Modeling the Complexity of the
Circadian Clock

Beyond the Genome Project:
Systems Biology

The human genome project in the 1990s offered the promise

that once the complete DNA sequence of the human genome

was known, scientists would be able to solve many of the

problems of biology and medicine

The sequence of genomes of humans and many other species

has provided biology with powerful new tools, but rather than

solving the problems, it has revealed how difficult some

problems are

* The components of biological mechanisms have been found

to interact with each other in a multitude of ways
Understanding these interactions requires the development
of new tools to show how these interactions can give rise to
the biological phenomena of interest

Biologists are increasingly turning to mathematical/

computational modeling to understand the systems of interest

Complicated vs. Complex Systems

Complicated systems are ones with lots of parts and operations
Biological systems certainly count as complicated
Complex systems involve non-linear interactions that often give
rise to behavior not anticipated from knowledge of the parts
May actually arise from just a few parts V
Linear equations such as
Ax + By =0
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can be graphed as straight lines in Cartesian
coordinates
Equations with multiplicative relations,
powers, etc., can generate much more
complex graphs
Logistic map: x,,,=rx,(1-x,)
For different values of x, fixed
value, oscillations, chaos
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From Basic to Dynamic Mechanism

* Both mechanistic science and philosophical accounts of mechanism
have emphasized decomposing mechanisms to identify the parts
and operations that contribute to the phenomena of interest
Biologists have tended to be skeptical of computational modeling,
preferring laboratory research

Populations genetics the exception, but it mostly employed
linear models
But increasingly biologists are discovering systems which can only be
represented in non-linear equations which generate complex
(emergent) behavior
Amendlng the characterization of mechanism to include dynamics
A mechanism is a structure performing a function in virtue of its
component parts, component operations, and their
organization. The orchestrated functioning of the mechanism,
manifested in patterns of change over time in properties of its
parts and operations, is responsible for one or more
phenomena.

Reasons to Model Mechanisms
Math matically

To understand how a complex mechanism will behave
To suggest manipulations that can be made to test the
proposed account experimentally

To reveal how the mechanism might respond to altered
conditions in the environment

Goodwm Oscillator (1950s)

Following the discovery by Jacob and Monod of a feedback mechanism
(the lac operon) whereby bacteria suppress transcription of specific
genes except when they are needed, Brian Goodwin proposed a model
of how such a control mechanism might generate oscillations
Three differential equations, each of which has terms for the
generahon and degradation of one component
Goodwin showed that this system, with appropriate values for n,
would generate oscillations in the quantities of the components
Provided an exemplar for modeling circadian rhythms
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Modeling the Simple Per Loop

The first step in developing a mathematical model of a

mechanism is to represent it in terms of quantities

Goldbeter took the 1990 Hardin et al. model in which PER

inhibits its own transcription and represented the components

of the system in terms of

* variables identifying gene: mRNA: mRNA: proein:

concentrations of various por S pormRA S i 2 CPED
parts (M=per mRNA i o -
concentration, etc.) é
parameters specifying the
rates governing various
reactions (v,= maximum
rate of transcription

ki nucleus | cytoplasm

permRNA () ——=FERy PEK,

Modeling the Simple Per Loop

The next step is to write equations to characterize how the
values of each variable changes dependent upon other variables

Eq. 1 has one term for the making of new per mRNA and one for
its degradation
The equation introduces a non-linearity in the exponent n
(which was taken to reflect the assumption that multiple
molecules of PER have to interact to suppress transcription)
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Modeling the Simple Per Loop

Often, as in this case, it is not possible to derive a solution to
multiple equations analytically and so modelers apply them
iteratively to simulate the operation of the mechanism
Goldbeter showed that the model generated sustained oscillations of

per mRNA

Total PER (P,)

Nuclear PER (Py)

Cytoplasmic PER whether phosphorylated (P, & P,) or not (P,)
When plotted in phase space, the results showed a limit cycle

Amount o par mRNA

AmourtofPER prcein




Taking Multiple Feedback Loops
into Consideration

* In addition to the negative feedback loop whereby PER:CRY
inhibits its own transcription (via removing the CLK:BMAL1
dimer from its promoter)

* There is a second negative feedback loop in which
CLK:BMALL1 excites production of REV-ERBa, which then
inhibits production of BMAL1
And a positive feedback loop in which CLK:BMAL1 excites
PER:CRY, which
inhibits REV-ERBa
and stops it from
inhibiting BMAL1
expression

Will multiple loops
disrupt the 24-oscillations?

From Smolen and Byrne, 2009

Modeling the More Complicated
Mechanism

As more components of the mechanism were discovered,
Goldbeter expanded his model (Goldbeter and Leloup, 2003)
Adding variables for the additional parts
Parameters for the additional operations
And many more equations (73 in the latest)
Challenge: models with large numbers of equations and many
parameters can be fitted
to data and may not
reveal how the
mechanism works
* Thus, some
modelers prefer
abstracting and
employ reduced
models.
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“Experimenting” with
Computational Models

Modelers often speak of conducting experiments with their
models
Changing the values of variables or, more typically,
parameters, and determining their effects
One use of such use of models is to determine whether, on the
account proposed, experimental manipulations of the actual
mechanism would be expected to have the effect they have
Can manipulation of appropriate parameters reproduce the
effects of various induced mutations (e.g., Konopka’s
original results)
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Modeling Dynamics at Large-Scales

*  We saw that individual SCN neurons exhibit
considerable variability in period and phase when
cultured

This variability is radically reduced when
neurons interact in a whole network—neurons
synchronize their activity
What is the organization of the network that
facilitates synchronization?

* Researchers have not yet been able to directly
observe the network organization of the SCN
Instead they have worked by constructing
hypotheses, representing them in
computational models, and evaluating how
well these models could explain the observed
behavior

Analyzing the Behavior of
Networks

Most mathematical analysis of networks in
the 20t century focused on
*  Regular lattices: High clustering, long

characteristic path length
Random networks: Low clustering, short
characteristic path length

These lent themselves to mathematical

analysis
Random networks achieve synchronized behavior quickly
Regular lattices support regular waves of behavior

A First Network Model: Assume
Network Totally Connected

Gonze et al. (2005) developed a mean field model by assuming that
VIP from individual neurons accumulated and distributed equally.

* Adopted Goodwin’ s oscillator by adding expressions for

V = neurotransmitter n
whose synthesis is =V % -V X v, _KF +
induced by X Z! +k| ky+ X, K, +KF

F = mean field or Y,

average it ' ks +7Y,
concentration

of neurotransmitter =iY Z

K = sensitivity of k+Z,

individual oscillators g 8
to the VIP X, -y
ky+V,

neurotransmitter/

coupling strength _




Totally Connected Netwo
Achieves Synchronizatio

Gonze et al. employed 1000 oscillators
* Set K=0 to simulate
no VIP release
Periods were normally
distributed with a mean E
of 23.5 hand an S5 a0 2 20 2 2 3 0w @ % %
SD Of 117 h Period of uncoupled oscillators (h) F Time (h)
* Sett K=0.5 to simulate VIP e ] AR
release \\ ,/ \ ,’\ J’ \ ;’\
All cells synchronized & vy \f
to a period of 26.5 h

Making Synchronization Depend
on Distance

To et al. 2007 modeled diffusion based on distance
Started with the Leloup and Goldbetter
mammalian model and added random
perturbations in the basal Per transcription rate
(Vgpo) SO that ~40% of neurons oscillated

Other parameters randomly varied to create range
of oscillatory periods from 18 to 30h

p; i< extracellular concentration of VIP
produced by neuron i

M, is the Per mRNA concentration

v is the local VIP concentration observed by
neuron i

Local Neighborhood Structure Also
Generates Synchronization

Introduction of VIP resulted in rapid synchronization in Per
mRNA oscillations
Results parallel those for SCN after prolonged blockage of
action potentials with tetrodotoxin (TTX)
Loss of VIP resulted in desynchronization
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Small-world Networks and Their
Dynamics

What happens if most connections are
local, but a few are long-distant?
High clustering and short characteristic
path length
* In the 1990s Duncan Watts appealed to these
characteristics to define small-world networks
Showed that they are highly suited for
information processing
Local regions can specialize
Whole network can remain coordinated
Many networks in the real world turn out to have a small-world
structure: airline route systems, the internet, gene networks,
protein networks, the brain 19

What Good Are Small World
Networks?

Watts and Strogatz speculated that small world networks “would
display enhanced signal propagation speed, synchronizability and
computational power, as compared with regular lattices of the
same size. The intuition is that the short paths could provide
high-speed communication channels between distant parts of
the system, thereby facilitating any dynamical process (like
synchronization or computation) that requires global
coordination and information flow” (Strogatz, 2001)
Potential advantage over random networks: enable different
clusters to specialize in different ways
Without sacrificing the ability to rapidly adapt to activity
elsewhere

Could the SCN be a Small-World?

Vasalou et al. (2009) set out to explore this question in a model. They replaced

from the To et al. model with

Where k; is number of synaptic inputs received by neuron i and
a;=1if there is a connection between
iandjand 0 otherwise

Network architectures:

A. Nearest neighbor, VIP
expressed in all neurons

B. Small world: Additional
connections ad with prob p

C. Mean field or totally connected net

D. Small world with only some
neurons producing VIP

Small world when 0.01 < p <0.1
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Small' Worlds Outperform Nearest

Neighbor

A Small World Network

Per mRNA (M)
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Per mRNA concentration of ten randomly selected cells

Nearest Neighbor

Time (hr)

Behavior of Small-World Network

Two measures computed from Per mRNA concentrations:

Sl: Synchronization Index—compares instantaneous phase
angle of each oscillator relative to a reference cycle, thereb
quantifying the ability of the system to produce a coherent

signal [in slice SI = 0.93]

R: order parameter represents the overall degree of

synchrony over a specified time period.

Small world and totally-
connected networks are
comparable on these
measures

‘Synchronization Index (S1)

U
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Small-World Model Explains

Additional Phenomena

Without VIP, only 30% to 40% of SCN neurons
oscillate, but with VIP all do
A. When coupling increased from nearest
neighbor to small-world, percentage of non-
oscillating neurons dropped
Without VIP, mean period is approximately 22
hours, whereas with VIP it approximates 24 hours
B. When coupling increased to small-world
levels, period extends to approximately 24
hours
Without VIP, there is large variability in periodicity,
whereas with VIP oscillators are largely
synchronized
C. When coupling increases to small-world
levels, variability drops dramatically
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Vassalou et al. (2009]
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