, if the designer constructed the input patterns
with aforethought, she or he might be aware of the optimal cluster-
ing. But the network must figure it out just by observing the input
patterns.)

The designer can produce more complex behavior by including more
than one set of mutually competing units in the detector layer. In par-
ticular, if these sets have different numbers of units, each set will par-
tition the input patterns into a different number of clusters. Another
option is to incorporate additional layers that can learn to detect
higher-order regularities (by applying the same learning rule to the
weights between each pair of layers). For variations on competitive
learning, see von der Malsburg (1973), Rumelhart and Zipser (1985;
reprinted in PDP:5), Kohonen (1982), and a variety of papers in the
journal Biological Cybernetics (Fukushima, 1980; Grossberg, 1976;
Amari, 1983).

Reinforcement Learning

One final learning paradigm, reinforcement learning, deserves at least a
brief characterization. In reinforcement learning, the network is told
whether or not its output pattern was close to the desired output pat-
tern, but is not told what the desired output actually was. Thus, only
global information on performance is available as a guide to changing
weights. Against the context of back-propagation this withholding of
information may appear unnecessarily penurious; however, it corres-
ponds to the common-sense notion that reward and punishment are the
primary mecans of changing behavior. This is also the basic strategy
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used in operant conditioning, although with considerable sophistication
in the timing of reinforcement which increases its effectiveness.

Essentially, what the network does is carry out an experiment with a
large number of trials. Various combinations of weights might be tried,
for example, and notice taken of what global reinforcement was deli-
vered on each attempt. On each trial, each connection will be informed
of that reinforcement. Those values of weights that tend to result in
greater reinforcement become favored and are tried more often on
succeeding trials. Eventually, the weight matrix tends towards values
that will maximize reinforcement. (For an interesting simulation that
utilized reinforcement learning, see Barto and Anandan, 1985.)

Hinton (1989) points out that in one respect, reinforcement learning
is much simpler than back-propagation, since it does not require com-
puting the error derivatives for each weight. On the other hand, it can
take many trials for each weight to assess the effects of its possible
values on the reinforcement. This becomes especially problematic with
large networks. Hinton graphically illustrates the problem: “It is as if
each person in the United States tried to decide whether he or she had
done a useful day’s work by observing the gross national product on a
day by day basis” (1989, p. 22). Nevertheless, the literature on re-
inforcement learning suggests points of contact between traditional
learning theory and network modeling that could help to bring together
typically unconnected groups of researchers. In this regard, it is inter-
esting to note that the International Neural Network Society lists among
its cooperating societies both the Society for the Experimental Analysis
of Behavior and the Cognitive Science Society.

Some Issues Regarding Learning

Are Connectionist Systems Associationist?

We have now surveyed several of the best-known connectionist learn-
ing procedures, although we have not yet observed their application in
large-scale models intended to simulate aspects of human cognition. It
is appropriate to make a short excursion here to address one of the
broad criticisms that has been raised against connectionism (Fodor and
Pylyshyn, 1988). The critics object that connectionism is a return to as-
sociationism, and that to accept its construal of cognition is to give back
territory that was won by diligent effort in the cognitive revolution. Ac-
cording to the critics, it has already been shown that an adequate model
of cognition must employ the resources of a recursive system with
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symbols, variables, and related devices for encoding and manipulating
information. Learning must therefore consist in hypothesis-testing,
analogizing, or other means of manipulating symbolic representations.
In chapter 7 we shall discuss a variety of limitations that these symbolic
theorists impute to connectionism as a result of its eschewment of such
resources. Here we shall focus just on the question of whether connec-
tionism represents a return to associationism. Our short answer is that
connectionism is an elaboration of associationism that has benefited
from and can contribute to many of the goals of the cognitivism of the
last twenty years. It is not a return to associationism; it is not mere
associationism; but its most obvious ancestor is indeed associationism.
(Its less obvious ancestor is cognitivism; connectionism has been in-
formed in many ways by the computational and conceptual advances
achieved within that tradition.)

Classical associationism offered a vision of how knowledge might be
built up on the basis of contiguity and other principles. It offered a
sketch of the form of mental representations and of learning processes
that produce them (later given more specific interpretations, such as
Hebbian learning as one framework for explaining classical condi-
tioning); however, it lacked the technology and more differentiated
constructs to go further. Connectionism can be regarded as the out-
come of returning to the original vision of the associationists, adopting
their powerful idea that contiguities breed connections, and applying
that idea with an unprecedented degree of sophistication. Among the
elaborations that were not even conceived of within classical associa-
tionism are: distributed representation (particularly coarse coding),
hidden units (which function to encode microfeatures and enable com-
plex computations on inputs), mathematical models of the dynamics of
associationist learning, supervised learning (in which error reduction
replaces simple Hebbian learning), back-propagation, and simulated
annealing within a self-organizing dynamic network.

In classical associationism, the elemental units were ideas. A localist
connectionist network using the Hebbian learning rule is essentially an
implementation of classical associationist learning: the learning rule is
increasing or decreasing the associations between ideas based on their
contiguity (i.e., their pairing in the same input-output case). If the net-
work is multi-layered, less obvious but more powerful variations on
associationism can be attained. For example, hidden units can fraction-
ate ideas into microfeatures, a degree of reduction not conceived of
within associationism. Furthermore, ideas or microfeatures can achieve
“‘contiguity” (joint activation) by means of the propagation of activity
within the network, not just by occurring together in immediate experi-
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ence (e.g., within the same sensory-level input pattern). This might be
viewed as an implementation of the two ways that ideas can be experi-
enced together in classical associationism (reflective thought as well as
sensation).

Taken together, these elaborations provide a way to model the
microstructure of rule-like systems. Within the approximationist
perspective (discussed further in chapter 7), connectionist models are
regarded as causal models of how rule-like behavior (as well as excep-
tional behavior) can be produced by a mechanism that makes no use of
explicit rules. Hence, connectionism exemplifies the longstanding pre-
ference in psychology for relatively uniform mechanisms that operate at
a fine grain, but it also can benefit from cognitivism’s higher-level
descriptions of what it is the mechanism is accomplishing. Further-
more, connectionist models of learning suggest a fresh approach to the
question of how concepts and cognitive skills are acquired. Dealing
with exceptions and with learning have been weak areas within tra-
ditional symbolic modeling. If connectionism can produce plausible,
powerful learning mechanisms as well as explanatory models of rule-
like behavior, it may take a prominent place in cognitive science as an
integration of associationism and cognitivism that has a broader domain
of applicability than either of its predecessors. (One is tempted to refer
to connectionism as ‘‘associationism with an intelligent face.”) Of
course, the extent to which connectionism will be able to pay off all of
its promissory notes remains to be seen. To the extent that connec-
tionism succeeds, the charge of mere associationism will lose whatever
force that it currently possesses.

Possible Roles for Innate Knowledge

In discussing Chomsky’s criticism of Skinner's model of language
learning earlier we noted that a major part of his argument, the argu-
ment from the poverty of the stimulus, was directed against the ability
of the organism to learn from experience. It is now time to return to
this question of nativism. There is no doubt that, historically, nativism
has been more closely connected with the rationalist view of learning
than with the empiricist approach. But, as many have noted, there is no
reason that empiricists need be entirely opposed to nativism. In fact, if
associations are to be based on similarity, empiricism requires some
criterion for similarity that precedes learning. Thus, contemporary
empiricists like Quine (1969a) postulate innate quality spaces as a basis
for subsequent associationist learning. (Quality spaces are multi-
dimensional spaces in which sensory inputs can be located so as to be
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able to compare them.) Since all learning theorists require some
pre-existing structure within which learning is to occur, the nativism
controversy should not be construed as a conflict over whether any-
thing is innate, in the sense of being present in the organism before the
organism has sensory experiences. Rather, the conflict concerns what is
native. In the symbolic approach, since the operations performed by
the system all involve manipulating symbols, it seems that at least some
symbols and initial ways to manipulate symbols must be innate (and
possibly compositions of symbols, such as rules, as well). For other
approaches that do not rely on symbol manipulation, the capacities that
are taken to be native can be specified in other ways.

It has been our general observation that most connectionists do not
view the nativism issue as highly salient. To the extent that connection-
ism is a descendant of associationism, this represents a considerable
shift in focus. Possible reasons for a reduced focus on nativism include:
(1) research in genetics and developmental neurophysiology has reveal-
ed a very complex picture that does not easily reduce to empiricism or
nativism in their original forms (see Wimsatt, 1986); and (2) for most
connectionists, the interesting problems are computational and math-
ematical; many connectionists are in academic fields, such as computer
science, in which nativism has not been a focal issue.

If one wished to consider the nativism issue within a connectionist
framework, there are several possible approaches to incorporating
native components in one’s models (none of which could currently
be pursued to much effect). The bottom-up approach would involve
model-building that begins with the sensory transducers. If an appro-
priate model of sensory encoding could be achieved, this might be
viewed as a constraint on the development of higher layers of the sys-
tem that is at least in part innately given. A top-down approach is like-
wise possible: building in high-level outputs (that on this approach are
viewed as innate "‘ideas”) and trying to build a system downwards from
there. A third approach is to explore the effects of design decisions that
may or may not be part of our native constraints. Examples include: in-
itial activations and weights on connections, the number of layers and
units, whether or not these are malleable with experience, and so forth.

Rumelhart and McClelland (1986) devote a few pages of their dis-
cussion of general issues in PDP:4 to the question of nativism versus
empiricism. It strikes us as a very sensible discussion; they suggest that
either extreme position could be implemented within a connectionist
model but they focus on integrating the positions. For example, they
posit an organism whose initial state is determined by genetics, but for
which all connections are modifiable by experience. Two such organ-
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isms provided with similar genetics and environments would show sim-
ilar trajectories through a space of possible networks as they develop.

A more extensive treatment of this question is provided by Shepard
(1989). He conjectures that “in systems that have evolved through
natural sclection, the features of the world that are both biologically
significant and absolutely invariant in the world have tended to become
genetically internalized” (p. 104). That is, the species has evolved
internal structures that are adapted to these features of the world, so in-
dividual members of the species need not learn them. How might such
adaptations be incorporated in the initial connectivity of a network,
providing a base from which learning may proceed to add its own
contributions? Shepard suggests that evolution does not supply in-
dividuals with innate knowledge of which features characterize specific
objects and events. Rather, it supplies knowledge of the structure of the
features themselves. For example, the psychological space for colors is
three-dimensional (hue, lightness, saturation) and is approximately
Euclidean, Generally, psychological spaces incorporate abstract con-
straints that are not arbitrary but rather retlect evolutionary accommo-
dation to the environment in which we live. For example, a rigid object
moving in three-dimensional literal space has exactly six degrees of
freedom of position (three of location and three of orientation); these
constraints may be incorporated in the initial structure of the mental
system that is responsible for recognizing objects regardless of their
position in space. If so, translation invariance need not be learned.

Shepard’s intriguing discussion illustrates that current connectionist
modeling provides just a glimpse of what is possible within a more
highly developed connectionist science. Although connectionism has
roots in associationism, it is capable of incorporating a perspective as
rationalist as that of Shepard. And although questions of learning have
been emphasized in these early years of connectionist modeling, ques-
tions of evolution may dominate at some later time or in other quarters.
The answers to either set of questions can be expected to be diverse
since connectionism, just as any paradigm, provides little more than a
framework within which battles can be fought in a common language.
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Pattern Recognition:
Connectionism’s Forte

The previous two chapters provided an overview of connectionist
systems and their capacity to learn. We observed that networks are de-
vices for mapping one class of patterns onto another class of patterns,
and that they do so by encoding statistical regularities in weighted
connections that can be modified in accord with experience. Here we
turn our attention to the claim that connectionist networks are a high-
ly suitable medium for modeling human performance. If what net-
works do is map patterns, then this claim would entail that (a) pattern
mapping is fundamental to a variety of human capabilities; and (b) con-
nectionist networks perform pattern mapping in a particulary advan-
tageous manner.

Pattern mapping is actually a very broad concept, and it is useful to
distinguish among types of mappings. Pattern recognition is the map-
ping of a specific pattern onto a more general pattern (that is, the
identification of an individual as an exemplar of a class). Pattern com-
pletion is the mapping of an incomplete pattern onto a completed ver-
sion of the same pattern. Pattern transformation is the mapping of one
pattern onto a different, related pattern (for example, a verb stem such
as come can be transformed into a past tense form such as came).
Finally, pattern association is the arbitrary mapping of one pattern onto
another, unrelated pattern (as in the paired-associate task that was a
mainstay of the traditional psychology of learning).

We shall discuss tasks that require each of these types of mapping
at appropriate points in the remainder of this book, with an emphasis
on how networks can be used to model human capabilities and on
philosophical implications. In this chapter we shall focus on pattern
recognition. In humans, pattern recognition is most obviously involved
in sensation and perception (where the initial patterns are imposed
upon large arrays of sensory receptors that must operate in parallel).
The outcomes of local classifications are combined to obtain more glo-
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bal patterns, which in turn serve as input patterns to higher-level recog-
nition devices. Eventually, levels of abstraction are reached at which
the classes have names in human languages. Researchers have given a
great deal of attention to the nature and acquisition of object categories
in particular (e.g., chair, furniture). Traditionally these semantically
interpretable categories have been regarded as cognitive, but the same
overall process of pattern recognition is involved in sensation and per-
ception as well. In fact, the term categorization is generally used to
refer to pattern recognition at any level. (Also, although it was once
agreed that information is passed serially from level to level, many cog-
nitive scientists now assume that processing occurs in parallel on in-
complete patterns at multiple levels; see McClelland, 1979.)

Our discussion of pattern recognition is divided into four parts.
First, we illustrate how connectionist networks perform this type of
mapping by describing two simulations in some detail. Second, we
show how the ability of networks to recognize patterns suggests an ap-
proach to accounting for the intentionality of mental states. Third, we
review research in the psychology of concepts and categorization, and
consider the relevance of network models. Fourth, we argue that even
the capacity to reason can be viewed as a task of pattern recognition and
hence amenable to network modeling.

We shall see that networks have some very useful properties as pat-
tern recognition devices, and that pattern recognition can be viewed as
fundamental to a variety of perceptual and cognitive tasks. This invites
the inference that connectionist networks can be broadly useful in
modeling human capabilities. Connectionist models are not the only
cognitive models that emphasize pattern recognition, however, and the
process of evaluating competing claims of superiority has just begun.

Networks as Pattern Recognition Devices

Pattern Recognition in Two-layer Networks

To credit a system with recognizing a pattern, it must be observed to
respond in a consistent manner whenever it is presented with an in-
stance of the pattern. This is exactly what a two-layer, feedforward net-
work can do quite well (if the patterns meet certain constraints already
discussed). Moreover, using the delta rule as a learning procedure, such
a network can learn to recognize patterns for itself. To illustrate, we
shall employ the network that was displayed in chapter 2 as figure 2.7.
It has eight input units and eight output units, with a connection from
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Table 4.1 Prototypical input patterns and desired output patterns for the
two-layer pattern-recognition network

Case Prototypical input pattern Desired output pattern

A 1 =1 -1-14+1+1-1-1 =1t -1-1-1-1-1-1
B =l -l Hl 4T+ =1 =1 =1 1=t = =1 41 +1 41 41
C =T+ 4T+ =1+ =141 =141 =141 =141 —1 +1
D +1+1+1+1 41 +1 +1 +1 1+ 4+ 1+ +1+1 +1 +1

each input unit to each output unit. We set up this network to run
under the pa (pattern associator) program in the Handbook (Mc-
Clelland and Rumelhart, 1988, chapter 4). In specifying the program
options, we selected the delta rule with a learning rate of 0.0125 and the
linear activation rule:

a, = netinput, = Z wetght,; a;
1

For this illustration, we specified four input-output cases using
binary values of +1 and —1 (although the network itself will take con-
tinuous activations). For example, table 4.1 shows that the nput pat-
tern for Case A is (=1—-1—1-1 +1 +1—-1-1), and the desired
output pattern is (-1-1-1-1 —1-1-1-1). (For convenience,
we shall often refer to these simply as input A or output A4, or in con-
text as the input and output.) To make the illustration concrete, we
can loosely think of the inputs as distributed representations for the
prototypical exemplars of a category (e.g., a prototypical hat) and the
outputs as distributed representations of conventional names that
identify the categories themselves (c.g., “hat”).!

In the simplest possible simulation, we could train the network by

I Note that a full-scale simulation of the task of naming the categories of exemplars
would use a more principled way of representing the input and output; typically, the bi-
nary values would encode features based on a systematic characterization of the domain.
For example, the input units might encode visual and other features that specify
exemplars of basic level categories, and the output units might provide a phonemic or
articulatory encoding of “‘hat.” Specifying encodings of this sort presents some difhi-
culties that we need not address; for our illustration, arbitrarily chosen strings of eight
values are adequate. Furthermore, most investigators would want separate lavers or
networks for encoding the category as a mental concept and for generating a conventional
name in a language such as English. Again, we can ignore this source of added complexity
in carrying out our illustration.
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presenting it with each of the four input-output cases repeatedly across
a number of training epochs. On each trial the network would produce
an actual output for the input, compare it to the desired output, and ad-
just its weights according to the delta rule. Eventually it would learn to
produce the appropriate output for each input. As a bonus, by this time
it would also do a good job of generalizing. That is, if we presented it
with the following input that it had never seen before

“1-1-1-1+1-1-1-1

(which differs from the standard input A in position 6), it would pro-
duce an output closely resembling output A. But this is a somewhat
unrealistic model of how we learn to identify the categories to which
exemplars belong. Typically, our exposure is not limited to ideal or
prototypical exemplars. Rather, we confront a variety of exemplars that
more or less resemble each other. Likewise, when we hear the names,
they will be pronounced somewhat differently each time. We have
simulated this situation by distorting both the inputs and the (desired)
outputs by a randomly chosen factor ranging between 0.5 and —0.5
(generated independently for every pattern, both within and across
cases). Thus, instead of the original input A (which we shall refer to as
the prototype) we shall, on a given trial, present the network with a dis-
torted input A’ such as:

—0.76 —0.89 —1.21 —1.01 1.330.99 —0.65 —0.92.
The network’s actual output will now be compared with the distorted
output A’

The network was trained with these distorted input-output cases
across 50 epochs; during each epoch it received a distorted version of
each of the four inputs and their corresponding outputs. After just a
few epochs the network responded in a qualitatively correct manner: by
epoch 4 the activations of all output units were on the correct side of 0
(i.e., positive or negative as appropriate). The additional training was
required to refine the outputs (i.e., bring them closer to —1 or +1).
After training, the network was tested on three different types of input
for each case; these test inputs and the actual outputs that the network
produced are shown in table 4.2. First, when presented with the proto-
type (which had never been seen in this simulation), the network
produced an actual activation value for each output unit that was within
0.2 of the desired value. Second, when presented with a new exemplar
obtained by randomly distorting the prototype in the way described



Table 4.2 Activation of units in the two-layer pattern-recognition network
after 50 training epochs

A. Tested with prototypes of four categories as inputs.

Units 1-8 in input or output layer

Case Layer 1 2 3 4 5 6 7 8
A Input  ~1.00 —1.00 -1.00 —1.00 1.00 1.00 —1.00 —1.00
Output —1.12 —0.98 —1.02 -0.92 —1.10 —0.84 —0.94 —1.06
B Input  —1.00 ~1.00 100 1.00 1.00 —1.00 —1.00 — 1.00
Output -0.99 —1.06 —0.98 —0.96 0.91 094 099 088
C Input  —-1.00 1.00 100 1.00 -1.00 1.00 —1.00 1.00
Output —0.91 096 -0.87 1.05 —0.84 1.06 —0.90 0.92
D Input .00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Output 099 094 1.05 1.07 093 1.03 092 1.15
B. Tested with distorted instances of four categorics as inputs,
Units 1--8 in input or output laver
Case Layer I 2 3 4 5 6 7 8
A’ Input  —-0.76 —0.51 -0.82 —1.11 1.47 0.82 —0.83 —0.90
Output —0.81 -0.90 -0.71 —0.83 —0.77 —0.72 —0.62 —0.89
B’ Input  —-1.00 -0.54 1.34 063 098 —0.59 —1.24 —0.81
Output —1.06 —0.81 —1.03 —0.68 0.63 1.00 070 0.88
C’ Input  —1.18 062 1.20 087 —1.21 138 —1.02 1.48
Output —1.07  1.11 -1.01 122 —-1.12 1.10 —-1.18 0.92
D’ Input 142 144 064 131 072 124 103 1.19
Output 120 1.28 125 1.39 081 1.00 077 1.15

C. Tested with one of the input features (italics) of a prototype repla.ced
by a feature of reverse sign. One output response has the wrong sign

(boldfaced).

Units 1-8 in input or output layer

Case Layer 1 2 3 4 5 6 7 8
A" Input  —1.00 ~1.00 —1.00 —1.00 1.00 —1.00 —1.00 —1.00
Output —0.86 —1.39 —0.85 —1.41 —0.26 —0.78 —0.16 —0.89
B” Input  -1.00 —1.00 —7.00 1.00 1.00 —1.00 —1.00 —1.00
Output —0.98 ~1.24 -096 —1.22 0.30 0.06 0.39 —0.03
c” Input  —1.00 —7.00 1.00 1.00 —1.00 1.00 —1.00 1.00
“Output —1.20 038 —1.14 049 -0.74 0.87 —0.75 068
D" Input  -7.00 1.00 1.00 1.00 100 1.00 1.00 1.00
Output 013 075 0.2t 085 0.38 1.18 041 1.15
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above, the actual outputs on each unit were all within 0.5 of the desired
outputs. Third, even when presented with a new exemplar obtained by
reversing the sign of one of the prototype’s input units (making the pat-
tern in that respect closer to the prototype of a different category),? the
network produced outputs that were usually within 0.5 of the target.
All except one of these output values (boldface) were on the correct side
of 0. .

The fact that there is variability in the output may be disconcerting.
Can we really say that the network has recognized the pattern on the
basis of this kind of outcome? If this is thought to be a problem, how-
ever, it is one that is easily remedied. Instead of using a linear activation
function for the output units, we could employ a threshold function
that would make the value of the output unit 1 if the net input to it was
greater than 0, and make it 0 otherwise. In many contexts this sort of
digitalization is useful. One advantage is that the activations on the out-
put units would have more of the character of symbolic representations
(that is, a given class of output could always have the same repre-
sentation; “hat” could always be —1 —1 -1 -1 -1 -1 -1 =1).
However, for some purposes the variability produced by a continuous
activation function may be preferable. For example, if a distorted input
produces a distorted output, other processing components that utilize
that output will be able to compute the degree of distortion. Having
that information available may be useful, e.g., in suggesting a degree of
uncertainty which may be due to context effects or other factors.

Even though this is a very simple network, it has done a credible job
of learning to recognize several categories of input patterns. It is worth
emphasizing the fact that the network can handle distorted patterns and
readily classifies new patterns that are similar to the training inputs.
Hence, it can deal in a natural way with some of the variability that is
encountered in the real world (e.g., people identify various types of hats
as “hat”). On the other hand, there are definite limitations to this capa-
bility for two-layer networks, as we discussed in chapter 3. Overcoming
these limitations requires multi-layered networks, whose pattern recog-
nition capacities we consider next.

Pattern Recognition in Multi-layered Networks

To recognize some patterns it is not sufficient to map input patterns di-
rectly onto output patterns. Rather, one or more intermediate layers of

2 This models the situation in which an instance of one category (e.g., a hat) has a fea-
ture (e.g., a strap that looks rather like a handle on a bucket) that makes the hat, in that
respect, look more like a bucket than a typical hat.
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units are needed to extract information that can then be passed to units
in higher layers. McClelland and Rumelhart (1981) and Rumelhart and
McClelland (1982) offered an interactive activation model, which illu-
strates how a multi-layered network can recognize visual patterns,
specifically, four-letter words presented in a particular type font. They
constructed an interactive network with an input layer of features (e.g.,
top horizontal bar), a middle layer of letters (e.g., E), and an output
layer of four-letter words (e.g., BOTH). It differs from more recent
multi-layered networks in that its middle layer of units is not actually a
hidden layer: (a) the connection weights and interpretations of its units
were specified by the designers rather than extracted by the network it-
self in a learning paradigm; (b) the activation patterns on that layer as
well as the top layer are ‘‘visible.”” That is, when the network recog-
nizes a word (top layer), it also recognizes letters (middle layer) and can
report either level depending upon the task. Note that there would be
little reason to report the middle layer if it were actually a hidden layer,
because individual hidden units generally are interpretable only as com-
plex microfeatures that are not easily labeled.

All of the units and connection weights in the word recognition
network were hand-crafted a decade ago, before the back-propagation
learning procedure was available, and is best regarded as a transitional
type of multi-layered network. Nevertheless, it produces human-like
responses under a variety of conditions, including low contrast (dim
lighting) and missing features (as would occur if ink blots were spilled
across the word). It is able to exhibit fault-tolerant processing because,
like any interactive network, it operates to satisfy multiple soft con-
straints. (In contrast, commercial pattern-recognition systems such as
those used by banks to read the special characters at the bottom of a
check are brittle. If flexibility with respect to different fonts and scripts
could be combined with fault tolerance in a pattern-recognition device,
organizations such as banks and postal services could go much further
than they already have in replacing human pattern-recognition systems
— their line employees — with machines.)

There are some more subtle phenomena of human pattern recog-
nition that werc also addressed by McClelland and Rumelhart. In par-
ticular, they were able to simulate the word superiority effect. The basic
effect is that very briefly displayed letters are better recognized when
they are presented in the context of a word (or a pronounceable
nonword). Helpful effects of context are ubiquitous in human informa-
tion processing; that is, doing more often costs less effort. It might be
thought that this is because context narrows the possibilities, but
Reicher (1969) showed that there is more to the effect than that (see

Pattern Recognition 113

also Wheeler, 1970). Reicher constructed pairs of words that differ in
Just one letter position, e.g., TOLD/COLD. On each trial he briefly
presented one word from the pair (e.g., TOLD); then a masking stimu-
lus to stop visual processing; and then a test display that had the correct
letter (T') above or below the letter from the contrasting word (C), with
dashes placed in the positions of the three shared letters to orient the
choices. Subjects’ ability to choose the correct letter was better in this
word context condition than in control conditions of scrambled strings
of letters or isolated letters. Since either test letter would produce a
word, something must occur in the course of processing that makes use
of the actual word that is displayed. Exactly what occurs is the question
that has challenged researchers; the McClelland and Rumelhart model
Is one promising way to answer that challenge. We shall not discuss
McClelland and Rumelhart’s full simulation of the word superiority
effect (which involves presentation of a word, then of a mask, and then
a forced choice response), but rather we shall discuss only the critical
part of the model in which recognition of words affects the recognition
of component letters.

As noted above, the network is built from three sets of units: one for
features of letters (14 units)®, one for letters (26 units), and one for
words (1,179 units). The system is designed to deal with words of four
letters, so four copies of the feature and letter sets are used (one set for
the first letter of the word, one for the second letter, etc.). Each of the
feature units is positively connected to units for letters that possess the
feature and negatively connected to units for letters that do not. Simi-
larly, the letter units are positively connected to units for words that
contain the letter in the appropriate position, and negatively connected
to words that do not. Importantly, there are also top-down connections;
the word units are positively connected to the units for the letters they
contain. Finally, word units and letter units are each negatively connec-
ted to all competitors within the same ensemble. Figure 4.1 shows all
of the features and letters, and a few of the words and connections.
Simulations can be run with this network under a variety of conditions
and parameter values using the ia (interactive activation) program in
McClelland and Rumelhart’s Handbook (1988, chapter 7).

An input is provided to this network by activating the appropriate
features in each of the four letter positions. For a word with an E in

3 Actually, for each feature there is one unit that is activated when the feature is pres-
ent, and a different unit that is activated when it is absent, making a total of 28 units; ab-
sence can therefore be distinguished from lack of information. For simplicity, we do not
discuss the units that encode absence.
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Figure 4.2 The featural encoding of the letter “E” in the Rumelhart -Siple font used by
McClelland and Rumelhart’s (1981) word-recognition network.

position 2, five of the units in the second ensemble of feature units
will be activated. Figure 4.2 shows how an E is constructed in the
Rumelhart-Siple font that was used in this study (Rumelhart and Siple,
1974). The features that are activated are- top horizontal bar, bottom
horizontal bar, top left vertical bar, bottom left vertical bar, and
leftmost center horizontal bar. (Note that the use of a fixed set of
straight-line features has the result that a few letters look somewhat
odd, e.g., B and V, but this is of no consequence for the simulation.
Also note that sets of features can be supplied that do not correspond to
actual letters, or that are incomplete and therefore ambiguous; e.g., the
top and bottom horizontal bars and bottom left vertical bar alone are
consistent with C, E, G, O, and Q.) Each of the active feature units
then sends activation to all of the letter units in the seccond ensemble of
letter units with which it is consistent. For example, the top horizontal
bar sends activation to such letters as C, E, and F; the bottom horizon-
tal bar sends activation to such letters as C, E, and J, and so forth.
Almost every letter will receive some activation in this manner, but E
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Table 4.3 Activations of output units in the word recognition network when
presented with BOT]

Processing cycle

Unit 10 20 30 40
B 0.51 0.75 0.79 0.79
0 0.51 0.75 0.79 0.79
T 0.51 0.75 0.79 0.79
] 0.38 0.47 0.49 0.49
BOTH 0.29 0.60 0.66 0.67

Note: Activation for unit H never reached zero.

will receive the most because it is consistent with all of the activated
features. Finally, as the letter units become active, they in turn excite
those word units with which they are consistent. These word units will
then send further excitations back in the reverse direction to those same
letter units. Because this is an interactive network, the propagation of
activation will continue across a large number of processing cycles.
(Note that the backward connections are unrelated to back-propa-
gation, which is a learning procedure for feedforward networks; here we
have an activation route in an interactive network that is not set up for
learning.) The equations used for the output from units, the net input
to units, and the change in activation are very similar to those for the
Jets and Sharks simulation discussed in chapter 2. For letter and word
units the only differences are in the values used for parameters such as
connection strength and decay (and they lack external input); feature
units, however, receive only external input (in the form of binary
values).

The fact that information flows both from letter units to word units
and from word units to letter units is critical in determining the
behavior of this network. The letter units receive top-down input from
the word units, and bottom-up input from the feature units. If the fea-
ture units do not correspond to an actual word, the word unit that is
most consistent with those features can override some of the featural
detail by strengthening the activations of its letters (i.e., the letters that
should be favored because they form a word). To illustrate the override
capacity, we presented McClelland and Rumelhart’s ia network with
the input BOTY instead of BOTH. Despite the misspelling, the word
unit BOTH quickly reached a high activation value (0.67 after 40
processing cycles). At the letter level, the letters B, O, and T quickly be-
came more active than J (table 4.3). Hence, the higher-level (word) unit
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Table 4.4 Activations of letter and word units when the word recognition
network is presented with BOT 8

. Processing Cycle
Unit 12 3 4 5 6 7 8 9 10 20 30

Letter units in four positions (LPI1-1.P4)

I.PI: B 6 13 18 24 30 35 41 45 50 55 78 80
L.P2: O 6 13 18 24 30 35 41 46 51 55 78 80
LP3:T 6 13 18 23 29 34 39 44 49 53 78 80
LI’4:B,D ¢ 0 0 0 0 0 0 o

E 0 0 1 1 1 1 1 0 0

H 0 t 3 5 8§ 13 18 24 69 76

l( o 0 0 0 0 0 0 o

N, T 0O 0 0 0 0 0 0 0 O

K, Y o 0 0 1 i 1 I 0 0

Word units

BOMB 0 O

BOND 0 0

BATH, BONE 0

BORE, BOWI. 0

BOAT, VOTE 0 0 0 0 o0

BORN, NOTE 0 0 0 0 0 0

BOOK 0 1 0 1 0 0 0

BODY 0 1 1 1 1 0 0

BOTH 0 3 6 9 13 18 23 29 35 71 75

Note: Blanks should not be confused with 0’s. A blank indicates that the activation was
below 0.

was able to respond and override the lower-level (letter J) unit in order
to arrive at an actual four-letter word.

Given that the input served to activate the fourth-position J unit and
to inhibit any other response, the top-down response from the word
unit BOTH was not able to suppress the J unit completely and activate
the H unit. But in another simulation, in which the input was simply
BOTH (that is, the fourth letter position was left blank), the H unit be-
came almost as active as the units for the letters that were actually
presented (table 4.4). What is of particular interest is that along the way
the system partially activated several other word units (e.g., BOOK anél
BODY). As a result, units for several letters other than H were brought
above zero (e.g., K and Y). Note that the partially activated words
agreed with the input in only two positions, whereas BOTH was con-
sistent in all three of the positions that had input. Hence BOOK and



118 Pattern Recognition

1001 — First three letters
i ——k
90 o
Bui T ———— - alpr
g T —— DISK
70F rrvesen omim—d — — DISH
- P e, e —
§ oof [ £ //
3 C f RS
£ soF ~ "
< o — :
< o ,_./-'/ .
Wl —
- 2d ~ -
3(): / <
20 \.,\

/ |...1...|..\.‘|...|...|.

] 20 40 (§18] 80 100 120 140 160
Cycle

Figure 4.3 Change in activation across cycles of the most active units in McClelland and
Rumelhart’s (1981) word recognition network when presented with DISE .

BODY were suppressed eventually by BOTH. This in turn had the
effect of activating the fourth-position H unit, and intera.ctlve proces-
sing further strengthened these units: after BOTH activated H, H
activated BOTH, and so it went back and forth across cycles. _Thls ‘re-
vérbcration effect continued until a stable state was achieved, in which
both units were nearly as active as they would have been if BOTH had
been presented to the system to begin with. .

In the case just described only one four-letter wottd was consistent
with the input in the first three positions. The behavior ()f.the system
becomes even more interesting when more than one match is avu.llub.]c.
In another experiment, we presented the system with the following in-

put pattern:

DISFE

In the Rumelhart--Siple font, the partial letter in the fourth positiqn
was compatible with an A, F, H, K, P or R. Initially the un.its for all six
letters became equally active (through cycle 5). As shown in ﬁgu.re 4.3,
in cvcle 3 the units DISH and DISK both started to become active. As
thes'c word activations increased across cycles, H and K became mpst
active, although the other candidates for the fourth letter position
continued to grow in activation at a slower rate. Through cycle 30 the
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units for both words grew in activation at roughly equal rates, pushing
the H and K units to much higher activation levels than the other four
letters. After cycle 30 DISH gradually lost out to DISK until it dropped
below 0 activation after cycle 120. As a result, H began to lose acti-
vation after cycle 50, eventually settling back to the same level of acti-
vation as the other four letter units. The reason for this is that the word
“disk™ is more frequent in English than the word “dish,” and so the
unit DISK was assigned a higher resting activation than the unit DISH.
As a result, the activation was always slightly greater for DISK than
DISH, and so it was able to exert a greater inhibitory effect on its com-
petitor, as well as a greater excitatory input to its fourth-position letter
unit (K). Here, then, is an example in which higher-level information
about which word is more likely in English serves to govern the
behavior of the lower-level letter units. Clearly, this effect could be ex-
tended. For example, there could be yet a higher level that would relate
words in a context. If the context were a discussion of food, that might
be sufficient to override the overall frequency difference and therefore
to activate DISH over DISK and H over K.

This last simulation illustrated two important characteristics of net-
works. In addition to recognizing patterns, they can also complete pat-
terns by filling in what was not present in the input. This capacity is a
general feature of connectionist networks. In addition, this simulation
showed how higher levels of information (e.g., information about what
four-letter words exist in English and their relative frequency) can
affect the recognition of lower-level entities (e.g., the letters that com-
prise the words). It is relatively easy to see, in principle, how one might
employ a model of this sort to simulate theory-laden perception (that
is, the influence of perceivers’ “theorics,” or knowledge, on how they
see and identify objects). The higher-level units would encode the
information that constitutes the “theory,” and could influence the re-
sponsiveness of lower-level perceptual units that recognize objects. If a
learning procedure were incorporated into such a network, it would be
possible for the higher-level units to serve as training units, leading to
the revision of weights at the lower level, and subsequently generating
different recognition behavior at the lower level.

The performance of the letter-recognition network is rather impres-
sive. The network can take in distorted sensory information and make
reasonable inferences about what it is secing. It does this without using
rules, employing instead a set of weights and activation function. The
simulations carried out on this network demonstrate the potential of
that approach, but it is not vet a fully adequate device for carrying out
pattern recognition in the real world. One limitation is that the input
for cach letter must be presented to the appropriate ensemble of feature
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units (e.g., the first letter was presented to the ensemble of units in the
first position). In real life, letters and objects can appear in different
parts of our visual field (and even at different orientations), and we
must recognize them wherever they appear. A variety of strategies have
been proposed for normalizing the input (i.e., putting the nput in a
canonical form) so that we could then employ a device like this network
to extract the pattern. Whether these strategies will be successful, or
whether more complex means will be needed, is not a matter that we
can address further here.

Since McClelland and Rumelhart’s word-recognition network was
designed, in the early 1980s, more sophisticated multi-laycred networks
have been developed which can perform a variety of perceptual tasks.
Most utilize a learning procedure such as back-propagation so that
their intermediate layers are genuine hidden layers that learn to extract
microfeatures from the input patterns that can be used for further
processing. Examples of tasks for which such networks have been de-
signed include forming compressed representations of visual scenes
(Cottrell, Munro, and Zipser, 1987); sonar detection of rocks versus
mines (Gorman and Sejnowski, 1988); identification of phonemes
(1Tampshire and Waibel, 1989); recognition of complex objects (e.g.,
houses) from digitalized television images (Honaver and Uhr, 1988);
and recognition of hand-written characters (Skrzypek and Hottman,
1989). Recognition of complex invariants such as shape over transla-
tions in space (Gibson, 1966) are more of a challenge and only infre-
quently have been addressed; but see Hinton (1987); Zemel, Mozer,
and Hinton (1988); and Hummel, Biederman, Gerhardstein, and Hil-
ton (1988). Multi-layered networks have also been used to model recog-
nition of semantic categories, as we shall discuss later in this chapter.

Generalization and Similarity

Before leaving our general discussion of how networks perform pattern
recognition and completion tasks, we need to note that one of the im-
portant characteristics of a pattern recognition network is its capacity to
generalize. Once the network has been trained to classify input patterns
into particular classes, if it is then given a new input pattern, it will
typically respond in accordance with trained patterns to which it is
similar. This, however, raises a fundamental question: what is the basis
for determining similarity? Similarity poses a notorious philosophical
problem. One common-sense approach is to state that object A is more
similar to B than C if it shares more properties with B than with C. But
this only forces us to individuate properties, and in attempting this we
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encounter the sorts of difficulty identified by Nelson Goodman (1955).
He argued that any two objects are alike in an infinite number of
respects. For example, you share with a pine tree the properties of be-
ing less that 2,000 feet tall, being approximately 93,000,000 miles from
the sun, ctc. This suggests that assessing similarity in terms of numbers
of properties held in common is inadequate unless we can provide a
plausible restriction on what counts as a property or what properties are
relevant,

Despite these philosophical difficultics, we all make judgements
about similarity. Moreover, there is a fairly clear sense in which con-
nectionist networks are making similarity judgements: the similarity
structure is implicit in the weight matrix. The weights are the means of
treating similar inputs similarly. One question that arises is whether
this approach to similarity is sufficient. Often we assume that similarity
is a matter of fact, and that it has an objective basis. When we develop a
network that generalizes in the way we do, we tend to be pleased and
think it has found the correct solution to the task we posed. When the
network is tested and generalizes in a different manner, there is a sense
in which we have failed. But we might do well to remember the
example of Wittgenstein (1953) in which he imagines a student who has
learned, by following the teacher’s example, to write a series of num-
bers by incrementing by two. The teacher is pleased as the student gets
as far as 996, 998, 1,000, but then is puzzled to see the student write 1,
004, 1,008, 1,012. When queried, the student claims to have gone on in
the same way. Wittgenstein comments:

In"such a casc we might say, perhaps: It comes natural to this person to
understand our order with our explanations as we should understand the order:
“Add 2 up to 1000, 4 up to 2000, 6 up to 3000 and so on.”

Such a case would present similarities with one in which a person naturally
reacted to the gesture of pointing with the hand by looking in the direction of
the line from finger-tip to wrist, not from wrist to finger-tip. (1933, §185)

Wittgenstein’s point seems to be that the only framework for evaluating
the correct way to follow a rule, such as adding by twos, is the practice
of a group and that someone who behaves ditferently is simply follow-
ing a different practice. There is no independent criterion for correct
performance. Likewise, the network that generalizes as we do may
recognize similarity as we do, and one that does so differently may
simply have a different way of determining similarity.

What is necessary to get a network to determine similarities as
humans do and so generalize in the same way? In part, this may require
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having much the same architecture as humans. In so far as the architec-
ture of current networks is very simple and general compared to the
mind-brain, then it should not be surprising if current networks will
frequently gencralize in different ways from humans. But we also need
to consider the fact that how a network generalizes is partly determined
by the particular set of input-output cases on which it is trained, as has
been demonstrated for human generalization. For example, Nelson and
Bonvillian (1978) showed that children at age 2} years produce (and
comprehend) invented names for unfamiliar objects much more suc-
cessfully if they have been exposed to two or four different exemplars,
rather than just one exemplar, during informal teaching sessions.
Morcover, our experience does not consist simply in processing dis-
crete pieces of information. We live in a body, interact with an environ-
ment, and play roles in various social structures. Dreyfus and Dreyfus
(1986) have argued that these factors may all figure importantly in
determining human cognition. This may mean that networks cannot
completely share our sense of similarity and generalize as we do unless
they share these other features of human existence as well,

Hence, one of the attractive characteristics of networks is that they
generalize by means of the same mechanism that recognizes explicitly
trained patterns; generalization comes ““for free." Important questions
remain, however. Exactly how well do networks generalize? How simi-
lar is their generalization to that of humans? (For example, Pavel,
Gluck, and Henkle (1988) raise concerns whether the generalizations
that humans find difficult are also difficult for networks.) How does net-
work generalization compare to that of the best rule-based models, and
particularly to those that implement, in a different way, such properties
as satisfaction of soft constraints? Questions such as these can be
expected to be a focus of concern in the 1990s.

Pattern Recognition Beyond Perception

Having demonstrated how networks carry out pattern recognition, with
an emphasis on perceptual tasks, we now turn to questions concerning
the broader role of pattern recognition in human cognition. Within a
connectionist framework, pattern recognition plays a fundamental role
at all levels of processing, from sensation through reasoning, and there
is no sharp boundary between perception and cognition. Some tradition-
al symbolic theories (e.g., Fodor, 1975), in contrast, regard symbolic
processing as autonomous of sensory processing and do not character
1ze it in terms of pattern recognition. Certain less traditional symbolic
theories are similar to connectionist accounts in their emiphasis on pat-
tern recognition at all levels of processing. In Anderson’s (1983) AT
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theory, for example, an explicit process of pattern recognition within g
network is the means by which production rules are selected to fire at
all levels of processing. Any system that allocates a fundamental role to
pattern recognition, including but not limited to connectionist systems,
has the potential to account for what philosophers have somctim-cs con-
strued as the distinctive feature of mental lite, although they have
found it extremely difficult to explain: that is, the intentionality of men-
tal states. We now turn to exploring the shape that a conncectionist ac-
count of intentionality might take.

Pattern Recognition and Intentionality

of this term, which refers to the notion thar one intends to do some-
thing). Intentional states are about phenomena that are generally sity-
ated outside the cognitive agent. One of the central challenges .in the
philosophy of cognitive science has been to explain how mental states
acquire their intentionality, that is, are about specific phenomena. One
of the factors that makes this task difficult was identified by Brentano
(1874/1973). He noted that a mental state, such as a belief, s'ccms to in-
volve a relation between the believer and an external phenomenon that
irs unlike ordinary relations. If Sam believes that Sarah Is a neurologist
Sam’s state of mind seems to stand in a relation to Sarah. Normally, f0|:

son in an intentional state and the object of that state cannot be handled
simply in terms of relations; Brentano therefore used the term relation-
like in order to capture this characteristic of intentional states.
Brentano's contemporary Frege worked out the basic theoretical
framework that philosophers have employed for explaining what it is
about states of the mind that make them be about specific objects. Frege
(1892) differentiated two components of the meaning of a linguistic
symbol: its sense and its reference. The referent of a symbol is the object
(or class of objects) it refers to, while sense serves g mediating role,
specifying the conditions an object must satisfy in order to be the
referent of the symbol. The classic example is the term “morning star,”
whose referent s the objeet also known s Venus, but whose SCNSe 1y
the celestial object Last seen in (he morning. "I'he tern “Venus" has the
same referent, but not the Sime sense. The sense seemys W be a
component of the mental state that determines reference. (Frege hime
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self did not view senses as psychological entities. They were objective
components of linguistic terms which might, however, be grasped by
speakers of the language.) Difficulties arise when one tries to charac-
terize how senses are supposed to pick out their referents (see Putnam,
1975).

The traditional symbolic approach to cognitive modeling makes the
problem of intentionality particularly difhicult to solve. The reason is
that the representations employed in symbolic models are formal (as
Fodor (1980) has emphasized). That is, they are to be operated upon by
rules in virtue of their syntactic form without any consideration given
to their reference. If we try to solve the intentionality problem within
the confines of the formal system itself, the best we can hope to do is to
give a description of the objects to which the symbols refer, which will
pick out the same referents. But this does not constitute progress. The
descriptions must themselves be stated using symbols, and so the prob-
lem has only been shifted; now we need an account of how these sym-
bols refer to external phenomena. Symbols as merely formal objects
scem to pass over the world in much the same way as Dreyfus and
Dreyfus (1988), following Heidegger, characterized traditional philos-
ophy as passing over the world:

According to Heidegger, traditional philosophy is defined from the start by its
focusing on facts in the world while *‘passing over” the world as such. This
means that philosophy has from the start systematically ignored or distorted the
cveryday context of human activity. The branch of the philosophical tradition
that descends from Socrates through Plato, Descartes, Leibniz, and Kant to
conventional Al takes it for granted, in addition, that understanding a domain
consists in having a theory of that demain. A theory formulates the relationships
among objective, context-free clements (simples, primitives, features, attributes,
factors, data points, cues, etc.) in terms of abstract principles (covering laws,
rules, programs, etc.). (Dreyfus and Dreyfus, 1988, pp. 24 3)

The challenge is to identify a way of relating representational states
to phenomena in the world so as to explain their intentionality. Those
who prefer to retain a formal (purely syntactic) symbolic account must
find a way to augment that account with a separate semantic account, as
in Fodor (1987). This 1s not an casy task, and some investigators prefer
to build a new framework that does not assume the autonomy of syntax
from semantics. One strategy is to appeal to the causal mechanisms that
produce tokens of the symbols in us. Dretske (1981), for example,
characterizes the causal relation between the object in the world and the
symbol in the head in terms of the information that is transmitted and
then tries to explain intentionality in terms of how the svmbol bears in-
formation about the object. When a syvmbol s activated in the mind
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without being caused by its referent (e.g., when it is activated by other
acts of thinking), it is still about the object which would, when per-
ceived by the subject, normally cause activation of that symbol. This
proposal has been challenged from a number of directions. In particu-
lar, it has been argued that such causal relations are madequate to ac-
count for the possibility of error or misrepresentation (c.g., the possi-
bility of representing nonexistent objects, which could not cause any
states in us). As we have already noted, this is an important character-
istic of intentional states (see Churchland and Churchland, 1983;
Fodor, 1984).

In our view, the causal account does seem to be heading in the right
direction in so far as it relates representational states to that which thev
are about. But causal analyses have generally been pursued from the
perspective of symbolic analyses of representations, and that generates a
number of the difliculties. The main problem that the causal/symbolic
approach faces in explaining intentionality is that its basic symbols are
treated as atomic and arbitrary. As a result, there is nothing about the
symbol itself that determines its referent. At most, the contact with the
external referent 1s handled by a transduction mechanism which is
capable of gencrating tokens of the appropriate symbol in the cognizer
when the relevant external referent is present. This transduction pro-
cess is not involved in the mechanisms for symbol processing that
figure once the token of the symbol is produced in the system. The cog-
nitive system still seems to pass over the world.

There is an additional serious consequence of passing over the world
in this manner. As the passage from Dreyfus noted, the symbols be-
come context-free. But generally when we use representations intention-
ally, the particular referent that is intended varies with the context.
This problem is readily seen when we consider the representational
function of words in a natural language. The meaning (espccially, the
referents) of particular words often changes with context. It seems
plausible that this will be true of mental states as well. The problem for
capturing this in a traditional symbolic account is that its symbols are
fixed entities; all of the tokens of a symbol are the same. In the sym-
bolic theory, the causal relation cannot explain how on the diffe;ent
occasions when a symbol is used, there may be significant variation
among intended referents. The most obvious ways that a purely sym-
bolic account might countenance context are to employ a different sym-
bol for each contextually determined referent, or to use more complex
rules that include symbols that describe cach context and the corre-
sponding effect on reference.” Drevfus (1979) points to the struggles of
researchers in symbolic artificial intelligence to develop context-sensi-
tive systems as reason for pessimism regarding a svmbolic solution.
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More recent proposals may be more successful. For example, Barsalou
(1987) has proposed that concepts are not fixed entities; rather, they are
constructed on cach usage by combining attribute values that are ap-
propriate to the context. (See also Barsalou and Billman, 1989.) That
raises the question of what mechanism constructs these unstable con-
cepts. From a connectionist perspective, treating the attribute values as
units in a network would be an attractive mechanism: the connectionist
would call them microfeatures or subsymbols, and context sensitivity
could be attained by using some of the input units to encode context.
(This path from stable noncontext-sensitive symbols, to unstable con-
text-sensitive subsymbols, to a connectionist mechanism for combining
subsymbols illustrates that the difference between symbolic and con-
nectionist approaches, while real, can be bridged.)

One of the benefits of connectionist approaches, so far as accounting
for intentionality is concerned, is that the mode of processing it pro-
poses as occurring within the system is continuous with processes oc-
curring in the external world (see also Harnad, 1990). Connectionism
does not propose a gap between symbol processing and other kinds of
causal processes (such as those involved in sensation and perception).
Thus it provides hope of situating cognitive processing in the world,
and so begins to elucidate what Heidegger may have had in mind when
he emphasized that our cognitive system exists enmeshed in the world
in which we do things, where we have skills and social practices that
facilitate our interaction with objects. We can begin by construing an
individual as situated in a world that displays regularities at various
levels of abstractness; those regularities have been captured in the indi-
vidual’s pattern recognition networks at various levels of abstractness,
so there is a fit between the world and the system that interacts with it.
The most obvious contact between the individual and the world is
through the sensory receptors of the individual, but other networks
quickly (and largely in parallel) recognize regularities at all levels of ab-
straction,

At an intermediate level of abstractness, the system will identify the
objects or situations with which it is presented as exemplars of semantic
categories. It thereby captures yet another aspect of intentionality: we
represent an individual under a particular description (i.e., categorize
it), but may fail to represent it under a different description that would
also be appropriate. For example, we might recognize a person as a bas-
ketball player, but fail to recognize her as an honors student (just as we
might view Venus as the evening star, but not as the morning star).
This contributes to the failure of substitutivity (Chisholm, 1958) which
is manifest in descriptions of intentional states. In non intentional
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sentences (e.g., “‘The basketball player was very tired’’) we can substi-
tute one coreferential term for another without changing the truth value
of the whole sentence, but not in the case of sentences describing inten-
tional states (e.g., “‘I thought the basketball player was very tired”).
That is, if we substitute “‘honors student”’ for “basketball player” in
the latter sentence we have transformed a true sentence into a false one.
This is because the nonintentional sentence is about the state of the
world itself, whereas the intentional sentence is about a person’s rep-
resentation of that world.

Intensional logic was developed within philosophy in part to address
problems like this. For example, a substitution rule can be introduced
that permits the substitution of “honors student” for “basketball pla-
yer” when this identity is known. To incorporate intensional logic in a
mechanistic model one would need a system that could assign multiple
properties or categories to the same individual. This can be accomp-
lished in traditional symbolic artificial intelligence by means of separate
propositions for each assignment, and in localist connectionist networks
by means of connections leading to separate output units for each as-
signment (e.g., the connections from the person units to the property
units in the Jets-Sharks network in chapter 2). A simple form of failure
of substitutivity could be exhibited by either system, if the same indi-
vidual is represented by different symbols or nodes that are provided
with somewhat different sets of assignments. Further implementation
of intensional logic (e.g., modeling what happens when the system is
informed of the identity, or modeling second order intentionality)
presents challenges to both kinds of systems. Currently we better
understand how to develop such models in symbolic systems than in
connectionist ones.

One important difference between the connectionist and tradition-
al symbolic views of the interface with the world is that in the connec-
tionist account, representations will not be arbitrary. This results from
the fact that connectionist systems “‘decide’” what representations to
employ as an integral part of their learning activity in interaction with
the world and the patterns it presents to the system. That is, two-layer
pattern recognition networks, using a learning rule such as the delta
rule, modify themselves toward weights that directly reflect environ-
mentally-given relations between input and output patterns. Multi-
layered networks additionally determine what higher-order information
(features or microfeatures) should be encoded in hidden units. For
example, in describing how a small three-layer network learned to solve
the XOR problem (in chapter 3), we noted that the two hidden units
each acquired the capacity to represent distinctive information about
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the input. One became an OR detector, while the other became an
AND detector. From the point of view of the network, these were not
arbitrary decisions; these were the means that allowed the network to
reduce its error in the overall task and thereby solve the problem. The
role of one unit as an OR detector, as required by the input-output
cases that were processed, was encoded in the pattern of connections
between that unit and the input units and between it and the output
unit; similarly for the AND detector. (Hinton’s (1987) network for
learning kinship relations, which we shall discuss in chapter 6, provides
a more elaborate example of this same point.)

Most existing networks function with input representations that are
chosen by the researcher, and hence the networks are not really tied
to external objects in the sense needed to secure our claim that the
representations are really about these objects. This limitation, however,
results from the fact that each particular network is modeling only a
small part of the entire cognitive system; few network designers in the
modern era have chosen to interface their networks with an actual
environment by including sensory and motor layers (i.e., building a
robot). Gorman and Sejnowski (1988), however, trained a three-layer
network which took as input the digitized outputs of a frequency ana-
lyzer into which actual sonar echoes from both rocks and mines were
fed. The network learned to discriminate rocks from mines on this
basis. Since the network’s inputs were encodings of actual rock and
mine echoes, it seems very plausible to treat its outputs as about rocks
and mines, and to treat its hidden units as detecting features of rocks
and mines.

The crucial point to be emphasized is that representations on hidden
units result from the system’s attempt to accommodate to its environ-
ment. They cease to be states which could have been causally connected
to any sensory input and, hence, arbitrary as far as the operation of the
system was concerned. It should be emphasized that connectionist
systems in a learning paradigm are being trained to perform tasks. In
more natural simulations, these tasks would involve acting in an en-
vironment in ways that would serve the needs or goals of the organism.
But even in simple simulations, the learning procedure gives the net-
work a goal: maximizing the fit of its states to those of the environment
(by minimizing error in producing outputs to inputs). Thus, a teleo-
logical component is added. As a result, the representations developed
in the hidden units subserve goals, and so can be thought of as repre-
senting information about things external to the system for the system.
Hence, these representations are about the entities supplying the input.
(The tightness of this connection is evident in the fact that in order for
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researchers to analyze the operation of hidden units, they must try to
identify what input patterns will in fact generate the response of par-
ticular hidden units.)

As a final point, we should note that the responses the system makes
to particular input states are not context-free. The system has not
learned discrete responses to discrete facts, and there is no assumption
that the world consists of a body of facts. Rather, the world consists of a
rich body of information, some of which crosses the sensory thresholds
of the organism. The information that is captured in the activation of
input units in the connectionist processing system provides a broad
spectrum of information about the environment in which the organism
exists, some of which may be regarded as contextual, depending upon
what task the organism is performing. It is up to the organism to learn
to identify objects in the environment by learning responses to pat-
terns. One advantage of this way of viewing the system’s responsive-
ness to the environment is that the particular response of the system
may be influenced by a variety of different factors, some of which we
may take to be only indirectly related to the task at hand, but which are
able to influence the patterns of activation arising inside of the system.
For example, consider a case in which a representation becomes active
due not to environmental input, but due to activity elsewhere in the
network; let us say that the activity causes the network to activate a pat-
tern much like the one that an actual ball would elicit. On one occasion
this activity may result in a pattern much like that typically generated
by a baseball, while on another occasion it might result in a pattern
more like that typically produced by a basketball. This variation is then
available to enable the system to adjust its response in a way that is sen-
sitive to other information.

The connectionist approach to modeling cognition thus offers prom-
ise in explaining the aboutness or tntentionality of mental states. Re-
presentational states, especially those of hidden units, constitute the
system’s own learned response to inputs. Since they constitute the sys-
tem’s adaptation to the input, there is a clear respect in which they
would be about objects or events in the environment if the system were
connected, via sensory-motor organs, to such an environment. They
are about the situations to which they are responses in much the way
that biological adaptations are adapted to situations like those figuring
in the process of their selection. The fact that these representations are
also sensitive to context, both external and internal to the system,
enhances the plausibility of this claim that the representations are
representations of particular states. The connectionist approach thus
makes a start on cxplaining the aboutness of representations.
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Unfortunately, there is more to be done to explain in.tentionullty. We
must also explain how mental states can represent thlngs that do n;)(;
exist. This is relatively easy to do in s.ymbollc systems.;, smcebv.ve co;J, :
simply incorporate a symbol to stand in for the nonexistent o Jec_t.d.g
we could not explain why the arbitrary symbol had. the referent it di L
While we cannot here advance a detailed explarllat.mn of.how COHH?L-
tionist systems could make refercncc; to nonexisting c.)b_)e'cts, w'e can
outline such an account. In interactive 'netwcrks, actx.vatlons can be
brought about by activity in the netw_ork‘ltself, and not just {)rom sxterc—i
nal inputs. It is conceivable that activation patterns cogld e induce
that do not correspond to anything norma.lly cause.d by input patterhns:
These would be representations of nonexistent objects. We know they
are about these objects, and not others, because thf{y are the repre‘:se'n-
tations that would be produced if the system ever did confront §uch anl
object. Thus, if a representational pattern were created by |.nterx;a
processes in the system that are relevant .to the featu.ral descnphfor;o :
unicorn, then it would be a representation of. a unicorn, not of ¢ .mbd
Claus. The network’s response to the product.lon of these states can be
viewed as its further thinking about the n()nexn.s?ent objects. o
In summary, the idea that pattern recogm.txon play§ a crucial role
in intentionality offers a useful new pergpectlYe on this d1ﬁiiullt9;|;)e)a
of philosophical inquiry (for additional dlscus_smn, see Bgchtg 1 e.
Within cognitive psychology, the corrcspgndmg area of mqulry')s re-
search on how people form and use semant.lc categories. In the ne.xt sec-
tion we briefly consider how a connectiomst'approach to catego.rlzrtnog
might be formulated and provide an overview of some emplrtl)ca in
theoretical contributions from cognitive psychology that must be taken

into account.

Connectionist Models of Categorization

Categorization is an area in which the differences be_twe‘en sym‘bohc arlm)d
connectionist models are subtle rather than dramatlc. Categorles can be
labeled by symbols, but these symbols are of little use w1tho}§1t sonlx‘e
sort of distributed representation across features that governs the a';T)}}arx-
cation of those symbols to instances of the category. (exemplﬁrsc;.t t;1t
is, even within the symbolic traditi.on,' categorlzatnon has ha ° e-e
handled as a kind of pattern recognition in whilch exemplars are assngnh
ed to semantic categories on the basis of their fegtur.es. H.enc'e, ml:lC

of the research that has been conducted on categornz.atl(.)n within a s:(m-
bolic framework can be incorporated into a cor?nectlomst framewor‘ as
well, Within either framework, the primary difference between recog-
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nition of perceptual patterns and assignment of exemplars to categories
is whether the features involved are at a low level of abstraction (e.g.,
““has a bottom horizontal bar” is a relevant feature of the letter “E”) or
at a medium level of abstraction (e.g., “‘has feathers” is a relevant fea-
ture of “bird”’). Within the connectionist framework, but not within
most symbolic theories, the distributed representation across features
may be the sole way in which the category is represented; that is, there
may be no separate unit or symbol corresponding to the category as a
whole.

The two pattern recognition networks we discussed at the beginning
of this chapter provide suggestive models of how connectionist ac-
counts of categorization might be developed. In the two-layer network
that learned to identify patterns A, B, C, and D, the specific Input units
were optionally thought of as specifying features that certain category
exemplars possessed, such as their parts or color. A particular pattern
across the input units was a distributed encoding of the exemplar in
terms of these features. The output units provided a distributed
encoding of the possible categories or category names; again, the net-
work designer would determine whether or not each unit corresponds
to an explicit feature, and if so, what features were involved. The
weights were used to determine the assignment of exemplars to catego-
ries. Input features that were not very salient or systematic with respect
to category assignments would have low weights on the connections
leading out from them. When the network was presented with a specific
exemplar, the activation of each input unit was propagated along each
of its connections. Each output unit received a weighted sum of the
activations from the input units (with a different set of weights used for
each output unit). As we shall see, the use of additive combinations of
weighted features is not unique to connectionist models, but rather is
characteristic of a variety of categorization models.

Questions about the nature of distributed representations of cate-
gories across features, and how they are utilized, have been a major
focus of psychological models of categorization. Psychologists nitially
presupposed the classical view of categories, which was a legacy of tra-
ditional philosophical analysis. That is, they assumed that categories
identify sets, membership in which could be specified in terms of singly
necessary and jointly sufficient conditions. These necessary and suffi-
cient conditions were viewed as defining the category, and knowledge of
a category was assumed to involve knowing those conditions. Two cog-
nitive consequences of this view are that (a) all categories should be
processed in basically the same manner, and (b) all exemplars of a
category should be treated equally.

In the 1970s, psychological approaches to categorization were pro-
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foundly changed by the work of Eleanor Rosch, Edward Smith, and
their students. Rosch, in particular, challenged the veracity of both cog-
nitive consequences of the classical view in a series of important papers
(for a review, see Rosch, 1978). She showed: (a) Among the different
levels of categories in a class-inclusion hierarchy (e.g., desk chair,
chair, furniture), one level (e.g., chair) is a basic level that 1s more easily
acquired and processed. (b) Categories have a graded structure such
that some exemplars of a category are recognized as more typical than
others; c.g., a robin 1s judged to be a better exemplar of a bird than is a
vulture (Rosch and Mervis, 1975; Rosch, 1978); see also Zadeh’s (1965)
notion of fuzzy sets and Posner and Keele's (1968) important demon-
stration that subjects exposed to dot patterns extract a prototype. Re-
search by Rosch, Smith, and others has shown that prototypicality
ratings correlate highly with a number of information-processing
measures (for reviews, see Smith and Medin, 1981; Smith, 1988). For
example, people categorize typical exemplars faster than atypical
exemplars (Rosch, 1973) as well as more accurately (Rips, Shoben, and
Smith, 1973); also, both children and adults perform better on rea-
soning tasks if typical exemplars are used (e.g., Carson and Abraham-
sen (1976) obtained this outcome for children answering Piagetian
class-inclusion questions).

Rosch and Mervis (1975) found that exemplars were judged typical
of a category to the extent that they shared features. One example simi-
lar to theirs is that birds and robins have feathers, fly, are small, eat
insects, and sing. A vulture, on the other hand, shares only the first two
properties. Moreover, these features were often not the ones that would
figure in a classical definition of the category. Also, it was not necessary
for any feature to be common to all category members or for any fea-
ture t;) be distinctive of the category. Members of a category, they
found, resembled each other much in the way that members of a family
do, without possessing any defining features (this idea of family resem-
blance is drawn from Wittgenstein, 1953).

Subsequent research has drawn an even more complex picture. First,
Armstrong, Gleitman, and Gleitman (1983) showed that typicahty
effects can be obtained even for categories that are most obviously
classical in their definition, specifically, odd versus even numbers.
From this they argued that empirical findings on typicality must in-
volve aspects of categories other than their definitions and thercfore
would not bear un the correctness of the classical theory of definition.
More recently, other investigators have shown that people will, when
pushed, utilize certain core features such as having genes th;}t' do not
seem to figure in prototypicality judgements but are definitional of
catepories (Cuarey, 1985, Keil, 1989). Hence, a complete account of
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categorization would include an account of the definition of categories
in addition to an account of typicality effects. Even that is not sufficient,
however. Armstrong, Gleitman, and Gleitman also argued that lists of
features alone do not adequately capture the structure of our knowledge
of categories. Some more organized, theory-based approach is needed
(Murphy and Medin, 1985; Neisser, 1987). At the very least, theoreti-
cal considerations may influence both the saliency we give to particular
features, and what we take to be features (Medin and Wattenmaker,
1987). At an extreme, featural approaches may be replaced by more ela-
borate kinds of knowledge structures, such as Lakoff’s (1987) idealized
cognitive models.

What implications do the various empirical findings and theoretical
directions have for specific models of how our knowledge of categories
is represented? We must limit ourselves here to just a few classes of
models. Early in the cognitive era, symbolic models of semantic rep-
resentation assumed the classical approach to concepts and categoriza-
tion. In the notation of Raphael’s (1968) declarative representations, for
example, the singly necessary and jointly sufficient conditions (features)
could be expressed by associating attribute-value pairs such as (SUB-
PART, FEATHER) and (SUPERSET, BIRD) with the concept
ROBIN. Similarly, Kintsch (1974) used propositions such as (HAVE,
ROBIN, FEATHERS). Much the same information was expressed
in semantic networks by other investigators (e.g., J. R. Anderson and
Bower, 1973; Norman and Rumelhart, 1975). These were extremely
localist networks, in which the units (called nodes) encoded concepts,
and the units were connected by a small number of directed relations
that encoded relations between concepts. Both the units and connec-
tions were labeled by symbols. For example, the node robin could have
a relation haspart connecting it to feathers and a relation superset (often
called isa) connecting it to bird. Ilence, propositional models and sem-
antic networks provided two different kinds of format for organizing
defining features into a symbolic knowledge structure. Within these
kinds, models differed in a variety of other ways; for example, represen-
tations could be acted upon (static, declarative) or could be themselves
active (dynamic, procedural).*

4+ For example, within generative grammar, Katz and Fodor (1963) expressed necessary
and sufficient conditions as symbols (scmantic markers and distinguishers) in a tree struc-
ture which specitied the lexical entry for the concept. Lexical entries like these could be
incorporated in a processing model as declarative representations. The best example of a
procedural representation is provided by production system rules of the form (if con-
dition, then action). A straightforward approach is to specify the defining features in the
condition (in some Boolean combination that would include the feature of having
feathers), and to assign the category robin in the action.
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These same formats can be adapted to accommodate the idea that
what is mentally represented is information about a prototype, rather
than necessary and suflicient conditions satisfied by all exemplars of the
category. Kintsch as well as Rumelhart and Norman favorably dis-
cussed this approach in general. Within the network format, for exam-
ple, one might add to the bird node an agent relation connected to a
node sing, and a property relation connected to a node small; the same
additions could be made to the robin node, but not to the vulture node.

Changes like this would be too crude, however, to account for quanti-
tative data on typicality effects. Within the network tradition, it was
necessary to move forward to a class of models that specified a process
of spreading activation (e.g., J. R. Anderson, 1976, 1983; for ea.rly
suggestions see Quillian, 1968; and Collins and Quillian, 1969). Collins
and Loftus (1975) described and tested a way this process could be used
to produce the typicality effects found in category judgements. They
associated a weight with each connection in their network represen-
tation in order to distinguish among features on the basis of their de-
gree of typicality or criteriality for the category.’ To determine whether
a robin is a bird, activation was spread from the robin and bird nodes to
the feature nodes at individual rates dependent on the number of con-
nections and their weights. Essentially, when the number of matching
features exceeded a threshold, a positive response was generated.

With the addition of weights and spreading activation, semantic net-
works made a major step forward, and can be regarded as forerunners
to the connectionist models of the next decade. They particularly re-
semble localist connectionist networks. For example, both spreading
activation and localist connectionist models can account for typicality
and other effects by means of additive combinations of weighted fea-
tures. Certain differences remain, however. (1) In a spreading acti-
vation network the connections are not used to distribute information;
rather, a limited number of labeled connections are constructed such
that activation along a particular path has a specific semantic interpre-
tation. (2) The particular rules that govern the spread and use of acti-
vation differ in some respects.

A somewhat different theoretical path was taken by another group of
investigators, but it led to much the same outcome (an emphasis on

5 Other nctworks that utilize numerical parameters on connections have focused on
domains other than category representation, e.g., Colby’s (1975) use of processing-rel-
evant parameters for emotional states attached to beliefs (propositions), and Supp?s’
(1970) use of probabilistic parameters to govern the application of rules in a gencrative
grammar. These parameters function similarly to weights in some respects.
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additive combinations of weighted features). Prototype or abstraction
models specify explicit means of Judging the category membership of
exemplars by computing their similarity to prototypes (which need not
correspond exactly to any particular exemplars). Rosch (1975) assumed
for convenience that categories were represented by unstructured lists
of features. Rips, Shoben and Smith (1973) placed greater emphasis
on the choice of representational format. Multidimensional scaling was
already being used by some investigators as a way to represent concepts
in terms of features that take continuously varying values; for example,
various birds could be displayed as points in a space with dimensions
that secemed to correspond to size and ferocity (cf. the scaling of
mammals used by Henley, 1969; and by Rumelhart and Abrahamsen,
1973). The values for a robin or other basic-level bird on these dimen-
sions would reflect characteristic (rather than defining) features of that
category. Rips et al. (1973) made the intriguing suggestion that the
superordinate category bird might be represented as a point in the same
space, with Euclidean distance between the superordinate and basic-
level terms predicting reaction time to verify their relation in a category
Judgment task. Smith, Shoben and Rips (1974) presented a more gen-
eral feature comparison model in which features could be continuous
or discrete and were weighted according to their importance to the
category. Their general approach of computing similarity over a feature
space was widely adopted, but for convenience additive computations
on weighted discrete features have usually been used rather than Eucli-
dean distance computations on continuous dimensions.

Exemplar models (e.g., Medin and Schaffer, 1978) are successors of
prototype models and share their probabilistic view of category struc-
ture and their use of similarity (Medin, 1989). However, in prototype
models the category is represented by the central tendency of exem-
plars (the prototype). In exemplar models, the category is given a much
more detailed representation in terms of its exemplars. A separate fea-
tural representation of each exemplar is stored separately in memory,
and a variety of computations can be made on these stored represen-
tations when needed (including the temporary extraction of a proto-
type). The way an exemplar model performs is highly dependent upon
the processing mechanisms that utilize the information. Generally each
feature is weighted, and computations of similarity may therefore in-
volve the same additive combinations of weighted features that we
encountered in network models. (In some exemplar models, however,
the features are not assumed to be independent; see Medin and Scha-
ffer, 1978.)

Medin has more recently proposed that probabilistic models in gen-
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eral need to be augmented by theory-based models (e.g., Murphy and
Medin, 1985; Medin and Wattenmaker, 1987; Medin, 1989). Neverthe-
less, exemplar models are a major competitor to connectionist models
of categorization, because they provide an alternative way to use distri-
buted representations across features to retain detail while also permit-
ting prototype extraction and generalization. Although the same kind of
additive computations can be carried out within particular varieties of
exemplar and connectionist models, the assumptions about storage and
processing are so different that the ultimate result of computations may
differ as well. In particular, connectionist models retain information
about specific exemplars only in so far as processing an exemplar
results in changes to the weight matrix. When the number of exemplars
is small, the weights will permit a distinctive response on the output
units for each exemplar; as the number of exemplars is increased, the
network is forced to extract prototypes for similar sets of exemplars in-
stead (but will retain as much individual information as possible). Fea-
ture vectors are used only to produce temporary patterns of activation
on the input units. For exemplar models, in contrast, specific exemplars
are stored as separate feature vectors, and prototypes are computed
from multiple feature vectors when required.

Both prototype and exemplar models are able to account for the
favored status of prototypes in categorization tasks, as well as effects of
degree of typicality. Proponents of exemplar models claim that they can
account for other effects as well (e.g., sensitivity to variability, con-
text, and correlated attributes; see Nosofsky, 1988; and Medin, 1989).
Barsalou (1990) has argued, however, that the two classes of models
are empirically indistinguishable, if variations in assumptions within
each class are permitted.

Prototype extraction is easily demonstrated in connectionist models
(as shown for the Jets and Sharks exercise in chapter 2 and for a simple
feedforward network in table 4.2). More detailed comparisons to
human data have been provided by Knapp and J. A. Anderson, who
taught a simple linear associator network to categorize dot patterns
such as those used by Posner and Keele (1968). Knapp and Anderson
(1984) obtained patterns of performance that were similar to human
data in exhibiting an interaction between number of training exemplars
and type of test pattern (prototypes vs. old exemplars vs. new exem-
plars). It is not obvious how their network could be used to model the
effect that less prototypical exemplars require longer response time, be-
cause all responses were gencrated by a single pass through the net-
work. The response time effect can be modeled more naturally in an
interactive network, in which multiple cycles of processing arc required
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before a stable state is obtained. McClelland and Rumelhart’s word-
recognition network required more cycles to achieve stable activations
for some input patterns than others, for example.

Connectionist network models have clearly not been tested against
human data as extensively as prototype or exemplar models, but there
IS No a priori reason to expect them to perform poorly (and if Barsalou
is correct, the selection of the best model may not be empirically
decidable anyway). As Knapp and Anderson pointed out, the ability
of connectionist models to represent information about individual
exemplars as well as prototypes within the same network may be ad-
vantagcous. Also, connectionist models have a much broader range of
application than categorization models (potentially, all of human per-
ception and cognition), so they must also be evaluated on their ability
to function across that range.

A further development in research on categorization suggests ad-
ditional applications of connectionist systems. Category concepts are
usually taken to be stable mental entities. It is in terms of them that
we group objects or events together and proceed to reason and com-
municate about them. Even while challenging the classical view of
categories, and demonstrating the role of non-defining features in
categorization, Rosch defended the stability assumption. She claimed,
for example, that prototypicality judgements were shared among mem-
bers of a linguistic community. (Rosch (1975) reported correlations
above 0.90.) That result now appears to be a statistical artifact. Using
more appropriate statistical techniques, Barsalou (1987) showed not
only much lower inter-subject correlations (ranging around 0.40), but
also that individual subjects changed their prototypicality judgements
over an interval of one month (with test—retest correlations of only
about 0.80, leaving a fair amount of unexplained variability).

One way to interpret Barsalou’s results is to insist that concepts are
stable and to attribute the variability to different ways subjects use their
concepts on different occasions. Barsalou, however, relying on these
results and other indications of how context affects concepts, proposes a
quite different interpretation according to which concepts are not fixed
entities stored in people’s memories and retrieved as needed, but are
produced in the course of performing particular tasks. This is supported
by the fact that upon demand people can readily construct new, ad hoc
categories (such as places to go on vacation with your grandmother),
and that these categories exhibit graded structures (Barsalou, 1983). By
rejecting the view that concepts are fixed, Barsalou acquires the burden
of explaining how they are formed. What he suggests (Barsalou, 1987)
is that in long-term memory people have large amounts of “highly
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interrelated and ‘continuous’ knowledge” and that they form concepts
““as temporary constructs in working memory that are tailored to cur-
rent situations” (1987, p. 120; for a related view, see Kahneman and
Miller, 1986).

From a traditional symbolic perspective, Barsalou's suggestions are
difficult to understand. (See McCauley (1987a) for discussion of some
of the difliculties.) From a less traditional symbolic perspective, there is
at least one working program that handles Barsalou’s findings (Peters,
Shapiro, and Rapaport’s (1988) semantic network processing system).
However, a connectionist framework suggests an alternative inter-
pretation of Barsalou’s findings that is appealing (but has not been
implemented). Concepts can be viewed as particular stable patterns of
activation across an ensemble of units. These stable patterns then de-
termine further processing. The stable patterns elicited on different
occasions, however, need not be the same. Activity occurring else-
where, or previous activity in the ensemble, could result in the pro-
duction of a slightly altered pattern even without changing the weights.
Intervening experience may also lead to slight changes in weights, of
course, providing an additional source of variation in the patterns
produced on different occasions. This pattern of weights would consti-
tute Barsalou’s “highly interrelated” and “‘continuous knowledge’’ in
long-term memory which generates the patterns representing the tem-
porary concepts.

Hence, connectionist networks can use their pattern-recognition
capabilities to carry out categorization tasks, and they probably can
exhibit typicality cffects and task-sensitive variability. There is a var-
icty of other criteria which networks will need to meet, however, before
concluding that they can serve as accurate models of human categor-
ization. To consider just one important example, humans find some
types of category more diflicult to learn than others, and realistic
connectionist models should exhibit the same ordering of difficulty.
Pazzani and Dyer (1987; see also Dyer, 1988) attempted to replicate a
human difficulty ordering observed by Bower and Trabasso (1968).
Categories defined by single attributes (e.g., squares) are easier to learn
than categories that require a combination of attributes. Among
combinations, conjunction (small blue circles) is easier than disjunction
(small circles or large squares), which is easier than exclusive or (cir-
cles and blue objects, but not blue circles). Finally, polymorphous
categories (e.g., ones that require two out of three attributes) are the
hardest. Pazzani and Dyer used back-propagation to train connectionist
networks and found that, contrary to prediction, conjunctive, disjunc-
tive, and polymorphous categories were equally easy to learn. Dver
(1988) also noted that connectionist networks require more examples to
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learn a category than do humans. This last objection is a difficult one to
Jjudge since it is not clear how to equate human learning experiences
with presentations of patterns to a network (one human encounter with
an object might be comparable to several hundred cycles in a network
or in several coordinated networks).

One explanation Dyer proposed for slow learning in networks is that
networks do not pursue simple hypotheses first, trying more complex
ones only if necessary. Rather, even for simple categories, the process
of gradient descent involves considering all possible characterizations
of the conditions of category membership (within the range delimited
by the input units), and then through error correction, arriving at the
characterization that allows it to differentiate category members from
nonmembers correctly. Gluck and Bower (1988b) obtained a better
approximation to a rclated (but not identical) complexity ordering
obtained by Shepard, Hovland, and Jenkins (1961). Categories were
distinguished according to whether they required attention to one, two,
or three dimensions; for example, a two-dimension category was ‘‘black
triangle or white square.” The greater the number of relevant dimen-
sions, the more difficult it was for humans to learn the category. Gluck
and Bower attempted to teach such categories to a simple two-layer net-
work using the delta rule. Their key innovation was to include pairs
and triplets of features as well as unitary features to encode the input
patterns. In this configural-cue approach, there were input units for the
features small, small & black, and small & black & triangle, for ex-
ample. Not everyone will agree that it is appropriate to load this much
of the task structure onto the input layer, but it was a motivated de-
cision for which a case can be made, and it resulted in a good fit
between network and human performance. Gluck and Bower (1988a,
1988b) reported additional investigations of the category-learning capa-
bilities of two-layer networks which yielded generally favorable eva-
luations of networks as a medium for modeling human categorization.
Nevertheless, connectionists have a good deal more work to do if they
are to produce and defend comprehensive models of human concept
acquisition and categorization.

One human capability which has not vet been captured in network
models is the tendency to bring existing concepts to bear in new situa-
tions. This, in fact, is what facilitates learning to extract relevant infor-
mation from a single example, as in the following case presented by
Dyer: '

Suppose one encounters a single event in which a rich, blond-haired person is
kidnapped. Immediately we know that the wealth is relevant and not the hair
color. In a subsymbolic system, the importance of the wealth attribute could be
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represented by biasing the initial weights of the network. However, subsequent
events might be about rich, blond-haired pcople getting skin cancer. Now it is
the hair color that is relevant. What is needed is a representation that estab-
lishes separate causal relationships, between skin cancer and skin color on the
one hand, and wealth with attempts at extortion on the other. (1988, p. 10)

We have already suggested that networks might incorporate theoreti-
cal knowledge of the kind Dyer describes, but how this might be done
so as to enable the network to extract the relevant information when
given a new input has not yet been developed. At the end of this chap-
ter we shall discuss some ways that the connectionist account might
need to be extended to account for more of the phenomena of human
categorization and other capabilities. First, however, we consider how
pattern recognition might be involved in some of these other capabili-
tics.

Pattern Recognition and Higher Mental Processes

In the previous two sections of this chapter we have considered pattern
recognition only in so far so it applies to relatively low-level tasks of
perception, and mid-level tasks involving semantic categories. An im-
portant question is how a connectionist network uses the resulting
representations to carry out higher cognitive functions. Clearly our
cognitive life does not consist simply of recognizing and classifying
phenomena presented to us, or even in responding appropriately to
such input. We also think about phenomena without directly perceiving
them, try to explain phenomena we do encounter, and plan future
actions. These activities have usually been characterized in terms of
logical inferences performed on symbolic representations. We need
now to consider whether connectionism is at all useful in accounting for
these higher cognitive activities. The proposal that we shall explore is
that pattern recognition may actually underlie much of what are taken
to be higher cognitive performances that require reasoning. If this is
correct, then connectionists may be able to deal with these processes in
much the same manner as they deal with perception and categorization.

An alrcady developed theory which places similar emphasis on pat-
tern recognition by satisfaction of soft constraints in networks is J. R.
Anderson’s (1983) ACT* theory. As we have previously mentioned, his
approach differs from connectionist models in some respects, including
his choice of activation rules and his interface with a production sys-
temn. lowever, his success at implementing the idea that perception,
categorization, and higher cognitive activities can be modeled in a uni-
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fied manner provides some encouragement that connectionist systems
might also achieve a unified account. Connectionists face the further
challenge of achieving this without the used of rules such as those
in Anderson’s production system, however, and it is not yet known
whether the architecture will be equal to the task.

How can we envisage going from recognition of individual patterns
to a full accounting of mental life? One possibility is that the stable state
representing one pattern could itself act as an input to the system which
would initiate further pattern recognition. That is, the output units that
have been activated in recognizing a pattern would themselves send
activations and inhibitions to yet other units, possibly units in different
networks. The idea is that higher-level cognitive performance might
consist in a sequence of pattern recognition activities, so that what look
to be steps of reasoning might consist ultimately in sequences of pat-
terns that elicit one another.

The suggestion that cognition might simply consist in a sequence of
pattern recognitions has been developed in a recent work by Howard
Margolis (1987). In his theory, the recognition of one pattern consti-
tutes an internal cue which, together with the external cues available
from outside the system, facilitates yet another recognition. Thus, we
work our way through a complex problem by recognizing something,
and with the help of that result, recognizing something further. He
contends that even in unfamiliar contexts we function by pattern recog-
nition, invoking the pattern template that best matches the situation
until we are able to generate a better one. Learning then involves mo-
dification of the template to accommodate the new scene better. In
Margolis’s account, a few species are capable not only of recognizing
that something is the case, but also of reasoning why they have made
that judgement. Reasoning why does not involve any introspection into
the process of recognition, but rather is itself a process of pattern recog-
nition — one that proceeds through smaller steps to Jjustify the judge-
ment. Reasoning why also facilitates a kind of critical evaluation, which
can challenge the more global pattern recognition response and lead to
a second kind of learning, a revision of basic pattern recognition ten-
dencies on the basis of the critical review.

To support the view that higher-level cognition is fundamentally pat-
tern recognition, Margolis offers two major types of evidence. First, he
advances an account of some of the striking results of recent research on
human reasoning that have been used to suggest that people have lim-
ited logical and statistical acumen. For example, he offers an analysis of

Tversky and Kahneman’s (1982) “Linda” problem (Margolis, 1987
p. 163): ’
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Linda is 31 years old, outspoken, and very bright. She majored in philosophy.
As a student, she was active in civil rights and in the environmental movement.
Which is more probable:

(a) Linda is a bank teller.

(b) Linda is a bank teller and is active in the feminist movement?

Approximately 90 percent of subjects select (b), although according to
the laws of probability, the probability of a conjunct is never greater
than the probability of one of its parts. One obvious source of difficulty
1s that subjects may understand option (a) as ‘“‘Linda is a bank teller and
1s not active in the feminist movement.” Even when the directions are
clarified to avoid this ambiguity, however, a majority still answer in-
correctly. Margolis proposes that what happens is that this problem
triggers the wrong scenario: people understand the word probable as
meaning plausible rather than statistically likely. This misrecognition of
the problem cues them to activate the wrong pattern and so miscon-
strue the problem. Hence, the difficulty, he argues, is one of pattern
recognition, not of a failure of logical acumen. (Presumably, in situa-
tions that instead triggered the scenario of statistically likely, that acu-
men would be displayed.)

Margolis’s other main strategy is to analyze developments in the
history of science in terms of pattern recognition. In particular, he
focuses on major transformations in science, such as those Kuhn
termed scientific revolutions, and seeks to explain the difference between
those practitioners of the science who succeeded in developing and
using a new paradigm and those who resisted the new perspective,
sometimes bitterly. Developing and learning a new paradigm involves,
on Margolis’s analysis, learning to recognize new patterns and guiding
behavior accordingly. Those who fail to understand the new paradigm
are those who do not learn the new patterns. Often this results from de-
pendency on old pattern recognition capacities which cannot be
surrendered without temporarily undergoing significant deterioration
in performance.

Margolis fills this account out in part by examining the endeavors of
scientists like Darwin and Copernicus, who accomplished major revo-
lutions. In the case of Darwin, most pre-Darwinian biologists regarded
each species as having its own essence, and therefore sharply disting-
uished from other species. Hence, they lacked the concept of gradual
transition between species that was needed to grasp the notion of trans-
mutation from one species to another. Darwin, as a result of being
trained by Lyell to recognize gradual transitions in geology, was cued
by his observations on the voyage of the Beagle to recognize gradual

Pattern Recognition 143

change in life-forms as well. This pattern was at odds, however, with
biology’s pattern of recognizing species as distinct. The tension be-
tween an old pattern and a new one requires the expenditure of cogni-
tive energy. Gradual change is effected in one’s pattern recognition
system until the new pattern is scen as the one that clearly fits. For
Darwin, this effort involved, in part, recalling the Malthusian pattern
from economics and recognizing its applicability to the transmutation
of species in the form of natural selection. After the new pattern recog-
nition capacity was clearly developed, on Margolis's account, Darwin
returned to the reasoning why mode. By filling in constituent steps of
pattern recognition, he could build up in other individuals the ability to
recognize the new overall pattern.

Margolis does not ground his view that cognition consists solely in
different forms of pattern recognition on any underlying theory of how
pattern recognition is accomplished, although he briefly notes that con-
nectionism provides one possible approach. Nor does he offer a precise,
verifiable account; he deliberately paints a general view of cognition
with a broad brush. To see how Margolis’s ideas might be actualized,
one can examine certain computer-implemented models in cognitive
science. We have already noted the particular relevance of J. R,
Anderson’s (1983) ACT* theory, and a number of other cognitive sci-
ence theories can be viewed as emphasizing pattern matching as well
(e.g., Schank, 1982; Holland, Holyoak, Nisbett and Thagard, 1986).
However, connectionism suggests a more radical possibility: that
recognizing patterns (matching current patterns to the cognitive resi-
due of previous patterns) is not only a broadly applicable process, but is
one that is carried out without the use of symbols as such. Hence,
connectionism provides one avenue for empirically exploring Mar-
golis’s argument that pattern recognition is the fundamental cognitive
capacity.

We need not endorse the particulars of Margolis’s account to bene-
fit from the sketch he provides of how pattern recognition capacities
might be generalized to provide an account of higher-level as well as
perceptual processes, and hence provide a unified explanation of how a
variety of cognitive tasks might be carried out without appealing to
symbol processing as such. For the most part, the details of how to de-
velop this view are yet to be worked out. But the basic enterprise is
endorsed by Smolensky in PDP: 6 when he speaks of “‘an abstraction
of the task of perception:”

This abstraction includes many cognitive tasks that are customarily regarded
as much “higher level” than pereeption (ce.g., intuiting answers to physics



144 Patlern Recognition

problems). ... The abstract task I analyze captures a common part of the tasks
of passing from an intensity pattern to a set of objects in three-dimensional
space, from a sound pattern to a sequence of words, from a sequence of words
to a semantic description, from a set of patient symptoms to a set of disease
states, from a set of givens in a physics problem to a set of unknowns. Each of
these processes is viewed as completing an internal representation of a static state
of an external world. By suitably abstracting the task of interpreting a static sen-
sory input, we can arrive at a theory of interpretation of static input generally, a
theory of the completion task that applies to many cognitive phenomena in the
gulf between perception and logical reasoning. (Smolensky, 1986, pp. 197-8)

Smolensky has also developed a more detailed model of how pat-
tern recognition might suffice for reasoning. He used the connection
weights in a harmony network (an interactive network that behaves in
many respects like a Boltzmann machine) to encode basic laws relat-
ing voltage, resistance, and current in electrical circuits (specifically,
Ohm’s Law and Kirchoff’'s Law). He then presented problems to the
network by activating units to partially specify a situation, for example,
that one resistance in the circuit increases and the voltage and other re-
sistance remain the same. The network must determine what happens
to the remaining variables, in this example by specifying the current
and the two voltage drops. The process is one of completing a pattern.
Smolensky’s simulation generated the correct answer 93 per cent of the
time. Thus, he was able to demonstrate high levels of performance
on physics problems when these problems were treated as pattern
recognition problems in a network rather than logical reasoning prob-
lems in a symbolic system.

Nevertheless, we wish to end this section with the caveat that
connectionists may find it necessary to learn how to make networks
carry out other processes in addition to pattern recognition (although
pattern recognition may remain as an elementary process by which
more claborate processes are carried out). To return to the example of
learning natural categories in the preceding section, it should be noted
that humans can make use of their knowledge in an analogous domain
to help deal with a current domain. Perhaps that knowledge is copied
and used as an initial sketch for the new category, so that weights need
only be tuned rather than constructed from an initially random matrix.
In fact, the tabula rasa approach to learning that is currently adopted in
most connectionist models may be quite rare or even nonexistent in
actual development and knowledge acquisition. (Cf. Piaget’s develop-
mental theory, in which all development germinates outward from a
few initial schemes, such as sucking, and the processes of accommo-
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dation and assimilation that operate on them.) Exploring alternatives
within a connectionist framework may require the incorporation of new
mechanisms that go beyond the existing, basic capabilities for con-
straint satisfaction and generalization which currently enable simple
pattern recognition. Examples include: the mechanism Just mentioned
of copying and adapting an existing network for new uses; mechanisms
for coordinating multiple networks in a semi-modular architecture; and
mechanisms by which existing relevant networks are identified, copied,
combined, and expanded upon to carry out new tasks.®

The challenge is to figure out a way of getting a network to generate
such mechanisms itself. That is, can a network that readily accom-
plishes pattern recognition develop emergent capabilities? Can it learn
not just new patterns, but more complex procedures, as an outcome
of applying its current capabilities to increasingly challenging tasks?
If not, the same jumble of ad hoc mechanisms, which have too fre-
quently characterized symbolic modeling, will need to be brought in.
This would compromise the simplicity of the basic connectionist mech-
anisms of propagating activations and modifying weights; it would
be so much more interesting to find that networks can truly behave
adaptively instead. (For a related view, see Gluck and Bower, 1988.)

Conclusion

In this chapter we have examined one kind of cognitive performance at
which connectionist networks seem- to excel: pattern recognition. After
demonstrating in simple simulations how networks can accomplish this
task, we asked how important this ability is to human cognition. Clearly
pattern recognition is relevant to perception. But is it an essential ca-
pacity that undergirds human cognition more generally? To give an
affirmative answer to this question, we discussed how connectionism
might be pertinent to explaining a pervasive feature of mental life:
its intentionality. We also considered the applicability of connectionist
models to research on concepts and categorization, although we con-
cluded that a good deal of work remains before C()mprehensi\’e connec-

6 Symbolic approaches have not reached this point of sophistication yet, either. For in-
terim, partial solutions see Schank’s (1982) armory of MOPS, TOPS, and other high-
level devices for dealing with the complexity of cognition, J. R. Anderson and
Thompson’s (1989) analogy-based PUPS system (sce also J. R. Anderson, 1989), and
Newell's (1989) chunking in the SOAR system.
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tionist models of categorization and concept lear'ning will b? a\jallable
for evaluation. Finally, we discuss§d ways in Wh‘l(.ih connectno\n;llst I:‘;(;:
dels might be applied to more soph1§t1cate?d cognitive tz;(sks, slucci asmust
soning and problem-solving, in Wthh fairly compl.ex now evge must
be employed. This brings us to an 'nr‘nportant c9n51derat;0‘ril. Izm)w]-
view cognition as a process of acquiring m.K'i using kno.w ehge. nowl-
edge is most naturally represented proposttlonally, as in t e slen nees
of this book. Does it make sense to‘ think of nonp}ropn‘sxt‘non: ct:onic “
tionist systems as possessing and using knowledge? This is the top

the next chapter.

5

Connectionism and
Nonpropositional Representations
of Knowledge

The idea that knowledge is represented by and can be expressed in
propositions that are sentence-like seems quite natural in a highly liter-
ate culture. Knowledge is transmitted by lectures or books, which con-
sist of sentences. Many people report that they think by means of
“inner speech” (mentally constructed sentences). Thus, it seems at
least plausible that knowledge is generally represented in terms of men-
tal sentences or sentence-like propositions. This assumption has been
widely accepted in the disciplines that make up cognitive science, es-
pecially cognitive psychology and artificial intelligence. In many infor-
mation-processing models of cognition, language, and sometimes even
perception, what is processed are propositions. Connectionism repre-
sents a clear challenge to this way of representing knowledge, because
connectionist networks encode knowledge without explicitly employing
propositions. In this chapter we shall explore the plausibility of this
claim. We begin by briefly describing the legacy of propositional and
nonpropositional representations of knowledge in cognitive science. !

Propositional and Nonpropositional Representations in
Cognitive Science

The earliest efforts to model cognitive representations with proposi-
tions tended to employ relatively unstructured declarative represen-
tations: sets of propositions in a format adapted in one way or another
from first-order predicate calculus. We briefly noted a few examples in

1 Some of the ideas discussed in this chapter have been presented separately in Bechtel
and Abrahamsen (1990,
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chapter 4, including Raphael’s (1968) sem.antic information forn?a't for
his artificial intelligence program, and Kintsch's (‘1975) pro;'x?smonal
text base for modeling memory representation§ within cogmfuve psy-
chology. Let us consider Kintsch’s format in a little more detail to con-
vey some of the flavor of this approach to representation. Propositions
had a uniform format: one predicate followed by one or more argu-
ments. The predicates and arguments were viewed as underlying con-
cepts which could be variably realized in natural languages, and were
capitalized to distinguish them from the words that would b.e used in
their realization. For example (p. 18), the sentence *‘The subjects were
20 female students” was represented as (STUDENT, SUBJECT) r&
(FEMALE, STUDENT) & (NUMBER, SUBJECT, TWENTY}.
Connections among propositions were captured by means of a rep-
etition rule involving recurrent concepts such as STUDE'N'T, and
by embedding. For example, (BECAUSE, a, B) is a proposition that
el:nbeds two other propositions. Kintsch and his colleagues undertoqk
a variety of empirical studies; some provided evi.de_nce for proposi-
tional representation and others simply assumed it in the pursu1t. of
other issues. For example, it was shown that a sentence expressing
a single multi-argument proposition tended to be .recalled as a.umt,
whereas a sentence equated for length but expressing sevFral single-
argument propositions had less stability in memory. A va’nety of p.ur(.)-
positional formats have been developed b.eSIdeS Kintsch’s format; in
chapter 4 we especially noted that semantic networks ('not to be con-
fused with connectionist networks) can be used as a medium for encod-
i sitions.
mi[s)r:pr(::sult of experience with propositional .for‘mat.s n .mode]s of
language and cognition, psychologists and artificial intelligence re-
scarchers found that higher levels of structure were ncedec.l to organize
propositions appropriately. The initial proposals were variously .called
schemata (Rumelhart, 1975, after Bartlett, 1932), frames (Ml‘n.sky,
1975), and scripts (Schank and Abelson, 197?). A scherfu.x was envision-
ed as a structured body of information in which propomtxox?s are organ-
ized into larger units, with slots for specific components (‘)f mformatfon.
When schemata were activated in the course of cognitive processing,
they brought with them default values that were assumed unless ex-
p]ic-it information was supplied to the contrary. For exal.'nple, Schank
and Abelson’s restaurant script (one sort of schema)'spemﬁes what. one
knows about dining in a typical restaurant: that one 1s sejated, ol?talns a
menu, orders, is served, eats the meal, 1s present.ed with a bill, and
finally pays for the meal. If there is a blac.kboard lnste.ad of menu, or
pavment precedes the meal, the defaults will be overwritten; otherwise
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the information in the script comes “for free” when the script is
activated. In more recent work, Schank (1982) proposed more flex-
ible script-like structures called MOPs (memory organization packets)
and even higher-order structures called TOPs (thematic organization
points). Scripts, schemata, frames, MOPs, TOPs, and other higher-or-
der structures have in common that they provide propositional re-
presentations with some of the functions and characteristics of a
pattern recognition system. A picce of knowledge is able to elicit
other bits of knowledge in a systematic manner that facilitates other in-
formation-processing.

During the 1970s, the principal challenge to the dominance of the
propositional approach came from investigators who argued for repre-
senting some knowledge in images. Images are generally characterized
as differing from propositions in that they are modality-specific, analo-
gue, and iconic rather than abstract, discrete, and arbitrary in form.
(For an overview, see the discussion in J. R. Anderson, 1987.) It is usual-
ly visual images that are focused upon; these need not be regarded as lit-
eral pictures, but as representations that show certain isomorphisms
with visual perception that give them a visual or spatial character.
These distinctive properties of images led Paivio (1971) to posit a dual-
code theory of memory, which holds that modality-specific represen-
tational formats are used to encode knowledge mentally. In particular,
visual information is encoded in mental images, and sentential infor-
mation is encoded in a verbal code that is auditory or articulatory in
nature. This view contrasts sharply with the position that abstract
propositional representations are adequate to encode all kinds of
knowledge, including visual and spatial knowledge.

To give the flavor of the kind of data that were in dispute, we shall
briefly describe a few of the early experiments. (They were followed by
other, often clever studies, which ruled out certain alternative explana- -
tions but are too complex o summarize here: see Kosslyn, 1980.)
Moyer (1973) asked subjects to answer questions such as: “Which is
larger, moose or roach?” There was a positive linear relation between
the disparity in size of the two animals and the time required to re-
spond. Linear relationships between other analogue dimensions and re-
action time have been found for tasks such as scanning a mental image
of a map (Kosslyn, Ball, and Reiser, 1978) and mentally rotating letters
or other patterns (Cooper and Shepard, 1973). There is even evidence
to suggest a role for analogue (or at least spatially-ordered) represen-
tation in carrying out inferences. Huttenlocher and Higgins (1971)
presented subjects with three-term series problems. For example:
“Tom is taller than Sam. John is shorter than Sam. Who is tallest?” By
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varying the order and wording of the premise§, they were able to obtain
reaction time patterns that suggested that subjects mentally ordered the
terms in a spatial array (e.g., Tom — Sam - John). Not everyone ac-
cepted this interpretation (see Clark, 1969), but the body of datsf from
these and other studies presented a challenge to pur.ely propositional
approaches to mental representation that cogld not be ignored.

Given results such as these, some investigators have concluded that
an alternative form of representation, which Ko'sslyn (l‘)?O) calls d(?plc-
tive or quasi-pictorial image representation,. is involved in tasks w:th;l
visual or spatial character, and perhaps also in tasks that can be mappe
onto visual or spatial dimensions. In one Vfﬂ:rsion, the long-term lfnowl-
edge store itself uses diflerent representational formats appropriate to
the type of information. For example, j R. Anderson (1?83) proposes
three formats including abstract proposxtions,.temporal strings, and spa-
tial images; the images ditter from Kosslyn’s in .that. t}.u:y do not encode
absolute size, and in the way structural information is mcor;.)orated'. In.a
different version (Kosslyn, 1980), a long-term representatlor.l VthCh is
more or less propositional in format is used to generate a dep?ctlve rep-
resentation (visual image) in a short-term visual -buﬂ’er; the image can
then be manipulated by analogue processes which prOf:luce r(.eactlon-
time functions such as those summarized above. In this version, the
“knowledge” itself is represented uniformly, but when that knowle‘dge
1s activated there is diversity in the forma.t qf short-te'rm representat}xon.
Very different ways of employing imagistic or spatxal representatll:ms
have been proposed by others (e.g., Johnson-Laird, 1983; Langacker,
lg?jedf)e'ndcrs of a more traditional approach (e.g., Pylyshyn, 1981) have
insisted on the primacy of propositional represent'fltlons.. Others h:?we
taken a more pragmatic approach. For example, prior to mcﬁorporatmg
images in his 1983 ACT* model, J. R. Anderson (1978).descnbed a'pl;o—
positional representation and associated processes which cquld yield a
linear function for mental rotation. Given that the‘ same !(md of data
could be generated by either a propositional or an lfllz?glstxc model, he
argued that behavioral research could not supply de'hmtwe grounds for
choosing between these two forms of representation. Palme.r (.1978)
concluded his detailed discussion of representationfil formats similarly,
suggesting that the question was one for physiological rather than cog-
nitive psychology. That challenge has recently been ad.dressed: Faruh

(1988) reviewed an impressive array of nelfropsycho.log.lcal data which
support the view that the representations involved in imagery are the
same oncs that are involved in perception. However, she declined to
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address the issue of whether these common representations are pro-
positional or depictive in format.

Until the re-emergence of connectionism, imagistic representations
constituted the clearest alternative to propositional representations of
knowledge. Typically, those advocating imagistic representations pro-
posed them as offering an additional mode of representation to the
propositional mode that were useful for specific tasks, not as an alterna-
tive that would replace propositional representations. Connectionism,
however, constitutes an even more aggressive challenge to the view that
knowledge should be represented propositionally. Without mvoking
propositionally represented knowledge at all, conncctionists attempt to
account for some or all of the cognitive performance that cognitive
scientists have traditionally accounted for by means of propositional
models. As we shall sec in chapter 7, certain critics of connectionism
contend that without propositional representations it s not possible.to
account for certain aspects of human cognitive performance. Before
considering whether this contention is justified, however, we shall ex-
pand upon our characterization of connectionism by placing it within g
broader theoretical perspective, We shall suggest a way in which our
conception of cognitive performance itself may change rather dramati-
cally when we depart from the propositional mode of representing
knowledge. We shall begin to develop this point by employing a dis-
tinction developed by Gilbert Ryle (1949) between knowing how and
knowing that and shall consider how the notion of knowing how may

provide a context for further consideration of the nonpropositional rep-
resentation of knowledge.

Kknowing How and Knowing That

The distinction that Ryle develops between knowing how
that is manifest in our use of language. We speak not Jjust of people
knowing certain facts (e.g., knowing that Sacramento is the capital of
California), but also of people knowing how to do certain things. For
example, we might say that a child knows how to ride a bicycle. In gen-
eral, the expression knowing that requires completion by a proposition
whereas the expression knowing how is completed by an infinitive (e.g.,
to ride) specifying an activity. This linguistic distinction does not, how-
ever, settle the matter as to whether there are different psychological
representations involved. What we need to do is consider what is

and knozeing
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needed for an agent to possess each kind of knowledge. A person who
knows that Sacramento is the capital of California will be able to
retrieve from memory the proposition Sacramento is the capital of
California, or to retrieve other propositions from which this one can be
dcd(nccd. But the same does not seem to hold for knowing how to ride a
bicvele. In this example, what is required is to have certain ability to
control one’s perceptual-motor system - a system that can plan, ex-
ecute, and monitor motor activity.

When Ryle introduced this distinction he was objecting to the pre-
occupation of philosophers with facts and theoretical knowledge. He
maintained that propositional knowledge represented only one aspect of
human intelligence. Intelligence is also involved in being able to do a
variety of activities, and Ryle contended that it makes sense to judge
\\‘hct}{cr onec performed these activities intelligently or stupidly. For
example, we speak of someone driving intelligently or of someone tak—’
ing a computer apart in a stupid manner. Many of Ryle’s examp]es of
knowing how involved physical activities such as riding a bicycle or
playing tennis. Others, however, were cognitive in nature, such as
making or appreciating jokes, talking grammatically, playing chess,
and arguing. This begins to suggest that knowing how may pef]etrutc
rather extensively into the cognitive domain. Ryle suggests this very
point when he comments:

Indeed even when we are concerned with their intellectual excellences and dehi-
ciencies, we are interested less in the stocks of truths that they acquire and re-
tain than in their capacities to find out truths for themselves and their ability to

organise and exploit them, when discovered. (1949, p. 28)

The radical character of Ryle’s views, and of the view that we shall
suggest in subscquent scctions, is based in the cluiml that pr.oposi-
tionally expressed theoretical knowledge (knowing that) is not primary,
but rests on knowing how to perform certain activities: “Intellhger?t
practice is not a step-child of theory. On the con.trary, the(mzmg is
one practice amongst others and is itself intelligently or stupidly
conducted’ (p. 20). o
Ryle’s approach to analyzing knowing how was behavioristic; he
treated this knowledge as manifest in our actions and so not to be
understood in terms of something hidden and internal (what he Fermtfd
the ghost in the machine). Knowing how to perform an .actioq consisted in
a disposition to perform that action when appropriate circumstances
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arose.? For cognitivists, however, merely saying that someone has a dis-
position to behave in a certain way does not suffice; what is sought is an
explanation of the internal mechanisms involved. One possibility is that
intelligent dispositions may not be explainable in cognitive terms: it
may have to do simply with the physiological conditions accruing in
one’s body. But in so far as we speak of knowing how do to these things,
and of these being things we learn how to do, it seems plausible to at-
tempt to give a cognitive account of what such knowledge consists in,
that is, an account in terms of one’s mental activities.

The only available means of specifying such an account, until re-
cently, has involved rules. In cognitive theories, the knowledge
required to perform an activity is often referred to as procedural knowl-
edge. Such knowledge is thought to be encoded in rules, which are
proposition-like in their basic format (ordered strings of symbols) but
are imperative rather than declarative. That is, rule systemns are dy-
namic (specifying actions to be taken) rather than static (specifying in-
formation). Generative grammars represent linguistic knowledge in this
way (Chomsky, 1957), although the rules are intended as abstract
representations of competence rather than as models of performance. Pro-
duction systems, in contrast, are more often intended to model actual
mental activity (e.g., Newell and Simon, 1972). Recall that each rule in
a production system is a production of the form “If A then B,” where
A is some condition that must be met and B is an action that is then
carried out. Typically when a production fires, the contents of working
memory are altered, which may satisfy the condition side of vet another
rule, enabling it to fire.

This strategy of explaining knowing how in terms of procedures that
are composed of proposition-like rules gains plausibility from the fact
that we often teach people how to perform new activities by providing
them with verbal instructions. Thus, we seem to be providing them
with the procedural knowledge which they need in order to perform the
activity. For example, we may try to explain to a novice how to serve a

2 Ryle does draw an important distinction between habits, which are simply rotc
responses to situations, and the intelligent capacities involved in knotoing how. The intelli-
gent capacities of knowing how are far more fluid, and modificd in the course of experi-
ence: Mt is of the essence of merely habitual practices that one performance is a replica of
its predecessors. It is of the essence of intelligent practices that one performance is
modified by its predecessors. The agent is still learning.” (1949, p. 42) Ryle's
behaviorism prevents him from providing a model of the internal activity involved in
such learning. But connectionist networks seem to offer a very constructive suggestion of
how knoteing how can involve a continued kind of learning.
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tennis ball properly. Similarly, we teach people how to solve physics
problems by giving them rules to follow. It must be recognized, how-
ever, that such instruction alone typically is inadequate to establish
skilled performance of the activity; our interlocutor must actually prac-
tise doing the activity (or at least mentally rehearse doing it; see Neisser,
1983). Thus, something more than simply committing verbal rules to
memory seems to be required.

What is that something more? J. R. Anderson suggests that pro-
cedural knowledge initially is encoded declaratively and is converted

emphasized the importance of an ongoing process of chunking rules into
more complex productions which, as integrated units, can be smoothly
executed (see Newell, 1989; also Laird, Newell, and Rosenbloom,
1987). Rigorous implementation of proposals like this have brought
production systems to a fairly mature status; they are our best-devel-
oped medium for modeling knowing how and it certainly would be
premature to discard them at this time.

Yet production systems do not fully capture the spirit of Ryle’s rejec-
tion of the intellectualistic character of theorizing about human knowl-
edge. Instead of explicating knowing how in terms of fundamentally new
kinds of models, production system designers have assimilated the
propositional format that is already familiar from declarative knowl-
edge representation to the task of procedural knowledge representation.
To accomplish this, some accommodation has usually been made; rules
do differ in some respects from declarative propositions, and the
differences are not trivial.> Arguably though, the spirit of Ryle’s analy-
sis would be better served by a modeling medium that is not so
grounded in our initial attempts to model knowing that.

Connectionism is an intriguing and promising contender. Unlike rule
systems, connectionist networks bear little explicit resemblance to
propositional formats. They are composed of units that are inter-
connected rather than ordered in strings, and often these units are not
even symbols in the ordinary sense. When some of these units are
activated, the network knows how to respond by propagating activation
along weighted connections. llence, knowing how may consist in dy-
namical processing in a network rather than sequential application of
proposition-like rules. This raises the question, though, of what kind of

3 Note, however, that Norman and Rumelhart (1975) proposed a semantic network rep-
resentation in which a given part of the network could function either declaratively or
procedurally, depending upon whether it was needed as data or as a program. Bobrow
and Winograd's (1977) KRL (Knowledge Representation Language) had a similar goal.
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account is to be given of knowing that. If connectionism abandons sym-
bol strings as a modeling medium, can it still account for the hur:n]an
ability to assert propositions and argue for their truth? If so0, knowing
t/mt‘ could be reconstrued as a special case of knowing how. In the last
section of this chapter we report exploratory research in which logical
inference is reconstrued in this manner. Also, in chapter 7 we consider
the. adequacy of connectionist models for capturing important prop-
?mes of language and language-like structures, In particular, in the
final section of that chapter we raise the possibility that symbols and
Propositions are best regarded as external forms which ar'e produced
an(.i acted upon by a cognitive system whose own internal represen-
tations are of another kind. In the following two sections, however, we
shall imit ourselves to exploring why a clearly nonpropositional f()r,mut
may be attractive at least for modeling knowing how.

Expert Knowledge as Knowing How

A great deal of research in cognitive psychology and artificial intelli-
gence has been devoted to trying to understand skilled or expert per-
formance. Perhaps the most celebrated of the tasks to have been studied
is chess playing, but there are many others including problem-solving
in ‘algcbra and physics, medical diagnosis, and trouble-shooting mech-
anical devices (for a survey, see the papers in J. R. Anderson, 1981).
The standard research strategy has been to develop rule-sets that will
generate the performance. The potential for achieving the same level of
performance as human expefts has made this research not Jjust theoreti-
cal, l?ut also applied. In particular, in the expert systems approach, the
goal is to develop computer-implemented rule systems that can r:fpli-
cate aspects of the reasoning of humans who perform the function in an
expert fashion. The typical strategy 1s to interview experts to identify
the rules they seem to employ in solving particular problems. The ex-
pert system designer then tries to formulate these rules in a computer
program, which can then be used to replicate the performance of the
expert.

Many expert systems exhibit a high level of performance and hence
may offer support for the conviction that we can assimilate knowing how
to the propositional approach originally applied to accounts of knowing
{lza!. (That is, we build an expert system by adapting the prop()siti()m;I
format to construct a system of rules.) Dreyfus and Drevfus (1986),
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however, have argued that expert systems are fatally flawed as m()dcl's
of human expertise. T'hey based this claim on an analysis of skill acqui-
sition and skilled performance in a variety of domains that se.em.to re-
quire sophisticated reasoning and pml)lcm-sohiing such. as pllofmg an
airplane and playing chess. On the basis of their analysis I)rey.tus and
Drevfus proposed a five-step scale for the development of skills and
contend that truc expertise 1s exhibited only at the highest level. The
following is a brief summary of the five stages on their scale:

1. The novice employs precise rules, which apply to objectively specifi-
able circumstances that can be recognized independently of other
aspects of the situation encountered. Such a principle is: sl?ift to sec-
ond gear when you obtain a speed of 10 to 50 m.p.h. Smce these
rules are applicable independently of what else happens in the con-
text, they are context-free. .

2. The advanced beginner begins to recognize the role of context: in
some situations the rules are to be modified. These exceptions
tvpically are not specified in terms of additional context-free rules,
but in terms of previously encountered situations. 'The advanced bgj—
ginner learns to recognize these situations and to modify the appli-
cation of the rule in similar situations.

3. The competent performer is distinguished by develf)ping a set of
goals that facilitate coordination of rules and knoYvn facts. Rules are
no longer applied simply because they are appl‘lcable but because
they will enable the performer to reach a goal. Since the competent
performer sets the goals for particular situations, he or she no longer
simply responds to events, but directs activity. The competent per-
former has become an agent responsible for his or her actions.

4. The proficient performer moves beyond the dt?]iberate‘ model of
reasoning and begins to rely extensively on recalling previous eveTl‘ts
similar to the current one. This recollection is not based on specific
features, but on holistic similarity. Once the recollection occurs, the
proficient performer may proceed analytically as would a competent
performer; where the proficient performer excecd§ thc.‘ competent
performer is in the ability to bring relevant past situations to bear
and use this in establishing goals and applyving rules.

5. With the expert the whole process of responding becomes smooth
and fluid (in contrast to the unevenness of the proficient pefform-
er), and the expert no longer exhibits any of thct del!beratn‘eness
of competent performance. The expert sees the situation, and sees
what to do. Often the expert cannot articulate the reasons behind

the judgement and may confabulate 1f asked to explain a judgement.
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The expert responds ituitively. When the expert is able to take
time to deliberate, he or she does not revert to the sorts of de-
liberations characteristic of the competent performer, but recalls yet
other relevant previous events and examines differences between the
recalled situations and the current one to see if they suggest any
modification in the response.

From the perspective of Dreyfus and Dreyfus, work in symbolic cog-
nitive science and cxpert systems is directed only at the first three levels
in this hierarchy. At these levels the major cognitive endeavors involve
assessment of facts, determination of responses on the basis of rules,
and coordination of rules so as to obtain goals; all of these lend them-
selves to symbolic modeling. Attempts to develop chess-playing com-
puters provide a prime example. Typically the program consists of
rules for evaluating various positions as well as rules for determining
which moves are likely to be most successful in the current situation
and a decision procedure for choosing between alternatives. Dreyfus
and Dreyfus reject the claim that these skills are sufficient for true
expertise. They deny that acquiring additional rules for reasoning,
or compiling these rules into more complex rules, will suffice to make
a competent performer into an expert.

The great challenge for anyone sceking to adopt the Dreyfus and
Dreyfus account of expertise is to explain what it is that enables a per-
former to exhibit the higher levels of skill characteristic of levels 4 and
5. Clearly, Dreyfus and Dreyfus take themselves to be describing a
different kind of cognitive activity, the crucial element of which seems
to be what they refer to as holistic recognition of similarity. This crucial

notion needs to be explicated, and it is worth noting how they charac-
terize it:

With enough experience in a variety of situations, all scen from the same per-
spective or with the same goal in mind but requiring different tactical decisions,
the mind of the proficient performer seems to group together situations sharing
not only the same goal or perspective but also the same decision, action, or
tactic. At this point not only is a situation, when seen as similar to a prior one,
understood, but the associated decision, action, or tactic simultancously comes
to mind.

An immense library of distinguishable situations is built up on the basis of
experience. A chess master, it has been estimated, can recognize roughly 30,000
types of positions, and the same can probably be said of autumobile driving.
We doubtless store many more typical situations in our memories than words
in our vocabularies. Consequently, such situations of reference bear no names
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and, in fact, scem to defy complete verbal description. (Dreyfus and Dreyfus,
1986, p. 32)

What is important here is that expert knowledge involves recognizing a
situation as similar to a previously encountered situation, and simul-
taneously recognizing the appropriate action. Dreyfus and Dreyfus fre-
quently speak of expert practitioners of some activity as relying upon
intuition. When they confront a situation, they do not need to calculate
their response. Moreover, sometimes they are incapable of verbally
explaining why they responded as they did.

In characterizing experts as relying upon intuition, Dreyfus and
Dreyfus do not deny that experts may calculate and reason when time
permits or the stakes are great. A chess player, for example, may
double-check an intuitive judgement by examining more carefully the
consequences of performing the intuited action. Dreyfus and Dre.yfus
point out, however, that the decrement in performance is not large if no
time is allowed for checking (e.g., by allowing only 10 seconds per
move).

The kind of language Dreyfus and Dreyfus used to characterize ex-
pert knowledge (e.g., relying upon intuition, and holistically recognizing
what is to be done) has a mystical aura about it. What do these abilities
consist in? Since we often think of intuition as something nonrational,
Dreyfus and Dreyfus seem to be abandoning any attempt to explain ex-
pertise as a rational activity that can be captured in the kinds of moéels
that are familiar to cognitive scientists. To return to the distinction
made in the preceding section, it seems clear that expertise, as charac-
terized by Dreyfus and Dreyfus, consists in knowing how that is quite
distinct from knowing that. We have already seen that connectionism
offers a perspective from which to understand knowing how while avqid-
ing the assimilation to the propositional format of knqwing t/mt.. I_t is a
perspective which seems quite consistent with the notion of holistic rec-
ognition of stmilarity, and provides a means of interpreting that notion
in terms of explicit models that have at least some of the right proper-
tics. For example, connectionist pattern recognition systems require a
period of training, during which their weights are gradually changed
and finc-tuned. A common criticism 1is that this learning occurs too
slowly. Yet, in the context of acquiring expertise this may turn out not
to be a liability, but rather a virtue of connectionist systems.

In this section we have discussed the idea that expertise involves the
ability to “‘see” situations as similar. We now turn to the role of seeing
itself, especially as it iigures in scientific inquiry, and again suggest that
the connectionist approach to knowing how provides a means to embody

this idea in exphicit models.
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Knowing How to See

Seeing is such a basic activity that it may not seem to require knowl-
edge in order to perform it. This has been the attitude of many
philosophers. Empiricists, including the logical positivists, emphasized
the role of sensation and perception - particularly visual perception - in
grounding our knowledge of the world. Scientific laws and theories
were evaluated in terms of whether the truth values they predicted for
observation sentences were correct. The determination of truth values for
observation sentences was viewed as unproblematic; the visual system
simply recorded what there is to be seen. That 1s, while observation
sentences provided the justification for theoretical claims, observation
sentences themselves did not require justification.

However, perception is not actually so unproblematic. Two philoso-
phers of science, Norwood Russell Hanson and Thomas Kuhn, chall-
enged the empiricist view of the logical positivists by challenging the
notion of objective observation sentences.* Both of these philosophers
argued that perception is theory-laden in that what we see depends
upon what we know. For example, we could not recognize something as
an X-ray tube unless we knew what an X-ray tube was. Sumeone who
was shown the same object but lacked that knowledge would not be
able to see an X-ray tube; they would see something else, perhaps an
apparatus made of glass. The claim that observation is theory-laden has
stirred considerable controversy in philosophy of science in so far as it
seems to threaten the objectivity of knowledge. For the positivists, ob-
servation sentences provided an objective and theory-neutral basis for
adjudicating between different scientific theories; anyone could sce the
same evidence and determine whether it supported or refuted the the-
ory. But the theory-ladenness objection seems to entail that a theory
determines what the scientist will see, and therefore what can count as
evidence, thereby introducing relativism into science. The epistemo-
logical status of science is jeopardized if it turns out that our theories
determine what we see. (In practice, the epistemological concern about
theory-ladenness is certainly exaggerated. Even if theories do specify
the observation language, it is still up to the external world to produce

4 The break with the traditional analysis of perception can also be traced to
Wittgenstein (1953), who probed the difference between seeing something and seeing it as
something. This is just the kind of step that leads many theorists to assume that percep-
tion, or scecing something as something, requires inference. However, like Ryle,
Wittgenstein raised doubts as to whether this difference could be explained in terms of
differences occurring within the person, for example in terms of an act of inference or
interpretation, and focused instead on the behavioral manifestations of this difference,
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Figure 5.1 A Necker cube. It is an ambiguous figure, which can be seen in one of two
ways: (1) with a front face at the lower left; (2) with a top surface at the upper right.

circumstances in which we can see the kinds of objects that the theory
tells us to look for.)

The preoccupation of philosophers with the epistemological concerns
raised by the notion of theory-laden perception may actually impede us
from recognizing an aspect of Kuhn’s and Hanson’s approach that is
even more radical: a perspective on perception as an activity that is
learned and depends upon knowledge, but knowledge that is not repre-
sented propositionally. Hanson (1958) mounted a sustained argument
against the view of perception as a simple act of recording. He did this
by focusing on scientific conflicts that involved differences in percep-
tion. For example, in the late 1940s the reality of the Golgi apparatus
was in dispute, with major investigators such as Albert Claude and
George Palade, both later Nobel Laureates, arguing that the Golgi was
an artifact. Viewing the same slide, one scientist would “‘see’ the Golgi
apparatus of the cell, whereas another would “see” an artifact due to
methods of staining. As an analogy to these situations, Hanson pointed
to ambiguous figures such as the Necker cube (figure 5.1), which can
be scen in at least two wavs. THanson rejected the view that all people
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see the same thing (for example, an arrangement of lines in two dimen-
sions), with some proceeding to see the figure first as a cube looked at
from the front, and others first as a cube viewed from above. Rather,
he maintained, each individual directly sees the cube from one perspec-
tive, and may then switch to the other perspective. Hanson applied this
idea to the perception of objects in a scientific domain, such as the
X-ray tube cited above. The physicist does not first sce as the layper-
son sees and then make an inference, but rather directly sees the X-
ray tube. Moreover, this depends upon learning: “The layman must
learn physics before he can see what the physicist sees” (Hanson,
1958, p. 16). Hanson characterized this process as depending on the
“knowledge, experience, and theories” (ibid., p. 18) that the physicist
possesses.

When Hanson began to characterize knowledge of physics, however,
he reverted to a purely propositional format. The physicist’s knowledge
consisted, for Hanson, in the propositions in which the laws of physics
are stated. This raises a question: how does knowing these propositions
facilitate perception? There must be some mechanism through which,
as a result of encoding and storing these propositions in the cognitive
system, the perceptual system becomes tuned to see what it would not
otherwise see. Hanson did not advance a proposal as to how this
occurs. It is clear, however, that the mechanism cannot, for Hanson, be
an inferential process. He could not accept a bottom-up process accord-
ing to which we first identify features of objects and then infer what the
object is; this would undercut the very claim that he was eager to ad-
vance. Presumably, what Hanson envisaged is that learning the laws of
physics alters our perceptual processes in some manner that enables us
to respond directly to the object without engaging in inference.

Kuhn (1962/1970) shared much of Hanson’s perspective on the role
of theoretical knowledge in perception, but was not as committed as
Hanson to the propositional view of knowledge. While Kuhn's notion
of a paradigm is notoriously imprecise (Shapere, 1964; Masterman,
1970; Kuhn, 1970), it is clear that he thought that learning the para-
digm of a given discipline involves more than internally encoding the
propositionally-stated laws of the discipline. It involves learning how to
carry out activities (e.g., design and conduct research) in the manner
accepted within the discipline. (Given the analysis of knowing how
already developed, we can see that this ability may involve the acqui-
sition of skills more than propositions.) One of the skills that must be
acquired in order to practise science, according to Kuhn, is to perceive
objects and events in the manner prescribed by the discipline. This be-
came particularly clear in Kuhn's account of the changes that occur in
the course of scientific revolutions. He treated the revolution as pro-
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moting a gestalt shift such as that involved in the case of the Necker
cube: ‘“‘at time of revolution, when the normal-scientific tradition
changes, the scientist’s perception of his environment must be re-
educated ~ in some familiar contexts he must learn to see a new gestalt”
(1962/70, p. 112).

The idea that a scientist needs to learn to see the world in a particular
manner suggests that a part of what a scientist knows consists in &noz-
ing how to sec as a practitioner of that science would. Kuhn made it
clear that he did not see this learning as involving a translation manual
whereby one learns to translate between one’s new scientific vocabulary
and a pre-existing observational vocabulary. Moreover, it is an activity
that takes time. Committing to memory the propositions in a textbook
does not itself generate mastery of a science. Kuhn emphasized the im-
portance of student scientists learning by replicating paradigmatic work
in the science. Much of the real learning in science is accomplished by
apprenticeship; a student goes into the laboratory and there Icarns how
to deal with the world as a practitioner of the discipline. This aspect of
Kuhn's account has been little developed; however, at least he alluded
to an important aspect of science that has been generally neglected by
other philosophers.

The joint thrust of Hanson and of Kuhn, then, is to construe the
ability to perceive objects and events as resting on a kind of knowing
how and Kuhn at least tries to resist the temptation to assimilate this
knowing how to the concept of knowing that. But the task of actually
describing the perceptual systems involved in knowing how, and how
they are acquired, remains undone. Here is one place where connec-
tionism can offer a promising advance. We have already noted that con-
nectionist models are adept at pattern recognition. Pattern recognition
is clearly fundamental to perception and is critical for recogni?ing
objects even under appearance-altering variations. One characteristlc'of
connectionist pattern recognition systems is that they do not require
precise matches between a current pattern and an already learned pat-
tern, and are tolerant of distortions. Also, they can learn subtle as well
as obvious regularities which are used to recognize exemplars as par-
ticular types of objects. This is performed within the limitations of the
input encoding, which supplies an initial encoding (perhaps in terms of

5 This is not to say that connectionist networks are the only kind of system that can
recognize patterns robustly and in a subtle manner; exemplar models of categorization are¢
the most obvious competing model with these capabilities. The choice between connec-
tionist models and their strongest competitors must be made on other grounds, for
example, storage and processing requirements and ability to model additional aspects of

human data.
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simple features) from which the regularities are extracted. These
regularities are represented in the network’s weights, which may be
interpreted as a nonpropositional way to encode the knowledge that is
needed in order to accomplish a perceptual task,

Even the two-layer network that we described at the beginning
of chapter 4 could accomplish pattern recognition in this manner. In
multi-layered networks, regularities among combinations of input
features can be captured as well, providing additional power that is
sometimes needed. Typically there is no simple linguistic description
for the regularities to which hidden units are sensitive. ‘This would ac-
count for the ability of such networks to learn to recognize objects even
when we find it difficult to specify how they do this. Networks with ad-
ditional layers of units can also provide a vehicle for investigating
Kuhn’s and Hanson’s contention that higher level knowledge affects
how we sce objects in the world. The word recognition simulation we
discussed in chapter 4 can serve as a model for this. Units at different
levels encoded different pieces of knowledge (specifically, knowledge
about what lower-level units were consistent or inconsistent with the
higher-level hypotheses). We saw how downwards connections in such
a network could be used to simulate the word superiority effect, by
which hypotheses about what word is being recognized affect the
identification of the constituent letters, We can construe this network as
knowing how to see letters in a theory-laden manner - that is, by
incorporating top-down as well as bottom-up processing.

Hence, connectionism offers a new and very specific interpretation
of the intuition that knowing how to see is crucial to science and other
endeavors. Previously, the only interpretation specific enough for
model-building has been the procedural approach, which utilizes
productions or other rules as the means of modeling knowing how.
Since rules are similar in format to declarative propositions (in that
both are composed of strings of symbols), this approach distinguishes
knowing how from knowing that much less clearly than does the
connectionist approach. This raises a final question: How far into the
cognitive system can connectionist models of knowing how penetrate? In
the last section, we consider whether logical reasoning, a much higher
level ability than visual perception and object recognition, might also
be a skill that we learn to know how to do without relying on rules.

Knowing How to Perform Logical Inferences

From the symbolic perspective, the ability to make logical inferences
must be taken to be a primitive cognitive ability. Rules for manipu-
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lating symbols have been developed by logicians, and adapted by cogni-
tive scientists. For example, the logical inference rule of modus ponens,

If p, thengq
p

" q,

is the basis for the format of rules in a production system. A production
(If p, then q) fires when the antecedent (p) is satisfied, with the result
that the specified action (q) is carried out. If our minds are symbolic
systems, then when we learn modus ponens in a logic class, we are learn-
ing to express a principle that our mind already has encoded within it,
albeit in a different format. (Sometimes this is referred to as explicit
versus tacit knowledge.) According to this account, when we learn
rules our mind may not yet have encoded, such as the alternative syllo-
gism:

porg
Notl?

. q,

these rules are encoded into the symbolic reasoning system as new
productions that may fire when their conditions are satistied.

The question is whether this is a really plausible account of how
we learn formal logic. One of us (Bechtel) has considerable experience
teaching both informal and formal logic, and reflection on that exper‘i-
ence is quite revealing. Consider first informal logic, where the goal is
to teach students not to prove theorems, but only to evaluate and con-
struct arguments using basic valid forms such as the sentential forms
noted above. To do this we typically begin by presenting students with
valid argument forms and demonstrate that these forms are inde.ed
valid (e.g., using truth tables). We contrast these valid forms with
invalid forms such as affirming the consequent :

If p, then ¢
q
L P

which we demonstrate to be invalid. The next step is to present
students with a set of problems consisting of arguments presented
either in abstract symbols (as above) or in natural language, and to ask
them to identify which form is used and judge whether or not the argu-
ment is valid. Alternatively, we can present students with enthymemes
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(arguments in which either a premise or the conclusion is missing), and
ask them to supply the missing component. As experienced instructors
recognize, at this point students require practice, usually in the form of
homework. At least at our large urban university, homework performed
after students have simply read the material in a textbook, or heard it in
lectures, usually contains numerous errors. But after these errors are
pointed out, many students come to perform quite well. They seem to
have learned the rules governing basic logical forms and know how to
apply them.

But what have the students really learned? Have they simply entered
additional rules into their inventory of rules, so that they can now em-
ploy them in various tasks? Students’ patterns of learning and their per-
formance after learning, however, suggests something clse. As we
noted, on initial homework exercises students typically make a large
number of errors. This process of making mistakes and having them
corrected seems to be critical to learning informal logic. Moreover,
most students do not achieve flawless levels of performance; even on
fairly straightforward tests, many students still get 25 percent of the
problems wrong.

How could students perform so poorly? A symbolic approach, in
which students posit mental rules to accord with the external rules,
offers at least two avenues of explanation. First, some of the posited
rules may have been partly incorrect. For example, the difference be-
tween modus ponens and affirming the consequent is a subtle one, and it is
plausible that students had collapsed them into a more general mental
rule that would later be split into two correct rules. Siegler’s (1976)
rule-assessment method for characterizing cognitive development in
children is an elegant, well-developed example of this approach. Sec-
ond, the same problem might elicit the use of different mental rules on
different occasions. For example, the overly general rule that was just
mentioned may still be utilized on some proportion of trials during a
transition period towards replacement by the correct rules. This can be
modeled by attaching quantitative parameters to the rules that deter-
mine their probability of being utilized. Examples include the fixed
probabilities of Suppes (1970) and the experience-sensitive strength
parameters used in Anderson’s (1983) ACT* model and in models
proposed by Holland (1975) and "Thagard (1988). In the latter three
models, learning is accomplished most simply by functions that change
the strength parameters, but additional mechanisms are also explored.
These include knowledge compilation and production tuning
(Anderson, 1983) as well as algorithms for positing and evaluating new
rules (as described in Holland, et al., 1986) and in Anderson and
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Thompson (1989). Do any of these models provide the best way to
understand what is happening with the logic students? Perhaps; but
further observation of the students has led us to view logic learning as
an appropriate domain in which to explore the connectionist alterna-
tive.

We made these further observations as we pursued the goal of en-
hancing students’ learning rather than settling for 70 percent or 80
percent accuracy. One of our first steps was to allow students to correct
their homework answers during class review, and then still collect and
grade the homework (with their self-corrected answers counting for
their grade) to make sure that students recognized their errors and
could learn from them. We were greatly surprised to note that many
students who made errors did not realize that they had done so when
the correct answer was presented in class, and that sometimes students
changed correct answers to incorrect ones. (Typically, these errors were
between closely related forms such as modus ponens and affirming the
consequent.) Clearly, these students had failed to recognize what made
an answer correct when it was discussed in class. To try to draw their
attention to what distinguished the various forms, we then introduced
computer-aided instruction (CAI), in which students were informed
immediately when they had an incorrect answer and could not proceed
until they had corrected it. On a given type of problem, students
continued to receive new problems until they reached a criterion such
as 14 out of the last 15 correct. Also, two forms of problems were used
at different times; the student was required (1) to identify the form and
assess the validity of a complete argument; or (2) to complete an enthy-
meme.

The use of CAI did generate substantial improvement on subsequent
tests, but it also provided an opportunity to observe students in the pro-
cess of learning. The observations revealed that some students were
quite surprised when the computer told them that their answer was in-
correct affer they thought they had mastered the material from reading.
They now had to look more carefully to determine what was expected
in a correct answer. After a short time, many of the students who were
having difticulty would copy out a template for each of the forms on
which they were working, and then explicitly compare the form of the
questions to the templates. Even then some errors were made, but over
time, performance improved and students came to rely less on their
templates.

The experiences related above strongly suggested to us that students
were learning how to perform the logic tasks, not just learning that cer-
tain rules hold in logic. Furthermore, it appeared that to succeed in
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Table 5.1 Twelve argument forms

Name and abbreviation Valid forms Invalid forms
Modus ponens (MP) If p, then g If p, then ¢

b~ ¢

g S
Modus tollens (MT) If p, then g If p, then ¢

not g not p

. notp J.notgq

Alternative syllogism (AS) porg porgqg

not p P

C.q .. notgq

porg porg

hot g

Sop C.onotp
Disjunctive syllogism (DS) Not both p and ¢ Not both pand ¢

b not p

.. notg Coq

Not both pand ¢ Not both p and ¢

q not ¢

.. notp P

the judgement and enthymeme tasks, students needed to learn how
to recognize and complete certain patterns. As we noted in chapter 4,
many rule-based models have been designed in a way that incorporates
pattern recognition or matching (including those of Anderson, Hol-
land, and Thagard, cited above; Newell’s (1989) SOAR system; and
Schank’s (1982) MOPs and other higher-order structuresi. Here we
raise the possibility that the rules can be eliminated entirely in the
modeling medium, letting networks do all the work. Speciﬁcall;', we re-
port our initial attempts to build localist connectionist net\x'(;rks that
would learn to respond to valid and invalid logical forms as patterns to
be recognized or completed.

For this exercise we developed 12 argument forms from the variables
p and ¢ and the connectives if, then, or, and not both; six of the forms
were valid and six were invalid, as shown in table 5.1 (Note that we en-
coded arguments that affirm the consequent as invalid instances of modus
ponens and arguments that deny the antecedent as invalid instances of
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modus tollens. This is somewhat arbitary in that these assignments could
have been reversed.) Specific problems were generated by substituting
any two of the atomic sentences A, B, C, and D for the variables p and
g; either order could be used (e.g., p = Aandq = B,orp = Bandgq =
A); and each atomic sentence could be either negated or positive.
Altogether, this generated a problem set of 576 different arguments.
We also considered two types of problems. In what we shall refer to as
judgement problems the network was presented with a complete argu-
ment; its task was to identify the argument form employed and to
evaluate the validity of the argument. In what we refer to as enthymeme
problems we presented arguments for which either the second premise,
conclusion, or argument name and validity were missing. The task was
to supply the missing information.

In developing a simulation model to solve problems such as these one
of the challenges i1s to identify what features are employed in recog-
nizing the various argument forms. Since we did not have a well-devel-
oped theory as to what information students were actually using to
recognize argument forms, we could not engineer a network specifically
to simulate student performance. Rather, we proceeded simply by
constructing networks that we thought might be able to perform the
task. The network that we used for judgement problems is shown in
figure 5.2. It is composed of: 14 input units (which encode the two
premises and the conclusion); three output units (which give the net-
work’s judgement of which argument form was used and whether or
not it was valid); and two layers of ten hidden units each. (The number
of units in the input and output layers was the minimum number ad-
equate to encode the problem and the answer; the number of hidden
units was determined experimentally.) By way of example, consider
this invalid modus ponens problem:

If A then not C
Not C
A

As shown at the bottom of figure 5.2 and more specifically just below,
this problem is encoded on the 14 input units as follows: the first eight
units encode Premise 1 (if A, then not C); the next three units encode
Premise 2 (not C); and the final three units encode the conclusion (A).
Within each premise, an atomic sentence (A, B, C, or D) requires two
units, the negation indicator (negated to positive) requires onc unit, and
the connective (Premise 1 only: if, then; or, or not both) requires two
units. Ience, the input encoding for this problem is:
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Figure 5.2 Multi-layered network for evaluating simple argument forms from sentential
logic. The interpretation of each unit in the input and output layers is shown in one of the
boxes. The network includes all possible connections between adjoining layers; only some
of these are shown.

Premise 1 Premise 2 Conclusion

((Negl Propl)Conn (Neg2 Prop2)) (Neg3 Prop2)(Neg4 Propl)
+ A - - C - C + A
0t ‘ 11 ‘ 1 I 11 . 1 l 11 ’ 0 01

0

At the top of figure 5.2, it can be seen that the first two units of the out-
put layver indicate which of the four argument forms is instantiated in
the input pattern, and the third unit indicates whether it is the valid or
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invalid verson of that form; altogether, the three units distinguish the
eight forms shown in table 5.1. Our example problem should be labeled
modus ponens, invalid:

MP INV
11 0

To teach the network to make accurate judgements of this kind, we
trained it with a back-propagation learning procedure using Mc-
Clelland and Rumelhart’s (1988) program bp (back-propagation),
discussed in chapter 5 of the Handbook. Activation values were con-
strained to range between 0 and 1 by using the logistic activation func-
tion, and weights tended to range between — 10 to + 10 after training.
We divided the 576 problems into three sets of 192 problems by a
method that ensured that each set would contain at least one valid and
one invalid example of each basic problem type (e.g., would have at
least one modus ponens argument with A or not-A as the antecedent of
the conditional, and B or not-B as the consequent). Set 1 was used for
the initial training period, which consisted of 3,000 epochs. An epoch
consisted of 192 trials, during which each problem was presented once
in random order. When tested on the training set (Set 1), the network
answered all problems correctly. Its ability to generalize was then
tested by presenting the 192 patterns of Set 2 in test mode. Since
activations on output units could range from 0 to 1, an answer was
judged to be correct if the value on all three output units was on the
correct side of the neutral value 0.5.° On this test the network was cor-
rect on 139 patterns (that is, 76 percent of the test trials, where chance
would be 12.5 percent). Thus, the network had generalized to a substan-
tial extent, but there remained a good deal of room for improvement.
We then trained the network for 5,000 cpochs on the 384 problems
produced by combining Set 1 and Set 2, after which it was correct on
all but four of the training problems.” Finally, the network’s ability to

6  When errors were made, they were usually large errors (e.g., when 0 was the target,
the output would be 0.98). Conversely, correct answers were typically very close to the
target (e.g., when 1 was the target, the output would be 0.98). Thus, the very relaxed cri-
terion for correctness played only a small role in determining the overall level of correct
answers.

7 'The error that remained at this point could not be climinated by further training with
back-propagation. The reason has to do with u\pcculiarity of the back-propagation algo-
rithm. If the network generates an answer that is completely reversed from the target (c.g.,
a 1 instead of a 0), the delta value becomes 0 since the equation for determining the delta
value includes the product a (1 —ay). Since the weight change equation involves multi-
plying by delta, there will be no change to weights in such a situation and the network

will continue to produce the error.

Nonpropositional Representations of Knowledge 171

generalize was tested using Set 3. The network was correct on 161
patterns in Set 3 (84 percent of the trials).

The network did a credible job of learning to recognize argument
forms and evaluate the validity of arguments. This is not a trivial ac-
complishment, since there were many features of the input that the net-
work had to check in order to generate the correct answer on the output
units. Without a detailed analysis of the activities of the hidden units
(which we have not performed), we cannot determine exactly how the
network solved this problem. But clearly the network exhibited one of
the prominent characteristics of student performance: it required a
good deal of practice and error correction before it could solve most of
the problems. By the end of training, its overall performance was simi-
lar to that of our average students.

The second type of problem, enthymemes, presented a somewhat
more difficult task and required a different network design. For these
problems, both the argument itself (which required 14 units above) and
the judgement of problem type and validity (which required three units
above) were encoded on an identical set of 22 units on both the input
and output layer. (The extra five units resulted from an unrelated
change that we made to the network, in which we expanded the ne-
gation and validity encodings from one to two units each). Problems
were posed to the network by providing informative input (values of 0
or 1) to only 18 of the 22 input units; the other four units were supplied
with values of 0.5. The 0.5 values can be viewed as a query to the net-
work concerning what values should be filled in to yield a correct, com-
plete statement of the argument at the level of the output units. That s,
the target output was a repetition of the input pattern but with the
missing features filled in. The three queried units were always in the
same problem constituent; in some problems the constituent was onc of
the atomic sentences along with its negation indicator (in Premise 2 or
the Conclusion), and in other problems it was the argument type and
validity judgement. For example, the previous problem, with the sec-
ond premise missing so as to constitute an enthymeme, was encoded on
the input layer as:

Premise 1 Premise 2 Conclusion Judgement

((Negl Propl) Conn (Neg2 Prop2)) (Neg3 Prop2) (Neg4 Propl) (Argu Val)
l + +
00

Al—»’—-—' C ‘??l?? ++ | A | MP INV
01 | 10| 11 11 10505/0505] 00 | o1 | 11 oo

The target output was then the same pattern of values, except that the
network was to “infer”” what sequence of values belonged in the queried



172 Nonpropositional Representations of Knowlerd:

units. In this example, the input values of (0.5 0.5 0.5 0.5) were to be
replacedby (1111).

For the enthymeme exercise, the same back-propagation learning
procedure as for the judgement task was used, except that initial train-
ing was conducted on 384 problems (the previous Sets 1 and 2 com-
bined). Because of the difficulty of this problem, extensive training was
required. We trained the network for 30,000 epochs, at which point it
was correct on 380 of the 384 problems in the training set. We then
tested for generalization. It is worth examining the results on two types
of generalization problems separately. On 128 of the problems the
network was required to fill in the missing atomic sentence and its
ncgation indicator. The network completed 125 correctly (97.6 per-
cent correct). This is the task for which the network was explicitly
designed, and the network performed extremely well on it. In contrast,
on the remaining 64 problems the network was required to identify the
form of the argument and determine its validity. Here the network,
while still well above chance, made numerous errors: it misidentified
the form 14 times, it misjudged the validity 18 times, and made both
errors on two additional cases. Apparently, the way the network
encoded the training problems was adequate for filling in form and val-
idity judgements on those problems, but not for generalizing these
Jjudgements to new problems. But form and validity judgements were
precisely what the first network could generalize. This suggests that
there may be ways to revise the enthymeme network design that could
provide it with this one capacity that it now lacks. Except for this, how-
ever, the enthymeme network performed quite well.

While the level of performance of these reasonably simple networks
in noteworthy, there are obviously substantial differences between the
way these networks perform and the way humans do. Clearly the large
number of training cycles is a major difference, since even quite slow
humans learn to identify argument forms correctly with only a few hun-
dred practice trials, not the 576,000 trials which were used to train the
first of these networks on Set 1, or the much greater number needed to
train the sccond network. Why might this be? First, humans do not
confront a problem like this as a tabula rasa. They already possess a
great deal of information, such as the distinction between sentence§ and
connectives, and some idea of what each connective means in ordinary
speech. Moreover, it is likely that humans, especially as they are
cultivating skill in recognizing the forms of arguments or completing
enthymemes, do not treat the whole problem as a string of units to .be
recognized together. They presumably are able to use their prior
knowledge to partition the input patterns into meaningful units (e.g.,
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the conclusion); the network must discover these partitionings. How-
ever, the point of developing these simple models is not to attain a pre-
cise simulation of human performance. Rather, it is to show that logic
problems, when viewed as pattern recognition tasks, can be solved by
networks which, like humans, seem to be capable of learning from
errors and tuning their performance.

The finding that networks can perform pattern recognition on logical
argument forms, and thereby evaluate the validity of arguments and
supply missing components, buttresses the suggestion that human
competency in formal reasoning might be based on processes of pattern
recognition and completion that are learned gradually as by a network.
The ability to reason using logical principles may not need to be
grounded on proposition-like rules, but rather reflect a kind of knowing
how that is more dramatically distinguished from knowing that. This
ability to apply pattern recognition to linguistic symbol strings may be
an cxtremely uscful capacity for organisms that encounter linguistic
symbols in their environment and need to manipulate them in a truth-
preserving manner. (This suggestion will be developed further in chap-
ter 7.) The crucial suggestion that emanates from a connectionist
perspective is that the ability to manipulate external symbols in accord-
ance with the principles of logic need not depend upon a mental mech-
anism that itself manipulates internal symbols.

This suggestion gains further plausibility from considering the way
in which students in a symbolic logic course learn to develop proofs in a
natural deduction system. The task in constructing a proof is to pro-
ceed from initial premises to the conclusion, proceeding only by li-
censed steps. Valid argument forms such as those we have considered
so far are rules of natural deduction (external symbol strings) that li-
cense adding new statements to a sequence of premises and alrcady es-
tablished statements. After teaching the rules, instructors typically do
some model proofs to show students how proofs are constructed. Then
students are sent off to construct proofs of their own. What students
need to discover are the conditions under which it is useful to apply the
various rules of natural deduction; that is, they must develop their pat-
tern recognition capabilities. This generally requires practice.®

8 Ata given step of the proof, there often are rules that are licensed (locally) but do not
contribute to the proof (globally). To select an appropriate rule, the student must attend
to the larger pattern that is formed by the premises, conclusion, and steps alrcady taken.
Although this larger pattern is produced by a serial process (e.g., working backwards
from the conclusion), the whole pattern (or parts of it) must be available at each step. It
takes a good deal of experience to become aware of these patterns and to become efficient
at recognizing them.
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Frequently, as students are trying to master this procedure, the in-
structor will continue to do model proofs in front of the students and
explain why one step was taken rather than another. When the one of us
who teaches symbolic logic (Bechtel) offers such explanations, however,
he often has the uncomfortable feeling that he is confabulating. It is
simply obvious, when one has done enough proofs, what steps are use-
ful in which circumstances. The explanations seem to be developed
after the fact. This is revealed most clearly when, after giving a reason
that seems plausible in the context of a particular problem, one does
another problem that presents a similar situation, but where another
step seems more appropriate. A particularly attentive student may no-
tice this fact and ask: Why? Again, one can usually come up with a
reason, but it is not at all clear that these reasons capture what actually
governed the behavior. What seems more plausible is that after much
practice more complex pattern recognizing capacities have developed.
Instead of simply recognizing the steps licensed by the basic argument
forms, one recognizes situations in which application of particular rules
of natural deduction should be useful.

A natural way of describing what happens when someone who knows
logic constructs proofs is that he or she simply recognizes or sees what to
do in particular situations. This way of describing the situation recalls
the characterization of expertise offered by Dreyfus and Dreyfus. The
expert solves a problem by recognizing what to do on the basis of exten-
sive experience. If connectionists are able to provide accounts of how
these patterns are recognized, as seems quite plausible, then we shall
not have to try to formulate logical expertise in terms of a set of mental
rules or procedures; rather, we can treat it as a quite different sort of
knowledge. Since the procedures used in constructing logical proofs are
a means of manipulating formal symbols, this raises the prospect that
the very ability to engage in formal symbol manipulation may not be a
basic cognitive capacity, but may be something we learn how to do by
means of a very different sort of mental encoding.

Conclusion

Earlier in this chapter we introduced Ryle’s (1949) interesting proposal
that propositionally encoded knowledge might not be the most basic
form of knowledge, but rather that what he called knowing how might
be more basic. We have developed that idea by introducing the analysis
of expertise put forward by Dreyfus and Dreyfus (1986). In their analy-
sis, expert performance does not rely on propositionally encoded infor-
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mation, but rather on the ability to recognize situations as similar to
previously encountered situations and to rely on what worked in those
situations. Experts, that is, rely on knowing how rather than knowing
that. As we discussed in chapter 4, this ability to recognize patterns is a
strength of connectionist systems, suggesting that connectionism might
provide detailed models of knowing how. We then further developed
this approach by exploring how the knowledge required to perceive cer-
tain objects and events might be analyzed in terms of connectionist
networks, in which the relevant knowledge is encoded in the weights on
connections. We took this a step further by exploring how the knowi-
edge required to do logic might similarly be encoded in connectionist
networks. Since logic is a tool for manipulating linguistic propositions,
this possibility lends further plausibility to Ryle’s radical proposal.



6

Two Simulations of Higher
Cognitive Processes

Most of the connectionist simulations we have discussed up to this
point have been small-scale demonstrations, which were designed to
show the potential of connectionist networks. Not infrequently, scho-
lars presented with these demonstrations ask: “But what kinds of
interesting things can these systems do?”’ In this chapter we shal'l de-
scribe two networks, which were advanced as possible models of higher
cognitive processes, and which exhibit complexity in the way they
encode input, in the number of units involved, or in the number. of
layers of units. The first of these is a model of past-tense formation
in English, a model that, as we shall pursue in chapter 7, h.as proven
extremely controversial. The second i1s a model of reasoning about
kinship relations.

Rumelhart and McClelland’s Model of Past-tense Acquisition

A central task of linguistics is to provide a systematic de§cription of
languages. Grammars generally include recursive rules in order to
generate the infinite number of grammatical sentences in a natural
language such as English (Chomsky, 1957). Some psyhologists have
been attracted to the view that people produce and comprehend par-
ticular sentences from this infinite set by utilizing a mental repre-
sentation of these rules. Within this psycholinguistic tradition, two
assumptions are often made regarding how these rules c9uld be acqu-
ired: (a) children possess an innate knowledge of the p0551l?le rules that
can be employed in language; and (b) in learning a specific la.nguage
children create hypotheses about how these rules apply tq their Igng-
uage, and then test these hypotheses against their lingun.stlc experien-
ces. In contemporary versions, the set of possible rules is co.ns.tralncd
by parameters that may be reset based on experience. What is import-
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ant here is that the product is a system of rules that in some way Is
represented in the learner’s mind. Often this is referred to as “tacit”’
knowledge, but it is always modeled by grammars composed of rules.

A Network for Modeling the Phenomena of Past-tense Acquisition

Rumelhart and McClelland’s (1986) chapter in PDP:18 on the acqui-
sition of the past tense in English is a direct challenge to this approach.
They proposed that

lawful behavior and judgments may be produced by a mechanism in which
there is no cxplicit representation of the rule. Instead, we suggest that the
mechanisms that process language and make judgments of grammaticality are
constructed in such a way that their performance is characterizable by rules,
but that the rules themselves are not written in explicit form anywhere in the
mechanism. (1986, p. 217)

Their goal was to develop a simulation that can capture some of the
details of linguistic capabilities and language acquisition which might
otherwise be taken as evidence that a system of explicit rules is re-
quired. They chose to model the acquisition of the English past tensc, a
rather well-studied case for which considerable data are available. The
data show that there are three (overlapping) stages of acquisition
(summarized in Brown, 1973). In Stage 1 children learn the past tense
of a few specific verbs; some of these are regular (e.g., looked, needed),
but most are irregular (e.g., came, got, and went). In Stage 2 children
learn to form the past tense of a much larger class of verbs, and here
show evidence of acquiring a general rule for the regular past tense, that
is, add -ed to the stem of the verb. In fact, they often overgeneralize this
rule, incorrectly applying it to irregular verbs for which they had pre-
viously produced the correct irregular form. For example, they might
produce either comed or camed instead of came (Ervin, 1964; Kuczaj,
1977). Moreover, if asked to produce the past tense of a nonsense verb,
such as rick, they would produce ricked (Berko, 1958). Performance on
irregular verbs is inconsistent during Stage 2, and there is a slow, grad-
ual transition to Stage 3, in which children generally produce the
correct forms for both regular and irregular verbs. This “‘U-shaped”
developmental course for early irregular verbs (correct, then often
overregularized, then correct again) suggests that Stage 2 children
have acquired a rule, and that Stage 3 children have learned the
exceptions to the rule. Note, however, that even the exceptional (ir-
regular) verbs can be classified on the basis of phonological similaritics,
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Figure 6.1 The basic structure of Rumelhart and McClelland’s model fm.' past-tense
formation. From D. E. Rumelhart and J. L. McClelland (1986a) On learning the past
tense of English verbs, in J. L. McClelland, D. E. Rumelhart, and the PDP Research
Group (1986) Parallel Distributed Processing : Explorations in the microstructure of
cognition. Volume 2: Psychological and Biological Models, Cambridge, MA: MIT
Press/Bradford, p. 222. Reprinted with permission.

and that verbs in the same class tend to form their past tense similarly.
Some of the errors that children make can be interpreted in terms of
these subregularities. .

The primary goal of Rumelhart and McClelland’s simulation was to
demonstrate that a conncctionist network might exhibit many of the
same learning phenomena as children (especially the three learning
stages, the gradual transition between stages, and the error patterns
found for distinct classes of words). They did not attempt to show how
past-tense formation would be carried out as part of an 0\'§rall langu;‘lge
production system, and they set limits on the extent to wlvch they tl"led
to capture the many details in empirical data sets or in theoretical
linguistic accounts of the English past tense. Therefore, they were able
to substantially accomplish their goal using a model with a rather
simple structure, as shown in figure 6.1.

The heart of their model is a two-layer pattern associator network in
which the input units represent a verb stem in terms of context-sensi-
tive phonological features called Wickelfeatures (defined below) and the
output units represent the past-tense form of the same verb, again
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in terms of Wickelfeatures. Superficially it appears that these two
Wickelfeature layers are the hidden layers in a four-layer network, but
this is not the case. Figure 6.1 actually collapses the representation of
three scparate networks, cach of which passes information from its in-
put layer to its output layer in a different way. The encoding network at
the front end uses a fixed (nonstatistical) procedure to translate a
phonological representation of the stem into the Wickelfeature represen-
tation used by the pattern associator. The decoding/binding network at
the back end, which translates the Wickelfeature outputs into a phono-
logical representation of the past-tense form, is more complex. Roughly
described, it is a dynamic network in which phonological represen-
tations on the output layer compete to account for incoming
Wickelfeatures. When processing is terminated, each phonological rep-
resentation has attained a different level of activation, and this is used to
determine the model’s response.

The pattern associator was the component emphasized by Rumelhart
and McClelland. The units in both layers were binary, activations were
propagated using the stochastic version of the logistic activation func-
tion (equation (9) in chapter 2), and it learned by using the delta rule to
adjust its weights. The innovative part of the network’s design was the
way its units were defined to solve certain problems. The resulting
encodings of the sound pattern of cach verb stem (called the base form
by Rumelhart and McClelland) and each past tense form appear un-
familiar, but they do their Job impressively well and suggest new ways
of thinking about representation. The traditional way of thinking about
representation would lead one to represent each verb form using pho-
nemes, and this works well for most purposes. Attempting to map the
phonemic representation of the verb stem directly onto the phonemic
representation for its past-tense form presents problems within a net-
work architecture, however. The first problem is that the network can-
not directly encode order information; but phonemic representations
are composed of ordered sequences (strings) of phonemes. In the net-
work a phoneme string can only be treated as though it were an unor-
dered collection of phonemes. The phoneme string for the past-tense
form came, /kAm/, is indistinguishable from /mAk/ or {Akm/, for ex-
ample. (Rumelhart and McClelland use a nonstandard notation in
which “long @” is written as /A/.) For this and other reasons, they in-
itially adopted a phonological representation of a type invented by
Wickelgren (1969), in which phoneme units are made context-sensitive
by indicating the phonemes that precede and follow the phoneme of
interest (which we shall call the target phoneme). Hence, each represen-
tational unit is sensitive to a target phoneme and its immedjate context.
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Using # to mark word boundaries, the verb came would be encoded
using three units, which Rumelhart and McClelland call Wickelphones:
ska, ¥Am, amy. It is generally possible to reconstruct the sequence of
phonemes in a word from the unordered collection of Wickelphones;
hence a distinctive representation of came can be obtained using three
Wickelphones.

The next problem is a logistic one. To obtain this degree of precision
with context-sensitive units, an enormous number of units are needed.
Specifically, the number of Wickelphones is the cube of the number
of phonemes (about 35) plus the number of units that include word
boundary markers; Rumelhart and McClelland calculated that more
than 42,000 units would be needed for their set of phonemes, only three
of which would be active for a three-phoneme word (an uneconomical
use of units). Also, this representation is so specific that special steps
would be needed to obtain generalization to words with similar phone-
mes (e.g., from sing[sang to sting[stang and ring[rang and less so to sink/
sank and drink{drank). Rumelhart and McClelland’s surprising solution
was to obtain a coarse coding (a concept that we introduced in chapter 2)
of the Wickelphones across the pattern associator layers by making each
unit correspond to a Wickelfeature. Wickelfeatures were generated by
analyzing the target and context phonemes in the Wickelphone accord-
ing to four featural dimensions. (For example, [A/is a Low Long Vowel
that has a Front place of articulation.) Two dimensions were binary and
two trinary, yielding ten different features plus an additional feature (#)
to indicate word boundaries. A particular Wickelfeature consisted of
an ordered triplet of features, one each from the preceding context
phoneme, the target phoneme, and the following context phonceme.
Altogether there is a pool of 1,210 different Wickelfeatures (11 x 10 x
11). A given Wickelphone for a target phoneme that is not at a word
boundary corresponds to 64 different Wickelfeatures (4 X 4 x 4). By
disregarding Wickelfeatures for which the two context features are
from different dimensions, these figures can be reduced to a pool of
460 Wickelfeatures, with 16 different Wickelfeatures per Wickelphone.
This makes the number of units quite manageable, and reduces un-
needed redundancy.

By way of example, the Wickelphone yAp, (targeting the vowel in
came) has the Wickelfeatures (Interrupted, Low, Interrupted), (Back,
Low, Front), (Stop, Low, Nasal), (Unvoiced, Low, Voiced), plus 12
other Wickelfeatures obtained by substituting for Low, in turn, the
three other features of the target phoneme: Long, Vowel, and Front.
Only that particular Wickelphone has that particular set of 16 Wick-
elfeatures, but each individual Wickelfeature is associated with a
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number of different Wickelphones. For example, (Interrupted, Low,
Interrupted) is a Wickelfeature for p€t, blk, and a number of other
Wickelphones. Generalization is enabled by this arrangement. To use
an example from the preceding paragraph, the first Wickelphone for the
verb sing, phonemically [siN/, is s;; that for ring, phonemically /riN/,
is y4ri. Since the target phonemes /s/ and /r/ differ in two of their four
features, and the context phonemes are identical, half of the Wickel-
features for the first Wickelphone in each word are the same. Since the
same phonemes are context phonemes for the second Wickelphone (and
the other two phonemes are identical), half of the Wickelfeatures are
identical for the second Wickelphone as well. Finally, the third
Wickelphone is identical for the two words (iNg), so all 16 Wickel-
features are identical. Because the degree of overlap for each of the
three Wickelphones is atypical, the network will show a relatively high
degree of generalization across the verbs sing and ring.

The result of these choices concerning representation is that the in-
put and output layers of the pattern associator part of the network each
have identical sets of 460 units, one for each Wickelfeature. A verb
stem is presented to the network by simultaneously activating all of the
input units that correspond to its Wickelfeatures. To present the stem
come (/kum/), for example, 16 Wickelfeatures would be activated for
each its three phonemes, yielding a total of 48 activated Wickelfeatures.
These would be propagated across the weighted connections, resulting
in a somewhat different pattern of activation on the output units which,
for a network at learning stage 3, should be translatable by the decod-
ing/binding network into the past tense form came (/kAm/). Note that
neither layer has any direct way of keeping track of which Wickelfea-
tures correspond to which target phonemes; also, in words that are
longer than come, there typically would be some overlap in Wickelfea-
tures from different phonemes (to that extent, fewer units than 16 times
the number of phonemes would be activated).

It turns out that this is just about the right state of affairs: the re-
presentations are distinctive enough that different words.can be distin-
guished, but they overlap enough to support generalization on the basis
of the similarity structure of the verb stems. Hence, the network can
generate past tense forms for verbs on which it has not been trained
by generalizing from the verbs on which it has been trained; this gen-
eralization is enabled by the overlap in Wickelfeature representations
for phonologically similar verbs. Having learned that sing produces
sang, for example, the network can be presented with ring and produce
rang (retaining the distinctive first consonant and the shared final con-
sonant, and appropriately changing the vowel). Knowing sing would
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not be as helpful for generalizing to a less similar new verb, such as say.
(Of course, the network is not operating on the verb pairs as such, but
rather on their distributed encoding across the Wickelfeature units., )

The same weight matrix that enables the network to form the past
tense of regulars is also used to determine which verbs require a regular
past tense. There are three variants of the regular past tense, based
upon the phonological characteristics of the stem. Specifically, /ad/ is
added to stems that end in alveolar stops /d/ or [t/; otherwise, /d/ is
added to stems that end in a voiced obstruent, and /t/ is added to stems
that end in a voiceless obstruent. By stage 3 the network does a good
Job of using a regular past-tense form where required and of using the
correct variant. It can even generalize fairly well to untrained stermns, as
discussed later in this chapter.

To encourage generalization, Rumelhart and McClelland used an
additional strategy for increasing the coarseness, or “blurring,” of
the representations across the Wickelfeature units. When a particular
Wickelfeature was activated, they also activated a percentage (90
percent) of a randomly selected subset of similar Wickelfeatures (where
a similar Wickelfeature is one that matches on the target feature and
one of the context features).

The goal of the Wickelfeature encoding is thus to capture the phono-
logical similarity among verbs for which a similar past tense is required
so that the network could make the generalization. Rumelhart and
McClelland made this point explicit in explaining their use of Wickel-
phones, from which Wickelfeatures are derived:

One nice property of Wickelphones is that they capture enough of the con-
text in which a phoneme occurs to provide a sufficient basis for differentiating
between the different cases of the past-tense rule and for characterizing the con-
textual variables that determine the subregularities among the irregular past-
tense verbs. For example, [it is] the word-final phoneme that determines
whether we should add [df, /t/, or | ~d] in forming the regular past. And it is
the sequence jNg which is transformed to aNy in the ing — ang pattern found in
words like sing. (p. 234)

The encoding of inputs and outputs in terms of Wickelfeatures, how-
ever, has been one of the most criticized aspects of Rumelhart and
McCleland’s simulation. Most of the criticisms are fairly specific, and
are discussed in the section on Pinker and Prince’s (1988) critique in
chapter 7. One criticism, however, exemplifies a generic objection that
the performance of connectionist models is dependent upon particular
ways of encoding inputs which are borrowed from other theories,
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usually symbolic theories. As applied here (see Lachter and Bever,
1988), the objection is that much of the model’s work is actually ac-
complished by the Wickelfeature representation, which is a context-
sensitive adaptation of standard linguistic featural analyses, leaving in
doubt the contribution of the network’s architecture as such. The usual
connectionist response is that much processing remains to be done
once an encoding scheme is decided upon, and the connectionist con-
tribution is in offering a nonrule-based means of accounting for this
processing.

To run the simulation, the Wickelfeature encoding of a verb stem is
presented as an input pattern to the pattern associator (which is a two-
layer feedforward network). The network computes the past tense form
by applying the stochastic version of the logistic activation function
(presented in the context of Boltzmann machines as equation (9) in
chapter 2):

1

probability (a, = 1) = TP ————

The parameter 6, is a threshold that is individualized for each unit dur-
ing training. Input and output units are binary (active or inactive);
whether or not a particular output unit is active on a particular trial is
stochastically determined. As the equation shows, the probability of ac-
tivation is a continuous function of the extent to which the net input
from the input units exceeds the output unit’s threshold, A stochastic
function was chosen for two reasons: it enabled the network to give
different responses on different occasions without change in the weights
(the degree of variability being determined by the temperature para-
meter T), and it slowed the learning, allowing the effects of over-
regularization to endure for some time.

Once a pattern of activation had been obtained on the output layer by
means of the stochastic function, the network could learn by means of
an error correction procedure. The obtained pattern was compared to
the target output pattern (the correct Wickelfeature encoding of the
past-tense form). For any output unit that had an activation of 0 when
its target value was 1, the weights feeding into it were decreased and the
threshold was increased by that amount. Note that this is the perceptron
convergence procedure (Rosenblatt, 1962). Although Minsky and Papert
(1969) demonstrated that there are serious limitations on what can be
computed and learned by perceptrons, the particular input-output
patterns used in this simulation were learned rather well.

Rumelhart and McClelland’s pattern associator network was large by
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any standard, and the coarse coding scheme made it even more difficult
to examine the detailed behavior of the network. These characteristics
followed from their desire to show that past-tense formation could be
substantially carried out by a network (rather than a rule system)
utilizing distributed representations at the phonological level. Another
objective, however, was to simulate the stage-like sequence by which
children learn the past-tense forms of verbs. Regular (rule-describable)
verbs show steady improvement, but irregular (exceptional) verbs ex-
hibit a U-shaped learning function: the earliest irregulars are tempor-
arily correct, but overregularization errors become common as more
verbs are marked for tense, and there is a slow transition to the final
stage of typically correct performance. Stage-like sequences like this
can be obtained using much simpler networks, if the first objective is
sct aside. "T'he advantage is that with a small number of weights, they
can be inspected individually to see how the stage-like behavior
emerged. Rumelhart and McClelland therefore carried out another
simulation involving a simple, invented rule and exceptions to that rule.
They used this simulation to clarify what was happening in the more
complex domain of past-tense acquisition.

Overregularization in a Simpler Model: The Rule of 78

One of Rumelhart and McClelland’s objectives was to simulate the
stage-like sequence by which children learn the English past tense,
wherein exceptional forms are correct, then overgeneralized, and finally
correct again. They were able to illustrate this particular phenomenon
in a much simpler network that had few enough weights to inspect
them individually to see how the stage-like behavior emerged. This
simulation could therefore be used to clarify what was happening in
the more complex past tense simulation. Rumelhart and McClelland
designed the rule of 78 to operate on certain sequences of eight binary
digits, producing modified sequences as its output. They used the rule
to construct a set of exemplars which were presented as teaching
patterns to a pattern associator network with eight units per layer. If
the network learned to transform the input sequences into the appropri-
ate output sequences, it could be said to have learned to behave in ac-
cordance with (but not by means of ) the rule. In the more interesting
condition, one of the exemplars was distorted by changing its
transformation into one that violated the rule. To handle that con-
dition, the network had to learn a rule with an exception.

Specitically, the rule applies to sequences in which one of the first
three, one of the second three, and one of the last two digits must be
17 (one), and all other digits must be 07" (zero). Thus,
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01001001
is a permissible input pattern, but
11100000

1s not. It is easy to refer to these patterns by identifving the three
positions in which a *“‘1"" appears. Thus, the first pattern above is (258).
The rule then specifies a mapping from input patterns to output
patterns according to which the first six units are identical, and the last
two units reverse their values. Thus, the output for (258) is (257):

01001010

Any other output for this pattern would be an exception to the rule.
The name of the rule comes from the fact that it requires the numbers
in the seventh and eighth positions to exchange their values. There are
18 input-output pairs that satisfy this rule.

Rumelhart and McClelland taught the rule of 78 to the network
using the same activation rule and learning rule as they used for the
past tense simulation (however, 0, was set at zero, and T had a lower
value). The first thing to note is that the set of 18 input patterns is con-
siderably larger than the number of linearly independent patterns
for which the network could learn an arbitrary mapping to outputs
(which is equal to the number of input units, here, eight). However,
the fact that the input-output patterns exhibit considerable systema-
ticity allowed the network to achiceve perfect performance in learning
these 18 cases.

McClelland and Rumelhart (1988) made this rule of 78 problem
available as an exercise for the pa (pattern associator) program in their
Handbook (pp. 114-19). We ran it with the 18 pairs of patterns that
exemplify the rule of 78 for 30 epochs. At this point the network was
making sporadic errors, generally attributable to the use of a stochastic
activation function, which created a small probability of a unit firing
even when it had a negative net input. An examination of the weight
matrix for this network shows the exact mechanism by which the net-
work behaves in accord with the rule of 78. The three outlined boxes in
table 6.1 indicate the regions with the largest weights (recall that each
weight specifies the strength of the connection between the two in-
dicated units). The weights in the upper left box ensure that whichever
input unit is active among the first three units (that is, the unit
encoding the digit “1”), the corresponding output unit will get the
greatest net input. Specifically, the corresponding units have positive
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Table 6.1 Network weights for the rule of 78 with no exceptions

Output unit

Input ! 2 3 4 5 6 7 8
unit
1 58 —36 —38 -4 -6 -10 -2 2
2 - 34 62 -38 -2 -6 -8 4 =2
3 -40  —44 54 -6 -4 -4 0 -2
4 -6 -4 -4 62 —34 —44 2 6
5 0 -6  —6 -3 60 —36 4 -4
6 -0 -8  -12 38 —42 58 -4 -4
7 -6 —16 —10 -10 -6 14 -60 52
8 -10 -2 -12 -2 -10 -8 62 —54

P

weights whereas noncorresponding units have negative weights. Hence,
whatever digit sequence is encoded on input units 1, 2 and 3 will be
replicated on the corresponding output units. The weights in the cen-
tral box do the same job for units 4, 5 and 6. The weights in the lower
left box, however, are reversed in sign: if input unit 7 is active, the posi-
tive connection to output unit 8 will ensure that it becomes active as
well, and the same holds for the connection from § to 7.! By means of
its weights, the network has encoded information necessary to perform
in accord with the rule of 78 without ever explicitly encoding it.

The important question is: what happens when some instances do
not follow the general rule? Rumeclhart and McClelland wished to sce if
they could simulate the three learning stages described for the past
tense. To do this, they converted one of the 18 cases into an exception.
The exceptional case was (147) - (147), in place of (147) — (148).
Since, for children, a substantial percentage of the earliest learned
verbs are irregular, Rumelhart and McClelland started the network
with just the exceptional case and one regular case, (258) — (257). After
20 epochs of training, the network showed good but item-specific learn-
ing, since it had no way of extracting a rule from just two inputs (Stage
1). When the remaining 16 rule-generated cases were added, the net-
work quickly exhibited rule-based learning with overregularization of
the exception (Stage 2), and then slowly learned to incorporate the ex-

I The alert reader might have noticed that learning to reverse the seventh and cighth
digits is no more ditticult for the network than keeping them in correspondence. Think-
ing of the units as unit 1, unit 2, etc., is a convenience for us in thinking about the inputs
to the units, but to the network itself the units are not ordered or numbered in any way.
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Table 6.2  Network weights for the rule of 78 with one exception

Qutput unit

Input ) 2 3 4 3 6 7 §
unit '
1 108 —66 —-74 —08 =14 - 14 68 —-76
2 =72 112 =70 —-10 —06 - 08 —20 34
3 - 66 —68 116 —-12 - 06 - 08 - 24 22
‘f —-14 -08 —-08 16 —-70 —74 70 - 68
5 -10 - 04 - 08 —78 110 -72 -24 24
6 - 06 -10 -12 -68 —-66 116 -22 24
7 -08 -12 —-10 -18 -16 -16 —10(
) 108
8 —-22 —-10 - 18 =12 -10 ~-14 124 —128

Note: Weights shown in bold face provide the mechanism for producing the correct
output for the exceptional case 147, In that case, the net input to unit 7 is
68+ 70+ (- 100)= 38, giving unit 7 a probability of 0.926 of becoming active.

ception across hundreds of trials before achieving excellent perform-
ance (Stage 3).

To observe this ourselves, we again ran the rule of 78 exercise in the
Handbook, this time using the version that included the exceptional
case, (147) — (147). As expected, after 20 epochs of training on the first
two cases, the network had learned these as separate cases. We then
added the remaining 16 (rule-following) input- output cases, During
the next ten epochs of training, the network essentially learned the
regularity that is expressed in the rule of 78. In the procc;ss, though, it
began t‘o produce substantially more errors on the exceptional case. 'At
tl1x§ point the probability that Input pattern (147) would result in acti-
vation of output unit 7 was only 0.28, while the probability of activating
unit 8 was 0.60. Thus, there was a tendency to ovcrregulz}rize and pro-
duce (1 4 8). Forty epochs later this tendency was still in evidence. The
probability of activating unit 7 was now 0.50 and of activating unit 8
was 0.53.2 Across a great many more training epochs, however, the
weights gradually adjusted to the point that the network almost always
dealt correctly with the exceptional case. Table 6.2 shows the weigh‘ts

2 Note that‘lt was possible for both units 7 and 8§ to be active as well as for neither or
one to be active. There is also considerable variability in the specific probabilitics over
different runs of the simulation. What was common across the runs th
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after epoch 520. From this it can be calculated that the probability of
activation was 0.92 for unit 7 and 0.08 for unit 8.3
Rumelhart and McClelland characterized this result as follows:

if there is a predominant regularity in a set of patterns, this can swamp excep-
tional patterns until the set of connections has been acquired that captures the
predominant regularity. Then further, gradual tuning can occur that adjusts
these connections to accommodate both the regular patterns and the exception.
These basic properties of the pattern associator model lie at the heart of the
three-stage acquisition process, and account for the gradualness of the tran-
sition from Stage 2 to Stage 3. (p. 233)

Simulation of Past-tense Acquisition

For the actual past tense learning simulation, Rumelhart and Mc-
Clelland selected 506 English verbs, which they divided into sets of
ten high-frequency verbs (eight of which were irregular), 410 medium-
frequency verbs (76 irregular), and 86 low-frequency verbs (14 irregu-
lar). The verbs in the high-frequency set, for example, included the
regular verbs live and look and the irregular verbs come, get, give, make,
take, go, have and feel. The simulation began by training the network
only on the ten high-frequency verbs, with each verb presented once
per epoch. By epoch 10, the network had learned a good deal about how
to produce the proper past tense forms from the stems for both regular
and irregular verbs (between 80 and 85 percent of Wickelfeatures were
correct). At this juncture the medium-frequency verbs were added to
the training set and 190 more training epochs ensued. Figure 6.2 (from
PDP:18) shows that carly in this period the network exhibited the dip
in performance on irregular verbs that is characteristic of children’s
Stage 2. Thus, immediately after the additional verbs were added on
epoch 11 (referred to as trial 11 in this figure), the percentage of
features correct on the high-frequency irregular verbs dropped approx-
imately 10 percent, whereas progress on the high-frequency regular
verbs was hardly affected. After the initial drop, however, the irregular
verbs began to improve again by epoch 20, gradually increasing to
approximately 95 percent of features correct by epoch 160. The drop in
accuracy was due to interference from learning the regular pattern;
once that pattern was established, the weights could be fine-tuned so

3 Note that the results we report are quite similar to those reported on p. 231 of PDP:
18, but not identical. This is because PDP: 18 used only an approximation to the logistic
function that was used in the Handbook exerise, and because using any function stochasti-
cally vields slightly ditferent results on every run.
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Figure 6.2 Performance of Rumelhart and McClelland’s (1986) model for past-tense
formation: percentage of features correct across trials (cpochs) for regular and irregular
high-frequency verbs. From D. E. Rumelhart and J. .. NMcCleHland (1986a) On learning
the past tense of English verbs, in J. L.. McClelland, ID. E. Rumelhart, and the PDP?
Research Group (1986), Parallel Distributed Processing : Explorations in the microstructure
of cognition. Volume 2: Psychological and Biolugical Models, Cambridge, NA: MIT
Press/Bradford Books, p. 242. Reprinted with permission.

that the irregular verbs could be relearned as exceptional cases, as in
children’s Stage 3. Finally, note that performance on the medium-fre-
quency verbs became at least as good as performance on the original set
of ten high-frequency verbs within a few epochs of their introduction
on epoch 11 (not shown in figure 6.2); in fact, performance was a bit
better for the new irregular verbs becausc on average they happened to
involve easier transformations.

Through further analysis, Rumelhart and McClelland were able to
show that during the period when the network was making errors on
the irregular verbs, most errors were of the expected type; that 1s, 1n the
direction of overregularization. For example, for the stem come, the
correct (irregular) past tense form is came;, errors that reflect over-
regularization are the stem+ ed (comed ) and the past + ed (camed ). Note
that the past +ed error is actually a blend that combines the correct and
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incorrect way to form the past tense; it was counted as an over-
regularization error since that is the only aspect of the form that
is in error. (For most verbs, the past+ed form was relatively infre-
quent.) To examine the relative frequency of overregularization,
Rumelhart and McClelland had to consider how the decoding/binding
network would operate on the Wickelfeature representation of the past
tense to generate a phonological representation. This would most easily
be done by initially decoding the Wickelfeature representation into
Wickelphones, from which context-free phoneme strings and hence
words could be recovered. Even this would be a daunting task compu-
tationally, however, so what they actually did was to set up a compe-
tition between pre-defined alternative forms. In the case of come, the
alternatives were the phoneme strings corresponding to came, comed,
camed, and come. Come is the error of making no change to the stem,
which was the only type of error explicitly considered in addition to
overregularization. A response strength was calculated for each of
these four alternatives by having them compete to account for the par-
ticular set of Wickelfeatures that were active; essentially, the response
strength of an alternative reflected the proportion of Wickelfeatures
that it could account for but the other alternatives could not. The re-
sponse strength calculated in this way roughly captures the propensity
to produce one form rather than the others. Adding the strengths of all
four alternatives together, the maximum sum would be one. (The sum
would be less than one to the extent that some features are not
accounted for by any of the alternatives.) It should be noted that this
procedure is sensitive to which alternatives are in competition. For
example, if camt were added to the alternatives (as a phonologically im-
permissible way to regularize come), camed would presumably lose
strength since the final phonemes share many features. Also, the sum of
response strengths would be larger since those Wickelfeatures unique
to /t/ would now be accounted for.

Figure 6.3 shows how the error of overregularization dominated
during Stage 2 (approximately epoch 11, when the mid-frequency
verbs were introduced, through epoch 30) and then declined during a
gradual transition to the reliably correct performance of Stage 3. It does
not, however, show what other forms might have had nontrivial re-
sponse strengths had they been included; since the sum of the response
strengths tended to fall into the 0.65 — 0.75 range during Stage 2 and
the early transition, it would be of interest to know whether anything
systenratic was happening in the 0.25 — 0.35 gap. Nevertheless, the
ability to simulate the overregularization of the past tense without
positing rules is a striking result of this study.
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Figure 6.3 Performance of Rumelhart and McClelland's (1986) model for past-tense
formation: response strengths across trials (epochs) for the high-frequency irregular
verbs. The response strengths for the correct responses increase, while that for the
regularized (incorrect) alternatives decrease. From D. E, Rumelhartand J.1.. McClelland
(1986a) On learning the past tense of English verbs, in J. L. McClelland, D. E.
Rumelhart, and the PDP Research Group (1986), Parallel Distributed Processing:
Explorations in the microstructure of cognition. Volume 2: Psychological and Biological
Models, Cambridge, NA: NIT Press/Bradford Books, p. 243. Reprinted with
permission.

Having simulated the stage-like aspect of children’s acquisition data,
Rumelhart and McClelland went on to consider more detailed aspects.
In particular, the distinction between regular and irregular verbs is ac-
tually too coarsc; there are subtypes within cach of these classes that
exhibit distinctive patterns of past tense formation. Bybee and Slobin
(1982), for example, described the distinctive course of acquisition for
each of nine different classes of irregular verbs. Rumelhart and Mec-
Clelland found that many of these class differences showed up in the
simulation results. For example, one class of irregular verbs ends in a
final /t/ and is left unchanged in the past tense (e.g., hut). In human ac-
quisition this irregular form tends to be overextended to certain verbs
in other classes that also end in [t/ (or [d/). Also, children perform well
on this class in a grammaticality judgement task (Kuczaj, 1978). As we
shall see, the simulation results are consistent with these findings (and
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even go beyond them to make a more specific prediction that has not
yet been tested on human data).

Seven of Bybee and Slobin’s classes involved a vowel change; they
found that these classes differed dramatically in their propensity for
overregularization in preschoolers’ spontaneous speech, from a low of
10 percent for class IV (e.g., bring/brought) to a high of 80 percent for
class VIII (e.g., fly/flew). When Rumelhart and McClelland deter-
mined their network’s propensity for overregularization errors in these
classes, they found less dramatic differences, but a similar ranking of
the classes. However, class VI verbs were overregularized relatively
less often than expected, and class VII verbs more often than ex-
pected. Rumelhart and McClelland noted that their simulation did not
incorporate more subtle word frequency differences within the me-
dium-frequency verb class, and that this may have been responsible for
the discrepancies. As for those aspects of the ranking that were rep-
licated in the simulation, they made special note of the fact that Bybee
and Slobin’s own explanations focused on factors that were irrelevant
in the simulation. They suggested that the actual explanations may
have to do with other factors (ones that were incorporated in the simu-
lation). For example, Bybee and Slobin had proposed that for certain
classes of verbs (e.g., fly/flew) children have trouble matching up the
present-tense form with its past-tense form. However, the two forms
were always explicitly paired when presented to the network, and it
made the same crrors as the children. Rumelhart and McClelland
focused their alternative explanation on the degree of similarity of the
irregular past tense to the form stem+ ed (the form obtained by over-
regularizing). Here is a case, then, in which the model suggests a hypo-
thesis that conceivably would provide a superior account of the human
data.

Finally, Rumelhart and McClelland considered the time-course of
the two types of overregularization errors: stem+ed (e.g., comed,
singed) and past +ed (e.g., camed, sanged). Kuczaj (1977) presented evi-
dence that the latter error was most frequent in older children, and the
model showed this effect as well. Early in Stage 2 (epoch 11 on), the re-
sponse strength for stem + ed was much greater than for past + ed. The
response strength for stem + ed showed the steepest decline, however, so
that in later epochs the error past+ed became strongest. In examining
their data in further detail, Rumelhart and McClelland also noted that
the response strength for past+ed errors differed across the various
classes of irregular verbs. Thus, they made a prediction, vet untested,
that a similar result would be found in human learning of the past
tensc.
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As their last experiment, Rumelhart and McClelland tested the
model on 86 low-frequency verbs on which it had not been trained in
order to assess its ability to generalize. Overall, presenting these items
to the input units resulted in activation of 92 percent of the appropriate
Wickelfeatures on the output units for regular verbs, and 84 percent for
irregular verbs. Rumelhart and McClelland wondered to what extent
this good performance on Wickelfeatures could be carried through to
Wickelphone representations and thence to production of the correct
word (phoneme string). Therefore, on these items they tried out a ver-
sion of their decoding/binding network which would freely generate
responses. Instead of a competition among designated words, there was
a competition among all relevant Wickelphones. To encourage pro-
duction of actual words, pairs of Wickelphones that could be picced
together into phoneme strings received extra excitation from one
another. (This procedure consumes considerable processing time on a
serial computer, and they cite this as the reason for not using it earlier.
Wickelphones not needed for any of the verbs were excluded for the
same reason.) Franslating the Wickelphone representations into pho-
neme strings, it is then possible to calculate the response strength of
each phoneme string that is generated. Rumelhart and McClelland
adopted as a rule of thumb that only response strengths above 0.2 be
regarded as relevant. Six of the 86 new low-frequency verbs generated
no phoneme string that exceeded this level. The level was exceeded by
exactly one string for 64 verbs, and by more than one string for an ad-
ditional 13 verbs. Examining the 14 irregular verbs separately, in just
one case the past tense was correctly produced and in two cases the cor-
rect form was one of two phoneme sequences achieving threshold. The
rest of these verbs were either regularized or unchanged from the pres-
ent tense. As for the 72 regular verbs, the correct response was gener-
ated to 48, and the correct response was one of two or three generated
in 12 others. While this generalization is far from perfect, Rumelhart
and McClelland took it as evidence that the basic principles for generat-
ing the past tense had been learned by the network. They noted that
in a study with children, Berko found that they too were only correct
in generating past tenses to novel verbs 51 percent of the time and
commented: “Thus, we sce little reason to believe that our model’s
‘deficiencies’ are significantly greater than those of native speakers of
comparable experience” (Berko, 1958, pp. 265--6).

On the basis of these experiments with their model, Rumelhart and
McClelland contended that with a rather simple network and no ex-
plicit encoding of rules it is possible to simulate the important charac-
teristics of the behavior of human children learning the English past
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tense. They also acknowledged certain respects in which their pro-
cedure departs from the actual process of verb acquisition in humans.
First, the stem and the past-tense form are paired during training,
whereas a child generally will hear just one form of the verb at a time.
Second, the transition from Stage 1 to Stage 2 is somewhat artificially
created by presenting the network first with a small number of verbs,
mostly irregular, and then a much larger set of verbs, mostly regular.
Rumelhart and McClelland tried to Justify this last procedure by ar-
guing that children learn the past tense of those verbs for which they
have already mastered the present tense, and that the progression from
a small set of verbs to a much larger set roughly corresponds to the
explosion from a limited vocabulary to a much larger vocabulary in de-
velopment. They commented that “‘the actual transition in a child’s vo-
cabulary of verbs would appear quite abrupt on a time-scale of years so
that our assumptions about abruptness of onset may not be too far off
the mark” (p. 241). Nevertheless, this aspect of Rumelhart and Mc-
Clelland’s simulation has generated a lively controversy, which we re-
view in the next section.

The Role of Input in Producing Regularization

The role played by the input to the past-tense learning mechanism is
not well understood either for humans or for network simulations of
humans. In their critique of Rumelhart and McClelland’s model,
Pinker and Prince (1988) argued that the model’s U-shaped acquisition
curve for irregulars should be attributed to the discontinuity in its
input, not to any intrinsic characteristic of learning in connectionist
networks. The uncontested part of their argument is that the model’s
entry into Stage 2 (in which irregulars are often overregularized) was
precipitated by the addition of the 410 medium-frequency verbs (82
percent of which were regular) to the original training set of ten high-
frequency verbs (80 percent of which were irregular). The controversial
part is what to make of this. Two separate issues are involved: (1) Are
the input conditions under which children exhibit U-shaped learning
so different as to undercut the usefulness of the existing simulation? (2)
Under what range of input conditions can networks exhibit a U-shaped
acquisition curve?

The role of input for children Focusing on the first issue, Pinker and
Prince (1986, pp. 139-42) compiled some useful, although incomplete,
developmental data. One approach is to look at the percentage of verbs
in a corpus that are regular versus irregular. Slobin (1971) made this
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count for adult speech to children (the initial input to the language-
acquisition mechanism, which is_then filtered according to what is
salient to the child), and Pinker and Prince themselves made the count
for the child’s own speech (since this roughly indicates what part of the
adult verb vocabulary has survived the child’s filtering). In both cases,
the data were from Roger Brown’s (1973) studies of Adam, Eve, and
Sarah prior to and during overregularization. If the count is made by
verb types (i.e., number of different vocabulary items in a speech
sample), the percentage of irregular verbs is very close to 50 percent
throughout the period examined. Irregular verbs are used more fre-
quently, however, so verb tokens are predominantly irregular (in par-
ental speech, 75-80 percent),

Ullman, Pinker, Hollander, Prince, and Rosen (1989) pointed out
that this discrepancy results in misestimates of type frequency from
small samples, and applied the “capture-recapture” statistical techni-
que to larger samples. With this correction, regular verb types outnum-
ber irregular verb types even at the age of two, and the disparity
increases through the preschool years. There is no sudden spurt in
this percentage or in vocabulary size preceding the onset of over-
regularization, however. Ullman et al. concluded that these are not the
factors that precipitate overregularization (McClelland and Rumel-
hart’s stage 2), and that providing discontinuous input to the network
model was an inappropriate way to achieve a U-shaped learning curve
for irregulars.

What, then, triggers Stage 2? Kuczaj (1977) noted that children tend
to produce the stem alone for most verbs during Stage 1, but for a few
irregular verbs they also have an unanalyzed past-tense form that is
sometimes used instead of the stem. They enter Stage 2 by becoming
much more reliable at using a past-tense form in contexts that require
it, and soon past-tense formation spreads to almost all of the child’s
verbs. However, for the irregular verbs about one-third of these past-
tense forms are incorrect (typically overregularized). This is the
change that traditionally has been cited as compelling evidence that
rules are induced. Ullman et al. added to this the idea that the past-
tense learning mechanism may have been off during Stage 1 and then
turned on to precipitate Stage 2 (since there were no dramatic changes
in the input to the mechanism).

Other interpretations are possible, and there are stil] crucial gaps in
the data. In particular, little is known about carly Stage 1 and the tran-
sition to Stage 2. (For example, how quickly does past-tense use be-
come reliable?) Regarding carly Stage 1, our own examination of
published vocabularies indicates that irregular verb types outnumber
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regular verb types (a) for three of the four single‘-word speakers for
whom Nelson (1973) reported 50-word vocabularies that included at
least five verbs; and (b) for both of the early multiword speakers for
whom Bloom (1970) listed vocabularies that included 15-58 verbs;
mean length of utterance (MLU) was 1.12 to 1.42. In the latter study,
the preponderance of irregulars was due primarily to those verbs that
were used in multiword utterances (which presumably were older,
more productive forms): 65 to 73 percent of such verbs were irregular
(as were 60 to 88 percent of the tokens; the type-token d.lscrepancy ap-
parently arises later). Just a few of the verbs were used in a past-tense
form (among the six children in the two studies, the total was one reg-
ular and eight irregular past tense verbs, all correct). These results were
based on parental diaries (Nelson) or on two eight-hour ?,p.ee(?h samples
per child (Bloom); hence, the effects of sampling were minimized. The)'
contrast with the preponderance of regular verb types found by Pinker
and his colleagues for the period after MILU 1.5 and with data from
Bloom’s third subject (whose unusually large vocabulary for MLU 1.32
included 93 verbs; one month later her ML U was 1.92).4
If the mechanism that learns stem-past tense mappings has been
turned on already during Stage 1 (contrary to Ullman et al'.'s sugges-
tion), and if it attends primarily to pairs for which the child already
produces the stem (or more rarely, just the past-tense forr.n)‘,'then the
data from Nelson and Bloom indicate that irregular verbs initially pre-
dominate in its input. The mechanism would not yet be involved in
controlling the production of verbs; its learning would initi'ally be re-
ceptive and perhaps Hebbian. That is, some other mgchamsm would
control the child’s production of verbs. Some of the child’s verbs could
then serve as input to the mechanism (as could parental utteraflces of
those verbs) on just those occasions when they are pai'red wnt‘lT the
outputs needed for Hebbian learning. For example, if a child says Dog
eat bone” and the parent responds “‘Oh, it ate the bone!.” the C.hlld s
past-tense network may accept the pair and adjust its szlghts WIthout
producing any observable past-tense form. (Sec GolinkofT, l-{lr§|1-
Pasek, Cauley, and Gordon (1987) for evidence that compr"ehensxon
precedes production of syntactic forms.) Initially the receptive stem-
past tense pairs would be learned as arbitrary mappings, but as larger
numbers of regular verbs are included in the input during late Stage 1

4 Note that Pinker and Prince (1988) also reported a count of 53 percent regular verb
. . . s

types for one single-word speaker, a result that is inconsistent with our count on l\ellson's

a.nd Bloom's data. Their subject was also reported to have a 53-verb vocabulary, which is

very high for a single-word speaker.
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the network may begin to generalize the regular mappings. During this
period, the child’s overt verb productions increasingly would include
regular verb stems; because these would be uninflected forms, it would
be clear that they were not yet under the control of the past-tense
mechanism.

Again we meet the question of what pushes the child into Stage 2.
Within our speculative account, the maturing past-tense mechanism
must now become involved in controlling verb production. What might
cause this shift? Several developmental theorists have recently emphas-
ized the idea that certain developmental advances involve the coordi-
nation of competencies that had previously developed separately (e.g.,
Acredolo, in press; Bates, Bretherton, and Snyder, 1988). This insight
is readily applied to our problem. Producing past-tense forms in appro-
priate contexts would seem to require at least: (1) a variety of mech-
anisms for planning and producing utterances more generally; among
these may be mechanisms for recruiting knowledge that was gained
receptively; (2) receptive knowledge of past-tense formation for some
number of verbs; (3) ability to distinguish between past and present
time; and (4) knowledge of the semantics and pragmatics of the past
tense. All of these would be incomplete and imperfect at the onset of
Stage 2.

The available data do not tell us whether Stage 2 awaits only the co-
ordination of the imperfect parts, or whether the coordination itself is
awaiting minimal attainment of one or more of those parts. The data do
tell us, however, that the child’s acquisition of additional verbs is rap-
idly progressing, and that regulars overtake irregulars before the onset
of Stage 2 (Ullman et al., 1989). Hence, Rumelhart and McClelland’s
claim that changes in these two factors determine the forms used for the
past tense at each stage remains quite plausible. The stronger claim that
these changes (and their effects on a single network) are the primary
cause of transition from Stage 1 to Stage 2 is harder to evaluate,
Rumelhart and McClelland’s training regimen may best be viewed as a
convenient way to set up initially correct performance on a few irregu-
lar verbs, so that a reversal could then be observed in Stage 2. This
simplification would be justified by our lack of knowledge about what
really is happening, and by the inadvisability of building a more com-
plete, speculative model at such an early stage of network research.
More detailed analysis of child acquisition data is one avenue for

- assesssing the alternatives; exploring the behavior of networks under a

variety of input conditions is another. In particular, Pinker and Prince’s
critique of the discontinuity (abrupt change) in Rumelhart and Mec-
Clelland’s input can be evaluated by providing networks with continu-
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Table 6.3 Regular and exceptional patterns added after certain epochs

Subset Epoch Case, Input Pattern Desired Qutput ,

A 0 *P147 10010010 10010010
P258 01001001 01001010

B 20 *P357 00101010 01001001
368 00100101 00100110

C 40 *P248 01010001 01001110
P148 10010001 10010010

D 60 *P158 10001001 10001101
*P367 00100110 00110001

P347 00110010 00110001

P157 10001010 10001001

E 100 *Pl67 10000110 00100101
*P247 01010010 01001001

*P267 01000110 01000110

*P348 00110001 10010010

P168 10000101 10000110

P257 01001010 01001001

1268 01000101 01000110

1’358 00101001 00101010

1 Irregular patterns noted with asterisk.
2 Irregularities are underlined.

ous input and observing the outcome. Two explorations of this type are
described in the next section.

The Role of Input for Networks

The rule of 78 revisited McClelland and Rumelhart (1988, p. 118)
suggested that the rule of 78 simulation can be easily modified to pro-
vide an exploratory look at input conditions under which U-shaped
learning curves can be obtained. They suggested using an incremental
schedule for presenting cases (pairs of input—output patterns), which
we carried out as follows. We began by training the network on just two
cases (subset A), then added two more cases (subset B) so that training
continued on four cases, and at intervals repeated this accretion of cases
so that training continued using six, then ten, and finally all 18 pat-
terns. For each subset, half of the cases were left unaltered (so that they
followed the rule of 78) and half were transformed into exceptions by
altering two or three of the eight binary digits. As is evident in table
6.3, the exceptions were quite varied.
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Table 6.4 Rule of 78 network trained with exceptions

A, Weights after 60 epochs

Input unmit Output unit
1 2 3 4 5 6 7 8
1 32 -22 24 22 -28 -8
2 -1

2 -20 20 4 -8 32 - 14 2 g
3 —14 =20 10 -20 —24 20 -24 0
4 28 —-26 " -20 10 —-26 -8 4
4 -22
3 -20 36 -10 =12 40 —-28 -2 2
6 —24 -2 10 0 ~34 18 —22 6
7 26 18 —12 26 -10 16

-2 34
8 -22 -2 16 —22 4+ 14 8 —40

B.  Weights after 140 epochs

Input unit Output unit
1 2 3 4 5 6 7 8
1 6+ -62 -28 28 —-10 -—44
6 -30 4
2 ~358 72 24 -14 24 —-20 10 —-20
3 -20 -52 42 -32  -26 28 -2 - 28
4 2 —68 30 52 —-66 —22
¥ -8 —28
5 —26 34 —16 -12 80 -76 ~4 -4
6 14 12 —44 — 34 —30 46 - 36 18
7 8 12 -8 28 —42 26
- 36 48
8 -4 —-14 8 —28 36 —18 32 —-42

. The weight matrices after learning subsets A-C (six cases) are shown
in the top‘half of table 6.4. It can be seen that there was no systematic
structure in the weights that would directly show that the regularities
xmposed by the rule had been extracted; yet the network performed
quite well on all six cases. This illustrates that when there are few
enough cases relative to the size of the network, each case can be
learned separately as though it were an arbitrary mapping. The per-
centage of rule-following versus exceptional cases has no real impact
becausg Fhe network is able to minimize error without extracting th(;
reg.ula.rmes that the rule imposes. The behavior of the network at this
gomt in training is comparable to that of the past tense network during
§tage I (when it was learning to form the past tense for just eight
irregular and two regular verbs). It is the small number of cases
that matters, not the percentage that are exceptional.
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After subset D had been learned as well (making a total of five reg-
ular and five irregular patterns), the weights began to show evidence of
systematic structure similar to that in the earlier simulation (cf. table
6.2). As can be seen by examining the weights, this structure became
even clearer after all 18 patterns had been made available for learning.
At this stage (epoch 140) the network also showed a strong tendency to
overregularize. Rather than examining actual outputs, which were de-
termined by a stochastic function, we focused on the tendency. of a'n
output unit to be active as indicated by the net input to the unit. We
classified as an error any case in which at least one output unit had a net
input that would result in a probability of error greater than 0.401 .()f
the nine regular patterns, three had errors; just one had a probability
greater than 0.50. All nine of the irregular patterns, however, prodl{c'ed
errors; eight were overregularization errors. (Of these, the probability
of error was greater than 0.50 for five patterns.) Thus, the network’s
tendency to extract and overgeneralize a rule to exceptional cases seems
to be r(;bust, even when only half of the cases fully exhibit the rule.
This suggests that the past-tense network might have learned the reg-
ular past tense and overgeneralized it to irregulars in Stage 2 even ?\'1th
a less abrupt change in its input. Conclusive evidence could be obtained
only by experimenting with the past tense network itselft of course.
The next study approximates this goal by experimenting with a
different past tense network.

The past tense revisited Plunkett and Marchman (1989) carriec.l out an
extensive series of simulations of past-tense formation in which they
presented the complete training set to their network on all 50 epo.chs of
training (rather than “priming” the network with a high proportion of
irregulars in the first few epochs). Hence, not only was there no abrupt
change in the input, there was no change at all, creating less favorab'le
input conditions for U-shaped learning than in fact are offered to .Chl!—
dren. Nevertheless, they obtained U-shaped learning curves for indi-
vidual verbs (but not for all verbs averaged together).

All of Plunkett and Marchman’s simulations used a back-propa-
gation learning procedure in a three-layer network of 20 units per layer.
It was trained on artificial sets of ‘‘verb stems’” that were three phone-
mes in length (two consonants and one vowel). All were phonologicz‘llly
possible in English (e.g., [erk/ and /mEt/). Context-free phor.lologxcal
features were used to encode the stem on the binary input units. Two
binary features required one unit, and two four-valued featur.cs re-
quired two units, for a total of six units per phoneme or 18 units per
three-phoneme stem. On the input layer, the two leftover units were
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clamped off. The output layer was similarly arranged, except that units
19 and 20 were used for a nonphonological encoding of the three forms
of the regular past-tense suffix. Hence, on units 1 through 18 there was
a distributed encoding of the symbols (artificial verbs) across a localist
encoding of subsymbols (phonological features). This encoding was
considerably less distributed than the coarse coding across Wickelfea-

- tures used by Rumelhart and McClelland, and so presumably provided

less support for generalization. It required a much smaller network,
‘however, cnabling a large number of simulations to be run in order to
compare the consequences of various input conditions.

In almost all of Plunkett and Marchman's simulations, four different
kinds of cases were intermixed in training: regular past tense (appropri-
ate suffix is added to stem, based on three classes of stem-final phone-
mes); arbitrary mapping (unrelated stem and past-tense form); identity
mapping (past tense is identical to stem); and vowel change (vowel of
stem is changed according to one of eleven patterns). All except the first
class were designed to emulate common subclasses of irregular verbs.

What differentiated among the large number of simulations was the
type and token frequency of each of the four classes of training cases.
As a simplification, Rumelhart and McClelland had assumed a type-to-
token ratio of one. This decision has been criticized, because irregular
types (vocabulary items) are in fact used much more frequently than
regular types. Bever (in press) speculated that the network would have
learned only the irregulars if a more realistic type-to-token ratio had
been used; Pinker and Prince wondered whether more extended train-
ing on the initial ten verbs would have “burned in the 8 irregulars so
strongly that they would never be overregularized in Phase 2" (1988,
p. 142).* Plunkett and Marchman (1989) sought to reply to these critics
by providing their network with a steady diet of verbs, varying the
type-to-token ratios in that diet across a large number of simulations
but not within the same simulation, (Hence, no single simulation had
realistic change in amount and composition of input across time, as
would a child’s past-tense network.)

Plunkett and Marchman’s results are not easily summarized. In sim-
ulations for which 74 percent or more of the tokens were irregular, ap-
proximating stage 1 input, regulars were overwhelmed and not learned.
(Performance on irregulars depended upon the type-to-token ratio that
was used; few types with many tokens was best.) In simulations for
which 74 percent or more of the tokens were regular, regulars were

5 Recall, however, that our own count from Bloom’s data indicated a ratio close to one
for verbs in multiword utterances in carly Stage 1.
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learned well; now irregulars were overwhelmed and not learned. Chil-
dren are never exposed to this kind of input. However, the two ser. of
simulations together simply demonstrate that networks are sensitive
to their training regimens. If dissimilar responses (e.g., vowel change
versus suffixization) are required to rather similar input patterns (the
stems), the network will minimize error by learning the more frequent
response. .

In several simulations (in what they called their Parent series), appro-
ximately 45 to 50 percent of the tokens (but on]y. 18 percenF of the
types) were irregular, a situation that better approximates the input to
children’s past tense learning mechanisms during stage 2 (although the
regulars were composed of 410 verbs, each with one token; a smaller
number of regulars, each with a larger number of tokens, would be
more realistic). In these simulations the arbitrary mapping class needed
15 or 20 tokens per type and the identity and vowel change classes
needed five tokens per type to obtain learning outcomes of 75 percent
correct or better. Regulars suffered somewhat but were always at least
50 percent correct. Errors included blends (vowel change 'plu-s regular
suffix), no change to stem, and (for irregulars) overregularization; rela-
tive frequencies of error types varied according to verb class.and type-
to-token ratio. Learning curves that averaged together all items qf a
type were noisy but generally negatively accelerated (i.e., most im-
provement comes early in training). The lack of an .oYerall U-shaped
learning curve is not surprising, because input con@:tlons that wog]d
produce good initial learning of a small number of items were no't in-
cluded. Plunkett and Marchman noted, however, that a number of indi-
vidual items exhibited U-shaped learning curves.

A related series of simulations (the Phone series) incorporated pho-
nological constraints in the identity and vowel 'change classes. that
helped to determine what mapping should be carried out (but did not
reliably distinguish irregular from regular stems). For example, one
vowel change subclass was defined by the subregularity /.Em/ changmg
to /Om/, rather than [E/ changing to [O/. The Pl.lone simulations, by
making each class of stems more distinctive, exhibnte'd somewhat better
performance than the corresponding Parent simulations. AH(?wever, the
relative ordering of difficulty of the classes was generally similar.

Summary

Rumethart and McClelland have offered a new proposal about the kmfi
of mental mechanism that produces linguistic performance. On their
view, the linkage between regular verb stems and their past tense forms
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is described using just a few general rules, but is governed by a mechan-
ism that does not use explicit rules. Rather, it distributes knowledge
of how to form the past tense across connection weights in a network,
Furthermore, this mechanism is unified: the more complex linkages
between irregular verb stems and their exceptional past-tense forms
are encoded in the same set of connection weights. (In a rule-based
account, by contrast, exceptions must be listed separately.) In moving
towards this end-state, the network exhibited learning stages that were
similar in important respects to those of human children.

Perhaps because this model was so explicitly set forth as a direct chal-
lenge to rule-based accounts, it has become a prime target of critics of
connectionism. We have considered two issues here. First, to what ex-
tent did the input to the network approximate the input to children’s
past-tense learning mechanism? We pointed to data which, combined
with certain assumptions about when and how past-tense learning
occurs, suggest that the network’s input indeed is predominantly ir-
regular early in the learning process. Second, under what range of input
conditions can stages like those of children be obtained in networks?
Plunkett and Marchman’s simulations indicate that regularization,
overregularization, blends, and other Stage 2 phenomena can be exhi-
bited by networks even when the higher token frequency of irregular
verbs is taken into account. Furthermore, the transition to Stage 3 is
partly captured in the improvements in performance across training
epochs. Their simulations have more limited applicability to Stage 1
and the transition to Stage 2, in that they showed that individual items
can exhibit U-shaped learning under constant input conditions involv-
ing a large number of items. The final rule of 78 simulation which we
carried out indicates, however, that general stages of U-shaped learning
can be observed in a very simple network if it is fed a small (but
increasingly large) training set in which exceptions are kept at a con-
stant percentage of 50 percent. Hence, abrupt changes in the input are
not the only way to attain U-shaped learning curves.

Rumelhart and McClelland’s past-tense model was an early feasi-
bility study that made innovative use of a relatively primitive kind of
network (the pattern associator), It is certainly appropriate to probe at
its limitations in pursuit of improved models, and the methodological
points raised by critics can be a useful part of this process. Critics have
also raised other arguments, however, that 80 to the core of our under-
standing of what it is to do cognitive modeling. We shall consider these
arguments at some length in chapter 7. First, however, we shall briefly
describe a second connectionist model of human language processing.
Like Plunkett and Marchman'’s (1989) model, it was designed recently
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Christopher = Penelope Andrew = Christine
Margaret = Arthur Victoria = James Jennifer = Charles
Colin Charlotte
Roberto = Maria Pierro = Francesca
Gina = Emilio Lucia = Marco Angela = Tomaso
Alfonso Sophia

Figure 6.4 The two isomorphic family trees for which llintor.l's (~1 98§) network learned
to infer pairwise kin relations. The top tree represents an English tamﬂy, :mcj! the bottom
tree an Italian family. The symbol ="' mecans “married to.” From G. E. Hinton (1986)
Learning distributed representations of concepts, Proceedings of the Eighth Annual .

Conference of the Cognitive Science Society, illsdale, NJ: Lawrence Erlbaum. Reprinted

with permission.

enough to take advantage of the generalized delta rule, which imple-
ments gradient-descent learning in multi-layered networks.

Hinton’s Model of Kinship Knowledge and Reasoning

In many cognitive domains, the information given in the input must be
combined and recombined before it can appropriately generate out.put
patterns; hidden units are the means of carrying out this processing.
Hinton (1986) designed a multi-layered network to carry .o%xt a reason-
ing task involving the kinship relations between 24 individuals. The
ability to handle kinship relations is a traditiot?al. test case fgr assessing
general theories in linguistics and psycholinguistics, S0 this 1s a particu-
l'arly salient connectionist model of higher-level C(.)gmtlon.‘ .
Figure 6.4 shows that the 24 individuals in H{nton’s simulation are
equally divided between two families, one Italian a'nd one Enghsh,
which have isomorphic family trees. All the information about the kin
relations shown in these trees can be represented in u set of triplets
of the form <personl, relationship, person2>. There are 12 rela-
tionships (mother, daughter, sister, wife, aunt, niece, and their male. coun-
terparts), which generate such triplets as Colin has-mother Victoria.
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Figure 6.5 The activity levels of units in Hinton's (1986) family tree network after
training when presented with the problem “Colin has-aunt" on the input layver. The
input layer has two groups of units. First, the 24 units for representing person|l are
shown as two rows of twelve units each at the bottom left (the bottom row is used for
members of the Italian family, and the row above jt is used for members of the English
family). The unit representing Colin is fully activated (as indicated by the white square);
the 23 units representing other family members are inactive (as indicated by the 23 black
squares). Second, the 12 units for representing a relationship arc shown in two rows of
SIX units each at the bottom right. The unit for “*has-aunt” is activated. The next three
rows represent the three sets of hidden units. The first hidden layer consists of 12 units,
six of which receive inputs from the personl units, and six of which receive inputs from
the relationship units. The next hidden layer also consists of 12 units, each of which
receives inputs from all 12 units in the first hidden layer. The last hidden layer consists of
siX units, each of which receives input from all 12 units on the second hidden laver. The
degree of activation of each of these units is indicated by the size of the white square (a
smaller square indicating less activation). Finally, the 24 output units for encoding
person2 (the network’s response to the problem) are shown in two rows at the upper
left. Different units have different degrees of activation, but the units for Penelope and
Christine are most active (indicated by the black dot in the center of their white squares).
These are both correct responses. From G. E. Hinton (1986) Learning distributed
representations of concepts, Proceedings of the Eighth Annual Conference of the Cognitive
Science Society, Hillsdale, NJ: Lawrence Erlbaum. Reprinted with permission.

There are 104 such triplets, but as we shall see, not all of them need be
explicit; the information encoded in some triplets can be inferred
from others. Input to the network consists of an encoding of personl
and the relationship on the input layer. The target output for the
network is an encoding of person2 on the output layer.

Hinton's network design is shown in figure 6.5, using a format in
which each unit is represented by a box, and white boxes are most ac-
tive for the problem illustrated. The network has five layers of units.
The input units (lower two rows) use a localist encoding for personl
(24 units, one for each person) and the relationship (12 units, one for
each possible relationship). The output layer (upper two rows) similarly
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has 24 units which permit a localist representation of person2. In be-
tween are three hidden layers. The first layer of hidden units consists of
12 units, six of which receive inputs from the 24 personl units, and six
of which receive inputs from the 12 relationship units. The second
layer also consists of 12 units, which receive inputs from all 12 units in
the first hidden layer. The final layer of hidden units consists of six
units which receive inputs from all units in the second layer, and it
provides input to the output layer (indicating the identity of person2).
The fact that the 24 units coding for personl must feed their activity
pattern through a bottleneck of six units forces the network to find a
distributed representation of the different individuals that extracts the
relevant features for inferring person2. The same principle operates
with respect to the six hidden units receiving input from the 12 re-
lationship units. It also applies in reverse to the six hidden units that
feed into the 24 output units: those hidden units must employ a rel-
evant distributed representation of person2.

A back-propagation learning procedure was used to train the network
on 100 of the 104 triplets across 1,500 epochs. It was then tested on its
ability to infer the correct person2 for the remaining four triplets. This
procedure was repeated a second time using different initial weights. In
one run the network was correct on all four inferences, and in the other
run it was correct on three out of four inferences. While this represents
a fairly limited inference capacity, the network nevertheless was able to
infer answers to new questions based on already acquired information.
Moreover, it did so without propositional representations and without
traditional sorts of inference rules.

What is significant is the way in which the nctwork accomplished this
task. Hinton showed that the first set of hidden units adopted quite dis-
tinct representational functions. This can be appreciated by examining
the weights from the input units to the first layer of hidden units. Fig-
ure 6.6 displays the six hidden units which received inputs from the 24
personl units. White boxes indicate positive weights on the connec-
tion, and black boxes indicate negative weights. The size of the boxes
represents the strengths of these connections. One thing that is clear is
that the hidden units for personl drew heavily on the symmetry of the
two families, despite the fact that this information was never explicitly
provided to the network. Thus, the connections to unit 1 ensure that it
becomes active whenever personl is British, whereas unit 5 becomes
active whenever personl is Italian. Unit 2 becomes most active when
personl is of the senior generation, while unit 3 becomes active when
personl is of the younger generation. Units 4 and 6 seem to be
representing the two branches in each family tree (unit 4 favoring the
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Flgure 6.6 Some of the weights acquired by Hinton's (1986) family tree network. The
we‘xgh'tS for the connections from the 12 input units representing reialionshi to ;h > si
u,ms in th.e first hidden layer are indicated, Specifically, the weights for each (‘:f the ;:lx
hidden units are grouped together within one of the six rectangles. Within a rectangl
eac‘h of the twelve small boxes represents the weight from an input unit to that hk;]:iz o
unit, A white box represents a positive connection, and a black box a negative con c't]'
The size of the box represents the strength of the connection. From G E Hinmnrzi‘c)égn.
Learning distributed representations of concepts, Proceedings of the Ei;rh!'h Annual )
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kin shown on the right side in figure 6.4, unit 6 favoring the kin on the
left).

Three comments are in order. First, the network itself did much of
the work involved in discovering the structure in the environment that
was presented to it by means of training cases. (Here the environment
was the family trees.) The designer selected the training cases and
designed the encoding schemes on the input and output layers. The
network then restructured this information into new encodings on hid-
den layers and sought optimal weights on the connections between
layers. Some aspects of the recoding would be anticipated by the de-
signer (the extraction of obvious features, such as familial branch or
generation), but other aspects would be subtle and unanticipated. All of
these aspects are caused by the structure implicit in the input; hence
there is a strong sense in which the derived representations are inten-
tional, or about the input patterns, as discussed in chapter 4.

Second, developing these representational capacities provided the
key to the network’s ability to learn the relationships in the families. On
the basis of the features extracted by the hidden units, the network was
able to make (at least limited) inferences about relationships. For
example, knowing that it was looking for a father of a middle-aged per-
son, and for a father of an Italian person, the network could determine
that it was looking for an old, Italian person, thus specifying the
features that the output person would have to satisfy. Once the network
was trained and therefore had developed such an internal featural rep-
resentation, it was in a position to answer questions on which it had not
been trained.

Third, while it is often possible to come up with labels for the hidden
units after examining their behavior, these labels are very approximate.
For example, if activation of unit 1 does indeed represent being English
and unit 5 being Italian, they do not treat all members of the respective
families equally. Thus, Penelope is treated by unit 1 as more of an
English person than Charles, and unit 5 actually treats Arthur and
Christine as being a little bit Italian. Presumably the reason that these
units do not learn to give an equal response to all members of the set is
that they are also capturing other information for which we may not
have a simple label. In this respect, the network is not simply an im-
plementation of a symbolic system that might have solved the problem
by employing precise dimensions of difference such as nationality, sex,
and generation,

The internal encoding that Hinton’s network has achieved is clearly
very impressive. We must recall that the network never encountered
figure 6.4 as such, but only specific relationships. The network’s suc-
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cess.raises questions, however: how commonly are hidden units so
readily interpreted? What difference does it make whether or not they
are? What if more triples had been left untrained and then used as tests
of inference? These are the kinds of question that can be pursued
within the connectionist research program. As in the case of thc‘past
tense‘model, it is also possible to rajse questions at a different level
questions that would challenge this approach to cognitive modeling at’
its foundations. We have not approached this particular mo.!. | in this
way, but many of the points of discussion in chapter 7 are germane.

Summary

In this chapter we examined two networks that were designed as
models of higher cognitive tasks. Rumelhart and McClelland’s model
simulated the learning of the past tense of English verbs, and Hinton’s
modffl learned and inferred kinship relations. Although ’neither model
provides a (?ompletely satisfactory account of human performance, the
res'ults are intriguing. They have led proponents of connectionisr’n to
claim that at least some tasks that seem to require knowledge of rules
and complex information processing can be accomplished by other
means. Critics have characterized these means, however. as ina('jequate
anq (merely) associationist. The result has been a livc:ly sometimes
acrimonious, controversy, to which we shall now turn. ,
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Are Rules and Symbols Needed?
Critiques and Defenses of
Connectionism

Up to this stage we have been focusing on the characteristics of connec-
tionist systems and the ways in which they offer new perspectives on
cognitive phenomena. However, we have also made reference to th'e
competing symbolic tradition which, until recently, has been the domi-
nant approach to cognitive modeling. Not surprisingly, many advocates
of the symbolic approach have presented arguments purporting to show
the inadequacy of connectionism. In the first section of this chapter we
shall examine two of the most potent critiques that have been raised by
representatives of the symbolic tradition. Each argues that certain.cru-
cial aspects of cognition require a symbolic approach and thus indicate
intrinsic limitations of the connectionist approach. In the remainder of
the chapter we shall consider connectionist responses.

Two Critiques of Connectionism

Fodor and Pylyshyn’s Arguments for Symbolic Representations
with Constituent Structure

Fodor and Pylyshyn (1988) begin their critique of connectionism by
distinguishing between representationalist and eliminativist approaches
to theorizing about cognition. Representationalists claim that the
internal states of the cognitive system are “representational (or ‘in-
tentional’ or ‘scmantic’) states” that *‘encode states of the world’”;
eliminativists ““dispense with such semantic notions as representation’’
(Fodor and Pylyshyn, 1988, p. 7).! After offering the distinction, Fodor

1 Itis unclear who actually qualifies as an eliminativist so defined. Fodor and I’ylysihyn
cite John Watson's (1930) behaviorism, Patricia Churchland’s (1986) neuroscience elimi-
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and Pylyshyn place connectionism on the representationalist side,
citing both textual evidence from connectionist publications and the
fact that connectionists typically provide semantic interpretations of the
activities of either single units or ensembles of units. This assignment is
the foundation of Fodor and Pylyshyn’s argument against connec-
tionism, because it is structured to show that connectionist systems are
inadequate as representationalist systems. Without the resources of a
symbolic representational system, they maintain, one does not have an
adequate representational system for modeling cognitive processes.

What is critical, for Fodor and Pylyshyn, is the linguistic character of
symbolic representations. (For more than a decade, Fodor has been
advocating the language of thought hypothesis, according to which cog-
nitive activities require a language-like representational medium. See
Fodor, 1975.) In particular, symbolic representations have a combina-
torial syntax and semantics so that molecular representations can be
formed out of constituents (atomic representations, or already com-
posed molecular ones). Rules of composition, as well as other rules that
operate on symbols, are syntactic and can be applied without regard to
the semantics of the symbols; but when the time comes to provide a
semantic interpretation, it is compositional in a way that mirrors the
syntax. The semantics of the whole depends upon that of the parts. In
chapter 1 we noted that proof procedures that are complete provide an
interface between proof theory (which derives propositions from other
propositions syntactically) and model theory (which focuses on whether
the propositions are true, that is, on their semantics). In Dennett’s
terminology, the syntactic engine mimics a semantic engine. Fodor and
Pylyshyn charge that connectionist systems lack a combinatorial syntax
and semantics. Although individual units or coalitions of units in a
connectionist system may be interpreted semantically, they cannot be
built into linguistic expressions and manipulated in accord with syntac-
tic rules. The units are not symbols, and the system is inadequate for its
task of representation.

The crux of Fodor and Pylyshyn’'s argument, then, is that only a sys-
tem with symbolic representations Possessing constituent structure can
adequately model cognitive processes. More specifically, they maintain
that this system is a language of thought, and exhibits three features

-
serve a representational role; her quarrel is with the sentential or propositional approach

to representation. Similarly, most connectionists regard networks as representational, but
emphasize their distinctness from traditional symbolic representations.



212 Are Rules and Symbols Needed?

(exhibited by conventional human languages as well) that require a
combinatorial syntax and semantics.

1 The productivity of thought refers to the capacity to understand and
produce propositions from an infinite set. Since this capacity is
achieved using finite resources, recursive operations are needed; this
entails a combinatorial syntax of thought.

2 The systematicity of thought results from an intrinsic connection be-
tween the ability to comprehend or think one thought and the
ability to comprehend or think others. It is claimed, for example,?
that anyone who can think Yoan loves the florist can also think the
florist loves Joan. For this to be so, “‘the two mental representations,
like the two sentences, must be made of the same parts” (p. 39).

3 The coherence of inference involves the ability to make syntactically
and semantically plausible inferences. For example, one can infer
from x is a brown cow that x is a cow, or from a true conjunction (A
& B) that both conjuncts are true (A is true and B is true).

Fodor and Pylyshyn contend that connectionist systems have no way
of composing simple representations into more complex representa-
tions, and therefore lack these essential features. Part of their argument
goes as follows. First, consider connectionist networks that have a
localist semantic interpretation. Each representational unit is atomic,
and there is just one way the units relate to one another: by means of
pairwise causal connections. Thus, if A & B and A are two nodes in a
network, the weight of the connection from A & B to A can be set such
that activating A & B results in (causes) the activation of A. This could
be viewed as a kind of inference, but the representation of 4 is not in
any way part of the representation 4 & B. Any two nodes could be
wired to have the same pattern of influence, for example, node A & B
might excite node Z. Clearly, then, the connection is not compositional
in nature, and the inference does not go through in virtue of the syntac-
tic relation between the nodes. One unpleasant outcome, they claim, is
that the inference must be built in separately for each instance of con-
junction rather than by means of a rule that utilizes variables to specify
the syntactic relation of inclusion. For example, the unit B & C must be
specifically linked to unit B if the inference from B & C to B is to be
made, just as A & B had to be linked to unit A. On this basis, Fodor and

2 As our small contribution to reducing the gender-typing prevalent in linguistic
examples, we have adapted their actual base example, John loves the girl, to onc with a fe-
male grammatical subject and gender-neutral grammatical object.
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Pylyshyn conclude that localist connectionist systems lack the requisite
resources for cognition.

Might distributed systems be more suitable as cognitive systems? In
certain networks of this type, the units that are active in a particular
representation encode features or microfeatures of the entity that is be-
ing represented. Smolensky (1987) has specifically criticized Fodor and
Pylyshyn’s A & B analysis as too simplistic and not relevant to dis-
tributed networks. By way of illustration, he suggests a set of ad hoc
features for cup of coffee which fall into three subsets with respect
to questions of combinatorial structure: a set that apply to cup alone
(e.g., porcelain curved surface); a set that apply to coffee alone
(e.g., brown liquid); and (importantly) a set that applies only to cup
and coffee as they interact, such as brown liquid contacting por-
celain. In Smolensky’s view, the inclusion of the subsets for cup and
coffee in the set for cup of coffee achieves the property of composi-
tionality; but furthermore, the subset for the interaction provides ad-
ditional, relevant information that would be harder to represent within
the symbolic approach.

Fodor and Pylyshyn (1988, p. 19.) respond that this is not the right
kind of composition for the purpose they have in mind. The way in
which a microfeature is part of a representation of an object is not the
same as the way in which one syntactic unit (e.g., an adjective) is part
of a larger syntactic unit (e.g., a noun phrase). Thus, in a symbolic rep-
resentation of the proposition Joan loves the florist, the representation of
florist stands in a particular syntactic relationship to the rest of the
proposition, such that the proposition is not confused with the Sflorist
loves Joan. This is not true of a distributed representation. For exam-
ple, a (minimally) distributed representation of the proposition Joan
loves the florist could be achieved in a network whose units corres-
ponded to such concepts as Joan, loves, and florist; activating these
three units would provide a distributed representation of the proposi-
tion. However, Fodor and Pylyshyn argue, it would be indistinguish-
able from the representation of the florist loves Joan. It would not help
to add units for relationships, such as a unit for subject, for there is no
straightforward way to capture the fact that it is Joan who is the subject
and not the florist (that is, to compose the units hierarchically). The
units are just bundled together in a relation of co-occurrence, without
the structure that a syntax would provide. Fodor and Pylyshyn con-
clude that connectionist networks, whether localist or distributed, for-
feit the benefits offered by a combinatorial syntax and semantics.

According to Fodor and Pylyshyn, the symbolic theories which they
favor specify how Joan loves the florist and the florist loves Joan are
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constructed out of the same parts using two different applications of the
same rules of composition; such a theory

will have to go out of its way to explain a linguistic competence which embraces
one sentence but not the other. And similarly, if a theory says that the mental
representation that corresponds to the thought that P&Q&R has the same (con-
junctive) syntax as the mental representation that corresponds to the thought
that P&Q and that mental processes of drawing inference subsume mental
representations in virtue of their syntax, it will have to go out of its way to ex-
plain inferential capacities which embrace the one thought but not the other.
Such a competence would be, at best, an embarrassment for the theory, and at
worst a refutation.

By contrast, since the Connectionist architecture recognizes no combinatorial
structure in mental representations, gaps in cognitive competence should pro-
liferate arbitrarily. It’s not just that you’d expect to get them from time to time;
it’s that, on the ‘no-structure’ story, gaps are the unmarked case. It’s the system-
atic competence that the theory is required to treat as an embarrassment. But,
as a matter of fact, inferential competencies are blatantly systematic. So there
must be something deeply wrong with Connectionist architecture. (p. 49)

Following these and other arguments that an adequate representa-
tional system must be symbolic rather than connectionist, Fodor and
Pylyshyn do acknowledge that the nervous system in which our sym-
bolic representations are implemented may be a connectionist system.,
This might seem to be an admission that connectionism has a role to
play in modeling cognition. But Fodor and Pylyshyn maintain that
only the analysis at the level of symbolic processing is relevant to cog-
nitive theorizing, and that this level is nonconnectionist. Connec-
tionism is merely an account of the implementation of the symbolic
representational system, and as such is not pertinent to theorizing
about cognition itself. This aspect of their critique is grounded on an
account of levels of organization in nature. Like most theorists, they as-
sume that nature is comprised of entities of different sizes; smaller enti-
ties are components of larger ones. There is a causal story to be told
about interactions within each level (e.g., about interactions among
molecules, about interactions among stones and rivers, and about
interactions among galaxies). But unlike many theorists, Fodor and
Pylyshyn maintain that these stories are quite independent: “the story
that scientists tell about the causal structure that the world has at any
one of these levels may be quite different from the story that they tell
about its causal structure at the next level up or down” (p. 9). More-
over, since, as Fodor has argued elsewhere (Fodor, 1974), there are
many lower-level mechanisms that can perform the same higher-level

Are Rules and Symbols Needed? 215

function, and the same lower-level components can figure in many
higher-level functions, the scientific accounts at different levels only
minimally constrain each other. Thus there is no causal story to be told
between levels. The causal story that is relevant to cognitive science, for
Fodor and Pylyshyn, is a story about actions performed on symbolic
representations. Since connectionism per se cannot provide an adequate
story about actions performed on representations, but the symbolic ac-
count does, then connectionism is not a candidate theory of cognition.
At best, it is a story about another level, but as such it is no more rel-
evant to theories of cognition than are stories about molecular processes
in the brain.

Fodor and Pylyshyn's views about implementation are made particu-
larly clear in the way in which they respond to many of the arguments
commonly given on behalf of connectionism (such as those discussed in
chapter 2). They maintain that most of the advantages connectionist
systems scem to have over symbolic systems are due entirely to the fact
that symbolic systems are currently implemented on von Neumann
computers. When symbolic systems are implemented in more neural-
like hardware, they will exhibit the same Virtues as connectionist sys-
tems. Moreover, the fact that these characteristics stem from the mode
of implementation shows that they are not cognitive characteristics at
all, but merely features of the implementation. For example, Fodor and
Pylyshyn maintain that the time consumed by a particular cognitive
process is a matter of implementation, and does not inform us as to the
nature of the architecture itself:

the absolute speed of a process is a property par excellence of its implemen-
tation. ... Thus, the fact that individual neurons require tens of miliseconds
[sic] to fire can have no bearing on the predicted speed at which an algorithm
will run unless there is at least a partial, independently motivated, theory of how
the operations of the Junctional architecture are tmplemented in neurons. Since, in
the case of the brain, it is not even certain that the firing of neurons is in-
variably the relevant implementation property (at least for higher level cogni-
tive processes like learning and memory) the 100 step “constraint’ excludes
nothing. (1988, p. 55)

In particular, Fodor and Pylyshyn point out that nothing prohibits
operations on symbols from being implemented in a parallel archi-
tecture and hence being performed much more rapidly than in a von
Neumann computer. They apply similar arguments to other purported
virtues of connectionist systems (e.g., resistance to noise and damage
and usc of soft constraints).

It should be noted that Fodor and Pyvivshyn's mere tmplementation
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argument relies on some very particular assumptions about how levels
of nature, and the disciplines that study them, relate to one another.
Specifically, they place information-processing accounts of cognition
and language at the same level as abstract accounts, such as those pro-
vided in logic or linguistic theory. The gap we left in the quote above
was the following parenthetical comment: ‘“‘(By contrast, the relative
speed with which a system responds to different inputs is often diag-
nostic of distinct processes; but this has always been a prime empirical
basis for deciding among alternative algorithms in information pro-
cessing psychology)” (p. 55). Information processing accounts are not
a matter of mere implementation for Fodor and Pylyshyn, but rather
are aspects of the symbolic theory itself. We would point out that this
exemplifies the desire on the part of Chomskian linguistics to cover the
traditional territory of cognitive psychology as well as linguistics (see
Abrahamsen, 1987). In contrast, many psychologists (e.g., McNeill,
1975; Marr, 1982; Rumelhart and McClelland, 1985) distinguish be-
tween abstract accounts of language as a static product (which make no
reference to the real time processes that produce it) and processing
accounts of behavior.

In our own interpretation of this distinction (see chapter 8), abstract
accounts are the tasks of disciplines such as linguistics and logic. Both
information processing and connectionist models occupy a lower level
of analysis and are the tasks of such processing-oriented disciplir.les as
cognitive psychology and artificial intelligence.? Neural modeling 1s‘at a
third, yet lower level of biological inquiry. The neural account might
be regarded as implementing the processing account, and the pro-
cessing account as implementing the abstract (linguistic) account.
In a multi-level account such as this, one can envisage different levels
causally constraining each other without endorsing a strong reduc-
tionism (Bechtel, 1986, chapter 6); in this way the gap between abstract
and neural accounts can be bridged. In contrast, Fodor and Pylyshyn
have just two levels of analysis to work with. Connectionist. models can,
for them, be assigned only to the neural level. The processing accounts
that they find acceptable are at the same level as abstract accounts (the
symbolic level), and must achieve their combinatorial syntax and sem-
antics by means of operations on symbol strings.

3 Although connectionist models use smaller-size units (subsymbols). to. a.ccount for a
given phenomenon than do most information processing models, this is u.'relevant.to
determining whether they occupy the abstract or processing level of analysis. The size
and nature of the units reflect choices made within that level, e.g., how deeply one must
go into that level’s part-whole hierarchy in order to achieve the best acco'unt of the
phenomenon. As discussed in chapter 8, each level has its own part-whole hierarchy of

units of analysis appropriate to that level.
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The connectionist gambit is to develop processing accounts using
means other than operations on symbol strings. Connectionists gen-
erally agree that their alternative means must be adequate to account
for data that are suggestive of combinatorial structure in language. Fur-
thermore, connectionists themselves have recognized a closely related
problem known as the variable binding problem. Symbolic representa-
tions usually employ variables so that rules can be applied to various
individuals in a class. In a given application, all occurrences of the same
variable must be instantiated by the same individual. The challenge
for connectionists is to make networks do the work that in symbolic
theories is performed by means of combinatorial structures of symbol
strings which include variables. Unlike Fodor and Pylyshyn, connec-
tionists do not assume that symbolic representations are the only ad-
equate means for doing this work; they are Just the most obvious
means. Nor do they agree that success at the difficult task of finding
alternative means can only be regarded as “mere implementation”’ of
the symbolic account. The connectionist goal is to achieve models that
give an account of the phenomena that are handled rather well by rules
but also, without additional mechanisms, give an elegant account of
other phenomena as well (e.g., learning and variation). If connectionist
accounts did nothing more than implement what traditional rules
already do well, they probably would not be worth the effort involved
in constructing them.

For connectionist replies to Fodor and Pylyshyn’s critique, see
Chater and Oaksford (1989), Clark (in press), Kaplan, Weaver and
French (1990), and Smolensky (1987). In the following section we
summarize another critique.

Pinker and Prince’s Arguments for Rules

Steven Pinker and Alan Prince (1988) focus their critique not on the
language of thought, but rather on children’s acquisition of competence
in a conventional language.* The traditional view, which they endorse,

4 Pinker and Prince remark: “Language has been the domain most demanding of
articulated symbol structures governed by rules and principles and it is also the domain
where such structures have been explored in the greatest depth and sophistication, within
a range of theoretical frameworks and architectures, attaining a wide variety of significant
empirical results. Any alternative model that either eschews symbolic mechanisms
altogether, or that is strongly shaped by the restrictive nature of available elementary in-
formation processes and unresponsive to the demands of high-level functions being
computed, starts off at a seeming disadvantage. Many observers thus feel that connec-
tionism, as a radical restructuring of cognitive theory, will stand or fall depending on its
ability to account for human language” (1988, p. 78).
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1s that rules are necessary to obtain an adequate account of the phenom-
ena of language; 20 years ago the arguments for this position were con-
vincing enough to turn many psychologists away from behaviorism and
into cognitive psychology. Connectionists are not generally behavio-
rists, but they have reopened the debate by seeking to model these same
phcnomena of language acquisition and use by means of networks ra-
ther than rules. If these attempts are successful, the plausibility of con-
nectionism is enhanced, and the choice between the traditional and
connectionist approaches would need to be made on other grounds.
Rumelhart and McClelland’s (1986) simulation of the acquisition of the
English past tense, which we described in chapter 6, is specifically tar-
geted at this issue:

We have, we believe, provided a distinct alternative to the view that children
learn the rules of English past-tense formation in any explicit sense. We have
shown that a reasonable account of the acquisition of past tense can be provided
without recourse to the notion of a “‘rule’ as anything more than a description of
the language. We have shown that, for this case, there is no induction problem.
The child need not figure out what the rules are, nor even that there are rules.
The child need not decide whether a verb is regular or irregular. There is no
question as to whether the inflected form should be stored directly in the lexi-
con or derived from more general principles. There isn't even a question (as far
as gencrating the past-tense form is concerned) as to whether a verb form is one
encountered many times or one that is being generated for the first time. A uni-
form procedure is applied for producing the past-tense form in every case. The
base form is supplied as input to the past-tense network and the resulting pat-
tern of activation is interpreted as a phonological representation of the past
form of that verb. This is the procedure whether the verb is regular or irregu-
lar, familiar or novel. (1986, p. 267)

Pinker and Prince have mounted an extensive critique of Rumelhart
and McClelland’s claims. They analyze the model in detail *“to deter-
mine whether the RM [Rumelhart and McClelland] model is viable as a
theory of human language acquisition - there is no question that it is a
valuable demonstration of some of the surprising things that PDP
models are capable of, but our concern is whether it is an accurate
model of children” (1988, p. 81). Their conclusion is that it is not.

Pinker and Prince’s critique is long and multifaceted. We do not
agree with many of their specific claims or their overall stance, but the
paper well exemplifies its genre (that is, defense of the symbolic ap-
proach against the challenge of connectionism) and it deserves to be
read in its entirety. Perhaps the most enduring contribution will be the
broad array of linguistic analyses and acquisition data on past-tense for-
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mation that were marshalled and organized by Pinker and Prince to
provide a framework for criticism of the Rumelhart and McClelland
model. Their own summary of their objections is as follows:

® Rumelhart and McClelland's actual explanation of children’s stages of
regularization of the past tense morpheme is demonstrably incorrect.

® Their explanation for one striking type of childhood speech error is also in-
correct,

® Their other apparent successes in accounting for developmental phenoms-
ena either have nothing to do with the model’s parallel distributed pro-
cessing architecture, and can casily be duplicated by symbolic models, or
involve major confounds and hence do not provide clear support for the
model.

® The model is incapable of representing certain kinds of words.

® It is incapable of explaining patterns of psychological similarity among
words.

® It easily models many kinds of rules that are not found in any human
language.
It fails to capture central generalizations about English sound patterns.

® It makes false predictions about derivational morphology, compounding,
and novel words.

® It cannot handle the elementary problem of homophony.

® It makes errors in computing the past tense forms of a large percentage of
the words it is tested on.

® It fails to generate any past tense form at all for certain words.
® It makes incorrect predictions about the reality of the distinction between
regular rules and exceptions in children and in languages. (1988, p. 81)

It should be clear from the contents of this list that Pinker and Prince
held the past-tense model to a higher standard of performance than it
was ever intended to meet (and that no other implemented language ac-
quisition model has met). Rumelhart and McClelland’s model was not
advanced as a definitive model of past-tense acquisition, but rather as a
demonstration that connectionist networks can perform tasks that are
usually assumed to require explicit rules. To get the demonstration
underway, Rumelhart and McClelland made certain simplifications and
heuristic decisions which, while reasonable, are not immutable. Most
important, when they designed the model, cffective learning algorithms
existed only for two-layer networks, The number of developmental
phenomena that they squeezed out of this architecture is impressive,
but Pinker and Prince focus on what was missed instead.

We cannot discuss all of Pinker and Prince’s objections here. Instead,
we provide a brief portrayal of three dimensions of their argument and
suggest some avenues of connectionist response. We focus first on their
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argument that Rumelhart and McClelland fail to do justice to import-
ant linguistic facts, and second on their argument that the network’s
behavior fails to adequately simulate human behavior. Third, we con-
sider their claim that the shortcomings of the past tense network are not
fixable, but rather are generic failures that reflect intrinsic limitations of
parallel distributed processing networks. (Particularly at the end of the
paper, they clarify that this gloomy assessment is limited to two-layer
networks, which removes much of the punch from this third part of
their argument.)

Putative linguistic inadequacies of Rumelhart and McClelland’s mode! In de-
veloping their contention that Rumelhart and McClelland fail to do jus-
tice to important aspects of linguistic analysis, Pinker and Prince echo
one of Fodor and Pylyshyn’s major points:

rules arc generally invoked in linguistic explanations in order to factor a com-
plex phenomenon into simpler components that feed representations into one
another. Different types of rules apply to these intermediate representations,
forming a cascade of structures and rule components. Rules are individuated
not only because they compete and mandate different transformations of the
same input structure (such as break-breaked|broke), but because they apply to
different kinds of structures, and thus impose a factoring of a phenomenon into
distinct components, rather than generating the phenomena in a single step
mapping inputs to outputs. (1988, p. 84)

We should point out that the strategy of factoring complex phenomena
into their components is not limited to linguistic theory or to rule-
based theories in general. Many advances in science, for example, have
involved working out a particular decomposition, separately analyzing
each component, and then figuring out how the components are assem-
bled together into a functioning system. (Bechtel and Richardson, in
preparation, provide an extensive discussion of mechanistic models of
biological systems that have been obtained in this way.) Within the do-
main of language, both linguistic theories and connectionist theories
specify a decomposition but, by design, these decompositions are quite
different. (For example, the connectionist decomposition is intended to
be mechanistic in the sense just described, whereas a linguistic decom-
position is abstract.) The fundamental question is not whether to
decompose, but rather what sort of decomposition is needed for par-
ticular purposes.

Many of Pinker and Prince’s criticisms can be interpreted as argu-
ments that Rumelhart and McClelland have invoked the wrong de-
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composition. To begin with, Rumelhart and McClelland have treated
past-tense formation as though it were autonomous, whereas the same
principles governing past-tense formation also figure in formation of
the perfect passive participle and the verbal adjective. Although there
are different exceptions in each case, the similarities are sufficient to
warrant a unified account. Moreover, there is a strong parallel between
the three regular ways of forming the past tense (/ad/after stems ending
in alveolar stops /d/ or /t/, and elsewhere /d/ after a voiced obstruent,
and [t/ after a voiceless one) and the three regular ways of forming
plurals, third person singulars, possessives, etc. (/az/ after stems ending
in sibilants like /s/ and /z/, elsewhere [z/ after voiced obstruents and [s/
after voiceless ones). Pinker and Prince maintain that the similarity is
due to general phonetic factors, a consideration that is lost when one
develops a separate network to handle past-tense formation. Hence, in
their view Rumelhart and McCllelland made the wrong sort of decom-
position of linguistic knowledge.

Pinker and Prince contend that further linguistic injustice is per-
petrated by the use of Wickelphones and Wickelfeatures. The first
problem is that they work imperfectly; specifically, they fail to give an
unambiguous encoding of all phoneme sequences, they miss generali-
zations such as the similarity of slit and silt, and they do not exclude
phonological rules that are alien to human languages (e.g., inverting the
order of the phonemes in the verb). Pinker and Prince acknowledge
that Rumelhart and McClelland had themselves noted that their coding
scheme was adequate to their purpose, but imperfect; however, Pinker
and Prince find this research strategy somewhat alien from their own,
more linguistic perspective.’

The Wickelfeature structure is not some kind of approximation that can easily
be sharpened and refined; it is categorically the wrong kind of thing for the jobs
assigned to it. At the same time, the Wickelphone or something similar is de-
manded by the most radically distributed forms of distributed representations,
which resolve order relations (like concatenation) into unordered sets of fea-
tures. Without the Wickelphone, Rumelhart and McClelland have no account
about how phonological strings are to be analyzed for significant patterning.
(Pinker and Prince, 1988, p. 101)

5 Generally, linguists strive to account for all of the relevant linguistic facts, and u single
counterexample can lead to rejection of a theory. Psychologists, in contrast, are accus-
tomed to accounting for only a portion of the variability in a psychological data set; it is the
failure to predict the central tendency or pattern of results that leads to rejection of a the-
ory. This “cultural difference” stems from differences in goals, and colors most linguistic
(and even psycholinguistic) critiques of connectionism.
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Pinker and Prince also point out a second problem with Wickel-
phones: these units are limited to encoding phonemic information,
whereas the past tense system must utilize syntactic, semantic, and
morphological informaton as well. One particularly interesting example
involves verbs that are derived from the nominalization of an existing
verb. For example, the verb Ay out as used in baseball is derived from
the noun fly ball which in turn is derived from the irregular verb fly.
Because of the intermediate nominal form, fly out functions like other
verbs derived from nouns in that it takes a regular past tense. Thus,
Just as we say he righted the boat, we say he flied out, not he flew out
(although in performance errors do occur). Pinker and Prince maintain
that this is a regular feature of English grammar and thus that forma-
tion of the proper past tense requires knowledge of the lexical item, not
just a phonemic representation. Moreover, the regularity itself must be
expressed by a rule; they claim that only via rules can we keep different
bodics of information separate, and yet bring them to bear on one
another when required. Rumelhart and McClelland’s connectionist
model is limited to encoding patterns of association between input and
output representations, and therefore cannot utilize and coordinate the
various kinds of abstract information that are necessary to account for
linguistic competence.

There is yet another respect in which Pinker and Prince claim that
the Rumelhart and McClelland model fails to respect linguistic facts:
the same network learns variations within both the regular and the
irregular past-tense forms, but linguistically these are quite different.
The choice among the three forms of the regular past tense is based
upon phonological principles, is predictable, and therefore can be
expressed in general rules. The varieties of irregular stems, in contrast,
at best exhibit a family resemblance structure. Their mappings onto
past-tense forms are not sufficiently predictable, and must be memor-
ized. The Rumelhart and McClelland model, however, makes no such
principled distinction; it applies a single method to both regular and
irregular verbs, extracting whatever regularities it can find.

To these specific linguistic objections, a connectionist might respond
as follows. (1) The past tense was isolated because it was premature to
include related phenomena in the same model. (Also, it is not obvious
which linguistic generalizations should, or should not, be accounted for
in terms of the same psychological mechanism or component.) (2) The
decision to focus on phonological representations (at the levels of Wick-
elfeatures and Wickelphones) exemplified the subsymbolic approach to
modeling: phenomena at one level (e.g., acquisition of past-tense mor-
phology) are best understood in terms of mechanistic models at a lower
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level (here, phonological features). The addition of lexical, syntactic,
and other higher-level constraints might improve accuracy somewhat in
a later model but is of secondary importance. (3) The particular kind of
phonological representation that was chosen (context-sensitive Wickel-
features) was a clever solution to the problem of representing order in a
network, but more general solutions will need to be found if the con-
nectionist program is to advance. Coarse-coding across those features
worked impressively well for achieving generalization. (4) The fact that
regular and irregular past-tense formation were carried out by a single
mechanism is at the heart of Rumelhart and McClelland’s project,
Linguistic-level accounts impose a different decomposition, isolating
irregulars as exceptions, but that does not determine what is appropri-
ate in a mechanistic (processing) account. The connectionist model
must be judged on such grounds as whether it generates behavior that
is sufficiently similar to human data on acquisition or processing. We
now turn to Pinker and Prince’s second line of criticism, which ad-
dresses that question.

Putative - behavioral inadequacies of Rumelhart and McClelland’s  model
Pinker and Prince’s second line of criticism involves examining in de-
tail the operation of the Rumelhart and McClelland model and arguing
that at just those crucial points where the model is thought to capture
important elements of human behavior, it either fails or it succeeds for
the wrong reason. First, Rumelhart and McClelland succeeded in simu-
lating a U-shaped acquisition function, in which correct past-tense
forms during Stage 1 were sometimes supplanted by overregulariza-
tions during Stage 2. Pinker and Prince attribute this result to charac-
teristics of the input (in particular, discontinuities between Stages 1
and 2) rather than the connectionist architecture. We considered this
point in some detail in chapter 6, and described recent simulations that
were directed at exploring the role of type and token input frequencies.
We shall not repeat that discussion here; the conclusions were that
Pinker and Prince’s claims are too strong (U-shaped functions can be
obtained without dramatic input discontinuities), but additional simu-
lations and child data are needed.

Pinker and Prince also consider the ability of the model to generalize
to new cases, that is, the 72 test verbs that Rumelhart and McClelland
presented to the model after it completed training on the initial set of
420 verbs. They interpret the poor performance on some of these test
cases as indicating the basic inadequacy of connectionist models. First,
they focus on the fact that the network offered no above-threshold re-
sponse to six verbs (jump, pump, soak, warm, trail, and glare) and they
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attribute this to the fact that the network had not been trained on any
sufficiently similar verbs from which it could generalize. They argue
that to generalize to any new verb, not just ones similar to the training
set, requires a system of rules. Roughly, morphological rules would add
the past tense morpheme /d/ to the verb stem, and phonological rules
would then determine which of the three phonetic variants was appro-
priate to the context. Second, they examine cases in which the network
offered the incorrect past tense (although 91 percent of the verbs with
at least one above-threshold response had the correct past-tense form as
one response or the only response). They note how bizarre a few of the
errors were (e.g., tour/toureder, mail[membled, and brown/brawned).
Pinker and Prince contend that a human, treating irregulars as specially
learned exceptions; would initially form regular past tenses for all new
cases, regular or irregular, and thus would not make these errors. But
the Rumelhart and McClelland network seems to be trying to use some
of the regularities discovered in the already learned exceptions to handle
new cases as well. Thus, Pinker and Prince comment,

Well before it has mastered the richly exemplified regular rule, the pattern-
associator appears to have gained considerable confidence in certain incor-
rectly-grasped, sparsely exemplified patterns of feature-change among the
vowels. This implies that a major “induction problem”” - latching onto the pro-
ductive patterns and bypassing the spurious ones - is not being solved success-

fully....
What we have here is not a model of the mature system. (1988, p. 125)

Returning to their task of contrasting the model’s behavior to that
of children, Pinker and Prince also work through the model’s perform-
ance on subregularities (such as different classes of irregular verbs) and
its simulation of children’s blends (erroneous past-tense forms that
include both a vowel change and suffixization, e.g., come/camed). The
discussion is too detailed to summarize here, but the general theme is
the same: rather than focusing on the considerable extent to which the
model reproduces phenomena observed in children, Fhey focus on the
discrepancies that were duly reported by Rumelhart and McClelland as
points to consider if an improved version of the model were to be
designed.

Do the inadequacies reflect inherent limitations of PDP networks? 'Pinker and
Prince argue that, although some of the specific discrepancies petw?en
predicted and observed performance might be eliminated by tinkering
with the existing past-tense network, for the most part they are due to
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inherent limitations of PDP networks (by which they mean, it turns
out, two-layer networks). Connectionists would agree that the work
Pinker and Prince wanted the model to do (e.g., incorporating lexical
constraints) would require a more elaborate architecture than the one
that was available to Rumelhart and McClelland.

Advances in connectionist modeling during the last decade have
yielded a variety of elaborations that might be incorporated in an im-
proved model. Hidden layers now provide additional computational
power (and can learn using the back-propagation technique proposed
by Rumelhart, Hinton, and Williams, 1986a, 1986b). These additional
layers can be viewed as imposing particular factorings (decomposi-
tions) of the information in the input layer. (This is clearly illustrated
by Hinton’s (1986) kinship network. As discussed in chapter 6, dif-
ferent hidden units took on specialized tasks such as representing the
generation of a particular family member.) Also, structured networks
provide ways to utilize and interconnect multiple subnetworks (e.g.,
Hummel, Biederman, Gerhardstein, and Hilton, 1988; and Touretzky
and Hinton, 1988; the latter model is discussed later in this chapter).®
Using them in an improved model would facilitate the incorporation of
nonphonological sources of constraint. However, new network archi-
tectures will not help with certain other desired improvements. For
example, it is important to know the actual input to the child’s system,
taking into account possible roles for comprehension and filtering
mechanisms, but no one knows how to do this (including Pinker and
Prince, who rely solely on observed frequencies of production in their
claims concerning appropriate input to the past-tense system).

In the end, Pinker and Prince acknowledge that more powerful
connectionist architectures might be adequate to produce a model that
meets all of their criteria; but then they dismiss this important con-
cession in two ways. First, they note that no one has yet built such a
model, so its success is hypothetical. Second, they echo Fodor and
Pylyshyn in asserting that if someone did build the model, it “‘may be
nothing more than an implementation of a symbolic rule-based ac-
count” (1988, p. 182). They express doubt that the model would di-
verge enough from mere implementation of standard grammars to ‘‘call
for a revised understanding of language’ (1988, p. 183), and exhibit
little curiosity as to whether they are correct in this negative assess-
ment. Therein lies a difference that may count for more than the
arguments advanced from each camp: for connectionists, but not for

6 These subnetworks can be regarded as modules in a weak sense of that term; cf. the
modules of Fodor (1984), which function independently.
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their critics, the properties of networks elicit the curiosity and excite-
ment that prompt entry into unknown territory. In the case of the
past-tense network, much of the appeal was in the potential for a uni-
fied account of rule-like and exceptional cases that would provide a
mechanistic explanation for abstract linguistic phenomena. Pinker and
Prince’s criticisms accurately target some specific deficiencies of the
model, but do not diminish this appeal.

Connectionist Responses

In the remainder of this chapter, we consider three kinds of global
responses that connectionists can give to critiques that insist on the
need for symbolic representations and rules. We refer to them as the
approximationist, compatibilist, and externalist approaches.’

The Approximationist Approach

Description of the approach The first, most radical approach is to view
connectionist models as providing the most detailed, accurate account
of cognitive performance. On this view, symbolic models are more ab-
stract (perhaps idealized) accounts that lose some of the detail, but pro-
vide an efficient means of stating the regularities that remain. That 1s, a
symbolic model approximates a connectionist model and provides a less
d'etailed account of performance than does the connectionist model.
This approach has been most explicitly formulated by Smolcnslfy
(1988), in the part of his “Proper Treatment of Connectionism’’ in
which he contrasts symbolic (i.e., rule-based) and subsymbolic (i.e., PDP)
modcls of what he refers to as the subconceptual level of analysis. His en-
tire argument is considerably more complex than this, and is wgt:th
reading in its entirety. For example, he distinguishes between intuitive
processing, which he emphasizes and assigns to the subconceptual
level, and conscious application of rules, which he assigns to the concep-
tual level. Symbolic models can give an exact account of conscious rule
application but, he contends, a subsymbolic account is required to
obtain an exact account of intuitive processing (which is akin to the
nonpropositional approach to knowledge, emphasizing pattern recog-
nition, presented in chapter 5). The levels can be crossed in either di-
rection, but if so, only an approximation will be achieved. Hence,

7 Distinctions related to our approximationist/compatibalist distinction have been ad-

vanced by others. See Derthick and Plaut (1986) and Barnden (1988).
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Smolensky allows for the idea that conscious rule processing does exist,
and is only approximated by a subsymbolic model; however, he does
not put language processing at this level. For language, he would say
that it is symbolic theorists who are doing the approximating, and
connectionists who will, someday, provide the exact account. This is
consistent with the idea that language is not exactly compositional,
recursive, productive, systematic, or coherent and that therefore one
would not want a model that exactly exhibits these properties. We re-
turn to Smolensky’s treatment of conscious rule processing in the last
section of this chapter.

The approximationist approach is also advocated by Rumelhart and
McClelland. One of the considerations that led Rumelhart and his
colleagues to distributed connectionist models in the first place was a
recognition that the cognitive system displays variability, flexibility,
and subtlety in its behavior which was not being adequately captured in
traditional rule-based systems (see the first section of Rumelhart,
Smolensky, McClelland, and Hinton, 1986, in PDP:13). Traditional
rule systemis are brittle, and can be made to capture these detailed
phenomena only awkwardly (e.g., by having a separate rule for each
“exception”) or by introducing numerical parameters (e.g., strength
parameters on rules that can produce certain kinds of variability). Rules
and symbols have their most obvious use in building higher-level
models that abstract away from many of the detailed phenomena
exhibited in behavioral data. When the details are not needed these are
the models of choice (at least for description); but to model the actual
mechanisms of cognition, more detailed, less brittle models are needed.
Connectionism provides one avenue of approach, which is to use
devices other than explicit rules to build the mechanistic account. In
Rumelhart and McClelland’s terminology, the behavior of the cognitive
system is not rule-governed, but rather 1s only (approximately) rule-
described. The behavior is actually governed by a unified mechanism
that operates at a somewhat lower level than traditional rules (Smolen-
sky’s subconceptual level; Rumelhart and McClelland’s microstructure
level). As expressed by Rumelhart (1984):

It has seemed to me for some years now that the “explicit rule” account of
language and thought was wrong. It has scemed that there must be a unified ac-
count in which the so-called rule-governed and exceptional cascs were dealt with
by a unified underlying process - a process which produces rule-like and rule
exception behavior through the application of a single process ... both the
rule-like and non-rule-like behavior is a product of the interaction of a very
large number of “sub-symbolic” processes. (1984, p. 60)
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Rumelhart and McClelland (1986) in PDP:18 elaborate:

An illustration of this view, which we owe to Bates (1979), is provided by the
honeycomb. The regular structure of the honeycomb arises from the interac-
tion of forces that wax balls exert on each other when compressed. The honey-
comb can be described by a rule, but the mechanism which produces it does not
contain any statement of this rule. (1986, p. 217)

It should be noted that some rule-based theorists have chosen an
alternative avenue of approach to building more detailed mechanistic
models (e.g., Holland et al., 1986). They have retained rules, but re-
duced their brittleness by introducing numerical parameters, equations
that govern the activation of rules, and soft constraints among rules.
Often the rules are made more detailed as well (one might call them
micro-rules). These low-level mechanistic rules systems bear about the
same relation to traditional rule-based accounts as do connectionist sys-
tems; that is, the traditional rules are more abstract, approximate state-
ments of regularities in the mechanistic system.

Preliminary evidence The plausibility of the approximationist approach
is supported by connectionist simulations, which can accomplish tasks
that would seem to require the use of rules and symbolic represen-
tations. We have already encountered some exemplars of this research
strategy. First, the word recognition model in chapter 4 (McClelland
and Rumelhart, 1981; Rumelhart and McClelland, 1982) exhibited
emergent behavior that seemed to follow rules that were not explicitly
encoded in the system. For example, the system behaved differently
with nonwords that met orthographic constraints of English than with
those that did not, even though it had no explicit rules encoding those
constraints. Second, the past-tense acquisition model discussed in
chapter 6 (Rumelhart and McClelland, 1986, in PDP:18) was directly
targeted at the goal of obtaining rule-like behavior without the use of
rules. The most convincing evidence, however, would come from a net-
work that could carry out syntactic processing. The sentences of a natu-
ral language clearly exhibit constituent structure and a combinatorial
syntax; a nonrule-based system that could generate this structure by
some means would be adjudged to at least equal the capacities of a
rule-based system. In what sense the system would thereby exhibit
Fodor and Pylyshyn’s features of productivity, systematicity, and infer-
ential coherence is a less straightforward question, which we shall not
pursue here.

We are not aware of any connectionist system that can process a sub-
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Figure 7.1 Reber’s (1967) finite state grammar. States are labeled by numerals, and
transition arcs by letters. A grammatical sentence can be generated by traversing a

path from “Start” to “End”. Each transition produces a letter, such that a string is
sequentially generated. From D. Servan-Schreiber, A. Cleeremans, and J. L. McClelland
(1988) Encoding sequential structure in simple recurrent networks, Technical Report
CMU-CS-88-183, Carnegie Mellon University, p. 6. Reprinted with permission,

stantial subset of a natural language such as English. This is a major
undertaking, and it is too early in the development of connectionism to
accomplish it. There are, however, attempts to deal with more limited,
tractable language-processing tasks. We shall consider one of these in
some detail: Servan-Schreiber, Cleeremans, and McClelland’s (1988)
network for processing strings generated by a finite state grammer.
What is noteworthy about this network is that it performs a task that is
economically described in terms of (finite state) rules, but the network
does not explicitly use rules to achieve its performance.

A recurrent network for a finite state grammar The grammar that
Servan-Schreiber et al. used for most of their experiments was devel-
oped by Reber (1967) and is shown in figure 7.1. It can be seen that the
grammar specifies eight different states (the six numbered nodes as well
as Start and End). A transition is made from one state to another by
traversing one of the arcs that leads away from the current state; in the
initial version, each transition was assigned a probability of 0.5. A series
of such choices specifies a path from Start to End. Grammatical
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strings, such as TSSXS or PVPS, are generated by recording the se-
quence of labels that are encountered in traversing an entire path. Note
that the labels could just as well have been words, in which case the
string PI/PS might have been the English sentence Children have chil-
dren nowadays. ‘T'he limitations of finite state grammars are well known,
due in good part to Chomsky’s (1957) evaluation of different classes of
automata as devices for generating different classes of languages. For
example, they do not explicitly capture the hierarchical constituent
structure which is of such concern to Fodor and Pylyshyn.® They do,
however, gencrate an infinite set of strings (if loops are included); they
are rule-governed; and they exhibit a property that presents a challenge
for recognition tasks: the same letter can be generated from different
states of the network.

In the recognition task used by Servan-Schreiber et al., the system
was presented with a string letter by letter; for each current (test) letter
it had to predict which letter would come next in the string (actually,
which tzo letters could come next, since there were always two equally
probable possibilities which were randomly sampled). To make an ac-
curate prediction, the system must use more information than it is cur-
rently given; that is, it needs to know not only what letter has been
presented as the test letter, but also what node in the path has been
reached. If the test letter is .S, that node could be either node #1 or
node #5. One way to distinguish indirectly between these nodes is to
examine the preceding context in the string. Suppose the system is be-
ing presented with T.SSXS and the current test letter is the second S;
we shall indicate this by the notation TSSXS, and refer to it as the
third pass on trial TSSXS. Given that the preceding context is TS, the
finite state device must have been at node #1 when it generated that S.
But two passes later, when the test letter is once again S but now at
TSSXS, the preceding context is T'SSX; the node could only be #5.
The prediction regarding the next letter will be quite different in these
two cascs (S or X versus End). What Servan-Schreiber et al. did was to
build a connectionist network that was able to carry out the prediction
task by making use of preceding context as a proxy for the node itself.
As we shall sce, a network with this capability can, to some extent, deal
with contingencies between nonadjacent elements of the string. Parsing
natural language sentences requires this ability; for example, the sub-

8 More claborate finite state grammers have been suggested, however, that have devices
such as memory buffers; these augmented transition network grammars not only build a
constituent structure, but are as powerful as transformational grammars. Sce Kaplan,
(1975) for an introduction,
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Figure 7.2 Servan-Schreiber et al.’s (1988) recurrent network for predicting
successive letters in a string generated by Reber’s (1967) finite state grammar. From D.
Servan-Schreiber, A. Cleeremans, and J. L. McClelland (1988) Encoding sequential
structure in simple recurrent networks, Technical Report CMU-CS-88-183, Carnegie
Mellon University, p. 7. Reprinted with permission.

Ject and verb must agree even if there is an intervening relative clause.
Nevertheless, Servan-Schreiber et al.’s investigation must be recog-
nized as a preliminary endeavor to produce just one of the many capa-
bilities needed to process natural language.

The main challenge they faced was designing the network in such a
way that it would bring preceding inputs to bear on the way a current
input is processed. Most connectionist network architectures cannot do
this; to overcome this limitation Servan-Schreiber et al. experimented
with a specialized architecture, the recurrent network. This architecture
was suggested by Elman (1988, 1989), and is a variation on Jordan’s
(1986b) sequential network. The specific network used by Servan-
Schreiber et al. is shown in figure 7.2. In part it is an ordinary three-
layer feedforward network, in which the input and output layers are set
up with an identical localist encoding of the letters and of the special
symbols Start/Begin (unit B) and End (unit E). The novel part is a
special subset of input units (the context units). These do not receive
external input; rather, each hidden unit sends its activation to one
context unit as well as sending activation forward to the output units.
The result is that the hidden layer’s construal of the input presented
at time ¢ is available to it as part of the input at time ¢ + /. Exactly
what is encoded in the hidden units depends to some extent on their
number; most of the experiments used either 3 or 15 hidden units.

The network’s global task is to figure out what is systematic in the
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large number of strings to which it is exposed during a learning phase
using back-propagation. Each string is presented one letter at a time, in
left-to-right order from the Start/Begin symbol to the last letter. Thus,
a string of n letters is presented as a series of n + I training steps. At
each step, the specific task is to predict what can come next. A typical
successful step will begin with the activation of exactly one input unit
and end with substantial activation of exactly two output units — those
corresponding to the two letters that the network judges to be possible
successors to the current letter. (The only other type of successful step
involves predicting the End symbol when appropriate.) Because the
context units provide part of the input, and they do so recursively, in-
formation about the entire preceding context is potentially available
when processing a given letter in the string (although it is degraded to
some degree).

To explore the behavior of this type of network, Servan-Schreiber
et al. carried out several studies, which differed in procedural details
and particularly in the nature of the training set: (1) 200,000 strings
that were randomly generated from the grammar in figure 7.1 with no
restrictions on length; (2) 21 of the 43 strings that could be generated
from that grammar with length restricted to 3-8 letters; (3) a subset of
the strings from (1) which could be generated from a simplified gram-
mar that lacked node #0 and its two arcs, with the purpose of
examining the hidden units at different points in the learning process; (4)
strings for which information needed to be preserved across an embed-
ded sequence. Fifteen hidden units were standard, but the effects of
varying this factor were examined in studies (1) and (4).

Studies (1)-(3) yielded the following picture:

(a) Early in training the network learns to focus on letters and makes
its predictions on that basis (ignoring position in the sequence).
For example, after 100 epochs the network in study (3) has almost
identical patterns of hidden unit activation when the current letter
is S, regardless of whether the arc was the one leading back to node
#1 or to node #5. The predictions on the output units regarding the
next letter are a composite of the arcs leading from these two
nodes; that is, the most active output units are those that predict S
and X (appropriate for node #1) and End (appropriate for node
#5); there is also one inappropriate prediction (V). The context
units have unstable weights during this period and are more or less
ignored.

(b) After considerably more training (e.g., 700 epochs in study (3)),
arcs are distinguished. For example, the S leading to node #1
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produces a different hidden layer pattern from the S leading to
node #5. Thus, the context units are now being utilized systemati-
cally; however, the network is still working at improving its
predictions and does not always see the connection between
different arcs leading to the same node.

(c) Finally, the network makes the appropriate predictions on the out-
put layer, as though it now knows what node of the finite state
grammar has been reached and what arcs lead from it. The number
of epochs required was not reported for study (3). For study (1),
which used the complete version of the grammar, there were 200,
000 training trials. However, the best run with 15 hidden units
required only 20,000 trials to meet a rather weak criterion of suc-
cess; the best run with three hidden units required 60,000 trials to
mcet the same criterion. In both cases the network continued to
make useful changes during the additional training, such as sharp-
ening the activation patterns on the output units.

It is useful to characterize this final phase of learning in more detail.
Servan-Schreiber et al. used the method of cluster analysis to get a
close look at what information was being encoded in the hidden units.
This method extracts regularities in the activation patterns across the
hidden units that occur for different letter sequences, and uses them to
construct a tree structure representation that clusters together those
sequences with similar hidden unit patterns. In study (1), just three
hidden units were sufficient to achieve a separate cluster of letter
sequences for each of the nodes #1 through #5. That 1s, from the seven
input letter units and three context units the hidden units condensed
the most economical possible encoding of the 20,000 training patterns
for carrying out the task of prediction: they abstracted out a close ap-
proximation to the nodes of the grammar. From a symbolic perspec-
tive, this network did just the right thing (although it took a painfully
long time to do it).

Given that a network with three hidden units could learn to emulate
the grammar closely, Servan-Schreiber et al. wondered what a network
with excess resources would do. They ran the same study on a network
with 15 hidden units, and obtained a much more complex cluster analy-
sis. There were more levels of clustering, more clusters at a given level,
and the only nodes of the grammar that corresponded to distinct
clusters were those for nodes #4 and #5. The other nodes had been div-
ided according to the arcs leading into them (that is, the identity of the
current letter), even though that information was not needed to make
an accurate prediction once it had been used to help identify the cur-
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rent node. For example, the cluster for arc T leading to node #1 was in
a completely different part of the tree than the cluster for arc S leading
to node #1. Lower levels of clustering captured even more detailed in-
formation about the path that had led to the current test letter. For
example, sequences ending in SSXXVV were in one small cluster,
those ending in VPX VI were in another, and those two clusters were
combined into a slightly larger cluster; at the next level these were
combined with a cluster ending in TVV, and at a higher level this was
part of the large cluster corresponding to node #5. Similarly detailed
results were obtained with the restricted-length sequences in study (2);
fairly high-level clusters in that network were based not only on-the
node and the current letter but also on whether the letter had occurred
early or late in the sequence. This permitted the network to cut back its
prediction to a single next letter when length restrictions ruled out the
other letter from that node. For example, if node #3 were reached by
the sequence TSXXYP, only the choice of S would yield a complete
sequence within the limit of eight characters, but if it had been reached
by the sequence TXX YP, the choice of X would also be legitimate.

What we learn from this is that feedback about the accuracy of pre-
diction, delivered by means of back-propagation, is only one influence
on the development of the network. The hidden units will tend to
encode as much detail as possible about the patterns that are fed to it
through the input units, even though the weights are not being tuned to
enhance this activity. It will also make moderate abstractions that are
adequate to the task for which it is being trained. Only when resources
are scarce will it make the most parsimonious (highest-level) abstrac-
tions, and exhibit behavior that is similar to that of the most obvious
rule-based system that would perform the same task. When there are
more hidden units than necessary, they will be used to produce
behavior that is more elaborate than that of a traditional rule system; in
this event, the rule system only approximates the network. The outputs
themselves may be identical for the two types of systems, but the net-
work will carry out more extensive processing to arrive at the output.
(In fact, even the network with three hidden units weakly encoded lim-
ited information about the preceding context in subclusters within four
of its five node-equivalent clusters.)

Since we are attempting to model human cognitive systems, this
makes the following questions quite salient: how detailed are the mem-
ory traces of particular acts of processing that we retain? To what ex-
tent are regularities extracted in addition to, or instead of, the most
detailed traces? How parsimoniously is this done (i.e., do the regulari-
tics tend to be computed at the highest possible level of abstraction)?
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Are the regularities encoded as separate abstractions (the rules ap-
proach) or integrally with more detailed information (the network ap-
proach)? How much exposure to what range of exemplars is needed to
achieve a reasonably well-functioning system? Traditional models tend
to emphasize the extraction of regularities, but there is a class of
nontraditional models that retain a maximum of detail instead (the
exemplar models of Medin and Schaffer, 1978) which receive some
support in human data. The results of Servan-Schreiber et al. make it
clear that networks “prefer” detail, but can also be pushed to genera-
lize. They generate rule-describable (not rule-governed) outputs by
means of hidden-layer representations that, depending upon the input
and the number of units, can range from extremely detailed to quite
parsimonious (approximating rule systems). To the extent that human
systems utilize more detail than seems necessary, the plausibility of
models that can do likewise is enhanced.

This leads to the broader issue of the extent to which the “mental
grammar”’ is like the symbolic grammars proposed within Chomskian
linguistics. Possibly, a grammar is best regarded as a very cconomical
way for a linguist to describe certain (nonquantitative) regularities in
the sentences that people produce and understand. The mechanisms
that produce and comprehend sentences might have a very different
architecture, and utilize detail that would be excessive In a grammar.
We like to think of linguistic competence as one of many possible levels
of description of linguistic functioning, in which most aspects of the
functioning itself have been abstracted out; the products of that
functioning remain, and have regularities that the grammar describes
(see Abrahamsen, 1987 and in press).? In this context, it is better for a
psychological model to be approximated by a grammar than to incor-
porate a grammar, and for the approximation to be a close one only at a
general level of description. In fact, even Fodor and Pylyshyn’s features
of productivity, systematicity, and inferential coherence may overstate
the properties of the mechanisms that process language. For example,
they profess surprise at the idea that a person could understand the sen-
tence Joan loves the florist but not The florist loves Joan (a failure of
systematicity). Yet, children exhibit a variety of asymmetries that indi-
cate incomplete systematicity; they are most evident when there are
differences in plausibility or in ease of mapping onto a visible state of
affairs (Huttenlocher and Strauss, 1968; and Strohner and Nelson,
1974). Adults will not reject the less favored sentences, but often show

9 'This idea was developed in conversation with S.-Y. Kuroda, who would not necess-
arily endorse this precise version.
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processing time differences that correspond to developmental differ-
ences (e.g., H. Clark, 1972). As we have already stated above, much of
the problem comes from placing insufficient distance between the
linguistic and processing accounts.

If the connectionist approach is viewed as promising, certain chal-
lenges must be faced. First, although the network with 15 hidden units
is very sensitive to details about the preceding part of the sequence, it is
sensitive in a fuzzy way. There is no explicit encoding of what each
subcluster has in common; there are no separate representations that
can be accessed and operated upon with precision. What the network
knows can only be discovered indirectly, by devising tests and observ-
ing its patterns of activation. It may be that humans are fuzzy in the
same way; if so, fuzziness is a virtue for accuracy of simulation (but a
disadvantage for ease of simulation). Second, the network requires a
huge number of training trials. We do not really know how much ex-
posure, and what kind of exposure, humans require in a domain in
order to master it. It seems likely, however, that humans would have
required substantially less training than the network. Reber’s (1967)
subjects, asked to learn 20 strings from the finite state grammar, did so
within a single experimental session and could then generalize to new
strings with 73.5 percent accuracy. The network, in contrast, required
2,000 epochs to learn 21 strings in study 3. Possibly humans have some
advantage which, if better understood, could be applied to design of
more realistic network models. For example, the fact that the subjects
already knew English may be relevant. This difference between net-
work and human performance would be a more immediate problem if
the studies were less exploratory. Third, Servan-Schreiber et al. lim-
ited their explorations to a very simple finite-state grammar. Few
connectionists would wish to argue that an unaugmented finite-state
grammar provides a realistic model of human language, and a good deal
of development work remains to be done on connectionist modeling of
language processing.

A key point about Servan-Schreiber et al.’s investigation is that the
recurrent network architecture permitted the network to use infor-
mation about already processed parts of a sequence to influence the
processing of current input. Without the use of stacks or registers as
memory devices, which the traditional symbolic system would utilize
for this task, the network retains nonlocal information about preceding
context in a sequence. The representation is fuzzy, as noted above, but
is good enough to support very closely drawn distinctions. Dealing
with sequence (whether spatial or temporal) has been one of the more
difficult problems in connectionist modeling; for example, Rumelhart
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and McClelland’s past-tense simulation (chapter 6) used Wickelfea-
tures in part as a means of getting around this problem. The results of
Servan-Schreiber et al. are intriguing as an alternative strategy for deal-
ing with sequences.

These investigators carried out a final study to push the recurrent
network approach even further with respect to the issue of representing
sequences. For study (4) they designed a more complex network, in
which the entire network in figure 7.1 served the role of an embedded
clause. The grammar had two major paths. In one, the first arc was T,
followed by the embedded clause, and finally by another T (contingent
on the first T'). The other was similar, except that the first and last arcs
were P. To carry out the prediction task properly for the last letter, the
network had to retain some encoding of the first letter by means of the
context units. As it turned out, this task was difficult but not imposs-
ible. If the transition probabilities on the arcs were set somewhat
differently for the T-embedded clause (0.6) than for the P-embedded
clause (0.4), the network could perform fairly well on embedded strings
of 3—4 letters. For strings of seven or more letters (combined), however,
there were almost as many wrong choices as correct choices (aswellas a
number of no-choice responses). If the transition probabilities were
identical in the two clauses, moreover, the network could generate
only no-choice responses even after 2,400,000 training trials. Servan-
Schreiber et al. argue that language in fact exhibits enough statisti-
cal asymmetry that the case of identical probabilities may not be true
to life and therefore humans need not be able to handle embedding in
the case of symmetric probabilities.

This network’s limited ability to deal with constituent structure (in-
cluding embedding) is far from sufficient to satisfy Fodor and Pyly-
shyn, it is safe to surmise. Connectionists are still discovering what
their models can and cannot do, and Servan-Schreiber et al.’s appli-
cation of Elman’s (1988) architecture is an informative contribution to
this preliminary phase of investigation. The general strategy of these
and other approximationists is clear. They seek to emulate the perform-
ance of symbolic systems using patterns of connectivity rather than
symbolic rules and representations. The network approach facilitates
capturing subtle distinctions that can be made only awkwardly in a tra-
ditional symbolic model. The connectionist’s goal is to obtain a model
which, by capturing these distinctions, provides a more accurate model
of actual human performance than traditional symbolic models. We
have suggested that it is the discrepancies that provide the best argu-
ment for pursuing connectionist models; if the approximation were too
close there would be too little to gain.
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The Compatibilist Approach

In contrast to Rumelhart and McCleliand’s approximationist position,
some connectionists maintain that humans do carry out explicit sym-
bolic processing fdr some purposes. On this view, complex reasoning
and problem-solving scem inexplicable except by positing symbols that
are systematically manipulated by rules. David Touretzky is one of
the strongest advocates of this approach. Tourctzky and Hinton (1988)
wrote that, while accepting the relevance of network models that do not
use explicit rules,

we do not believe that this removes the need for a more explicit representation
of rules in tasks that more closely resemble serial, deliberate reasoning. A per-
son can be told an explicit rule such as “i before e except after ¢’ and can then
apply this rule to the relevant cases. (pp. 423-4)

Unlike traditional symbolic theorists, however, these investigators seek
to implement the explicit rules in a connectionist network and maintain
that crucial benefits accrue as a result of the connectionist implemen-
tation. We will call this the compatibilist approach. Dyer (in press,
p- 11) well describes the appeal of pursuing this approach (although he
is not a “pure’’ compatibilist as is Touretzky):

What we currently appear to have is a situation in which subsymbolic, dis-
tributed processing models exhibit massive parallelism, graceful error degra-
dation, robust fault tolerance, and general adaptive learning capabilities, while
symbol/rule based systems exhibit powerful reasoning, structural and inferen-
tial capabilities. If we could embed symbol representations and structure-
manipulating operations within a distributed, subsymbolic architecture, then
very powerful, massively parallel, fault tolerant high-level reasoning/planning
systems could be created.

Perhaps the clearest way to differentiate the approximationist and
compatibilist approaches is that the approximationist works from the
bottom up. The usual strategy is to present a series of training patterns
to the network and to observe the regularities that the network extracts.
Any attempt to build explicit rule processing into the system is
avoided. In contrast, the compatibilist works from the top down, begin-
ning with a rule processing account and designing a network that will
implement those rules. To date compatibilists have tended to engineer
their own networks to insure that the desired rules are implemented
rather than allowing the network to construct its own solutions.

One type of system that uses symbols and explicit rules is the pro-
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duction system (PS), which we have already introduced in several
chapters. In a PS, symbolic expressions are manipulated by production
rules (often referred to as productions). Each rule has the form If A then
B where A is a condition and B is an action. The condition side spect-
fies what expressions must be in working memory (WM) in order for
the rule to fire. The action side specifies which expressions should
be moved in (or out) of WM when the rule does fire. Consider, for
example:

(FAB) (FCD) —— + (GAB) + (PDQ) — (FCD)  Rule |

This specifies that if (FAB) and (FCD) are both in working memory,
(GAB) and (PDQ) should be added and (FCD) should be deleted. In a
realistic PS, the symbolic expressions are meaningful: some of them are
goals and subgoals, which direct the activity of the system towards
accomplishing a task, and others are more directly task-related (e.g.,
numerals if the task is multiplication). The basic operations of the sys-
tem are the same even for meaningless expressions like those in Rule 1,
however: finding a rule that matches some of the current contents of
WM (on its condition side), and executing the rule by making the
changes to WM that are specified on its action side. lence, the basic
components of a PS are (1) a list of production rules of the form con-
dition-action; and (2) a working memory that serves as a “blackboard,”
driving the selection of rules and recording the results of executing
them.

Touretzky and Hinton (1988) wished to show that they could achieve
a connectionist implementation of a PS. Ag compatibilists, their goal
was to build a svstem that could actually use rules to manipulate
symbols, in contrast to the approximationist goal of building a system
that generates appropriate behavior without using symbols or rules.
Given their goal of demonstration, it was adequate to their purposes to
implement a system that was formally a PS but did not simulate any
human task. In chapter 2 we introduced their symbolic expressions:
meaningless triples such as (GAB) formed from a symbol vocabulary of
25 letters. We also described how they achieved a distributed represen-
tation of the triples by means of the ingenious method of coarse coding,
and will not repeat that discussion here. The first version of their sys-
tem, DCPS1 (Distributed Connectionist Production System 1) mani-
pulated triples like (GAB) by means of rules like Rule 1. The actual
implementation, however, has a very different character than a tra-
ditional PS. It is quite complex (they state that it is one of the largest
connectionist systems yet constructed), and the unfamiliarity of its
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Figure 7.3 'The five components of the complete version of Touretzky and Hinton's
(1988) Distributed Connectionist Production System (DCPS2). From D. S. Touretzky
and G. E. Hinton (1988) A distributed connectionist production system, Cognitive
Science, 12, page 427. Reprinted with permission,

architecture makes it difficult to characterize. While we offer an over-
view of their system, we encourage readers to consult the paper to get a
more direct and detailed sense of Touretzky and Hinton’s impressive
engineering.

DCPS has five major components, as sketched in figure 7.3. The
internal structure and functioning of each component, as well as the
inter-component relationships, are quite unlike a traditional PS. As
will become apparent, even the components that have familiar names
(rule space and working memory) serve somewhat different functions
here. For the most part, DCPS operates as a Boltzmann machine (a
type of interactive network that asymmetrically iterates its computa-
tions until an energy minimum is reached; see chapter 2). Another un-
familiar feature is that, except for the rule space, each component has a
large number of units that provide a fully distributed representation of
symbolic expressions by means of coarse coding. For example, in this
connectionist version of working memory (WM), there are 2,000 binary
“receptor” units (units that take activations of 0 or 1) that coarse-code
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triples such as (GAB). At a given time, dozens of WM units are active;
with an average of 28 units in the receptive field of a given triple,
several triples will thereby be active in this coarse-coded fashion.
Which triples are active constrains which rule can next be selected for
execution.

The representation of the rules themselves involves all five com-
ponents (although bind space is needed only in DCPS2 and will there-
fore be ignored at present.) Rule space is essentially a switching station
that puts together appropriate sets of connections to other components
to implement each rule. Each rule is assigned to its own “clique” of 40
units in rule space. The units within a clique differ somewhat in their
individual patterns of connection with units in other components;
therefore, they encode the rule collectively rather than redundantly.
This “semidistributed” encoding lies somewhere between fully distri-
buted (like the coarse coded representations in WM) and fully symbolic
(like the list of rules in a traditional PS).!! If most of the units in a
clique are active when the system has stabilized, that rule will fire. In-
hibitory connections are used to assure that only one rule will win the
competition (a ‘“‘winner-take-all”’ scheme; see Feldman and Ballard,
1982).

The *“clique” of units in rule space can be thought of as simply nam-
ing or indexing the rule. Figure 7.4 shows how just one of the various
rules (Rule 1) is parceled out among the spaces. Each of the condition-
side triples is represented in one of two clause spaces, and the rule’s
actions are carried out in WM. At the beginning of processing, the en-
tire contents of working memory are copied into each clause space by
means of excitatory one-way connections from each of the 2,000 units
in WM to the corresponding units in C1 and C2. This ensures that all
of the contents of WM are available for comparison to all of the rules
when computation ensues. The rule that comes closest to finding both
its first and second triple (in C1 and C2 respectively) wins, Like the
rule space (but unlike WM), the clause spaces have inhibitory connec-
tions among their units; these are carefully calibrated to assure that
only about 28 units will end up active by the end of processing (i.e., the
number needed to pick out one triple). Hence, computation between
the rule and clause spaces narrows attention to just two triples in clause
space without disturbing WM, and these serve to activate the appropri-
ate rule.

11 On p. 462 Touretzky and Hinton explain why they use semidistributed representa-
tions in this version of DCPS, and discuss prospects for fully distributed representations
in a future version. The difficulty has to do with the fact that rules can be very similar on
the condition side but very dissimilar on the action side.
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To explain this processing in a bit more detail: excitatory con-
nections between rule space and each clause space are wired such that
as units representing a triple in a clause space become active, they acti-
vate a rule with that triple in its antecedent. These connections are
bidirectional, so that as rule units become active, they send additional
activations to the units in clause space that satisfy their antecedents.
The effect is that the system acts as a constraint satisfaction device,
where the constraints are the pattern of activation in WM (as copied
into the clause spaces), the triples that are on the condition side of the
various rules, and the inhibitory activity in the rule and clause spaces.
By the time the system settles, there should be one active rule; the first
triple in that rule should be active (coarse-coded) in C1, and the second
triple should be active in C2. None of these has priority; the run is
initiated by the contents of WM, and the rule that best matches WM
should emerge (in rule space) along with the separate encodings of its
clauses (in clause space). The gate from rule space to WM is then
openced and the system carries out the actions specified in the winning
rule. This will alter the contents of WM, setting the stage for a different
rule to become active on the next round.!? (The gates in figure 7.3
regulate these phases, and are a non-Boltzmann-like addition to an
otherwise parallel processing system. The authors argue that gated
connections are, however, biologically realistic.) The performance of
this system appears at least promising; one sequence of 1,000 rule
firings was carried out without error (using a six-rule loop). However,
detailed data were not provided.

We have not yet mentioned the bind space in figure 7.3. Variable
binding (see above, p. 217) has been a troublesome problem for con-
nectionism; either it must be directly solved, or mechanisms of equiva-
lent effect must be developed. It is encountered when rules include
variables, such as:!13

(xAB) (xCD) —— + (GxP) — (xRx) Rule 2

The binding problem is that the same letter must appear at each x. So
far Touretzky and IHinton have limited their attention to rules like Rule

12 Note that the alterations are to the units that coarse code the triples, since the
triples have no other encoding in the system. Because the same units also code for a var-
icty of other triples, other triples would gain (or losc) a bit of their support in WA if they
had one or a few units in common with (GAB) or (PDQ) (or (FCD)); that 1s, the coarse
coding scheme implements generalization and memory decay “for free.”

13 Tourezky and llinton precede each instance of the variable with an equal sign as a
notational device indicating that a variable follows, e.g., (=x A B); we have suppressed
these.
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2: there is one variable, and it appears in the initial position in each of
the condition triples and anywhere in the action triples. For these rules,
they devised a solution to the binding problem that appears to work
rather well (DCPS2). First, the clique of 40 units for a rule like Rule
2 are wired to a broader array of clause units. There are excitatory
connections to C1, for example, for triples such as (MAB) and (SAB) as
- well as (FAB). To narrow down this broader range of possibilities in a
way that properly binds the variable x, the bind space 1s introduced.
This is the only space that focuses on the 25 letters that compose the
triads, and it coarse codes these letters by using units that are sensitive
to three letters cach. Two-way excitatory connections between units in
the bind space and appropriate units in each clause space ensure that
the two clause spaces both employ the same substitution for the vari-
able in the triples selected. That is, the bind space is used to implement
an additional constraint on the network, and the solution into which it
settles should satisfy this constraint in addition to the others already
discussed for the no-variables case. Thus, when (FAB) is excited in C1,
the units coding for F as the first letter are excited in the bind space,
and they in turn excite units in C2 that begin with F. Although a great
deal of detail is provided on the design of this version of the network,
and Touretzky and Hinton discuss it as a functioning system, they re-
port no quantitative performance data. (Instead, they discuss how the
system deals, not always successfully, with the most difficult cases.)

The network developed by Touretzky and Hinton does appear to
exhibit many of the features of rule-based processing, and of pro-
duction systems in particular, even though it implements rules by
means of a coarse coding scheme rather than ordered strings of sym-
bols.'* Rules get selected on the basis of WM contents and fire; itera-
ting the process generates a sequence of actions on WM. Also, to the
extent that DCPS can deal with variable binding, the systematicity fea-
ture demanded by Fodor and Pylyshyn seems to have been provided.
For example, the condition side of Rule 2 can be satisfied by (FAB) and
(FCD), by (GAB) and (GCD), and so forth. A number of questions are
salient in evaluating the system, however, in addition to the question of
whether it exhibits the features of rule systems. We shall mention a few
of them.

First, DCPS is undoubtedly an impressive job of engineering; but is
it also impressive as a model of human cognition? One way that DCPS
falls short (at least in its 1988 version) is that it is limited to rules with

14 For other examples of networks that implement rule systems, see Barnden
(1989), Lange and Dyer (in press), Shastri (1988), Shastri and Ajjanagadde (1989), and
Touretzky (1986; in press).
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just one variable, whereas human cognition clearly is not. Monadic
systems are much less powerful than dyadic systems (in the predicate
calculus, for example). Another concern is whether humans carry out
variable binding in anything like the way DCPS does. We do not mean
to suggest that the answer is no; we do suggest that the answer, and
the grounds it would be based upon, are not obvious. As computer
scientists, Touretzky and Hinton do not themselves make this issue pri-
mary; one advantage of the interdisciplinary character of connectionism
is that both engineering and psychological modeling questions will tend
to get asked of each system.

Second, if DCPS is simply an implementation of a rule system, what
advantages have been gained by doing a distributed, connectionist im-
plementation? One advantage that is especially salient to production
systems is that it adds the capacity to do “best-fit”” matches rapidly
without having to specify in advance all the parameters on which fit
might be evaluated. In addition, the usual advantages that are generally
cited for connectionist models should obtain (e.g., damage-resistance,
support for generalization). Adding a learning capability to a connec-
tionist PS would be an especially noteworthy achievement, but this was
not attempted in DCPS and could well present difficulties. Some, but
not all, of these advantages could be obtained using a localist rather
than distributed encoding, and some localists who share the compa-
tibilist objectives have criticized this aspect of the work. Feldman
(1986), for example, has objected that distributed implementations of
symbols, which involve extreme parallelism at the subsymbolic level,
make symbolic processing overly sequential and slow. McDermott has
dubbed this the Touretzky tarpit problem (reported in Dyer, in press).

Third, the introduction of a gating mechanism to separate condition-
matching from rule-firing touches on an issue of strategy. Investigators
differ in the degree to which they are willing to produce hybrid systems
that interface connectionist design and mechanisms with noncon-
nectionist design and mechanism. Touretzky and Hinton’s system is
connectionist in general, with only the gating mechanism making it
somewhat of a hybrid (only somewhat, because the gating mechanism
is not a symbolic device). At the other end, there are systems that are
basically symbolic but gain some of the connectionist advantages by
incorporating certain features. Examples of production systems that
hybridize to some extent are Thibadeau, Just, and Carpenter’s (1982)
CAPS system and J. R. Anderson’s (1983) ACT* system. It is possible
that some (preferably elegant) hybrid will turn out to offer the best
framework in five or ten years. The hybrids being produced now are in-
triguing and worthy of consideration as early sketches, and there is
room for a variety of strategies. For the present, however, some prefer
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the strategy of pushing connectionist models at the subsymbolic level as
far as they can go (e.g., Rumelhart and McClelland’s various models)
or at least limiting additional mechanisms to nonsymbolic ones (e.g.,
Touretzky and Hinton’s gating mechanism). To do this well, investi-
gators nced to keep an eye on the regularities that have been noted by
symbolic researchers, while eschewing use of their approaches to mo-
deling these regularities (as recommended by Smolensky, 1988). This
strategy would provide the clearest answers concerning exactly what
the limitations of connectionist models might be, and therefore exactly
what kinds of additional mechanisms need to be added if any. It also
sets the stage for later theoretical work on the relationship between
subsymbolic and symbolic models.

Fourth, even though compatibilist and approximationist research
strategies are different, they share the assumption that the distinctive
contributions of the network architecture vield a superior model for
satisfying certain goals, and that traditional symbolic models can at best
only approximate certain aspects of the network’s behavior. Even
Tourctzky and Hinton sound somewhat approximationist when they
write:

We view DCPS as only the first step in the development of connectionist sym-
bol manipulation architectures. Future advances should lead to models which
make better use of the powerful constraint satisfaction and generalization abili-
tics of connectionist networks. Such models would be more than mere imple-
mentations of conventional symbol processing ideas because the connectionist
substrate would provide important computational propertics that are not avail-
able in standard implementations. (pp. 462--3)

Critics like Fodor and Pylyshyn tend to minimize the importance
of any such advantages of connectionist models, regarding them as
“mere”” implementation. To counter them, connectionists may need to
adopt a more aggressive posture by arguing that the characteristics
ascribed to symbolic systems by Fodor and Pylyshyn, combinatorial
syntax and semantics, are important but not sufficient. Touretzky and
Derthick (1987) began to develop such an argument by identifying five
features that cognitive symbols ought to exhibit:

Mobile: ability to appear in multiple locations, perhaps simul-
taneously.

Meaningful: composed of meaningful units in such a manner that
similar objects are represented by similar symbols.

Memorable:  posses a static representation that can be recalled.

Malleable: flexible capacity to match symbol structures.

Moditiable:  can be constructed and altered casily.
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An implementation of symbols in a von Neumann system provides for
mobility (the same symbol can be used in different composed struc-
tures) and modifiability (rules can direct symbol manipulations), and to
a lesser degree, memorability (symbols can be recovered from memory
via their address). It does not provide either meaningfulness (since
atomic symbols are arbitrary, and not composed of meaningful units) or
malleability (since symbols are rigid entities). These are two features
which can be procured by implementing symbols in a connectionist
framework. In a distributed representation, the units are subsymbols
that can represent microfeatures; the “‘symbol”’ is encoded indirectly by
activating any relevant set of subsymbols. This provides the network
with a way of recognizing the similarity when two symbols refer to
similar objects, and of generalizing from target objects to similar
objects. This overlap of microfeatures also provides for malleability, in
that conditions which only partially match those required for the svm-
bol to be satisfied may nevertheless activate the symbol. Connectionist
networks also provide for recall from memory through content, not just
by knowing an address. Mobility and modifiability, however, are more
difficult to obtain in most connectionist systems, but these are the
features that Touretzky and his colleagues have sought to obtain by
building hybrid systems. Thus, Touretzky contends that the compati-
bilist strategy can not only provide those features of a symbolic svstem
that Fodor and Pylyshyn claim are important, but additional features
which are needed for symbols to constitute adequate tools for cognitive
modeling.

Dyer (in press) develops a different compatibilist strategy. He sug-
gests thinking in terms of a hierarchy of levels of research as shown in
table 7.1:

Table 7.1 Dyer's proposed levels of rescarch between mind and brain

MIND
KI\'O\’\’LEDGE’EI\JGINEERII\'(} (KE)
LOCALIST CONNECTIONIST NETWORKS (LCN)
PARALLEL DISTRIBUTED PROCESSING (PDP)
ARTIFICIAL NEURAL SYS'TEMS DYNAMICS (ANSD)

I
BRAIN

Different levels occupy *‘distinct *niches’ in what might be termed an
abstract processing ‘ccology’. That is, what subsymbolic/PDI models
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do well, purely symbolic models do poorly and vice versa” (p. 4). In
part, these differences keep the levels apart. But the goal, as Dyer sees
it, is to allow resources at different levels to complement each other.
Discussing the mappings between models at different levels is a crucial
step towards achieving a synthesis. For example, the knowledge engin-
eering level is the level of symbolic Al it is well suited to stating the
content and structure of a domain and supporting such tasks as goal/
plan analysis. By going down to the next level, localist networks, dy-
namics such as spreading activation can be considered. Having such
multiple levels available can enable choices that may produce better
models. For example, in their work on analogical problem-solving,
Holyoak and Thagard (1989) faced the task of identifying the best
analog to the problem situation, where there are many dimensions on
which situations can be matched, and no perfect matches. To handle
this task, they invoked a localist connectionist program which was well
suited to identify best matches with multiple constraints. For other
tasks, they did traditional Al programming. Dyer (in press) has sug-
gested particular techniques for bridging levels, for example, using con-
Junctive codings to implement role bindings and forming hybrid
systems with spreading activation, thresholds and markers to propagate
bindings. Note also Miikullainen and Dyer’s (1989) paper on a system
that uses recurrent networks and modularization to carry out a story
paraphrasing task.

Using External Symbols to Provide Exact Symbolic Processing

So far we have examined two views of how the key types of models re-
late: (a) that symbolic models approximate connectionist models; and
(b) that symbolic models are implemented by connectionist models. In
this section we shall consider a final alternative, proposed by Rumel-
hart, Smolensky, McClelland, and Hinton (1986) in PDP:14, and ela-
borated upon by Smolensky (1988) and A. Clark (1989). The basic idea
is that networks may develop the capacity to interpret and produce
symbols that are external to the network. Consider language as the
quintessential symbol system. Part of its interest lies in its dual role
as an internal tool (e.g., for mental problem-solving) and as an external
tool (e.g., for written or verbal problem-solving and for communica-
tion). This duality is emphasized in Vygotsky’s (1962) characterization
of problem-solving as carried out externally early in development (by
means of egocentric speech) and internally later on (by means of inner
speech). It is in the external mode that we can actually observe symbols
being manipulated, somewhat as they might be manipulated in a formal
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symbol system. In the externalist approach to symbol processing, the
focus is turned from symbols in their mental roles to symbols in their
external roles. (For development of a related approach to religious
symbols and religious systems see Lawson and McCauley, 1990.)

Smolensky (1988) discusses the cultural practice of formulating
knowledge in external symbols that can be used to communicate that
knowledge (e.g., in a textbook or lecture). He views these external sym-
bolic formulations as being internalized and utilized by a conscious rule
interpreter that is distinct from the inherently subconceptual intuitive
processor. Although his interest is directed primarily towards the latter
processor, which is the one that requires a connectionist account, he
notes three properties of the linguistic encoding of knowledge that are
important, for example, to the advancement of science:

i~

Public access: The knowledge is accessible to many people.

b." Reliability: Different people (or the same person at different times) can
reliably check whether conclusions have been validly reached.

c. Formality, bootstrapping, universality: ‘The inferential operations require

very little experience with the domain to which the symbols refer. (1988,

p-4)

The pre-connectionist assumption has been that in order for people
to operate as conscious rule interpreters it is nccessary that they func-
tion internally as rule processing systems. It may be fruitful to ap-
proach this from another angle, however. Each human is born into a
community which makes extensive use of external symbols, and these
symbols and the regularities in their relation to one another and in their
relation to the world are part of the environment of the developing in-
fant and child. The novice human acquires the ability to interact with
the external symbols by lower-level processes (such as connectionist
pattern recognition) that do not themselves involve a direct internal-
ization of these symbols. That is, the infant learns how to use external
symbols. Although an individual’s ability to think and reason appears
to be aided by eventually internalizing the use of symbols in some
sense, this internalization comes later and is incomplete. Even in ma-
turc individuals, difficult problems elicit the use of external symbols.
And, it is quite unclear in what sense symbols are internalized. The
connectionist program includes the goal of uncovering the causal
mechanisms that occur at the subsymbolic level in carrying out what is
identified at a higher level as “symbolic processing.” Until the program
has been actualized to a much greater extent, there is no way of know-
ing whether additional causal mechanisms at the higher, symbolic level
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will also be needed to account Jfor those regularities that are most effi-
ciently described at that level. Alternatively, connectionist processes
such as pattern recognition may suffice to account for the ability to use
symbols. Hence, if a connecctionist wishes to examine symbol pro-
cessing at this time, networks’ use of external symbols may be the
most appropriate focus of research.

The suggestion we arc developing here is rather different from the
compatibilist approach of directly designing networks to perform sym-
bolic processing. Rather than trying to implement a rule system, we are
proposing to teach a network to use a system (language) in which infor-
mation, including rules, can be encoded symbolically. In using these
symbols, however, the network behaves in the same basic manner as it
always does: it recognizes patterns and responds to them as it has been
trained (for a relatively simple simulation of how a network might learn
to use language, see Allen, 1988). If the external symbols are in an en-
during modality (e.g., handwriting), the external storage will enable the
network to perform tasks that it cannot solve on the basis of a single act
of pattern recognition. Rumelhart, Smolensky, McClelland, and Hin-
ton (1986) in PDP: 14 illustrate this by constructing a scenario for solv-
ing a three-digit multiplication problem:

We are good at “perceiving” answers to problems. ... However, ... few (il
any) of us can look at a three-digit multiplication problem (such as 343 times
822) and sce the answer. Solving such problems cannot be done by our
pattern-matching apparatus, parallel processing alone will not do the trick; we
need a kind of serial processing mechanism to solve such a problem. Here is
where our ability to manipulate our environment becomes critical. We can,
quite readily, learn to write down the two numbers in a certain format when
given such a problem.

343
822

Morcover, we can learn to sce the first step of such a multiplication problem.
(Namely, we can see that we should enter a 6 below the 3 and 2)

We can then use our ability to pattern match again to see what to do next. Each
cycle of this operation invelves first creating a representation through manipu-
lation of the environment, then a processing of this (actual physical) represen-
tation by means of our well-tuned perceptual apparatus leading to a further
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modification of this representation. (Rumelhart, Smolensky, MecClelland, and
Hinton, 1986, p. 45)!5

They go on to suggest that this kind of iterative operation using exter-
nal symbols is what allows ditficult problems, as in logic and science, to
be solved:

These dual skills of manipulating the environment and processing the environ-
ment we have created allow us to reduce very complex problems to a series of
very simple ones. ... This is real symbol processing and, we are beginning to
think, the primary symbol processing that we are able to do. (p. 46)

Our discussion of formal logical abilities (chapter 5) can be viewed
from this perspective. A person or a network that confronts external
symbols that are configured in accord with rules of logic might learn to
process those symbols in the appropriate logical manner.

Rumelhart et al. take the additional step of considering how this use
of external symbols might to some extent be internalized. Their basic
idea is that a mental model of the external symbolic environment is
constructed, and the procedures that would ordinarily opcrate on exter-
nal symbols operate instead on the mental model. By using the output
of the mental model as the input to the next mental operation of pat-
tern-matching, and the output of that opcration as an input to the
mental model, a loop is obtained that can sustain a series of mental
operations. A mental operation itself is viewed as the network’s process
of settling or “‘relaxing” into an interpretation of a symbolic expression,
They suggest that the resulting stable state endures long enough
(approximately half a second) to be conscious, but that the rapid cycles
of computation involved in settling are not conscious. (Cf. Dennett’s
(1978) analysis of one aspect of consciousness in terms of a specialized
speech module that provides a means of reporting the results of cogni-
tive processing.) Rumelhart et al.’s speculative, but intriguing, develop-
ment of this idea can be consulted on pp. 38-48 of PDP:14. Although
they do not specifically discuss the status of the internalized symbols, it
is clear from their discussion that the symbols are simply patterns in a
network. Stable states of the network are the “symbols;” but this is
achieved by a subsymbolic, dynamic encoding that is quite distinct
from the construal of symbols in the symbolic tradition.

15 DMlore recently, Cottrell and Tsung (1989) have developed simulations of addition of
two multi-digit numbers that use versions of Jordan’s (1986b) sequential network and of
Elman’s (1988) recurrent network to store partial results for later stages of processing.
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Processing loops of the type used in the multiplication example
would be one way to support recursion computationally, providing a
connectionist means of obtaining Fodor and Pylyshyn's properties of
productivity, systematicity, and inferential coherence. Fodor and Pyly-
shyn would not be satisfied by this, because the connectionist means is
not one that guarantees the systematicity that they attribute to all
thought. They may be wrong, however, to insist on the ubiquity of
systematicity. The capacity for recursion arises rather late in develop-
ment, and therefore should not be a part of a model of nascent cog-
nition. That 1s, children do not initially construct models and use them
to produce the processing loops that may support recursion. This may
partly account for the fact that young children’s language does not fully
exhibit Fodor and Pylyshyn’s properties of productivity, systematicity,
and inferential coherence. Children’s language (and thought) is particu-
larly dependent upon the eliciting conditions and feedback provided by
the external environment (symbolic or otherwise). A close analysis of
the development of language from a connectionist perspective would
pay high dividends as a way of grappling with questions concerning the
properties of language and how the cognitive system functions so as to
exhibit them.

Smolensky’s (1988) distinction between a conscious rule interpreter
and intuitive processor pursues a somewhat different approach to the
internalization question. Here, Smolensky is willing to accept symbolic
models as providing an adequate account of the internal encoding and
use of linguistically communicated rules. A chess novice would rely
heavily on rules, for example, before she had developed sufficient ex-
perience to build a good intuitive processor that could often “see’”
which move to muake (see above, p. 156). Smolensky does suggest that
there are advantages to performing a subsymbolic encoding even of
rules (in particular, this would simplify interaction with the intuitive
processor, which 1s a nontrivial problem for his approach); but still
Smolensky presses hardest on the idea that two distinct levels are
involved at least with respect to explanatory adequacy.

Although we find most of Smolensky’s ideas in this paper quite at-
tractive, we are uncomfortable with the sharpness of this distinction. A
somewhat different way of thinking about rules (which he touches on
but does not apply to this issue) is to regard them as encodings that are
unusually isolated from other encodings, and in particular are relatively
context-invariant. (Either the rule is elicited in only one context, such
as a preceding rule, or is accessible in the same form from any rclevant
context.) This approach would predict a fair degree of continuity in the
process of acquiring expert knowledge, and would view rule-like versus
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nonrule-like knowledge representation more as a continuum than as a
dichotomy. At all points on this continuum, the same subsymbolic net-
work approach to encoding would be used. Higher levels would simply
be more abstract levels of description of certain regularities displayed in
the network.

Leaving behind the issue of levels, we shall note one last idea in
Smolensky (1988): his vision of what could be achieved by coordination
between a rule interpreter and intuitive processor. He writes:

An integrated subsymbolic rule interpreter/intuitive processor in principle
offers the advantages of both kinds of processing. Imagine such a system creat-
ing a mathematical proof. The intuitive processor would generate goals and
steps, and the rule interpreter would verify their validity. The serial search
through the space of possible steps, which is necessary in a purely symbolic ap-
proach, is replaced by the intuitive generation of possibilities. Yet the precise
adherence to strict inference rules that is demanded by the task can be enforced
by the rule interpreter; the creativity of intuition can be exploited while its
unrchability can be controlled. (Smolensky, 1988, p. 13)

It is interestng to note that in many cases of actual mathematical proofs,
the rule-checking function is only incompletely performed. The mathe-
matician will say, following Laplace, ‘It is easily seen that . . .”’, when
in fact many steps remain to be filled in and sometimes it turns out that
the steps cannot be filled in since the move is invalid (Cipra, 1989).

The proposals summarized in this section represent the most specu-
lative of the three connectionist perspectives on symbols that we have
considered. They treat symbol manipulation as a learned capacity that
is initially carried out on symbols in the external environment. On this
view, symbols are primarily human artifacts such as linguistic and
mathematic expressions, but they may eventually be internalized in the
same format as nonsymbolic information.

Conclusion

We began this chapter by reviewing two of the most compelling recent
arguments that connectionist networks are inadequate to model cog-
nition because symbolic systems are required for cognition. We have
considered three responses connectionists are pursuing: (1) the approxi-
mationist approach, which claims that network models provide a more
accurate account of actual cognition than symbolic models; (2) the
compatibilist approach, which tries to build explicit symbol processing
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capacitics directly into networks; and (3) an approach that emphasizes
svmbols as external entities. All of these approaches have something to
offer, but the combination of the first and third is perhaps most promis-
ing. Together they suggest a radical reconceptualization of cognition
from the way it has been viewed in the symbol processing tradition, and
vet provide a means for explaining how it is that we are able to perform,
at least on occasion, as real symbol Processors,

While connectionists and symbolic theorists have devoted consider-
able effort to arguing for their position and against the alternative, these
debates are not likely to settle the dispute. Although these debates have
brought up serious issucs, it is our impression that they do not address
the reasons a reseacher might adopt connectionism or symbol pro-
cessing. In large measure, whether investigators have been attracted to
connectionism has depended on how dissatisfied they have been with
symbohic models. If a researcher had found symbolic models sufhi-
ciently adequate for present purposes, he or she has not seen any advan-
tage in adopting a connectionist perspective. On the other hand, if a
researcher has found symbolic models to be inadequate, he or she is
much more likely to have explored the connectionist alternative. This
in part explains the quite varied group of researchers, who do not seem
to share common objectives, that have turned to connectionism. In
part, whether one is satisfied or dissatistied depends on what one takes
as the data to be explained. Those who are most impressed with the ab-
stract regularities in behavior, as captured, for example, in linguisitc
competence theories, have tended to be quite satisfied with symbolic
theories. Many of those who are concerned with variations in actual
performance, on the other hand, have found traditional symbolic
theories to be too rigid and have cither pursued connectionist alterna-
tives or have developed less traditional symbolic theories. In a strong
sense, this initial diffcrence in basic objectives leads the theorists for the
two sides to talk past one another.

8

Connectionism and the Disciplines
of Cognitive Science

Connectionism is not a discipline. In part it is an integration of the
symbolic approach and the behaviorism that preceded it; but these are
not disciplines either. All three of these can be regarded as intellec-
tual traditions. Each provides a different scientific framework, which,
viewed most broadly, spans a variety of related disciplines including
psychology, linguistics, anthropology, philosophy, and (more recently)
computer science and neuroscience. As applied more specitically within
disciplines, each tradition provides a paradigm: a set of assumptions,
constructs, techniques, and goals that guide rescarch (Kuhn, 1962/
1970). At times, the commonalities among the ditferent disciplinary
interpretations of a single intellectual tradition has spawned a great deal
of interdisciplinary activity. Most particularly, the rise of the symbolic
approach resulted first in interdisciplinary activity in the 1960s, and
then in a more highly organized interdisciplinary cluster, cognitive sci-
ence, in the 1970s. While cognitive science has been a highly successful
enterprise, and has enjoyed a certain unity grounded in the shared sym-
bolic tradition, there has also been a degree of tension due to differences
among its constituent disciplines.

Now connectionism, the most recent of the three intellectual tradi-
tions mentioned above, has introduced a new source of tension as it
seeks to displace the symbolic tradition. The character of cognitive sci-
ence itself is placed in question by the rise of connectionism, and so is
the character of some of its constituent disciplines. In the previous
chapters of this book we have discussed how connectionism relates to
various issucs and topics within cognitive science. In this final chapter,
we look more specifically at the constituent disciplines themselves (or
those of their subdisciplines that are most relevant to cognitive science),
and consider what impact connectionism might have upon them indi-
vidually. First, though, we shall orient the discussion by considering
how the various cognitive science disciplines are related to one another.



256 Connectionism and Cognitive Science

Overview of the Structure of Disciplines

It is commonly assumed that disciplines are hierarchically organized
in correspondence to levels of organization in nature, where these
levels are understood in terms of part-whole relations. For example,
atoms are parts of molecules, which are parts of cells, which are parts of
human beings, which are parts of social systems. Thus, one has a hier-
archy with physics at the bottom, followed by chemistry, biology, psy-
chology, and sociology. This approach is too simple, however. Note
that there are other part-whole hierarchies which remain entirely
within the domain of the physical sciences. For example, atoms are
parts of molecules, which are parts of rocks, which are parts of planets,
which are parts of solar systems. While there are separate disciplines
associated with these different levels of organization, all of them are
physical sciences.

An alternative conceptual framework for considering how disciplines
relate to one another was developed by Abrahamsen (1987; in press).
This framework makes a primary four-way distinction among the
physical sciences, the biological sciences, the behavioral sciences, and
those arts and sciences that focus on the products of behavior (shown as
four levels in figure 8.1). What differentiates disciplines at one level
from those at an adjacent level is not a part-whole relation, but rather a
specialization of focus. All phenomena in nature can be construed as
part of the domatin of the physical sciences, but some of these phenom-
ena have been of special interest to the humans who investigate nature.
In particular, phenomena that are limited to living organisms have be-
come the focus of the biological sciences. In turn, the behavior of such
organisms, including social interactions, have become the specialized
focus of the behavioral sciences (whereas nonbehavioral phenomcena
exhibited by living organisms are studied solely within the less special-
1zed level of the biological sciences). Finally, the most specialized
disciplines, the cultural products arts and sciences, examine products of
the behavior of organisms, especially humans (e.g., rules of logical in-
ference, languages, economic systems, and physical products such as
buildings).

Within each of these four levels of the specialization hierarchy, we
find portions of the part-whole hierarchies that have been emphasized
in more traditional analyses of scientific disciplines. For example,
within biology we have subdisciplines dealing with cells and their parts
(e.g., genetics, molecular biology, cell biology), with organs (e.g., anat-
omy and physiology), and with whole organisms (e.g., botany and zo-

Connectionism and Cognitive Science 257

Logic  Linguistics  Economics

LEVEL 4: CULTURAL PRODUCTS
ARTS AND SCIENCES
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| Reasoning Psycholinguistics |

Psychology
LEVEL 3: BEHAVIOURAL SCIENCES

Genetics  Physiology ~ Zoology
LEVEL 2: BIOLOGICAL SCIENCES
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Physics Chemistry Astronomy
LEVEL 1: PHYSICAL SCIENCES

Figure 8.1  'The specialization hicrarchy of disciplines. For cach of the four levels,
examples are provided of disciplines at that level (in the main box) and of subdisciplines
that can be coordinated with work at the next higher level (in the inner box). The arrows
pointing upwards indicate that each lower-level subdiscipline obtains specialized
descriptions of the domain of concern from a higher-level discipline. The arrows pointing
downwards indicate that cach upper-level discipline may look to a lower-level
subdiscipline as a source of explanation, constraint, and ancillary evidence.
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ology). Within the behavioral sciences, we have subdisciplines focu'si.ng
on particular mental/behavioral systems and su.bsystems (e.g., cognitive
psychology), on the behavior of whole organisms (c.g., cxpc.nrr?cntal
analysis of behavior and comparative psychology), and on s«l)cml inter-
actions of organisms (e.g., social psychology and parts of sog‘lology andv
anthropology). So we have at least two kinds of hierarchy in terms of
which we can situate disciplines. The specialization hierarchy f()rms. the
primary (vertical) axis which distinguishes different lcvc!s of disci-
plines. Within each level, there is at least one part-whole hlerarc.hy on
its own (horizontal) axis which is distinctive to that level of unalys:ls.f
Much of the interest in this analysis lies in the fact that the distinc-
tive constructs of each of the four different levels can be applied to the
same cvents or domains and that interdisciplinary interactiqns can be
helpful, if not essential, in doing so. Consider the event 1n'whlch. a child
utters the sentence Kitty-cat comed home. In understanding t}us event
at level 4, the linguist contributes an abstract analysis involvujg cons-
tructs of syntax, morphology, phonology, etc., which reflect linguistic
part-whole hierarchies {e.g., morphemes are composed of Phoncmes).
At level 3, the psycholinguist focuses instead on the real-time mcqtal
activities, learning mechanisms, and behaviors involved in producing
the utterance; here the part-whole hierarchies involve mcnt'fll statc's and
the processes by which they change. Linguistic constructs, if applied to
a mechanistic account of how the utterance is produced, may be gltefed
to obtain constructs that are appropriate to that level of afmlysxs. For
example, phonemes may be reinterpreted as Wickelphones if the mecjh-
anism does not explicitly utilize ordered strings. At level 2 the neurqlm—
guist is most directly concerned with neurons and the systf.:ms. into
which they are organized, and attempts to describe how fun(‘:tlonmg at
this level undergirds production of the sentence at the behavioral level.
Finally, even at level | physical scientists may contribute analyses .of the
spcec}; waveform as a kind of acoustic event, of the eardrum as a kind of
membrane, and so forth. .
Thus, lower-level disciplines include subdisciplin'es (e.g., .psycholm-
guistics) that focus on the same events or do.maims as hlghe.r-lcvcl
disciplines (e.g., linguistics). This is emphasizesi in figure 8.1 by includ-
ing examples of these subdisciplines in boxes within each level. The up-

1 One way to define a part-whole hierarchy is in terms of sy‘stems and their subsystems.
Systems are typically described in terms of structure and function (process), hm\'(‘:vvvr,
ar;d separate part-whole hicrarchies might therefore k?e proposed. For exfir.nple, wnhm
generative grammar there is a structural hierarchy that includes the c?n190§1t10n of lC.\'llC'dl
items into phrases, and there are also rule hierarchies that compose individual rules into

derivations,
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wards arrows indicate that a lower-level subdiscipline may obtain
specialized descriptions of the domain from a higher-level discipline;
the downwards arrows indicate that the higher-level discipline may use
the lower level discipline as a source of explanation, constraint, and an-
cillary evidence. These interdisciplinary relations are often fruitful, and
suggest that it is advantageous to retain multiple levels of analysis
rather than engage in a reductionist program.

Where do connectionist networks fit into this framework? One possi-
bility is to speculate that they occupy a new level that is intermediate
between levels 2 and 3; alternatively, reductionists regard connection-
ist networks as level 2 accounts that will eventually replace level 3
accounts. We believe that both of these approaches are misguided.
Rather, those networks that are constructed to simulate aspects of hu-
man perception and cognition clearly are level 3 accounts; they are the
concern of cognitive, developmental, and other psychologists, and of
those computer scientists who focus on simulating human mentation.
In contrast, other networks are constructed as explicit models of neural
elements and systems. They are situated at level 2, and are utilized by
neurobiologists as well as certain computer scientists who construe
their networks as artificial or ideal neural systems. Just as in the case
of nonconnectionist research, some investigators will have a special
interest in interdisciplinary questions; for example, how activity in
neural circuits undergirds certain aspects of mental functioning. Their
inquiries should be understood to involve coordination of work at
different levels, not the creation of new levels or the reduction of one
level to another.2

Is there a role for connectionism at level 4? In the final section of this
chapter we shall argue against the idea that connectionist networks
should be directly incorporated in theoretical accounts of human pro-
ducts (e.g., linguistic theories), on the grounds that mechanistic
accounts belong at level 3. They might, however, be of interest to
linguists and other level 4 theorists as part of an interdisciplin-
ary endeavor that does consider the relation between mechanism and
product. Connectionist networks also can themselves be regarded as

2 In comparison, Dyer (in press) proposed a single hierarchy, which we displayed in
tigure 7.5. His hicrarchy emphasizes rescarch approaches from our level 3, but the top of
his hierarchy apparently includes some level 4 accounts as well, and we would assign the
bottom of his hierarchy to our level 2. His emphasis on the importance of working at
multiple levels is consistent with our own analysis of interdisciplinary relations. Also,
note that Marr's (1982) distinction among computational theory, algorithm, and im-
plementation closely corresponds to our levels 4,3, and 2 (although these accounts were
independently arrived at with somewhat different goals in mind).
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artifacts of human activity (cultural products), and designing
such networks would be a level 4 activity just as designing buildings
is a level 4 activity. That part of computer science that is oriented to
the engineering aspects of networks rather than their status as mental or
neural models would therefore be classified as a level 4 profession.

If connectionist simulations do not occupy a new, intermediate level
of inquiry, what is to be made of the idea that they model the micro-
structure of cognition? In our view, microstructure is best regarded
as a relative rather than absolute notion, and has to do with part-whole
hierarchies within level 3 rather than different levels of the specializa-
tion hicrarchy. The connectionist claim is that (level 3) mechanistic
models of phenomena at a particular location in a part-whole hierarchy
require the use of units that encode a lower level in that hicrarchy.
Thus, traditional symbolic accounts of past-tense formation include
rules that apply to words such as come and look. In contrast, Rumelhart
and McClelland (1986, in PDP:18) built a mechanism for past-tense
formation exclusively from units that encoded phonemes and phonemic
features (using a context-sensitive scheme in lieu of ordered strings).
The ability to form the past tense of a stem was attributed to statistical
regularities in the behavior of these finer-grained units rather than the
application of rules to ordered strings of coarser-grained units. Another
way to say this is that stems were given a distributed coding across
phonological units, rather than an explicit representation as morphemic
units.* If Rumelhart and McClelland had aimed to account for
phenomena of clause embedding rather than past tense formation, a
microstructural account may have involved units corresponding to
words rather than phonological features. The key idea is that the units
would be selected from a lower (finer-grained) portion of the part
whole hierarchy than would ordinarily be regarded as appropriate for
the phenomenon to be modeled.*

3 Note further that Rumelhart and McClelland’s units had a correspondence to lin-
guistic elements at level 4, and in fact their design was informed by linguistic analysis.
However, the elements of the level 3 mechanistic account were not identical to the
level 4 elements; i.e., they were context-sensitive and were used in a statistical manner.
Abrahamsen (1987) argued that this is the ordinary, cooperative way in which psy-
cholinguists make use of linguistic theory (borrowing linguistic analyses, but adapting
them to the needs of a mechanistic account). In this respect the connectionist model is
similar to other psycholinguistic models.

4 In Smolensky’s (1988) language, the past-tense model accounts for a symbolic process
by means of a network of subsymbols. His analysis appears to be anchored to a particular
portion of the part whole hierarchy, however. (That is, symbols correspond to
semantically nonprimitive concepts such as come or table, and subsymbols correspond to
components of those concepts.) Therefore, his analysis is not as readily applied to the
clause-embedding example as to the past-tense example,
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In this context, we shall now consider several of the disciplines and
subdisciplines on which connectionism might have some impact. We
shall begin with disciplines that work primarily at level 3 (artificial in-
telligence, cognitive psychology, ecological psychology, and develop-

- mental psychology). Then we shall drop down to neuroscience (level 2,

with interdisciplinary connections to level 3), and finally move up to
philosophy (level 4 and meta-level analyses) and linguistics (level 4,
with interdisciplinary connections to level 3). We shall have little to say
about networks as products of design and engineering, because we have
restricted our focus to networks as models of human systems.

Artificial Intelligence and Cognitive Psychology

Artificial intelligence and cognitive psychology are the central subdisci-
plines of cognitive science, and they have served as the port of entry
through which network models have become a part of contemporary
cognitive science. Recall the historical context, as sketched in chapter 1.
Neural network modeling originated mid-century and was thriving by
the 1960s, but the symbolic tradition was thriving as well. By the end of
the 1960s the symbolic approach dominated the small field of artificial
intelligence, and had begun to replace behaviorism within psychology.
By the end of the 1970s, symbolic modeling within these disciplines
had become the corc of a well-established cognitive science. Neural net-
work modeling had become unfashionable, but survived at the peri-
phery of such ficlds as neurobiology.

The symbolic approach, in its purest form, had limitations that be-
came harder to accept by the end of the 1970s. A serial system com-
posed solely of symbolic representations and rules that operate upon
them tends to be “brittle” and inflexible, and it provides a poor me-
dium for modeling learning or pattern recognition. T'wo avenues were
open to cognitive scientists who were concerned by these limitations.
First, they could improve the design of rule systems (e.g., by adding
strength parameters to rules and selecting them by a parallel process of
constraint satisfaction, or by adding procedures for knowledge com-
pilation or learning). A number of investigators chose that avenue, and
by the end of 1980s had developed nontraditional symbolic systems
that were far more flexible than earlier systems. The second avenue was
to make a more definite break with symbolic systems by returning to
networks. Where symbolic models would use coarse-grained symbols,
network models would use finer-grained microsymbols. Where sym-
bolic models would operate upon ordered strings, network models
would rely upon the statistical behavior of large networks of units.
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Investigators who chose this avenue utilized techniques from the sur-
viving neural network tradition in building nonlinear dynamical Sys-
tems, but combined these with ideas from within artificial intelligence
and psychology, such as probabilistic feature models of categorization,
semantic networks with spreading activation, and schema theory. The
emphasis was placed upon distributed representation and statistical
explanation.

By the end of the 1980s, both nontraditional symbolic systems and
network systems could exhibit some degree of flexibility, subtlety, abi-
lity to learn from experience, and resilience to damage. However, they
differed in whether they relied upon ordered strings of symbols or stat-
istical regularities in the dynamics of large networks of interconnected
units. Furthermore, traditional symbolic models remained a force to be
reckoned with. The result has been considerable controversy within
cognitive psychology and artificial intclligence regarding the future
direction of these subdisciplines.

A number of questions are involved in this controversy, and these will
need to be answered during the next decade: How deeply and broadly
will the connectionist approach become incorporated into cognitive
psychology and artificial intelligence? How rapidly? And how perma-
nently? Will the gap between symbolic systems and connectionist
networks widen, or will harmony be found in some way? (Harmony
could be obtained if one approach clearly “wins;" if satisfying hybrids
emerge; if a peaceful pluralism comes to prevail; or if there is a gradual
process of co-option and evolution.) How will the effects of connec-
tionism within these subdisciplines relate to the effects in cognitive sci-
ence more generally? For example, will it become more important
whether one is a connectionist, or whether one is a cognitive psychol-
ogist? Finally, what effect will connectionism have on other arcas of
psychology and computer science? The answers to these questions will
depend upon which of two extreme characterizations holds (or which
middle ground). At one extreme (Schneider, 1987), connectionism may
represent as much a scientific revolution as did behaviorism and the
symbolic approach earlier. (It has been a matter of debate whether
either of these actually qualifies as a revolution; like Baars (1986) we
shall assume they do.) At the other extreme, it may become just one
tool in an extensive toolkit, in which case it would have no far-reaching
effect on the way each discipline construes its domain and its task.

We can suggest some factors that will help determine the overall
outcome and the answers to some of the specific questions above.
If connectionism is to take hold, cither as a revolution or as part of a
hybrid or pluralistic framework, at least the following events must oc-
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cur. First, connectionism will have to provide the framework for the
development of a number of specific models that are judged successful.
Current models are exploratory, and a very large Promissory note re-
mains due. Second, in the competition for the loyalties of established
investigators, connectionism will have to compete successfully with
nontraditional rule models that exhibit some of the same capabilities as
networks. The competition will be based only partly on the success of
specific models; the attractiveness of connectionism as an idea about the
nature of the mind should play an important role as well. Third, a large
number of researchers will need to go beyond attraction to connec-
tionism to put in the hard work of retooling (both in techniques and in
their construal of their discipline). Fourth, a critical mass of graduate
students will need to ‘‘vote with their feet”’ in favor of connectionism
by seeking that training. Fifth, institutional supports and grant funds
will need to increase (a process that is already well underway). Finally,
additional factors would need to be involved in order to move toward
some kind of hybrid framework or pluralism. For example, for a hybrid
framework to become predominant, the belief that there is an explana-
tory role that can only (or best) be filled by rule systems would need to
become widespread among connectionists. Currently this is the subject
of debate (and modeling attempts). For example, Holyoak and Thagard
(1989) suggest that it may prove useful to employ connectionist de-
signs in memory modules so as to be able to utilize content addressable
memory, but to perform various computations upon the contents re-
trieved from memory in a symbolic manner (cf. J. R. Anderson, 1983).
The degree of interest in changing or modifying one’s research
framework, as well as the criteria for the success of models, depend to a
great extent on factors that differ for the two subdisciplines, such as the
goal of the modeling. In artificial intelligence (Al), for example, resear-
chers universally desire to write programs that behave intelligently, but
differ in their interest in the question of whether the programs are
artificial or qualify as simulations of human cognition; when computer
modeling techniques are used in cognitive psychology, in contrast,
simulation is a fundamental goal. Moreover, not all research in either
subdiscipline is directly committed to building models. In AT some re-
search is directed toward more theoretical issues such as exploring
different schemes of knowledge representation, search techniques, and
control structures; many Al rescarchers are motivated more by techni-
cal or theoretical challenges than by questions of modeling. In cognitive
psychology, modeling is only one technique for arriving at a character-
ization of the cognitive system. Other techniques include experiments
that are directed at evaluating hypotheses about the cognitive system,
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and multiple regression analysis of nonexperimental data to determine
factors that influence the operation of the cognitive system.

Artificial “intelligence  Within artificial intelligence, a number of very
useful programs have been constructed using a symbolic approach.
MYCIN, for example, is a program that encodes extensive knowledge
about bacterial infections and is quite successful at diagnosing and
recommending drug therapies for problems involving bacterial infec-
tion (see Buchanan and Shortliffe, 1984). In domains such as this,
where symbolic knowledge representation has proven fairly satisfac-
tory, there may little motivation to pursue a connectionist alternative
(particularly if one 1s focusing on immediate performance rather than
exploring the foundations of computation or issues of simulation). The
utility of continued pursuit of symbolic models is further enhanced by
the fact that many Al programs are designed to perform tasks requiring
fairly high-level reasoning capabilities, tasks at which connectionist
models are not yet very adept.

There are other considerations that are more favorable to connec-
tionism. Even successful Al programs have limitations that could be
regarded as serious. For example, they tend to be domain-specific,
brittle, and insensitive to context. They also are expensive; in the ab-
sence of practical learning mechanisms, each system must be built by
knowledge engineers. Also, there are other domains in which tra-
ditional Al has been relatively unsuccessful. For example, it has been
difficult to develop systems (such as robots) with sophisticated capabili-
ties for recognizing objects in their environment. It is too early to say
whether these limitations will be addressed predominantly by non-
traditional symbolic models, connectionist networks, hybrid systems,
or a pluralistic approach. It would be surprising, however, if connec-
tionism did not find at least a few stable niches in Al

Cognitive psychology Cognitive psychology presents a somewhat dif-
ferent picture. The goal of psychological modeling is to account for
empirical data about behavior and to provide some understanding of
how that behavior is produced. For connectionist modeling to satisfy
this goal, specific models must be developed that can provide a superior
account of a variety of data sets. They also should suggest fruitful new
approaches to unsolved problems, and point the way to new questions
and new experiments to perform. Rumelhart and McClelland’s past
tense model (summarized in chapter 6), was a major early effort of
this kind. Like other such models, it performed in a manner that is
qualitatively like human performance in some important respects, but
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is incomplete in certain other respects. Rumelhart and McClelland, for
example, readily acknowledged that they modeled past-tense formation
in isolation from other linguistic functions, and that the actual
mechanisms used to form the past tense are likely to be closely
integrated with these other functions. Are the limitations of current

‘connectionist models all of this superficial nature, or does connec-

tionism exhibit fundamental inadequacies that bring its viability into
doubt more generally? Massaro (1988) has argued that interactive
networks fail to make the correct predictions for certain empirical
results, and that multi-layered networks, because they predict a variety
of mutually inconsistent results, are too powerful. More recently,
Ratcliff (1990) has evaluated the ability of connectionist models to ac-
count for recognition memory phenomena; he reports disappointing
results to date. For committed connectionists, results like these are
either challenged, or are used as an impetus to build better models. The
process of testing and then stretching the limits can continue for some
time.

One of the major objections that cognitive psychologists have raised
against connectionist models is that the important work is not ac-
complished by the network architecture as such, but rather by the way
information is encoded on the input and output layers; see Lachter and
Bever (1988) and Pinker and Prince (1988). Thus, the results may be at-
tributable not to the architecture, but rather to insights borrowed from
rule-based theories. Connectionists must acknowledge that, almost
always, the encoding schemes are adapted from analyses previously
worked out by traditional symbolic researchers. For example, in the
past-tense model the coarse coding in terms of Wickelfeatures was
adapted from linguistic analyses (level 4); the charge is that all that
remained for the network to do was to find the mapping between these
pre-defined inputs and outputs. There are two responses to this criti-
cism. First, in the case of multi-layered networks that learn, the net-
work constructs its own encodings for the hidden layers (as we saw for
Hinton’s kinship network, for example); the behavior of the network is
then due in part to these encodings, not simply to the pre-defined
encodings on the input layer. So part of the objection might be
answered with more sophisticated connectionist models. But second,
there is a part of the objection that is well founded. Connectionist
models need to be backed by principled accounts of why the input
patterns and output patterns were constructed as they were. Currently,
and presumably in the future as well, this part of the connectionist
program involves cooperation with disciplines that describe the struc-
ture of a domain. Several of these disciplines have been fairly successful
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at using symbols to capture and efficiently state generalizations about
the structure of items in a domain, and there is nothing wrong with
taking advantage of this expertise in constructing connectionist en-
coding schemes. In the case of connectionist models of language
processing, for example, the appropriate donor discipline is linguistics.
The reason for placing the adapted encodings into a connectionist net-
work is that the network can generate subtle, interesting, and important
kinds of behavior that are difficult to incorporate in a traditional sym-
bolic system.

We shall stop short of forecasting the future course of connectionism
in these crucial subdisciplines. Whatever the outcome, it will be of
some interest to observe the changes between as well as within these
subdisciplines across the next decade. In the following sections, we
consider disciplines that have been only minimally influenced by con-
nectionism to date, but that have the potential to be influenced. For
these cases, we shall focus on pointing out some of the kinds of in-
fluence that seem either appropriate or likely. Furthermore, the influ-
ence need not be unidirectional; some of these disciplines can them-
sclves contribute in certain ways to the development of connectionism.

Ecological Psychology

Connectonism is not the only intellectual movement that has posed a
challenge to traditional cognitive psychology. Around the same time
that investigators such as Rosenblatt were cxploring perceptrons, J. J.
Gibson (1966) was developing an ecological approach to perception
(particularly vision). Gibson contended that there is abundant infor-
mation about the real world and its invariants in the light that reaches
the retina; the ambient optic array specifies not merely what objects are
in our surround, but also what actions they afford to us. The perceiver's
role is to pick up that information and use it to control action in dyna-
mic interaction with the environment. The emerging information-
processing approach to cognition also emphasized structured infor-
mation, but situated it in the perceiver’s mind. The environment’s
role was simply to provide a static stimulus, which would produce in-
formation on the retina (or other sensory organ); that information
would then be serially processed to obtain a series of mental
representations culminating in some sort of semantic construal of the
stimulus.®

5 Inacritique of Gibson’s theory, Foador and Pylyshyn (1981) further insisted that the
human mind was the primary source of structure, not the environment. In this vein, per-
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In a remarkably prescient book, Cognition and Reality, Neisser
(1976) argued for an integration of these approaches that would give
due regard to structure in both the environment and in the mind. He
suggested that mental schemata continuously predict and accommodate
to events in the environment in a dvnamic, interactive manner. Neisser
criticized cognitive psychology for attempting to reduce the environ-
ment to a static moment that was retinally encoded and then sequentially
processed with no further reference to the low of events in the environ-
ment. (In particular, he cast a jaded eve on psychologists’ faithful at-
tachment to their tachistoscopes, which were used to present isolated
visual events for durations well under one second.) He argued for a
change in emphasis to dynamic perception of spatio-temporal patterns.

There was little reason in the 1960s to make a connection between
Rosenblatt’s simple perceptrons and Gibson'’s purely ecological psy-
chology. No explicit conncction of this kind was made by Neisser
(1976) in his book either. (It may be relevant to note, however, that
Neisser had an early interest in parallel pattern recognition models
such as Selfridge’s Pandemonium, which was a feedforward network
lor recognizing letters on the basis of letter features; see Selfridge
and Neisser, 1960.) Within the next dozen years, however, network re-
scarch received a new lease on life from (a) mathematical advances that
characterize nonlincar dynamical processing in complex, many-layered
networks as well as learning algorithms for such networks; and (b) de-
sign innovations that structure the flow of information in useful ways
(e.g., recurrent networks). In the context of this new connectionism,
Neisser’s (1976) book can be read retrospectively as urging attention
to a task that networks could be made to perform, that is, modecling

" the functioning of the mental system in dynamic articulation with the

environment. (The book was written, and most often has been
read, however, without making this connection.) Our claim is that as
cognitive psvchology becomes increasingly connectionist, it may be-
come increasingly ecological as well,

There is a large promissory note attached to this prediction, because
the habits of the past have carried over to connectionist modeling:
typically an input pattern is presented to a network, and then the net-
work processes it. Even if the network is interactive, a single input pat-
tern is presented once, or is “clamped” on throughout processing.
Hence, the network is dynamic but the input is not. There is nothing
inevitable about this arrangement, however; network processing of
dynamic input patterns is an area that is ripe for exploration. This

ceptual psychologists such as Rock (1983) emphasized the use of ambiguous stimuli such
as visual illusions to learn how the mind imposed structure upon SCNSOTY arrays.
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would pose logistical challenges (preparation of training patterns can
already be a complex undertaking), but would also accelerate the trend
towards increased attention to the structure of the environment that
connectionism has already fostered within cognitive psychology. Be-
cause the emphasis would then be placed on the dynamics of the en-
vironment, connectionists within cognitive psychology would gain a
route to rapprochement with ecological psychology. Some ecological
psychologists might themselves adopt (and adapt) connectionism'’s
tools for dynamic modeling of cognitive networks in articulation with
environments. Hence, connectionist models that incorporate dynamic
input could help to realize Neisser’s dream of a cognitive psychology
that explores the mind in its environment.

In Neisser’s own most recent contribution to an integrated theory
(Neisser, 1989), he argues for distinguishing between two different per-
ceptual systems on the basis of a careful analysis of the tasks which
organisms must perform in their ecological situation. He cites support-
ing evidence from neurological disorders, infant and adult perception,
prism experiments, and animal research. One system is specialized for
direct perception. It locates the organism in its surround, attends to the
positions and shapes of nearby objects with respect to the possibilities
for action which they afford, and obtains information from and about
movement (e.g., it uses the structure of optical flow to track the per-
ceiver’s own motion, and can anticipate the time of collision with an
approaching object). The other system is actually a cluster of systems,
each of which carries out some aspect of recognition. These systems iden-
tify and categorize stimuli, individual objects and persons, linguistic
entities, and so forth, on the basis of their fit to a mental representation.
Recognition works differently from direct perception, by accumulating
evidence rather than resonating to invariants. Movement is not an im-
portant source of that evidence. Because current network models work
on static input patterns, they are most suitable as models of the recog-
nition system. In a more mature connectionism, however, static input
may be regarded as a special case of dynamic input. Interactive net-
works operating on dynamically changing input could be used to model
the direct perception system; indeed, the connectionist concept of re-
laxing or settling into a stable state is reminiscent of the ecological con-
cept of resonating to an invariant.

Finally, at the same time that connectionists come to view the en-
vironment as more dynamic, they might also come to view the mind as
more biologically constrained. That is, as Shepard (1989) and Rumel-
hart and McClelland (1986, PDP :1) have explored, networks need not
be the tabula rasa that was assumed by the ancestral tradition of
associationism. Evolution has granted our specics a particular array of
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biological constraints, including innate mechanisms and maturational
programs, and ultimately these will have to be incorporated in connec-
tionist models of cognition. An expansion of connectionist research in
this direction would provide yet other opportunities for rapproche-
ment, not only with ecological psychology’s tendency to assume bio-
logical constraint, but possibly reaching as far as Chomsky’s construal
of language as an innate cognitive system. The disciplines that could
become most directly involved in this facet of connectionist research
are developmental biology (at level 2 of the specialization hierarchy de-
scribed earlier), and developmental psychology (at level 3, along with
cognitive and ecological psychology). We shall not discuss developmen-
tal biology, but turn now to considering the possible impact of con-
nectionism on issues and approaches in developmental psychology,
including but not limited to the nature/nurture question.

Developmental Psychology

Developmental psychology is the part of psychology that addresses
questions of change (and stability) in the developing organism. It
intersects with cognitive psychology in certain areas of inquiry, specifi-
cally, cognitive and linguistic development. Hence, developmental psy-
chology stands to benefit from all of the properties of connectionism
that already have been considered throughout this book. A few of these

“are: (1) an alternative approach to rules and representations that is less

brittle than the traditional symbolic approach; (2) adaptive feature ex-
traction by means of hidden units; (3) the implementation of multiple
soft constraints; and (4) resistance to damage and similar features re-
lated to neural plausibility. In addition to these, there are specifically
developmental implications of connectionism that could substantially
reinvigorate developmental psychology as a discipline, particularly in
the areas of developmental theory, cognitive development, and linguistic
development. We shall discuss several of these implications, all of
which are variations on the theme that connectionism suggests (1) new
interpretations of traditional constructs; and (2) a means of exploring
an area of concern by means of connectionist modeling of developmen-
tal data. The areas of concern for which we shall develop these themes
are mechanisms of development, context effects, stage-like changes,
and developmental (and acquired) disabilities.

Mechanisms of Development

Understanding the mechanisms of development is a central task for de-
velopmental psychology, but progress has been disappointingly slow.
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Some of the proposed mechanisms are intuitively appealing, but un-
comfortably vague or difficult to substantiate or investigate. Consider
the traditional distinction between two mechanisms at the highest
level of generality: maturation and learning. Maturation is a biological
growth process by which sequences of developmental changes (espc;-
cially neurological changes such as myelination) emerge under genetic
control. Learning, by contrast, is the means by which experience serves
as a source of change in how an individual construes the environment.
The fact that there is a complex interplay between these two mech-
anisms has made it quite difficult to conceptualize or study them except
in situations of reduced complexity, such as neurobiological studies in
infrahuman species.

Now consider how the distinction could receive fruitful new inter-
pretations in the context of connectionist networks. Maturation (both
pre- and post-natal) might be interpreted in terms of network charac-
teristics such as (a) the maximum number of layers of units that can be
achieved within each subnetwork or module; (b) the number of func
tional connections in the fan-out of an average unit (i.e., those connec-
tions with weights not too close to zero); (c) the equation(s) available
for calculating new activation levels, and the values of their parame-
ter(s); (d) the equation(s) available to govern learning, and the value of
the learning rate parameter. (For example, Hebbian learning might ante-
date ability to use the delta rule.) Hence, maturation would determine
the basic architecture of the system. Learning, in contrast, would in-
volve relatively enduring changes in a system of a given architecture
that result from its interaction with the environment. The most obvious
form of learning is adjustment in the weights of connections, but ad-
ditional forms will nced to be pursued as well. For example, there
should be ways of recruiting the knowledge in existing networks in
lcarning a new task, perhaps by copying the existing network (()r. com-
bining two such networks) and then adapting the copy. (This kind of
proposal would presumably apply at the level of psychological model-
ing, and would need to be implemented in some other way at the neural
level.)

As noted above, there is an interplay between maturation and learn-
ing in the developing organism, and so these two sources of change
cannot be considered solely in isolation. To consider one example, de-
velopmental changes in the basic architecture of the system may be
affected by experience as well as the innate biological program for
maturation. Organisms of identical genctic endowment differ in their
rate of maturation as a function of the richness of the environment. The
rapid pace of learning that is afforded by a rich environment may me-
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diate this effect. As a second example, one could study the interaction
between very early learning and the phenomenon of neurological devel-
opment in which overproduction of synapses is followed by pruning
after relevant experience (see Greenough, Black, and Wallace, 1987).
Conncectionist networks could be used as a medium for modcling these
sorts of interaction (although we are not aware of anyone who has done
so). At the very least, it would be worthwhile to use network models as
a tool for characterizing changes in learning capabilitics that accompany
maturation.

Connectionism might also provide a means to augment, reinterpret
or replace certain constructs in Piagetian theory (Piaget, 1952). In par-
ticular, two strengths of Piaget’s theory are (1) the integration of learn-
ing with ongoing processing (by means of a process of accommodation
that carries out both functions in conjunction with a process of assini-
lation), and (2) the postulation of systems that achieve qualitatively dis-
tinct stable states (stages) by means of small, gradual changes over time.
Connectionism could be viewed as a modern mechanism for achiev-
ing stage-like states by means of the heretofore somewhat mysterious
processes of accommodation and assimilation. Specifically, assimilation
can be interpreted in terms of the tendency of an interactive network to
settle into the most appropriate of its stable (attractor) states (see
Hinton and Shallice, 1989) when input is presented to it; in Piaget’s
language, this is the schema to which the experience has been assimi-
lated. Accommodation can be interpreted as the changes in activations
as well as weights that occur in order to assimilate the experience.
(That is, transient state changes and learning are highly interrelated
both in connectionist networks and in Piaget's notion of accommo-
dation. The assimilation of any experience involves both of these
aspects of accommodation.) The advantage is that the connectionist

~ interpretation of these processes can actually be designed into networks

and observed under a variety of scenarios.

Context Effects

Tasks effects and other types of context effects have been a major frus-
tration for developmental theory. There has been a number of convinc-
ing demonstrations that context can influence developmental data to
the point that the feasibility of assessing what a child knows is brought
into question, and the concept of knowledge itself seems threatened. An
extreme case is the difficulty that children with severe retardation have
with tests of what they have learned if the test is carried out in a
different room or by a different examiner (Garcia and DeHaven, 1974).
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However, context can exert a strong influence even for children of nor-
mal intelligence. In particular, seemingly minor differences in how a
task is designed can determine whether or not preschoolers can perform
it (for a review, see Gelman, 1978). Also, some developmental changes
have been shown to be quite domain-dependent in their time of occur-
rence (e.g., Keil’'s (1989) characterizing-to-defining features shift in
semantic development; see also Gardner, 1983). Unfortunately, no
interesting way to incorporate most context effects into developmental
theory has been found. _

I'he one partial exception is the decontextualization hypothesis that
has been proposed to characterize development, especially during the
first few years of life; sce Bates (1979) and also Wertsch’s (1985) presen-
tation of Vygotsky’s theory. The claim is that the child’s sensory-motor
or cognitive schemata initially are rigidly bound to one or a fevy con-
texts, and gradually become more flexible and accessible in a vzmcty' of
contexts. In symbolic play, for example, a child will pretend to .d.rmk
from a cup, but not from a cup-like object. Nor will the child initially
make a doll or other person drink from the cup (Nicholich, 1977; Bates,
1979). In language comprehension, Reich (1976) noted the highly re-
stricted interpretation his eight-month-old had for “Where’s the shoe?”’
He crawled (past a shoe on the floor if necessary) into hi.s mother’s
(not his father’s) closet and played with the shoes that were in that par-
ticular location. In language production, it has been claimed that a par-
ticular word initially is limited to a single communicative fx'mc.:tion
(such as naming or requesting), or shows other contextual restrictions.
Some of the initial claims of this kind have been shown to be too strong
(Huttenlocher and Smiley, 1987). Nevertheless, the notion of decontex-
tualization clearly has some role to play in characterizing development
in this early period. What has been lacking is a mechanism. .

We suggest that connectionism has considerable potential for.prowd-
ing an explanatory framework for context effects. In fa'ct, .thls could
be the single most important contribution that connectionism would
be able to offer to developmental psychology in the next decade. Con-
nectionist research has not emphasized context effects to date; perhaps
the entry of developmental psychologists into the field, which has be-
gun, will make this more of a priority. If so, attention may also turn to
the likelihood that substantial context effects characterize adult per-
formance as well as children’s performance, and that their importance
has been underrated in cognitive psychology. (For an excellent argu-
ment for the importance of context in adult performance, see Jacoby
and Brooks, 1987.)

Already there has been some attention to beneficial effects of con-
text. Rcc.nl] McClelland and Rumelhart’s (1981; also Rumelhart and

—— >
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McClelland, 1982) model of context effects in letter perception which
we discussed in chapter 4. It suggested a mechanism by which letter
recognition can be enhanced by the presence of relevant context,
specifically, the rest of a word in which the letter appears. That model
relied on effects of top-down activation, but it is possible to obtain cer-
tain context effects even in a simple, two-layer feedforward network
(which, however, are primarily disadvantageous). As a demonstration,
we designated two ihput units in such a network as unchanging context
units and the other eight units as content units. The system learned two
arbitrary patterns for each context — that is, given a pattern of binary
values (+1 and —1) across the input units, the system learned to re-
spond with a designated pattern of binary values across the output
units. If a neutral value (0) was placed on the context units on test
trials, performance was degraded somewhat, illustrating that the learn-
ing had been somewhat context-dependent. This is advantageous if
testing is carried out in the same context, but not otherwise. In further
illustration, when the same patterns were tested but now with the
contexts reversed, performance was degraded even further. Finally, as
we increased the number of patterns and the number of units that were
context rather than content units, performance was degraded to the
point that some output patterns were actually reversed (depending
upon which context was used in the test).

Of course, this particular network architecture is too simple to serve
as a realistic model of context effects in humans. Such a network has no
way to distinguish relevant from irrelevant context, nor even to clearly
distinguish context from target information. It does, however, provide
a starting point for considering how to simulate (a) disadvantageous
effects of irrclevant context, as are often exhibited by children with
severe retardation; (b) advantageous effects of relevant context; (c) the
kinds of changes needed to support decontextualization. A very simple
example of (c) would involve changes in training, such as assuring that
irrelevant aspects of context are varied across trials. A genuine account
of decontextualization, however, would presumably require changes
in the way the network itself is built. Being able to experiment with
context effects in network models would provide an entirely new
avenue of approach that could lift the study of context effects out of

the doldrums, and show them to reflect fundamental mechanisms of
development.

Stage-like Transitions

It has been a puzzle that, observed on a large timescale, development
seems to involve a succession of discontinuous stages that are qualita-
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tively distinct, internally well-integrated, and to some extent general
across domains; but observed on a small timescale, development seems
to exhibit considerable continuity across a succession of small changes.
Drawing boundaries between stages is difficult enough that many de-
velopmental psychologists argue against doing so; a less drastic re-
sponse is to use the term stage-like to characterize the general sequence.
Similarly, a particular stage-like achievement can be broadly charac-
terized by rules, but the exceptions and variations in performance are
difficult to characterize or account for.

We have already discussed at some length (in chapter 6) a connec-
tionist simulation which sought to address both of these puzzles.
Rumelhart and McClelland’s (1986) past-tense acquisition model exhi-
bited stage-like learning, including a stage of over-regularization that is
characteristic of children, but also exhibited an impressive degree of de-
tail with respect to the mechanisms producing the stages. Exceptional
forms were produced by the same mechanism as rule-like forms, and
variability was prominent during the transition between stages. Al-
though the model is an initial demonstration, not a mature account, the
fact that it suggests a mechanistic explanation for pervasive phenomena
of development merits attention. It invites developmental psychologists
to develop improved connectionist models, and to use them to explore
the mechanisms of development.

Plunkett and Marchman (1989) were among the first developmental
psychologists to accept this invitation, and performed an extensive
series of past-tense learning simulations, which were discussed in chap-
ter 6. Using rather restrictive assumptions about input to their network
(in response to criticisms that had been made of Rumelhart and Mc-
Clelland’s assumptions), they nevertheless were able to obtain (a) a
learning stage in which overregularization and other typical errors
were made, and (b) at least part of the transition to a final stage of cor-
rect past-tense formation. Within individual items, but not as global
stages, they also obtained U-shaped learning functions in which good
initial performance preceded a period of over-regularization and then
correct performance. Plunkett and Marchman further demonstrated
that network performance was highly sensitive to the design of training
regimens (e.g., type/token ratios). Only some of their training regimens
yiclded a stage of overregularization, for example.

As a final example, "araban, McDonald, and MacWhinney (1989Y) de-
signed a connectionist simulation of German children’s acquisition of
definite articles, instantiating MacWhinney and Bates’s (1989) Compe-
tition Model. They were roughly as successful as McClelland and
Rumelhart (1986), achieving 98 percent correct production of articles
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for nouns in the training set, and substantial generalization to new
forms. The network’s course of acquisition was similar to that of chil-
dren in several respects; for example, the article for feminine nouns was
overextended, and some of the cues were picked up early in learning.
Available cues were (a) auditory, lexical, case, and semantic features of
the noun, which were presented to the network’s input units; and (b)
microfeatures, which were extracted by the hidden units, capturing
interactions among these explicit cues. These results provide a degree
of increased confidence that Rumelhart and McClelland’s (1986) past
tense results were not a fluke, nor highly dependent on one particular
network architecture or training regimen.

Taken together, these simulations underscore something we already
know, but may overlook. Like other theoretical approaches, connec-
tionism provides a perspective on development and a tool for investi-
gating developmental issues, but it does not provide many general
answers to questions about development. Hence, the conditions under
which networks can model global stages of learning can be examined,
and we can fruitfully compare different studies that are targeted to that
goal. No overall answer can be given, however, to a question such as
“Do networks exhibit global stages of learning?”’.

Developmental and Acquired Disabilities

Given the complexity of human cognition, it is not surprising that there
are numerous ways in which the mechanism can fail to develop as
expected (developmental disabilities) or in which it can be damaged
(acquired disabilities). The performance of a mechanism when it is not
intact is a very uscful source of information about its components and
how they function. Many developmental disabilities (including learning
disabilities, autism, language delay, and some varieties of mental retar-
dation) are associated with particular ability profiles that are suggestive
of what components are assembled together in the overall cognitive/
linguistic system. Information like this can contribute to the design of
explicit models of unimpaired performance, and in turn, these models
can be altered to simulate particular impairments.

We are not yet aware of any investigations that have applied con-
nectionist modeling techniques to developmental disabilities; however,
acquired disabilities can be investigated in a similar fashion and some
initial reports are available. Acquired dyslexia is a family of reading
impairments that may occur when adults suffer lesions in certain brain
areas (e.g., due to head injury or stroke). There are several types of
acquired dyslexia, and their characteristic symptoms have provided im-
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portant evidence regarding the components of the language system and
how they are interconnected to function cooperatively. For example,
individuals with one form of surface dyslexia (sometimes called semantic
dyslexia) can access the pronunciation, but not the meaning, of written
words. They also tend to overregularize the pronunciation of words
with atypical pronunciations, suggesting that they are processing writ-
ten words only as letter strings (not as lexical items that have predeter-
mined pronunciations as well as meanings). In contrast, individuals
with deep dyslexia can access the meaning of a written word, but can
pronounce the word only by using an indirect route through the mean-
ing (hence, they cannot read nonwords such as zat). The semantic
route itself shows some impairment, resulting in semantic errors (e.g.,
reading peach as ‘‘apricot’’). Somewhat more puzzling is the fact that
such individuals also make visual errors (reading cat as “mat”) and
mixed errors (reading cat as ‘‘rat’’).

Hinton and Shallice (1989) reported a connectionist simulation of
deep dyslexia that provided a non-obvious, but elegant, explanation for
the co-occurrence of these three types of error. It well illustrates the
use of connectionist simulation of impairment to gain insight into the
system that is impaired. The results are rather tentative, as Hinton and
Shallice pointed out, because they limited their training set to 40 words
that were all three or four letters in length and belonged to one of five
semantic categories. They modeled the first half of the semantic route
(spelling to meaning) by means of a three-layer feedforward network
of units taking continuous activations between 0 and 1. Each of 28
grapheme units encoded a particular letter in a particular position
within the word. Using the logistic function, activation was propagated
through 40 hidden units to a layer of 68 sememe units (e.g., green,
sweet, does-fly). The network was trained by back-propagation for
approximately 1,000 epochs. (There were certain innovations that need
not concern us, including the use of a specialized error measure, an iter-
ative training procedure, and an additional set of interactive ““clean-up”’
units connected to the sememe units; the effect these units was to make
actual word meanings more powerful “‘attractors’ than other combina-
tions of sememes.)

Hinton and Shallice then lesioned each part of the network in turn,
by removing a proportion of connections (or units) or by adding noise
to the connections. After each lesion they tested the network on the 40
words, and interpreted the resulting sememe patterns in terms of the
best-fitting word responses. Almost every lesion condition yielded the
three characteristic types of error, in varying proportion. They sug-
gested that this outcome is the mark of a cascaded/distributed network:
“Such a mixture of error-types may be as much a sign of the operation
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of a layered connectionist system as dissociations are of modular
systems’’ (1989, p. 34). This is a rather sweeping claim, but appears
justified and important at least for the particular case before us: it is the
first model that has produced a mechanistic explanation for the combi-
nation of error types that are diagnostic of this particular disability.
Hinton and Shallice also reported results on other tasks (e.g., they were
successful in obtaining good below-threshold forced-choice perform-
ance, but not in simulating lexical decision).

Finally, Hinton and Shallice made the important point that the net-
work does not treat the spelling of the word as an arbitrary pointer to
the meaning, because networks prefer to learn similar outputs for similar
inputs.® If words are neighbors in orthographic space (i.e., have similar
spellings and hence have similar encodings on the grapheme units), the
network tries to set up “‘basins of attraction’ in semantic space that are
distinct but adjacent. (The basin is an area around the point cor-
responding to the exact sememe encoding that is being trained; the
clean-up units enable that point to capture activation patterns from
throughout its basin.) The network cannot satisfy this preference com-
pletely, given the semi-arbitrary structure of the language, but it will
do so to the extent possible.

Patterson, Seidenberg, and McClelland (1989) reported a connec-
tionist simulation of dyslexia that focused on the direct (non-semantic)
route linking orthography to phonology. They “lesioned” Seidenberg
and McClelland’s (1989) word-reading network with the aim of pro-
ducing symptoms of at least one form of surface dyslexia. They were
partly successful in this preliminary simulation, but plan further
studies to clarify certain unexpected results. It is not yet known
whether they will satisfy their more ambitious goal of showing that a
single three-layer network is adequate to encode the non-semantic
route. Dyslexia provides a challenging test of the Seidenberg and
McClelland model, because the existence of different clusters of sym-
ptoms has been used to argue for a system with two non-semantic
routes rather than one. Their claim of a single route is reminiscent of
Rumelhart and McClelland’s (1986) treatment of past-tense formation
in PDP:]8, and in fact the same Wickelfeature representation is used
for the phonological component in both models. In the present case
they are using impairment data rather than developmental data to test
the limits of a one-network model in accounting for regular as well as
exceptional linguistic mappings.

6 Note the relation of this point to our discussion of intentionality in chapter 4. We
argued that connectionist representations are nonarbitrary, whereas traditional symbolic
theories commonly make the opposite assumption.
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We have briefly shown how connectionist net.work.s can be used as
models of an unimpaired system, and how alterations in those networks
can be used to model impairments and their effects. These are not sep-
arate enterprises, because a network that can simulate impaired as well
as intact performance is a better-supported model Qf the human mech-
anism than a network that can only simulatf: mta_ct performance.
Hence, modeling the impairments in this way is basic research. The
basic research can lead to some important applied research, -howevcr. A
precise understanding of the mechanism, and of how. specific types o?
impairment translate into symptoms, can hel;? t,o guide the desxgn.o
interventions. For example, Hinton and Shalhce.s model su'ggests (in-
directly) that it might be advantageous to re-train the reading systen;
using distinctive orthographic styles for words that tend to be confuse
semantically. Or if it is graphemes themselve§ that métter, and not the
print style of the grapheme, further simulz.atlons (guided by the loc:f-
tions of words in orthographic and semantic space) may suggest opti-
mal ways to select sets of items for training or to sequence those sets.
Interventions suggested by the model would be handled the same way
as ideas from any other source: they would be tested for efficacy, an.d
incorporated into clinical practice if warranted .by the rcrsults. What 1;
encouraging 1s the likelihood that some of the interventions suggeste
by connectionist modeling may be both non-obYlous and l'nghly suc-
céssful. We have focused our discussion on acqu.lredlciiy.'slexm, but t:l]ls
optimistic assessment applies to developmental disabilities and to other
acquired disabilities as well.

Concluding Comments

We have focused upon connectionism’s potential impact on deve!op(;
mental psychology as well as the fields of developmfzntal and acquire

disabilities. It is worth emphasizing that research in these fields can
contribute to the connectionist program as 'well; the influence need not
occur in only one direction. As one illustration, there are large dat.a sets
in these fields that can be used to suggest and evaluate particular
simulations. Intervention, in particular, is a COHtt?Xt that 'can generate
detailed longitudinal learning data. As a second illustration, devel'op-
ment is in part a process of building more complex systems from sim-
pler ones. The particular simple and complex systems of the developing
child are ones that will be highly relevant tg m(?del, and the character-
izations of those systems that already exist in developmentarln?sz-
chology should provide at least some clues.as tg how to procee.d. o llr ,
developmental neurobiology can suggest directions to pursue in biolog-
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ically-oriented neural networks. (Eventually, pursuit of networks at
both the lower, neural level and the higher, cognitive level might result
in better potential for integrating accounts across levels.)

Our final comment is one that applies to a number of subdisciplines
in addition to developmental psychology: connectionism carries diffi-
culties as well as promises, and the difficulties will affect how and
whether the promises are kept. Connectionism does not offer many
answers at this time, but rather the potential to obtain answers as
connectionist modeling itself is altered and enhanced. Hard work, not
Just ardent belief, is needed to actualize the potential, and there is no
way of knowing how many developmental psychologists will sign on for
this job. Considering how few have pursued the previously most prom-
ising approach to modeling, production systems, the number could be
smaller than the advantages would suggest. Also, there is no reason to
think that connectionism will be any less controversial in developmen-
tal psychology than in cognitive psychology. Hence, while connec-
tionism will almost certainly enliven developmental theorization in the
1990s, it may fail to penetrate deeply or broadly enough to become a
dominant theoretical force. '

Neuroscience

Although our own focus has been on connectionism as practised in
artificial intelligence and psychology, its oldest and most prominent
roots are in neuroscience. Networks in neuroscience are regarded more
or less literally as neural networks that model neural structures and
events. That is, the units are taken to be neurons, and the connections
to represent synapses (correspondences that are now understood to in-
volve a greater degree of idealization than was evident initially). Some
of these models have involved specific neural areas (e.g., Grossberg,
1976; Bienenstock, Cooper, and Munro, 1982); others have targeted a
particular function such as concept formation (e.g., Amari, 1977) or
memory (e.g., ]. A. Anderson, 1972; Little and Shaw, 1975); and others
have been quite general proposals (e.g., Edelman, 1987: Recke and
Edelman, 1988; Grossberg, 1982, 1988; McCulloch and Pitts, 1943;
Rosenblatt, 1958). When neural network modeling began to influence
some key cognitive scientists in the late 1970s (particularly through the
influence of J. A. Anderson), networks were used to obtain a more ab-
stract kind of model that could be applied to the cognitive, rather than
neural, level of description. Yet these investigators adopted, as a start-
ing point, essentially the same network architectures that had been
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developed for the neural level. (Innovations soon followed, including
the discovery of the back-propagation learning algorithm for training
hidden units.)

Within cognitive science, which is the perspective we have adopted
throughout this book, it is common to speak of connectionist models as
neurally inspired and of their units as neuron-like. Investigators who use
this language are conveying that they do not consider their models to be
models of neural systems as such. This is justified by the observation
that there are many well-described features of neural systems that are
not embodied in connectionist models, and a number of connectionist
features (such as back-propagation) that do not have a straightforward
neural interpretation. Instead, units are taken to correspond to symbols
(in localist models) or to subsymbols or microfeatures (in distributed
models). Yet, certain similarities are intriguing. For example, connec-
tionist units and neurons are both elementary processing units that
combine inputs from some units and send outputs to yet other units. In
both connectionist networks and nervous systems it is the pattern of
connectivity that seems to be a principal determinant of behavior.
These and other similarities lend plausibility to the assumption that
whatever processing can be done in connectionist architectures could
be performed in the nervous system.

This history has made for a rather tangled set of claims about how
connectionist models of the abstract, cognitive variety relate to the
neural level of organisms, to neuroscience, and to connectionist models
of the explicitly neural variety. One view is that the distinction itself
is misguided; connectionism should be viewed as a type of neural re-
search, which facilitates the reduction of cognitive investigations to
neural theorizing. A second view is that connectionism (within cogni-
tive science) should be focused at a more abstract level of analysis,
related to but not identified with neural research. In the following
sections we shall explore both of these alternatives. (For more extensive
discussion from an interdisciplinary conference on this topic, see

Nadel, Cooper, Culicover and Harnish, 1989.)

Connectionism as a Neural Model

A major point of controversy in the philosophy of cognitive science has
been the proper relation between cognitive theories and neuroscience
theories. The model of theory reduction has provided one standard
view of how theories from different disciplines are to be related. For
one theory to be reduced to another, two requirements must be satis-
fied: (1) translation principles must be established equating the basic
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terms of the theory to be reduced to terms in the reducing theory; and
(2) the laws of the reduced theory must then be derived from la\:vs of
the reducing theory (Nagel, 1960). Among the virtues often cited for
the reduction of one set of theories to another are ontological economy
(achieved by showing that the terminology of the reduced theory does
not refer to entities not already identified in the reducing theory) and ex-
planatory unification (achieved by showing that the explanato;y laws of
the reduced theory can be derived from and thus explained in terms of
the laws of the reducing theory). (For a more detailed presentation and
critical discussion of the theory reduction model, see Bechtel, 1988a.)

Ad.vocates of the reduction of cognitive theories to neuroscience

theories argue that from neuroscience to the most basic disciplines
of physics, theories either have been, or are in the process of being

redu%‘ed to those of more basic disciplines. To oppose the reduction o;
cognitive theories to neuroscience ones would create an unnatural rift
be_tween cognitive science and the rest of science and cut the cognitive
sciences off from the benefits to be procured by integration with the
rest of science. The basic entities of cognitive science would not be re-
lated to the more basic entities of science, and so we could not use what
we .know about more basic phenomena to understand the entities
posited in cognitive theories. Likewise, the basic laws of cognitive sci-
ence would lack any justification in terms of more basic phenomena

and we could never understand why they should hold. ‘

Advocates of the theory reduction model for the cognitive sciences
such as Patricia and Paul Churchland, have criticized cognitive theories,
de\'elopfed within the symbolic tradition for not being reducible to
neuroscicnce theories. The basic entities of symbolic theories, symbols
und. rules for manipulating symbols, have not been identified \;'ith more
basic physical entities (in the brain). The laws postulated to describe
s_\.'mbolic information processing have not been reduced, and are not
vu-:wed as reducible, to more basic physical laws. On ﬁr,st encounter
this charge appears implausible. As we have noted, one of the model;
for the development of symbolic cognitive science was the development
of a physical device, the digital computer, which can be interpreted as a
symbol processing machine. The ways in which symbols are imple-
mented in a (physical) computer at least suggest that they might also be
implemented in a (physical) brain.

ThF construal of cognitive theories as not reducible to neuroscience
theories, however, did not originate with reductionists. It is due. in
f?ct, to certain advocates of the symbolic tradition and to the persr;ec-
tn{e they have taken on the mind-body problem. Philosophers such as
Hillary Putnam (1975b) opposed the reductionistic mind-brain identity
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theory. Using the model of a progran:lmed computer, he nott'ad that
programs (symbolic structures) can be implemented on many dlﬂ'eren;
computers. Similarly, he argued, mental states could in fact be re?llze

in many different kinds of physical systems. Hence, he 'conclu.ded it was
incorrc.ct to identify symbolic states or mental states with their physical
instantiations. This argument gave rise to what is commonly called the
functionalist theory of mind according to whlch. mental states are
characterized and to be understood in terms of their interactions with
other mental states, not in terms of their physif:al emb(.)dlment (see
Bechtel, 1988b). Symbolic theories are functionalist thcqnes par exfel—
lence, and thus are construed as not reduc?ble to neuroscience theories.
(Multiple realizability of mental states is, in fact, not sufﬁc:ent to shf)w
that mentalistic theories cannot be reduced to ncuroscience ones. See
Richardson (1979). Below we shall outline a somewhat more compel-
ing argument.

]ml‘:‘olrrkreductio)nists like the Churchlands, the failure of a theory 'to re-
duce to more basic theories is evidence of the vacuousness and. misgui-
dedness of the unreduced theory. If a theory does not reduce, 1t should
be abandoned. Thus, the Churchlands are prepared to .a.bandon sym-
bolic approaches to cognitive science (as we'll as prop051t19nal at.tltude
or folk psychological theories of mind, which we shall discuss in the
next section). They recommend that cognitive sc1ence.should seelf to
develop theories of information processing that are not just co.mpatxble
with, but actually modeled upon, neural informatlon-pr.ocessmg theo-
ries so as to insure reduction. Because connecti.oni.sm is modelled on
aspects of neural processing, they see it as facilitating a re'ductlon‘ of
cognitive theorizing to neuroscience tbeonzm.g, and thu§ as mtegr;&m:ig
cognitive science into the main fabric of science (P. S. Churchland,
1986; P. M. Churchland, 1989). .

Not surprisingly, one of the major advocates of the symb'ohc ap-
proach, Jerry Fodor, has addressed the is:su.e of theory reduction, and
argues that the theory reduction model is n.lappropnate for what he
calls the special sciences, of which psychology 1s one (F'odor, 1974‘).. Tbe
core of his argument is the claim that there are Iaw-hkfe regularmes in
nature that are not reducible to the laws of the more basic sciences. The
reason they are not reducible is that the concepts used to state thesF
regularities cannot be translated into the cqncepts of the more basic
sciences. For example, one cannot specify in the terms of the more
basic sciences what conditions must be met f.or somcth!ng to count as
money, and yet there are law-like regularities in economics that re.fer t.o
mone;/. IHence, economics might not be reducible' 'to more.basw sCi-
cnces.' Fodor maintains that it nevertheless is a legitimate science, and
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contends that the same applies to cognitive disciplines such as psy-
chology. There are regularities in the behavior of organisms that might
be stateable in terms of psychology but not in the vocabulary of the
more basic sciences.

While Fodor’s arguments for the nonreducibility of special sciences
may allow for what many practitioners of those sciences may judge to
be a healthy sort of autonomy, there are drawbacks to this approach.
The strong autonomy position seems to entail that there can be no
fruitful direct interactions between the special sciences and more basic
sciences. Since the categories employed in cognitive science and neuro-
science are incompatible with each other, we cannot learn about cogni-
tive processes by studying how they are instantiated in the brain. The
history of science, however, suggests that studies at different levels do
contribute to each other. For example, understanding biochemical pro-
cesses helped researchers better understand physiological processes,
and vice versa (Bechtel, 1984, 1986b). Within psychology itself fruitful
interactions with neuroscience have already been realized for peripheral
processes (e.g., the study of color vision) and in a more general way for
cognitive processes (e.g., neurolinguistic research). These examples
lend plausibility to the idea that we can learn more about how our cog-
nitive systems operate by learning about neural substrates in which
they are realized, and that characterizations of cognitive processes
would be a useful guide in developing an understanding of neural
processes.

The difficulty here may lie in employing theory reduction as the
model for relating different scientific investigations. Evidence from
basic sciences suggests that the most fruitful interactions may occur
without the reduction of theories in one discipline to those in another.
In some instances interaction is facilitated by what Darden and Maull
(1977) term interfield theories, theories which relate phenomena which
are primarily studied in different disciplines. For example, the chromo-
somal theory of inheritance related Mendelian factors (which were
understood functionally in terms of the traits for which they were re-
sponsible) with chromosomes, and suggested that Mendelian factors
(i.e., genes) might be located on chromosomes. Muking this connection
led to fruitful developments in work on the nature of chromosomes in
cytology, as well as work on the role of genes in studies of heritability of
traits. This example illustrates onec common kind of interficld theory,
which connects entities whose function might be examined in one disci-
pline with entities whose structure is primarily the focus of another
discipline. (It is important to bear in mind that an entity that is viewed
as a structure from the point of view of one discipline might itself be
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viewed as a functional product of other structures in another discipline.
Hence, the structure/function distinction is relative.) If we do not need
reduction to relate disciplines, fruitful interaction might be possible be-
tween cognitive science and neuroscience even if we cannot define cog-
nitive entities in neuroscience terms. We can examine constraints on
what kinds of neural structures and functions could underlie cognitive
processes and what kinds of cognitive processes might be achieved in a
system of neurons.

One of the factors that drives people to construe connectionist
models as neural models is the desire to employ connectionist models in
a reduction of cognitive theories to neuroscience ones. Such a treat-
ment of connectionist theories might also be useful if all we are trying
to do is develop interfield connections. We might, for example, con-
strue connectionist theories as attempts to give functional accounts of
the processing that occurs in neural structures. But if we are not en-
gaged in constructing reductions, we are not forced to treat connec-
tionist models as neural models, and we can consider whether a looser
connection might be more satisfactory.

Connectionism as More Abstract than Neural Models

In neuroscience, the units of a connectionist model are generally taken
to correspond, at least roughly, to neurons. Most cognitive science
investigators, while appreciating the advantages of ‘‘brain-style” mo-
deling, prefer to maintain some distinction between the cognitive and
neural levels, and some use the term connectionist as though it refers
only (or principally) to the cognitive level (a practice we follow in this
section for convenience). Smolensky, for example, argues that

it is better not to construe the principles of cognition being explored in the
connectionist approach as the principles of the neural level. ... To be sure, the
level of analysis adopted by PTC [the proper treatment of connectionism] is
lower than that of the traditional, symbolic paradigm; but, at least for the pres-
ent, the level of PTC is more explicitly related to the level of the symbolic para-
digm than it is to the neural level (1988, p. 3).

What are the reasons for differentiating between connectionist and
neural models? First, it is critical for cognitive theorizing that connec-
tionist networks carry a semantic interpretation. Very little is known at
present about how to do this at the neural level, leaving a lacuna on the
neural side in an area which is critical to connectionist research. Sec-
ond, while connectionist models are inspired by the general character of
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the nervous system, there are many features of the brain which are not
replicated in connectionist systems. An example is the role played by
neurotransmitters in the brain, and the differences in function among
these transmitters. Another difference is the manner in which inputs
are integrated. In connectionist networks net input is computed by
means of a linear function, whereas neurons seem to use a moreé intri-
cate mechanism. Third, conversely, the connectionist program in cog-
nitive science incorporates mathematical, behavioral, computational,
and other concerns that might be dealt with quite differently, if at all, at
the level of neural modeling. For example, as Smolensky points out
(1988, p. 9), “In the drive for more computational power, architectural
decisions seem to be driven more and more by mathematical conside-
rations and less and less by neural ones.”” That is, the equations of dy-
namical nonlinear modeling need not be thought of as applying to
neurons. Neural network modelers have contributed a great deal to the
mathematical characterization of networks, but the properties of neu-
rons have guided this work only very broadly.

If it were a goal of connectionist research to facilitate a reduction of
cognitive theorizing to neuroscience, these would seem to be serious
difficulties that should be addressed immediately. However, as the
just-cited comment by Smolensky made evident, many connectionist
theorists currently place little priority on making their models more
neurally realistic. Furthermore, models are often explored because they
seem to be capable of performing interesting cognitive tasks; it is not
even clear how one might find a neural implementation of some of the
techniques (e.g., back-propagation). (See McCauley (1987b) for an
argument that disciplines sometimes need to pursue internal develop-
ment before developing linkages to adjoining fields.)

If we do not treat connectionist models as modeling activity in the
nervous system per se, how are we to understand these models? What
are they models of? One possibility is to treat connectionist models as
relatively abstract models of the processing that occurs in the nervous
system. While not constrained to account for specific features of the
nervous system at any particular level, they model the sort of infor-
mation processing which the nervous system is capable of performing.
The hope is that by abstracting away from specific features of the brain
we may be able to understand the general factors that are involved in
performing cognitive operations. Such an account may be useful as a
guide to what sorts of activity in the brain are relevant to information
processing and help in the identification of actual brain mechanisms
involved in cognitive performance.

In discussions of reduction, theories are central and disciplines are
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identified in terms of their theories. If one theory is reduced to another,
then the corresponding discipline is thought to be reduced. But this
may result in a misunderstanding of the character of disciplines, which
are principally comprised of individuals committed to certain ap-
proaches to inquiry (Bechtel, 1987). Thus, we may gain a better per-
spective on disciplines by considering the kinds of investigation that
disciplines are likely to pursue. As we noted in the introduction to this
chapter, Abrahamsen (1987) made a distinction between those sci-
entists who are primarily interested in understanding biological
systems (biologists) and those who focus on the behavior of organisms
(behavioral scientists). Some biologists, however, specialize in those
biological systems that underlie behavior, while some behavioral
scientists are particularly interested in the biological underpinnings of
behavior. This can generate useful interactions in which theories at the
two levels are brought to bear on one another, bridging the boundary
between disciplines. One perspective to take on connectionism is that
it may provide a common formalism that eases the task of bridging
this boundary. Investigators from neuroscience may find the abstract
characterization of neural events that connectionism offers to be useful
in determining how biological systems can constrain or contribute to
the behavior of organisms. Behavioral scientists can use connectionism
to explore cognitive performance in a way that is at least somewhat sen-
sitive to the nature of the biological system that underlies that perform-
ance. Thus, even without facilitating a reduction, connectionism can
contribute to fruitful integration of cognitive science and neuroscience.

Philosophy

In many respects symbolic cognitive science is a product of ways of
thinking that originated in philosophy. Philosophy has long given pri-
macy to symbolic, especially propositional, modes of representing in-
formation. In epistemology and philosophy of science, for example, the
information a person might claim to know is assumed to be represented
propositionally. Logic is devoted to the study of inference relations be-
tween propositions. Such areas of philosophy as ethics and aesthetics
are principally concerned with ethical or aesthetic judgements, with the
contents of judgements being represented propositionally. Perhaps cen-
tral to all of these uses of propositions is the philosophical way of
characterizing mental life in terms of what are known as propositional
attitudes. Propositional attitudes are attitudes that people are thought to
take toward propositions. A person may believe that a proposition is
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true, wish that it were true, or doubt that it is true. We use sentences
ascribing propositional attitudes regularly in characterizing people.
For example, we might characterize Churchland as believing that
connectionism offers a correct theory of the mind. This idiom is
extremely useful since with it we can easily present the differences be-
tween people (e.g., by noting that Fodor doubts the same proposition
which Churchland believes). Philosophers have coined the term folk
psvchology to refer to people’s naive theories of how various pro-
positional attitudes interact, which enable them to predict and explain
other people’s behavior. In addition to describing folk psychology,
philosophers recently have become extremely interested in its scientific
status. Philosophers have been taking stands on the claim that folk psy-
chology is likely to go the way of other folk knowledge, for example,
folk physics, and be replaced by a more credible scientific account of
people.

The importance of connectionism to philosophy emerges first with
respect to the question of whether folk psychology remains viable or
must be replaced. If it needs to be replaced, then the reliance on pro-
positional representations of knowledge in other areas of philosophy
may also be at risk. Even if folk psychology turns out to be compatible
with connectionism, connectionism may still have consequences for
areas of philosophy such as epistemology and philosophy of science.
Thus, we shall first examine the question of whether connectionism
contributes to the replacement of folk psychology, then consider its
implications for other areas of philosophy.

Folk Psychology

The question of reduction, which emerged as central in our discussion
of the relation of connectionism to neuroscience, also figures promi-
nently in discussions about folk psychology. Some advocates of the
symbolic approach to cognition have construed it as offering a natural
explication of folk psychology since it allows for the possibility that the
propositions toward which people hold attitudes might be actually
represented in the head. Such a view might treat reasoning as involving
the performance of operations on these propositions. For theorists who
adopt this perspective the claims of folk psychology will be vindicated
if symbolic accounts of mental operations are true, since they will be re-
ducible to true scientific theories (Fodor, 1975, 1987). Other philo-
sophers, however, have anticipated that folk psychology will face a
quite different fate. Rorty (1965) and Feyerabend (1963) predicted that
folk psychology will go the way of other folk theories — it will be
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dismissed once we develop an adequate theory of the operation of the
mind/brain. This view is known as eliminative matertialism. Both Pat-
ricia and Paul Churchland have recently defended eliminative material-
ism by maintaining that if a theory fails to reduce to our best scientific
theories at lower levels, it must be dismissed as false. They contend
that reduction fails in the case of folk psychology because there is
nothing in the head with which to identify the propositions it posits.
With the re-emergence of connectionism, the Churchlands have
deployed it as further support for the nonreducibility of propositions
and hence of folk psychology. Their contention again is that network
accounts do not provide a place for propositions in our accounts of
mental life (P. S. Churchland, 1986, P. M. Churchland, 1988).

We have already raised questions about whether higher-level sciences
must reduce to more basic sciences. But the status of folk psychology
can be addressed independently of that concern. If connectionism
should provide a correct account of mental processing, and if it does
not turn out merely to implement symbolic systems, then the account
of mental life as actually involving the manipulation of propositions
would appear to be false. That is, mental states involving propositions
will not figure in the causal genesis of behavior. For the Churchlands,
this conclusion entails the further conclusion that folk psychology is
false. In making this entailment, they are assuming that folk psycho-
logical theories are theories about processes occurring inside people’s
minds.” A number of investigators have argued against collapsing these
notions, however (Bechtel, 1985; A. Clark, 1988; Garfield, 1988). Folk
psychology refers to people’s attributions of propositional attitudes to
other people and uses these to predict and explain their behavior.
These attributions are made to whole persons; folk psychology does not
itself offer an account of the finer-grained internal operations that may
produce propositional attitudes or lead to action. If we attribute to a
person a particular belief about his or her environment, the internal ac-
tivities within that person must explain how the person could have such
a belief, but the belief itself need not be a discrete internal state. The
states inside the person that enable the person to have a belief could
have a quite different character.

An example from another discipline may help to clarify this. Certain
cells, such as yeast cells, perform fermentation. That is an activity the

7 This assumption was promoted by Fodor, who attempted to legitimize folk psy-
chology by showing that the internal activities of the mind involve the same sort of
operations as figure in folk psychological accounts. The Churchlands accepted the as-
sumption, but because they characterized the mind differently, it led them to reject rather
than accept folk psvchology.
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cell carries out when in an appropriate environment (e.g., one with ad-
equate sugar and appropriate temperature). But, despite the tempta-
tions of early biochemists to explain the fermentation of sugar as itself
due to a series of internal fermentation reactions, we now know that it is
most useful to characterize the internal operations of the cell in a quite
different manner. The activities inside the cell consist of oxidations,
reductions, phosphorylations, etc. The complex Embden—Meyerhof
pathway inside the cell makes it possible for the cell to carry out fer-
mentation (Bechtel, 1986b).

Applying this point to the case of cognition, the activities inside the
head may make it possible for a person to have beliefs and desires, but
we do not need to assume that they have internal states that directly
correspond to these propositional attitudes. It may be that the internal
activities are best described in connectionist vocabulary. That, how-
ever, does not show that folk psychology is false. On the one hand, folk
psychology might still correctly describe the mental states of persons.
Thus, the fate of folk psychology need not be tied to the fate of sym-
bolic theories of cognition. On the other hand, folk psychology could be
false, but if it is false, it will be because it does not give a correct
characterization of the cognitive states of persons and must be replaced
by a better theory at the same level. (McCauley (1986) maintains that,
historically, replacements occur when better theories are developed at
the same level as the original theory, and not directly as a result of new
theories at lower levels.) Neither connectionism nor any other frame-
works developed to model internal cognitive processes will disprove
folk psychology (see Bechtel, 1985, 1988b).

Epistemology

Even if the rise of connectionism does not suffice to discredit folk psy-
chology or propositional attitude discourse as a tool for describing
people, it may still have profound implications for other domains of
philosophy, especially epistemology and philosophy of science. The
reason for this is that these areas of philosophy have generally taken the
proposition to be the basic unit of analysis. Knowledge is taken to be
represented in propositions and so most of the major questions have
been construed as questions about the relations between these pro-
positions. For example, in epistemology a central issue has been to
define what constitutes knowledge. The most widely discussed candi-
date has been the proposal that knowledge involves Justified true belief.
This is recognized to be inadequate (Gettier, 1963), and much attention
has been directed toward finding additional criteria that will adequately
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distinguish knowledge from mere belief. For our purposes, though,
what is most salient in this approach is that all of the defining condi-
tions are limited to a propositional conception of knowledge. Only pro-
positions are gencrally assigned truth values, and belief is generally
analyzed as a propositional attitude. Accordingly, the analysis of justi-
fication has focused on identifying the sorts of relation between propo-
sitions (logical relations) or between external evidence and propositions
(causal relations) that are sufficient to turn a belief into knowledge.

For the most part, epistemologists have not tried to relate their analy-
ses of knowledge to psychological findings about cognition. One reason
for this is that epistemology is generally thought to have a major nor-
mative dimension; its goal has been to specify what should constitute
knowledge and not merely describe what is taken to be knowledge. But
increasingly epistemologists have become interested in fitting norma-
tive accounts to psychological accounts of the knowledge acquisition
process. For example, one approach to analyzing justification treats a
proposition as known if it is the product of a reliable belief-making
mechanism (Goldman, 1986). This invites collaboration with empirical
psychology in order to determine what belief making processes are re-
liable, As long as the psychological accounts are symbolic, then this sort
of collaboration between epistemologists and psychologists is at least
possible. But connectionism raises the prospect that belief-making pro-
cesses should not be understood as logical operations upon propo-
sitions, and that even the states of believing or knowing should not be
understood in terms of propositionally encoded information. For exam-
ple, connectionists do speak of a network recognizing an object pre-
sented to it, which in folk psychological terms we might gloss as
forming a belief as to what is presented, and relying on knowledge to do
so. The belief that a particular object is presented to the network is not
encoded propositionally, but in terms of activations of units. The
knowledge that is required to arrive at this belief is also not encoded
propositionally, but in the weights of the various connections in the
network. The propositional attitude statement provides a gloss on the
system's state, but not a description of its internal structure.

I connectionism: should provide an adequate account of the pro-
cesses oceurring in us when we believe or know certain things. then the

question arises as to whether understanding network mechanisms can
be of any use to epistemologists seeking to understand, for example,
when a behef should count as knowledge. It is clear that since networks
do not work by logically manipulating propositions (at least dircctly),
any account of justification that would draw on connectionist principles
would not be able to limit itself to principles of logical inference in
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describing how the belief state was arrived at. Rather, we would rely on
something like the notion of maximal satisfaction of soft constraints to
describe how the network behaved, and in evaluating its performance
v\.'e.would presumably consider whether the constraints it satisfied in ar-
riving at its output state were the appropriate constraints. This would
lead us into an evaluation of how a network had been trained, specifi-
cally, whether its training had resulted in weights that enabled it to re-
spond to inputs in a manner that was most likely to meet its needs in
the environment. For example, a network that has not been trained so
as to recognize predators reliably, and which sometimes mistook them
for allies, would be judged to have an unreliable belief generator.

What this suggests is that if connectionist accounts are correct
epistemologists who want to understand how humans arrive at belie%
states might benefit from interfacing with connectionist-level accounts.
At an extreme, some epistemologists might even decide to work directly
at the f.‘onnectionist level. If such epistemologists were interested in
normative questions, they would have to develop standards for assess-
ing how such networks ought to behave in particular situations. For
example, they might explore what weight settings would best enable a
network to deal with a particular context and what alternative settings
might only provide an illusion of competence in a particular domain.
This would constitute a major change, since epistemology has generally
been pursued through conceptual analysis, not empirical inquiry. Such
a recasting of epistemology would be one way of answering Quine’s
(1969b) call for epistemology to become a part of empirical science.

There is a distinction within epistemology, however, that might en-
able 'something like the more traditional approaches to epistemology to
continue even if connectionism is generally accepted as an account of
mental mechanisms. Epistemologists distinguish between whether
persons arrive at beliefs in a manner that is justified and whether they
can in fact produce justifications for their beliefs subsequently, no mat-
ter how they arrived at them. If an individual asserts a proposition
then the question might arise as to whether she could produce in support’
of it a set of propositions that would meet the canons of argumentation.
.Inq‘uiry into what types of propositions would be needed to provide
Justification might provide a domain for more traditional episternology.

Even this more traditional sort of epistemology might be broadened
however, ip response to interdisciplinary considerations. In particular:
connectionist researchers within cognitive psychology may convinc-
inglv demonstrate thar Patern recognition procecies Lee hales
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whether these pattern-based movements from proposition to propo-
sition, which might deviate from the inference rules of deductive logic,
are nevertheless rational. If so, epistemologists would need to add
alternative canons of rationality to those of deductive logic, and include
them within the scope of epistemological inquiry. Presumably, they
would seek to do this in a way that allowed them to continue working at
the propositional level, leaving to psychologists the task of constructing
network models of the underlying mechanisms. Nevertheless, this sort
of shift in the scope of epistemology could substantially contribute
to bringing epistemologists further into the cognitive science research
cluster.

Philosophy of Science

Turning briefly to philosophy of science, where the goal is to specify
what scientific explanations consist in and to identify the proper criteria
for evaluating proposed explanations, we find that many of the same
concerns arise. For example, scientists do rely upon linguistic ex-
pressions to announce their results and to defend them. For these
aspects of science some of the traditional analyses might suffice. For
example, explanation is often thought to involve arguments that show
that what was to be explained was the expected result of a general law.
This law is viewed as being tested by determining whether its predicted
consequences are true or false. To some degree, this is what appears to
happen in the linguistic discourse and publications of scientists. But
there is also the question of what happens in the head of a scientist as he
or she seeks explanations and evaluates whether proposed ones are true.
Here connectionism may provide a quite different picture of what is
involved in science. Paul Churchland (1989) argues that explaining a
phenomenon is very similar to the process of recognizing it. He pro-
poses that explanation involves activating a prototype (explanans) tbat
enables the organism to deal with a situation (explanandum) for which
understanding is needed:

Explanatory understanding consists in the activation of a specific prototype vec-
tor in a well-trained network. It consists in the apprehension of the problematic
case as an instance of a general type, a type for which the creature has a detailed
and well-informed representation. Such a representation allows the creature to
anticipate aspects of the case so far unperceived, and to deploy practical tech-
niques appropriate to the casc at hand. (1989, p. 210)

This proposal offers a variety of benefits. It accounts for the obser-
vation that explanation often seems to have much in common with
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pattern recognition and is sometimes arrived at instantaneously: one
simply sees that a puzzling phenomenon fits a well-established pattern.
It also seems to accommodate the fact that scientists sometimes arrive
at an explanation before they are fully able to verbalize it. Finally, it
provides a new perspective on the relation between discovery and
Justification. Following Reichenbach (1966), it became popular to con-
strue these two activities as totally distinct, with discovery being a
non-logical process to be analyzed by psychologists, while justification
was a matter of logic to be analyzed by philosophers. Recently some
philosophers of science (e.g., Nickles, 1980) have rejected the distinc-
tion, arguing that the reasoning involved in discovery is not totally dis-
similar to that employed in justification, and that both should be
analyzed together since in fact they are not clearly distinguished in
scientific practice. In Churchland’s proposal, these two processes are
closely linked; both involve determining which prototype best fits the
situation,

There remains, however, much to be done to develop this proposal.
There appear to be differences as well as similarities between percep-
tion and explanation. Perception is almost always immediate, whereas
the quest for an explanation is often prolonged. A connectionist ac-
count is needed of what is entailed in the search for explanations and
why finding an explanation often is difficult. One possibility is that
explaining a phenomenon not previously explained requires more than
activating a prototype; it may require modifying the network so that a
prototype, or an altered prototype, will now apply to the new situation.
(A new prototype will only count as an explanation, presumably, if it
facilitates appropriately dealing with the new phenomenon in ways that
relate it to previously known phenomena.) Such alteration may take
time and constitute a kind of change quite unlike that envisioned in cur-
rent connectionist learning rules (which rely principally on error cor-
rection). There is also the difference that in perception, once an object
is recognized, a response may simply ensue. Once an explanation is
suggested, however, there is usually a process of testing the adequacy of
that explanation. What kind of processing this would require in a net-
work must be examined.

Although it has been possible only to sketch them here, the network
model does suggest new fruitful ways of exploring old topics in philos-
ophy of science as well as epistemology, and so offers great potential for
modifying and expanding philosophical inquiries in these areas. Its im-
pact may also go beyond these domains to other areas in philosophy. If
we take seriously the idea that recognizing a pattern and responding to
it is a basic cognitive activity, that may suggest different ways of think-
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ing about ethical reasoning, for example. Instead of construing c.athical
reasoning as a matter of evaluating actions by rules (deontologtcal. or
utilitarian), we may think of it as a matter of developing afld employmg
prototypes. So far connectionism’s influence has bf:cn limited to philos-
ophy of mind, but clearly it has potential for shaping many other areas
of philosophy.

Linguistics

In light of the forays that connectionists have made int.o m.odeling
language processing, it is not surprising that a number' of linguists and
psycholinguists have given connectionism some .notlce. There l?ave
been three quite distinct responses, which reflect different assumptions
about what levels of description are germane to language, a‘nd. who
should carry out the work at each level. First, some linguists within the
Chomskian tradition of generative grammar have regarded connec-
tionism as a challenger. Second, adherents of what has recently becon?e
known as cognitive linguistics have welcomed connectionism as an ally in
their .onstruction of a psychologically-oriented altemati.ve to Chom-
skian linguistics. Third, other linguists have chosen a r.md_dle ground.
They emphasize that linguistic theory and conn.ectfomsm .mvolve
different levels of inquiry, and can peacefully coexist in carrying out
their respective missions.

Connectionism as a Challenger

Virtually every linguistic theory uses symbols and rules of some kind to
describe the regularities that characterize human languages. In a gener-
ative grammar the rules are constructed to operate on symbols so as
to generate all of the grammatical sentences of the !anguage. One of
Chomsky’s most notable claims is that a grammar is a model of the
speaker/hearer’s tacit knowledge of language (ImgulsPlc c‘on?petfmce).
That knowledge is mentally represented, and hence lll‘lg-UKStl.CS.lS (or
should be) a part of cognitive psychology. The study of llngglsttc per-
formance, in which the tacit knowledge is actually usg?, 1s assigned to a
different set of investigators in this expanded cognitive psycho!ogy
those who call themselves psychologists or psycholinguists. Within this
framework, it is possible (although not inevitable) to view as a challenge
the approximationist claim that explicit rules need not be mentally re-
presented, and that rules merely approximate the more detaxled.accgunt
of data that i1s provided by connectionist models. The approximation-
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ists would seem to be claiming that there is no rule-based competence
for the performance theory to consult and use. Linguistic rules there-
fore lose their causal role in cognition, an unacceptable outcome. The
conclusion is that the connectionist program is misguided and must be
rejected. In those critiques that have appeared in print a variety of
much more specific arguments have been marshalled, but the funda-
mental objection is to the loss of rules as an explanatory device. It is

. worth noting that most of the authors of these critiques have been

psycholinguists who work within a broadly Chomskian framework, in
particular, Jerry Fodor, Tom Bever, and Steven Pinker. Chomskian
linguists have perhaps seen the threat as more distant, since the
connectionist theories are psycholinguistic in nature and have not di-
rectly challenged linguistics as a discipline; among them only Alan
Prince has offered a published critique (with Pinker). Nevertheless if
one interprets the Chomskian notion of competence as providing the
model of how language is represented in the mind, connectionists
would seem to be offering a counter-proposal that would deny this role
to linguistic theory. (For two alternative interpretations of competence,
see the third section of this chapter and Lawson and McCauley, 1990.)

If one assumes that linguistic analyses ought to conform to psycho-
logical processing, then connectionism, if successful, would have dra-
matic consequences for linguistic analyses in the Chomskian tradition.
In place of analyses that used formal rules to account for the grammati-
cal structures in a language, linguistics would need to develop analyses
that rely on the satisfaction of soft constraints that are accomplished by
networks.

Connectionism as an Ally: Cogpnitive Linguistics

Chomsky, while making claims about the mind on the basis of lin-
guistic analysis, has little interest in incorporating traditionally psy-
chological data or constructs in forming his linguistic theory. While
claiming that competence is mental, he sharply distinguishes com-
petence from performance. This framework has been challenged by a
number of theorists (e.g., Fouconnier, 1985; Lakoff, 1987; Langacker,
1987a), who deny that we can understand either the syntax or semantics
of language without understanding the psychological processing that
underlies it. They refer to their program as cognitive linguistics. Lan-
gacker (1987a), a principal advocate, characterizes some of the core
commitments of cognitive linguists as follows. First, they deny the
autonomy (and primacy) of syntactic analysis advocated by the Chom-
skian tradition; instead, semantics is regarded as fundamental and per-
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vasive. Furthermore, they reject the sort of objectivist semantic analysis
that starts with propositions and seeks to explicate meaning in terms of
truth conditions. Rather, they advocate a subjectivist or conceptualist
analysis of language which tries to show how both the grammar and
meaning of linguistic idioms is grounded in such factors as the body of
knowledge that speakers possess, the mental models they build, and the
mappings they make between domains of knowledge. Proponents of
this view emphasize the role of metaphor in shaping language and the
manner in which the meanings of terms might be extended by decisions
to include conceptually related entities, resulting in what Lakoff (1987)
refers to as radial categories.

Logical reasoning and rule application are not the sort of cogni-
tive activities that cognitive linguists view as central to understanding
language. Rather, they emphasize such functions as the extraction of
prototypes and the identification of metaphors and analogies, and often
regard linguistic expressions as solutions to multiple, soft constraints,
many of which are directly cognitive in nature. Therefore it is not sur-
prising that cognitive linguists have embraced connectionism as quite
relevant to their program. Langacker, for example, draws the linkage as
follows:

cognitive grammar (at least my own formulation of it) is basically compatible
with the connectionist philosophy. First, cognitive grammar makes no qualitat-
ive distinction between rules and their instantiations-rules are simply schemat-
ized expressions; moreover, the “schemas” in question are thought of as being
“immanent”’ to their instantiations, not as separate or discrete structures. Sec-
ond, only elements with semantic and/or phonological content are permitted,
and they are characterized directly in terms of such content, not in a prop-
ositional format. Third, analyses are based on the overt form of expressions;
derivation from abstract, “underlying”’ representations is precluded, as is any
sort of algorithmic computation. Finally, a linguistic system is viewed as simply
an inventory of ‘“cognitive routines”, which are interpretable as recurrent
patterns of activation that are easily elicited by virtue of connection weights; the
construction of complex expression reduces to the coactivation of appropriate
routines and ‘‘relaxation” into a pattern of activation that simultaneously sat-
isfies all constraints. (Langacker, 1987b, pp. 9-10)

To date there have been only limited attempts to directly implement
the analyses of cognitive linguistics in a connectionist framework (see
Harris, 1989, in press). Hence, it is premature to judge how fruitful the
link will be. If a connectionist cognitive linguistics does emerge, we
would welcome the insights it might offer, but would also question the
status of the theory. Specifically, we would be inclined to regard it as a
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psycholinguistic rather than linguistic theory, leaving a gap at the most
abstract level of analysis that would need to be filled by another theory
that is clearly linguistic in nature (and might, for example, reintroduce
an autonomous syntax). For arguments that this abstract level is in fact
necessary, we turn now to the third position that has been adopted by
some linguists.

A Middle Ground

Finally, a middle ground is possible in which connectionist modeling is
clearly distinguished from linguistic theory, and therefore need not be
viewed as either a challenger or a close ally. From this perspective,
linguistic theories are abstract analyses that specify the well-formed
utterances of the language, and bear only indirectly on the design of
theories that specify how language is mentally processed by a mechan-
ism operating in real time. The psycholinguistic (mechanistic) account
should not generate sentences that violate a correct grammar, but the
grammar does not determine the means by which this should be ac-
complished. A connectionist network is one means of modeling the em-
bodiment of linguistic knowledge in a psycholinguistic mechanism.
There are other possible means as well, and the linguist may choose to
remain aloof from the disagreements among psycholinguists regarding
the choice of means. This is the stance that we endorse. Kuroda (1987)
develops it so clearly in a reply to Langacker (1987b) that we shall use
his words to convey this stance here. We enter Kuroda’s argument at
the point where he takes issue with Langacker’s apparent assumption
that Chomsky’s transformational grammar and its descendants presup-
pose von Neumann architecture. This architecture, which is utilized in
virtually all digital computers, specifies serial processing; all retrieved
symbols are funneled through a single central processing unit (CPU),
creating a bottleneck that constrains the speed of processing. The
parallel processing of connectionist networks is intended to break
that bottleneck, permitting more processing to occur per unit of time.
But, Kuroda asks:

Where is Chomsky’s bottleneck?

Chomsky’s bottleneck does not exist in transformational grammar
because transformational grammar (or, to put it in a more general form, the
con?ept of grammar presupposcd by transformational grammar) is not an infor-
mation processing device, either of the von Neumann architecture or of the
connectionist architecture. Chomsky’s bottleneck cannot exist, simply because
the notion of such a bottleneck implies a category mistake. (p. 5) )
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Language behavior implies information processing, but transformational
grammar is not a model of an information processing mechanism. Instead, it is
a theory (of knowledge) that characterizes (or, at least, partially, determines)
the type of information that is to be processed in language behavior. ... Gram-
mar itself does not say anything about how the processing of information is

done. .. (p.5)

Kuroda notes that there is no such category mistake if the claims are
limited to cognitive grammar, which does not make this distinction be-
tween levels; however, Kuroda himself prefers the Chomskian assump-
tion that grammars should be abstract rather than absorbed into a
processing (performance) theory.

It may be tempting to think that, if the grammar characterizes knowl-
edge, it specifies the representations upon which processes act. A com-
plete performance theory includes both representations and processes,
however. In an informative discussion of Paul Churchland’s (1986)
postulation of the neural circuitry of a hypothetical animal (the chchl),
Kuroda makes it clear that one role of the theory of knowledge is to
provide an abstract framework within which one can make sense of the
processing theory. This is a rather subtle point that is native to linguis-
tics rather than psychology, and most psychologists outside of Chom-
skian psycholinguistics do not explicitly make use of competence
theories (if Kuroda is correct, however, they do so implicitly). He
writes (quoting Langacker in part):

Whether we attribute “knowledge” ... to the chchl is a terminological ques-
tion that should not concern us here. The point is that we do not understand
what the massive system of connections is about unless we understand the
structural characteristic of the information, i.e., the cognitive objects, the
chchl’s cognitive process deals with. ... If “all of the systems’ ‘knowledge’”
that we arc to find “lics distributed in connection weights,” if all we understand
is massive conncections and connection weights, understanding a cognitive pro-
cess would be like trying to disentangle connections of branches and roots of a
banyan trec. (p. 9)

Even if studies at a neurological or connectionist level did help to deter-
mine the nature of cognitive structures, however:

that does not mean that the study of cognitive faculties is reduced to the study
of networks of weighted connections. One has to understand what is re-
duced. .. The processing mechanism for linguistic performance . . . may well
look like a connectionist model; it would be most unlikely to look like a digital
computer with the von Neumann architecture. The real issue is whether or not
the information it is built to deal with is so structured as to lend itself to human
rational comprchension, at least to a substantial degree. (pp. 8-9)
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If the information is so structured, on this view, grammars should be
consulted in constructing a performance theory:

According to Chomsky’s conception of linguistics, linguistic theory is a study
that endeavors to determine the form of knowledge that is put to use in linguis-
tic behavior. The study of grammar, in this view, in some methodological sense
precedes that of linguistic performance; the latter is crucially dependent on the
former. (p. 7)

Kuroda’s argument emphasizes the irreducible role that the grammar
plays as (a) a competence theory for the linguist, and (b) a guide to
constructing a performance (processing) theory for the psycholinguist.
He does not focus on the question of in what sense the grammar is a
part of the cognitive capacities of the individual. Chomsky’s conception
of grammar as abstract, yet mentally real, has produced such a variety
of interpretations that Kuroda can conclude that connectionism is a
different kind of theory than a linguistic theory, while Prince and Lan-
gacker view it as quite relevant (at which point their agreement ends
however). ’
. Kuroda’s perspective is consistent with the analysis of interdiscip-
linary relations proposed by Abrahamsen (1987), which we have pre-
viously summarized. Her analysis more clearly demarcates the major
bf)undafy between biology (neural modeling) and psychology (cogni-
tive modeling, including higher-level connectionist models), but is in
agreement with Kuroda in placing yet another major boundary between
psychology and linguistics. To understand language, inquiries must be
carried out at all of these levels; each makes its own contribution. Coop-
eration among disciplines in bridging these boundaries makes yet an-
other contribution, and is highly recommended. Attempting to collapse
levels, however, results in the loss of distinctive perspectives and the
!oss of interdisciplinary work. Hence, we endorse connectionist model-
Ing as a promising approach in cognitive science; we resist collapsing
these models with the equally promising neural network models; and
we resist any inference that disciplines like linguistics have been super-

seded by the successes of connectionist models.

Concluding Remarks

In gncountering the claims of connectionists and counter-claims of
traditional symbol theorists, we have often experienced a sense of
déja vu. When one of us (Abrahamsen) was a graduate student in the
late 1960s, there were vigorous arguments over the adequacy of stimu-
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lus-response models versus the newer cognitive models. Suppes (1969),
for example, offered a proof that for any finite automaton there is a
stimulus-response model that converges to the automaton. Hence, any
model involving rules, plans, or other higher-order entities could be
reduced to a computationally equivalent stimulus-response model. Qur
reaction at the time was to note the proof, but not to act on it.
Rosenblatt notwithstanding, no one had any idea of how to build a
stimulus-response device that could carry out complex cognitive tasks;
if it were somehow to be built, we had no means of understanding the
behavior of its huge number of stimulus-response pairs. And as Arbib
(1969) pointed out, the time required to learn all of the necessary stimu-
lus-response pairings would exceed the lifespan of the organism. It
seemed to us that theory should be pushed in the direction that will
bring interesting results and deeper understanding. In the late 1960s,
that meant pushing towards the cognitive approach. The stimulus-
response approach had enjoyed a great deal of success, but its very suc-
cess was its downfall; there was too little left to learn by pushing it
further at that time.

In the late 1980s the situation is similar, but now it is rule models
that may be victims of their own success, and a finer-grained approach
that offers new insights. The competing claims cannot be settled by ab-
stract proofs of adequacy, however, any more than they could in the
earlier era. We now know more about building fine-grained models and
understanding their behavior, and we have the computational resources
to do so. The only way to find out what we can learn from such models
is to build them and learn it. Where they fail, they can be patched; and
by the time there are too many patches a new approach should appear
from the wings in time to rescue us from frustration and boredom.

In the earlier era, the primary units of fine-grained models were
stimulus-response pairs, and there was little idea of how these might
organize themselves to exhibit emergent properties. In the connec-
tionist models which are the focus of this book, the primary units are
weighted connections between features or other semantically inter-
preted pairs of units, and there is an abundance of ideas about the
macro-architecture of systems of such units. In the nontraditional sym-
bolic models which arc contemporancous with connectionist models,
the primary units include microrules, feature probabilities, and the like.
Connectionist and nontraditional symbolic modelers have an advantage
over stimulus-response psychologists: cognitive science has learned a
great deal about cognition at a coarse grain of description, and contem-
porary modelers can use this knowledge to help guide accounts of cog-
nition at a fine grain. If so, connectionism is not merely a swing back on
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the pend‘ulum towards associationism, but rather offers a cumulative
advance in our knowledge. Connectionism has the potential to coexist
peacefully and cooperatively with traditional symbolic models by
means of appropriate division of labor; it is less clear how connec-

tionism and r'lontraditional symbolic models will resolve their desire for
the same territory.
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Appendix B: Glossary

Note: Terms appearing in definitions which are defined elsewhere in
this glossary are indicated in SMALL CAPITAL LETTERS.

activation, activation function, activation rule: The activation of a
UNIT is a value that indicates jts current level of activity. It is calculated
by an activation function (activation rule) from the NET INPUT to the
unit, and for some functions, also from the DECAY RaTE

I, previous acti-
vation, and/or other factors. Typically nonlinear functions are used,

e.g., a threshold or logistic function, and activations are binary (0 or 1)
or continuous. Activations are calculated once for
an INPUT PATTERN in a FEEDFORWARD NETW
INTERACTIVE NETWORK (i.e., many times per input pattern). They are
calculated regardless of whether the network is in TRAINING MODE or
TEST MODE (in contrast to WEIGHTS, which are changed only in training
mode). The pattern of activations across the 11DDEN and ourreT vNTy

indicates the network’s construal of the input pattern. (See pp. 24,
39-47)

ORK, or once per CYCLE in an

back-propagation, generalized delta rule: A LEARN
can be applied to MULTIL-LAYERED NETWORKS by utilizing a generalization
of the DELTA RGLE. The ERROR measure, which is calculated at the out-
put units, is propagated back through the network layer by layer. At
each layer, WEIGHTS are adjusted according to the equation: Aweight, =
Irate delta; ay. The delta; itself is calculated recursively by a function
that utilizes the delta values and weights on the next-higher layer as
well as the activation of unitj. (See pp. 85-97)

ING RULE that

bias: A constant input to a unit which is provided regardless of the

amount of activation propagated from other units.
simulated by introducing an additional unit w
of 1.0 that has 3 CONNECTION
WEIGHT of this connection ca

It is sometimes
ith a constant activation
only to the biased unit. Optionally, the
n be adjusted during learning. The ne-
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gation of bias can be used as a threshold which the input to a binary
unit must exceed in order for it to become active.

Boltzmann machine: A type of INTERACTIVE NETWORK proposed by
Hinton and Sejnowski (1983, 1986). It has (a) UNITS that take binary
ACTIVATION values; (b) an asynchronous update procedure; (c) a stoch-
astic ACTIVATION RULE which is a probabilistic version of the logistic

function; (d) a TEMPERATURE parameter that is typically lowered across .

time by a procedure called simulated annealing, by analogy with cooling
schedules used to avoid faults in the formation of crystals. Charac-
teristics (¢) and (d) help to avoid the local minima to which Hopfield
nets are subject. Harmony theory (Smolensky, 1986) specifies a similar
type of interactive network. (See pp. 44-5, 97-9.)

case: The term we have used to refer to a particular pairing of an INPUT
PATTERN with an OUTPUT PATTERN (which may be a DESIRED OUTPUT pat-
tern); for clarity, we often use the term tnput-output case. A network is
trained by presenting it with a series of cases, usually with many trials
for each case (one per EpocH). Its performance can be tested using the
same cases, or its ability to generalize can be tested using a new set of
cases from the same universe of cases.

cluster analysis: A method of analysis that is increasingly being used
to characterize globally what information the HIDDEN UNITS have be-
come sensitive to in a learning paradigm; it is often more tractable than
trying to characterize each hidden unit separately. The method extracts
regularities in the ACTIVATION patterns across the hidden units across
various input-output CASES, and uses them to construct a tree structure
representation that clusters together those cases with similar hidden

unit patterns. (See pp. 233—4.)

coarse coding: An innovative means of achieving DISTRIBUTED
REPRESENTATIONS. Each individual UNIT (called a receptor in this con-
text) is designed to have many different INPUTS in its receptive field,
and each input is in the receptive field of many different units. The
coding scheme can be set up such that no two units have exactly the
same receptive field. The presence of a particular input is inferred if
there is a high level of activity across many of the units that are recep-
tive to it. (See pp. 54-6.)

competitive learning: An UNSUPERVISED LEARNING PROCEDURE in
which a network is presented with a series of INPUT PATTERNS and must
discover regularities in those patterns that can be used to divide them
into clusters of similar patterns. In the simplest case, there is a set of in-
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put units and a set of what we refer to as detector units (which combine
some of the properties of HIDDEN UNITS and of OUTPUT UNITS); there are
INHIBITORY CONNECTIONS among the detector units to assure that just
one unit will *win” the competition for a particular input pattern. The
effect is to classify the inputs into n categories when there are # detector
units. In more complex systems there may be multiple sets of detector
units, or intermediate layers of units. (See pp. 99-100.)

connection: The UNI'TS in a network are linked by connections, which
may be either unidirectional or bidirectional and either EXCITATORY or
INHIBITORY. Each connection has a weiGHT which indicates its import-
ance and modulates the propagation of ACTIVATION along that connec-
tion, (See pp. 24-5, 34-8.)

connectionism: An approach to cognitive modeling that has rather
deep historical roots, but that in contemporary usage refers to particu-
lar classes of computer-implemented models of human or artificial in-
telligence. Most narrowly, it refers to LOCALIST NETWORKS such as those
of Feldman and his colleagues at the University of Rochester. More
broadly, it also refers to PARALLEL DISTRIBUTED PROCESSING networks
sucb as those of Rumelhart, McClelland, and their colleagues at Uni-
versity of California, San Diego; Stanford University; and Carnegie-
Mellon University. SPREADING ACTIVATION models such as those of
Anderson at Carnegie-Mellon University could also be regarded as
'conx}ectionist, but the term is not typically used in that context (primar-
ily for rcasons of sociology of science). Similarly, connectionist-style
models by individuals with a neuroscience focus, such as Grossberg
are (?ften referred to by such terms as neural networks. Usage is not’
consistent; for example, some cognitive modelers prefer the term neural
networks. We have limited our use of the term connectionism to refer
to 19calist networks in the Rochester tradition and to PDP networks
dlsFlnguishing between these when relevant. Most of our general ma:
terial also applies to neural networks in neuroscience, but we do not
specify those links.

cycle: The updating loop in a synchronous INTERACTIVE NETWORK.
One pr.escntatiun of an INPUT PATTERN results in multiple cycles of
processing during which the AcTIVATIONS dynamically interact until the
nefwork relaxes into a stable state (a state in which the INPUT to any
unit does not change the probability of ACTIVATION of the unit). Th;z
complete set of cycles is needed to yield a response (solution, stable
stat.e) to a single input pattern; in contrast, in a FEEDFORWARD NETWORK
a single pass of activation updates yields the network’s response to
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the input. Cycles (which involve computation of activations) should
not be confused with training ErocHs (which involve computation of
WEIGHTS). (See pp. 25, 41, 97))

decay: A decrease in ACTIVATION that occurs as a function of time or
number of events. For example, in an INTERACTIVE NETWORK with a
synchronous update procedure, each UNI'T can be set to decay once per
timing CYCLE by including a decay term in the equation that is used to
calculate change in activation (Aa). (Feedforward networks typically do
not include a decay term, since activations are computed in a single for-
ward sweep across the layers of units.) Often the decay term is obtained
by multiplying a decay rate (a constant between 0 and 1) by some other
value. For example, in equations 3 and 4 of chapter 2, the decay rate of
0.1 1s multiplied by the difference between the current activation and
the resting activation. (See pp. 27-8, 46.)

delta rule: A LEARNING RULE that utilizes the discrepancy between the
DESIRED and actual ouTPUT of each oUTPUT UNIT to change the WEIGHTS
feeding into it. Specifically, Aweight,; = Irate (d, — a.) a;. The delta
rule’s incorporation of an error correction procedure makes it a proto-
typical example of SUPERVISED LEARNING. The delta rule is guaranteed
to find a solution if the input patterns form a linearly independent set
and the input—output mappings are linearly separable, but it also works
well at detecting regularities in input-output mappings for nonin-
dependent inputs. It is also known as the Widrow-Hoff rule and as the
least mean squares (I.LMS) rule. (See pp. 74-85.)

desired output: The acTivaTION value for an ouTruT UNIT that has
been designated as correct in certain SUPERVISED LEARNING procedures,
such as those utilizing the DELTA RULE or the GENERALIZED DELTA RULE.
The pattern of designated values across all output units is the desired
output pattern. Often the terms target output and target output pattern
are used instead.

distributed network, distributed representation: A distributed net-
work 1s one in which each item of interest is encoded across multiple
UNITs in the network (cf. a LOCALIST NETWORK, in which each item of
interest is encoded by a single unit in the network). There are a variety
of ways to obtain a distributed encoding. The least extreme approach is
to distribute the representation across meaningful, context-free units at
a lower level of analysis (e.g., phonemic distinctive features if recog-
nition of spoken words is the task). Two ways of further distributing
the encoding are (a) to make units like these context-sensitive (e.g.,
Wickelfeatures) or (b) to use a learning paradigm to obtain HIDDEN
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UNITs whose behavior is not defined by the designer. Finally, coARsE
CODING is an innovative means of obtaining highly distributed repre-
sentations. (See pp. 51-6.)

enthymeme: A logic problem in which some parts of a complete pat-
tern or string representing 4n argument are left unspecified; when the
incomplete pattern is presented on the INPUT UNITS of a network, the
task is to respond with the complete pattern on the oUTPUT UNITS.

epoch: The training loop, usually with regard to FEEDFORWARD NET-
WORKs. When a network is in learning or TRAINING MODE, one way to
schedule training is to present repeatedly the same sct of training cascs
(input-output patterns) to the network. One run through the set of
training patterns is one epoch of training; that is, the epoch includes
one trial per training case. WEIGHTS may be altered either after each
case within the epoch, or just one time at the end of the epoch (with
almost cquivalent results). Generally, a large number of cpochs is
needed to arrive at weights that cannot be further improved. Note that
an alternative way to schedule training is to present a large number of
cases that are randomly selected from the universe of cases of interest;
weights are changed after each case has been processed, and there is no
organization of training trials into epochs. Variations on either method
may be used in training INTERACTIVE NETWORKS, but if the TEMPERA.
TURE parameter is altered (by simulated annealing) this additional fac-
tor yields a more complex training schedule in which the unit relevant
to weight-changes is sometimes called a sweep.

error: The discrepancy between the DESIRED OUTPUT and ACTUAL OUAT.
PUT of 2 UNIT in a SUPERVISED LEARNING paradigm. In McClelland and
Rumelhart's (1988) exposition of error correction procedures, the
errors are squared and summed across all output units to obtain the
pattern sum of squares (pss). Further, the pss values are summed across
all input--output cases to obtain the total sum of squares (tss). The tss
value is a measure of the network’s current performance; alternative
versions of pss and tss are obtained by dividing them by 2 (see Boxes
1 and 2, chapter 3). The goal is to drive error as low as possible (to a
global, rather than local, minimum). (See pp. 74-5.)

excitatory connection: A CONNECTION that tends to increase the activ-
ity of the UNI'T into which it feeds INrUT, typically by means of a posi-
tive WEIGHT. Excitatory connections are the means by which activation
is propagated through a network. Many connectionist networks have
INHIBITORY CONNECTIONS as well as excitatory connections.
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feedforward network: A network in which the UNITS are organized
into separate layers, including at least an input layer and output layer
and optionally one or more intermediate layers of HIDDEN UNITS, and
activations feed forward from the input to the output layer. In the most
typical version, each unit of a given layer has a unidirectional CONNEC-
TION to each unit of the next (adjacent) layer. When an INPUT PATTERN
is presented, units in one layer feed their acTIvaTioN forward to the
units in the next layer until the output layer is reached; there are no
iterative cycles of change in activation as in an INTERACTIVE NETWORK.
Variations include: the addition of INHIBITORY CONNECTIONS within a
layer; the addition of connections between nonadjacent layers; sequen-
tial networks; recurrent networks; and networks with downwards con-
nections in order to achieve top-down constraints on activation. Note
that the number of layers in a feedforward network can be expressed
either in terms of the number of layers of connections (the most usual
practice) or units (the practice in this book). (See pp- 35-8.)

generalized delta rule: See BACK-PROPAGATION.

graceful degradation: The property of gradual decline of function
when a system is overloaded or damaged. Nervous systems exhibit this
property, and so do connectionist networks (particularly those using
DISTRIBUTED REPRESENTATIONS). (See pp. 60-2.)

harmony theory: See BOLTZMANN MACHINL.

Hebbian learning rule: A LEARNING RULE that specifies how much the
WEIGHT of the CONNECTION between two UNITS should be increased or
decreased in proportion to the products of their ACTIVATIONS: weight,,;
= lrate a, a;. 1t builds on Donald Hebb’s suggestion that the connec-
tion between two neurons might be strengthened whenever they firc at
the same time. The Hebbian rule works well if the INPUT PATTERNS are
uncorrelated (orthogonal), but this and other limitations are so severe
that contemporary connectionist models use different rules, or ad-
ditional rules. One of the Iebbian rule’s most important roles is as an
ancestor of the DELTA RULE. (See pp. 48-50, 72-4.)

hidden units: The UNITs in a network which cannot be accessed exter-
nally; their operations are “*hidden” from the environment. There are
no hidden units in the simplest networks, such as a typical PERCEPTRON.
In a multi-layered FEEDFORWARD NETWORK, the units in all layers except
the Ixeut and ovreer layers are the hidden units; in an INTERACFIVE
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NETWORK, units that do not function to receive input and deliver output
are the hidden units. Units that are not hidden units are called visisLE
UNITS. (See pp. 85-6.)

"Hopfield net: A type of INTERACTIVE NETWORK developed by physicist

John Hopfield by analogy with a physical system known as a spin glass.
It has (a) UNITS that take binary ACTIVATION values (0 or 1); (b) an asyn-
chronous update procedure; (c) an ACTIVATION RGLE that vields an acti-
vation of 1 if the net input is greater than zero. Hopfield showed that
such networks can reach a stable state by tending towards an energy
minimum. (pp. 42-4.)

inhibitory connection: A CONNECTION that tends to reduce the ac-
tivity of the UNIT into which it feeds INPUT, typically by means of a
negative WEIGHT. Inhibitory connections are often used to assure that
Just one unit of a set or layer of units will achieve a high degree of acti-
vation, as in COMPETITIVE LEARNING. They are inspired by the phenom-
enon of lateral inhibition in the nervous system. Many connectionist
networks have EXCITATORY CONNECTIONS but no inhibitory connections.

input: The input,; to a UNIT u is the product of the output; of unit 7 and
the WEIGHT of the CONNECTION from ¢ to u. That is, it is the propagated
ACTIVA  ON from 1 to u, as scaled by the strength of the connection. All
of the inputs to 1 are summed to obtain the net input to u. Inputs can be
fed from INPUT UNITS or HIDDEN UNITS, and are fed to hidden units or
OUTPUT UNITS.

input units, input layer, input pattern: Input units are those UNITS
that can receive ACTIVATION from the external environment (or from
another part of the network), initiating the propagation of activation to
other units. In a FEEDFORWARD NETWORK, units are organized into
layers; the first layer is the input layer (which may itself be subdivided
into sets of units that receive specialized types of input). In an
INTERACTIVE NETWORK, the input units may perform double-duty as
OUTPUT UNITS and may simply be referred to as visible units. The input
pattern is the pattern of activation across the n input units (which can
be treated mathematically as a vector in n-dimensional space). Note
that the term input alone is sometimes a short form for input pattern,
but it properly (and distinctively) refers to the value being fed to a unit
u along each incoming CONNECTION.

input-output case: Sce CASE.



310 Clossary

interactive network: A network in which UNITS are bidirectionally
connected to one another, and ACTIVATIONS change dynamically across
a large number of cYCLES. A distinction is made between VISIBLE UNITS
and HIDDEN UNITS. INPUT PATTERNS are typically presented to the visible
units (or a subset of those units); OUTPUT PATTERNS are the activation
pattern across the visible units after processing. Sometimes the input
pattern is “‘clamped” onto a subset of visible units, and the output of
interest is the pattern attained across the remaining visible units (i.e.,
pattern completion). Exemplars include HopPFIELD NETS, BOLTZMANN
MACHINES, and HARMONY THEORY; also, the Jets and Sharks simulations
in chapter 2 involve a LOCALIST interactive network. (See pp. 38, 41-7.)

language of thought: Jerry Fodor's (1975) term for the innate
language-like medium in which, he claims, thought is carried out.. Like
external language or any other means of symbolic representation, the
language of thought has a compositional syntax and semantics. Connec-
tionists typically would deny these claims. (See p. 13.)

learning rule: An algorithm or equation which governs changes in the
WEIGHTS of the CONNECTIONS in a network. A good learning rule is
adaptive; that is, it increases the appropriateness of the network’s
responses to a class of INPUTS. Many learning rules incorporate an
error-reduction procedure, by which the weight changes tend to
minimize the difference between the actual and DESIRED ouTPUT pattern
across a set of training inputs. A learning rule is typically applied
repeatedly to the same set of training inputs across a large number of
training EPOCHS; error is gradually reduced across epochs as the weights
are fine-tuned. (See pp. 47-50, 70-101.)

linear associator: A learning device obtained by applying the Hep
BIAN LEARNING RULE 1n a two-layer FEEDFORWARD NETWORK with a linear
ACTIVATION RULE.

linear threshold unit: A UNIT that takes binary AcTIVATION values; if
its NET INPUT exceeds a threshold (usually 0) the activation is set to 1;
otherwise its activation is set to 0.

localist network: A network in which each item of interest is encoded
by assigning it to one UNIT in the network (cf. a DISTRIBUTED NETWORK,
in which each item of interest is encoded across multiple units in the
network). Generally, each individual unit of a localist network can be
semantically interpreted. (See pp. 50-1.)

microfeature, microstructure: See SUBSYMBOL..
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multi-layered network: A FEEDFORWARD NETWORK that has three or

. more layers of UNITs (and hence, two or more layers of CONNECTIONS).

We describe networks in terms of the number of layers of units; more
frequently, networks are described in terms of the number of layers of
connections.

net input: The sum of all of the inputs to a UNIT u: The sum may be
scaled by a constant, and separate sums and constants may be used if
the same unit receives external inputs as well as internal inputs (from
other units). Most simply: ¥ input,;. There is one internal input for
each CONNECTION from another unit . In the simplest case activation;
=output;. In all cases weight,; multiplied by output,, yields input,;. By
combining these inputs from all units 7 feeding into unit u, ACTIVATIONS
propagate through the network. In some (interactive) networks, the net
input to u is the major (sometimes the only) value that determines the
activation of u (in accord with the ACTIVATION FUNCTION). Calculating
net input is analogous to a neuron pooling the influences of all the den-
drites from other neurons that contact that neuron. (See pp. 27, 39-40.)

nodes: See UNITS

output: The output; of a unit 7 is a function of the activation; of UNIT {.
In the simplest case it is the identity function: output; = activation;. One
alternative is to set a threshold at zero so that outputs will never be
negative. Unit i sends the same output value to every unit u to which it
is connected, but the outputs are modified by WEIGHTS before they
reach the units u; hence, some units well be more affected by the ac-
tivity of i than others. The CONNECTIONS feeding out of 7 are sometimes
called the fan-out of i. Each output is analogous to the activity sent
along one dendrite leading out of a neuron. (See p. 26.)

output units, output layer, output pattern: Ouput units are those
UNITs that deliver the network’s response to an INpUT PATTERN,
culminating the propagation of activation through the network. In a
FEEDFORWARD NETWORK, units are organized into layers; the fihal
(highest) layer is the output layer. In an INTERACTIVE NETWORK, the out-
put units may perform double-duty as input units and may simply
be referred to as visible units. The output pattern is the pattern of acti-
vation across the 7 output units (which can be treated mathematically
as a vector in n-dimensional space). Note that the term output alone
is sometimes a short form for output pattern, but it properly (and
distinctively) refers to the value being fed from a unit ; along each
outgoing connection.
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overregularization: See REGULARIZATION.
parallel distributed processing (PDP): See PARALLEL PROCESSING.

parallel processing: An approach to cognitive or computer system
design in which computations are carried out in parallel, rather than
serially as in the von Neumann architecture that characterizes contem-
porary digital computers. Although early advances are being made in
parallel hardware, most cognitive models that specify parallel pro-
cessing are actually implemented on serial computers presently (at con-
siderable cost in processing speed). All connectionist models, including
LOCALIST models, specify that processing is carried out in parallel. The
parallel distributed processing (PDP) type of connectionist model
achieves extreme parallelism by combining parallel processing with
DISTRIBUTED REPRESENTATIONS. It has been pointed out that certain rule
models can also exhibit some degree of parallel processing (e.g., parallel
matching of the conditions of production rules).

pattern associator: A FEEDFORWARD NETWORK that has just two layers
of UNITS: INPUT UNITS and oUTPUT UNITS. When its WEIGIITS are pro-
perly set, this type of network can respond to each of a variety of
input patterns with its own distinctive output pattern; therefore it is
sometimes referred to as a pattern associator. The best-known variety
of pattern associator is the perceptron. (See pp. 35-7.)

perceptron: In its narrowest sense, a two-layer network for which
both the 1nrUT and ouTPUT UNITS take binary ACTIVATIONS, and the
output units act as linear threshold units. Rosenblatt (1962) did much
of the carly research on these devices, and contributed the important
perceptron covergence theorem. (See pp. 4-6.)

recurrent network: A variation on the FEEDFORWARD NETWORK archi-
tecture, in which the pattern obtained on a HIDDEN layer is copied
onto special units in a lower layer which feed back into the hidden
layer. Typically the input is a string that is prescnted sequentially
rather than as a simultaneous pattern, and the OUTPUT UNITS are used to
predict the next element in the sequence. For example, after processing
the first element, the network has copied the pattern on the hidden
units onto the special units. When the network then processes the sec-
ond clement, the hidden units will receive INrUT both from the regular
INPUT UNTTS and the special units. Hence, this kind of network is able to
gather and utilize information about a sequence. (See pp. 37-8, 231.)

regularization, overregularization: The application of a general
rule to a varicty of items. When the scope of application is appropriate,
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the items have been regularized (e.g., forming a regular past tense for
the set of regular verbs). When the scope of application is overly broad,
the items have been overregularized (e.g., forming a regular past tense
for irregular as well as regular verbs). (Sce pp. 184-203.)

relaxation, settling: Terms for the process by which an INTERACTIVE
NETWORK approaches a stable state that maximizes constraint satis-
faction and minimizes ERROR. A network has fully relaxed, or settled,
when it reaches a global energy minimum. (Sce pp. 41--5.)

soft constraints: Refers to a situation in which multiple constraints
compete, and the best overall solution is found by satisfying as many of
them as possible. Connectionist networks are well suited to this task. A
set of hard constraints, in contrast, must be completely satisfied; for
example, in a traditional production system if no rule has all of its
conditions met, no rule will fire. (See pp. 58 -60.)

spreading activation: A term that, in its most narrow usage,
designates the theory of activation embodied in a class of LocALIsT
NETWORKS derived from semantic networks beginning in the 1970s.
The most prominent examples are found in John Anderson’s (1976,
1983) ACT and ACT* theories. The acTivarioN rRULE in ACT*
achieves nonlinearity by incorporating a negative exponential function,
and shows other similarities to the propagation of activation within
some connectionist networks. The activation functions differ in several
respects, however, and ACT* is further distinguished by its hybrid
architecture (a production system utilizes the network) and by its
localist (rather than distributed) approach to encoding. In its broadest
usage, the term spreading activation is used interchangeably with the
connectionist term  propagation of activation. The terminology and
theory of spreading activation are antecedent to the modern (1980s)
cra of connectionist models, and can be regarded as an early subclass
of the localist variety of connectionist modeling. (Sce pp. 46- 7))

subsymbol, subsymbolic paradigm: One way of characterizing PDP
(PARALLEL DISTRIBUTED PROCESSING) maodels is to point out that they are
subsymbolic rather than symbolic, and that PDP rescarch adheres to a
subsymbolic paradigm rather than the symbolic paradigm of the tra-
ditional rules and representations approach to cognition. Smolensky
(1987) distinguishes between conceptual and subconceptual levels of
analysis, and argues that subsymbolic models can capture either level
exactly, whereas symbolic models can capture only the conceptual level
exactly. Further, a number of competencies traditionally regarded as
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conceptual are claimed to require a subconceptual level of analysis.
Subsymbols are also called microfeatures (see Rumelhart and
McClelland, 1986), and refer to encodings that are small-grained rather
than large-grained; often they are designed to be context-sensitive as
well. For example, Rumelhart and McClelland’s (1986) Wickelfeatures
are context-sensitive adaptations of phonological distinctive features
(the smallest grain.of traditional linguistic analysis). Subsymbols need
not be derived from theories, however; some COARSE CODING schemes
for INpUT UNITS have rather arbitrary receptive fields (e.g., Touretzky
and Hinton, 1988), and individual HIDDEN UNITS in trained networks
are often difficult to interpret or label. Also, note that one way of think-
ing about subsymbols would use grain size as a relative notion; whether
the UNITs are subsymbols would depend upon whether they are at a
smaller grain than usual for modeling performance on the task. (See

p. 226.)

supervised learning: The class of LEARNING procedures in which the
network is provided with explicit feedback as to what OUTPUT PATTERN
was desired for a particular INPUT PATTERN (and must compare that to
its actual output); the DELTA RULE is one example. UNSUPERVISED LEARN-
ING, in contrast, refers to the class of learning procedures in which the
network gradually achieves, without feedback, a weight matrix that
allows it to classify a set of inputs (by discovering the regularities
exhibited by subsets of the input patterns). COMPETITIVE LEARNING is
one example.

target output: See DESIRED OUTPUT.

temperature (7): A parameter in certain ACTIVATION RULES for
INTERACTIVE NETWORKS (e.g., BOLTZMANN MACHINES); lower values of T
generally make activation patterns change more slowly. When a
stmulated annealing schedule is used, temperature is slowly reduced to
avoid scttling into local minima.

test mode, test trial: Relevant to a network in a LEARNING paradigm.
When the network is in test mode, typically following a period in train-
ing mode, it is presented with a series of INPUT PATTERNS in order to
observe its response to those patterns. They can be the same input
patterns used in training, or may be a new set from the universe of in-
put patterns in order to assess generalization. The purpose of test trials
is limited to assessment of the performance achievable with the current
WEIGHTS; no changes are made in the weights. (See p. 71.)

training mode, training trial: Relevant to a network in a LEARNING
paradigm. When the network is in training mode, it is presented with a
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series of training trials. Each trial consists of one presentation of one
INPUT-OUTPUT CASE; at the end of the trial (or at the end of the set of
training trials constituting an EPOCH), the WEIGHTS of the CONNECTIONS
in the network are altered in accord with a LEARNING RULE. (See p. 71.)

units, nodes: The elements of a network. Units receive INPUTS from
other units (or from the environment) and compute a function that
determines what ouTpuT they send to other units. In some models they
are intended to function as a simplified neuron; in other models they
are regarded as higher-level elements that do not correspond to neurons
but are neuron-like or neurally-inspired. (See pp. 23-4.)

unsupervised learning: See SUPERVISED LEARNING.

variable binding: A capacity of certain systems of symbolic represen-
tation that is challenging to achieve in connectionist networks. When a
rule (or other symbolic expression) includes variables, in order to apply
the rule each variable must be bound to (linked to, or replaced by) a
constant. If there are multiple instances of the same variable, each in-
stance must be bound to the same constant. (See pp. 217, 243-4)

visible units: The UNITS in a network which can be accessed externally
(e.g., from the environment). In a FEEDFORWARD NETWORK, the units of
the INPUT and OUTPUT LAYERS are the visible units; in an INTERACTIVE
NETWORK, the same units may function both to receive input and to de-
liver output. Units that are not visible are called t1inpen unirs.

weight: Weight is a variable that indicates the strength (importance) of
the CONNECTION between two UNITS. The ouTPUT of unit ; (output;) is
multiplied by the weight of its connection to unit u (weight,,) to obtain
the input to unit u (inputy). Typically weights range between —1 and
*1, or between 0 and 1, but they may also be unbounded. The weights
between two layers can be displayed in a weight matrix using rows for
the units in one layer and columns for the units in the other layer.
Weights can either be set by the network designer and left unchanged,
or can be changed in TRAINING MODE according to a function that is
computed cach Eroct. The weights (and optionally, the BIASES) are the
means by which knowledge about a domain is retained in a network.
Along with the more transitory activation values, they determine the
network’s responses (ouTruT PATTERNS) to a variety of INPUT PATTERNS.
(See pp. 24-5))

Wickelphones, Wickelfeatures: Elements of a system for phonologi-
cal representation. Wickelphones, proposed by Wickelgren (1969), are

phonemic segments that have been made context-sensitive by
indicating the immediately preceding and immediately following pho-
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neme as well as the phoneme of interest, e.g., xAm. Wickelfeatures, an
extension proposed by Rumelhart and McClelland (1986).in PDP:'IS,
provide a lower level of representation. A Wickelfeature mclud'e§ just
one distinctive feature for each of the three phonemes comprising a
Wickelphone. For example, (Back, L.ow, Front) is one chkelfe?aturc
for the Wickelphone yAm. Wickelfeatures are used to provide a
DISTRIBUTED REPRESENTATION of the segmental phonology of a word.
Their context sensitivity is a device for constraining the f)rdcr of pho-
nemic segments, since connectionist networks do not straightforwardly
encode serial order. (See pp. 178-81.)

XOR, exclusive or: A logical operation (pr()p()siti()’t)ul con‘nccti\'tz) of
disjunction, meaning “‘one or the other but not both. That. is, A ‘\.OR
B is truc if A is true and B is false, or if B is truc and A is false; it is
false if A and B are both true, or if 4 and B are both false. The.se truth
conditions are distinct from those for inclusive or (often \.\‘rltt.cn. v),
which means “‘one or the other and possibly both” and thf:retorc is false
only if both A and B are false. Inclusive or is the connective commonly
used in propositional logic (along with and, not, if ... then, ;‘md. if and
only if ). Exclusive or has been of particular interest to connectionists be-
causc it cannot be computed by a two-layer network; this was one of the
limitations of PERCEPTRONS that were pointed out in the critique by
Minsky and Papert (1969). The problem is that both-true and bqth-
false are maximally dissimilar but must yield the same out;.)u.t (1.‘e.,
false). Inclusion of a HIDDEN layer solves this problgm by permitting in-
termediate computations that produce a pattern with a more tractable
similarity structure for use by the oUTPUT LAYER. (See pp. 83-4.)
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184-92, 200, 202, 219, 224, 274
total sum (tss) 74-5, 84, 93
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101, 128, 204-9, 225, 265
and Anderson, J. A. 16
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coherence 212, 228, 235, 252
logical 9, 140, 155, 163-74, 286,
292
in simulation 34, 206-9
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11-12,13, 69, 125, 127, 147-8,
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innate 68,1035
as justified true belief 289--90
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acquisition 13, 68-9, 70, 268 9,
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learning
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computer-aided instruction;
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units, learning; weights
least mean square see delta rule
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Lin, S. and Kernighan, B. W. 43
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inductive 9
intensional 127
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198, 272; and error correction
307; Handbook 22, 26-7,
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and rule-based thecory 227-8
Medin, D. L. 135-¢
and Schaffer, M. N. 235
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working 54 -6, 138, 153, 23944
mentalism 68
mctaphor 296
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nervous system 2, 6, 48, 56-7, 62,
214,279 8¢
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network models
early 3-8 261
re-emergence 14-20, 261-2
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connectionist xi-xiii, 2, 19,
21-34, 58-65, 106; and
knowledge 154- 5; and pattern
recognition 107-23; semantic
interpretation 50-6
distributed 50, 51-6, 213, 276,
280, 306--7; see also processing,
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feedforward 26,42, 44 n, 71,
116, 136, 231, 267, 308;
multi-layered 37-8, 40-1,
276 -7; two layer 35-7 39-40,
71-85, 107--11, 183, 273
interactjve 35, 38, 39, 41-7, 51,
59,70-1, 97 8,112, 116, 130,
136-7, 144, 249, 268, 271
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280, 310
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2049, 265, 267, 31 I; and
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127 -8
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fecurrent  37-8, 231-2, 236-7,
248, 267, 312
semantic  xj, §, 19, 46, 50, 133 4,
148, 154 n., 262
sequential 38, 231
two-layer 39-40, 48, 53, 71-85,
97, 163, 219-20, 225,
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neural models 216, 258, 261 -2,
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Norman, D. A. 134
and Rumelhart, D.E. 154n.
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visual 149, 159-63, 266-8
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266, 267, 312
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of science 2924
see also intentionality
phoneme 95-6, 179-81, 221, 258
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238,273
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Connectionist (DCPS1)
239-46, 242, 244
productivity 212, 228, 235, 252
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systems 227-8,236--7, 260
and Zipser, D. 6, 100

Hinton, G. E. and McClelland,
J.L. 22,38

Hinton, G. E. and Williams, R. ]J.
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268, 271
and pattern recognition 1 17,
137, 141, 251
stages
learning 177--8, 184, 186-97,
203, 219, 223, 271, 274
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transitions
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299 -300
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and sensory processing 122
traditional theories 236-7, 246,
260, 262, 265, 301
see also learning
syntax 1,11, 124, 196, 295 -¢
combinatorial - 211-13, 216, 228,
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221 2,258, 315 106
Widrow- Hoff rule 74
Winograd, S. and Cowan, ]. 4
Wittgenstein, L. von 121, 159n.
word recognition  112-20, 114,
115,116, 117,137, 163, 228
word superiority cffect 112-1 3,
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