
COGNITIVE SCIENCE 11, 65-99 (1987) 

Why a Diagram is (Sometimes) Worth 

Ten Thousand Words 

JILL H. LARKIN 
HERBERTA.SIMON 

Carnegie-Mellon University 

We distinguish diagrammatic from sentential paper-and-pencil representationsof 

information by developing alternative models of information-processing systems 

that are informationally equivalent and that can be characterized as sentential or 

diagrammatic. Sentential representations are sequential, like the propositions in 

a text. Dlogrammotlc representations ore indexed by location in a plane. Dio- 

grommatic representations also typically display information that is only implicit 

in sententiol representations and that therefore has to be computed, sometimes 

at great cost, to make it explicit for use. We then contrast the computational effi- 

ciency of these representotions for solving several illustrative problems in mothe- 

matics and physics. 

When two representotions are informationally equivolent, their computational 

efficiency depends on the information-processing operators that act on them. 

Two sets of operators may differ in their copobilities for recognizing patterns, in 

the inferences they con carry out directly, and in their control strategies (in por- 

titular. the control of search). Diogrommotic ond sentential representations sup 

port operators that differ in all of these respects. Operators working on one 

representation moy recognize feotures readily or make inferences directly that 

are difficult to realize in the other representation. Most important, however, are 

differences in the efficiency of scorch for information and in the explicitness of 

information. In the representotions we call diagrammatic. information is orga- 

nized by location, and often much of the information needed to make on infer- 

ence is present and explicit at a single location. In oddition. cues to the next 

logical step in the problem may be present at on adjacent location. Therefore 

problem solving con proceed through o smooth traversal of the diagram, and may 

require very little search or computation of elements that hod been implicit. 

According to Bartlett’s Quotations, “a picture is worth 10,OOO words” is a 
Chinese proverb. On inquiry, we find that the Chinese seem not to have 
heard of it, but the proverb is certainly widely known and widely believed in 
our culture. In particular, problem solvers in domains like physics and en- 
gineering make extensive use of diagrams, a form of pictures, in problem 
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solving, and many distinguished scientists and mathematicians (e.g., Ein- 
stein, Hadamard) have denied that they “think in words.” To understand 
why it is advantageous to use diagrams-and when it is-we must find some 
way to contrast diagrammatic and non-diagrammatic representations in an 
information-processing system. 

When they are solving problems, human beings use both internal repre- 
sentations, stored in their brains, and external representations, recorded on 
a paper, on a blackboard, or on some other medium. Some investigators 
(e.g., Pylyshyn, 1973) have argued that all internal representations are 
propositional, while others (e.g., Anderson, 1978) have argued that there is 
no operational way in which an internal propositional representation can be 
distinguished from a diagrammatic one. Although our discussion may be 
relevant to this current controversy about the distinguishability of different 
internal representations, our analysis explicitly concerns external represen- 
tations. 

We consider external problem representations of two kinds, both of which 
use a set of symbolic expressions to define the problem. 

1. In a sentential representation, the expressions form a sequence corre- 
sponding, on a one-to-one basis, to the sentences in a natural-language 
description of the problem. Each expression is a direct translation into 
a simple formal language of the corresponding natural language sen- 
tence. 

2. In a diagrammatic representation, the expressions correspond, on a 
one-to-one basis, to the components of a diagram describing the prob- 
lem. Each expression contains the information that is stored at one par- 
ticular locus in the diagram, including information about relations with 
the adjacent loci. 

The fundamental difference between our diagrammatic and sentential 
representations is that the diagrammatic representation preserves explicitly 
the information about the topological and geometric relations among the 
components of the problem, while the sentential representation does not. A 
sentential representation may, of course, preserve other kinds of relations, 
for example, temporal or logical sequence. An outline may reflect hierarchi- 
cal relations. 

We consider problems presented in these two representations and ask 
about the relative difficulty of solution. We start with the assumption that 
the problem is solved using the given representation (sentential or diagram- 
atic). In fact, of course, one way to solve a problem in a poor representation 
is to translate it into a better one. One may be able to use the information in 
a verbal description to draw or image a diagram or use a diagram to infer 
verbal statements. But in order to understand what makes a good represen- 
tation, we ask what is required for solution without such translation. 
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1. FORMALIZING THE QUESTION 

To compare diagrams with sentences, we need to define what we mean by 
representation and by a “better” representation. 

1.1 What Does a “Better” Representation Mean? 

1.1.1 Informational and Computational Efficiency. At the core of our 
analysis lie the wholly distinct concepts of informational and computational 
equivalence of representations (Simon, 1978). Two representations are in- 
formationally equivalent if all of the information in the one is also inferable 
from the other, and vice versa. Each could be constructed from the infor- 
mation in the other. Two representations are computationally equivalent if 
they are informationally equivalent and, in addition, any inference that can 
be drawn easily and quickly from the information given explicitly in the one 
can also be drawn easily and quickly from the information given explicitly 
in the other, and vice versa. 

“Easily” and “quickly” are not precise terms. The ease and rapidity of 
inference depends upon what operators are available for modifying and 
augmenting data structures, and upon the speed of these operators. When 
we compare two representations for computational equivalence, we need to 
compare both data and operators. The respective value of sentences and 
diagrams depends on how these are organized into data structures and on 
the nature of the processes that operate upon them. 

I. I.2 Representations. A representation consists of both data structures 
and programs operating on them to make new inferences. The data struc- 
tures we consider are node-link structures that include schemas employing 
attribute-value pairs. (Such structures have been called variously list struc- 
tures, colored directed graphs, scripts, and frames. The differences, when 
there are any, are inconsequential for our purposes.) We can think of these 
structures as being represented in a list-processing language like LISP. Pro- 
grams are represented as production systems. Each instruction has the form: 
C--A, conditions C with associated actions A. The conditions are tests on 
some parts of the data structures; whenever such tests are satisfied by the 
appropriate data structures, the actions of the production are executed. 
Actions modify data structures, that is, they make and record inferences. 
Although the data structures we shall postulate are stored externally, on 
paper, the productions that operate on them are in the problem solver’s 
memory. 

Since data structures for a problem are complex, we must also provide 
for an attention management system that determines what portion of the 
data structure is currently attended to and can trigger the productions of the 
program. The nature of attention management depends crucially on the 
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linkages provided in the data structure since this is the only information 
available for guiding shifts in attention. 

Later we describe systems for solving physics and geometry problems. In 
these systems the productions contain knowledge of the laws and principles 
of physics or geometry, while the data structures contain knowledge about 
the particular problem being solved. This separation corresponds to the 
usual division of labor between the knowledge a problem solver holds in 
memory and the knowledge he or she commits to paper. In both cases we 
will also need to consider how attention is managed in keeping with the data 
structure. 

In general the computational efficiency of a representation depends on 
all three of these factors (data structure, program, attention management) 
and on how well they work together. Whether a diagram (or any other rep- 
resentation) is worth 10,000 words depends on what productions are avail- 
able for searching the data structure, for recognizing relevant information 
and for drawing inferences from that information (Simon, 1978). This point 
has been made again recently by Anderson (1984) in arguing that the dis- 
tinction between representations is not rooted in the notations used to write 
them, but in the operations used on them. 

1.2 Diagrams and Sentences 
We are concerned with contrasting the operation of an inference program, 
human or computer, when using two different data structures with the same 
informational content. To assure informational equivalence, we start with a 
problem stated in natural language, translate it first into a sequence of more 
formal sentences, and then translate it into a diagram. 

1.2. I Data Structures. Producing a formal sentential representation from 
a verbal problem statement is relatively straightforward, using simple ana- 
logs of propositional coding like that of (Kintsch & Van Dijk, 1978). But 
how can we produce data structures that capture important features of dia- 
grammatic problem representations? Consider a situation described by a 
sequence of ordinary English sentences (e.g., a verbal problem statement). 
Associate with each sentence a location (perhaps x and y coordinates in a 
two-dimensional reference frame). Now sentences are indexed by location- 
a program using this data structure can choose to “look” at a particular 
location and thereby access all information present there (i.e., all informa- 
tion elements indexed by that location). In short we make the following 
definitions: 

l A data structure in which elements appear in a single sequence is what 
we will call a sentential representation. 

l A data structure in which information is indexed by two-dimensional 
location is what we call a diagrammatic representation. 
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Of course, when a sentence or diagram is analyzed internally it may acquire 
different linkages, (e.g., a person may form a “mental picture” upon read- 
ing a sequence of sentences), but here we are concerned with the external 
representations. 

1.2.2 Programs. The program operating on the data structure employs 
the following kinds of processes: (1) Search operates on the node-link data 
structures, seeking to locate sets of elements that satisfy the conditions of 
one or more productions. This process requires attention management. (2) 
Recognition matches the condition elements of a production to data ele- 
ments located through search. Recognition depends on a match between the 
elements in the data structure and the conditions of the productions in the 
program. (3) Inference executes the associated action to add new (inferred) 
elements to the data structure. 

How do sentential and diagrammatic representations, respectively, affect 
the three components of information processing mentioned above: search, 
recognition, and inference? 

Search. Consider first the sentential data structure consisting of a simple 
list of items. Unless an index is manufactured and added explicitly to this 
list, finding elements matching the conditions of any inference rule requires 
searching linearly down the data structure. Furthermore, the several ele- 
ments needed to match conditions for any given rule may be widely sepa- 
rated in the list. Search times in such a system depend sensitively upon the 
size of the data structure. 

Search in a diagram can be quite different. In this representation an item 
has a location. If the conditions of an inference rule are only satisfied by 
structures at or near a single location, then the tests for satisfaction can all 
be performed on the limited set of structures that belong to the current loca- 
tion, and no search is required through the remaining data. Often part of 
the search process involves identifying multiple attributes of the same items, 
for example, that a rabbit is both white and furry. Therefore one computa- 
tional cost of search is the ease with which such attributes can be collected. 
Of course, some search may be required to find the right location. (As an 
example of such a system, see the model of chess perception constructed by 
Simon and Barenfeld, 1969). 

The two systems just described are not, in general, computationally equi- 
valent. As we have described them, we would expect the second to exhibit 
efficiencies in search that would be absent from the first. Differences in 
search strategies associated with different representations are one major 
source of computational inequivalence. 

Recognition. The effects of different representations on search are at 
least equaled by their effects on recognition. Human abilities to recognize 
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information are highly sensitive to the exact form (representation) in which 
the information is presented to the senses (or to memory). For example, 
consider a set of points presented either in a table of x and y coordinates 
or as geometric points on a graph. Visual entities such as smooth curves, 
maxima and discontinuities are readily recognized in the latter representa- 
tion, but not in the former. 

Ease of recognition may be strongly affected by what information is ex- 
plicit in a representation, and what is only implicit. For example, a geometry 
problem may state that a pair of parallel lines is cut by a transversal. Eight 
angles, four exterior and four interior, are thereby created but not men- 
tioned explicitly. Moreover, without drawing a diagram it is not easy to 
identify which pairs of angles are alternate interior angles-information 
that may be needed to match the conditions of an inference rule. All of 
these entities are readily identified from a diagram by simple processes, 
once the three lines are drawn. The process of drawing the diagram makes 
these new inferences which are then displayed explicitly in the diagram itself. 
We will see later how this explicitness facilitates geometry proofs when a 
diagrammatic representation is used, Of course, the same information can 
also be inferred from the sentential representation, but these latter inference 
processes may require substantial computation, and the cost of this compu- 
tation must be included in any assessment of the relative efficiency of the 
two representations. 

Although our focus here is the contrast between diagrammatic and sen- 
tential representations, the human recognition process can often be specific 
to particular representations within these broad categories. For example, 
although the Roman, Cyrillic, and Greek alphabets are nearly isomorphic, a 
person who can read fluently in one of these alphabets cannot generally 
read the same information readily when it is transcribed into one of the 
others. The oral Serbian and Croatian languages are essentially identical, no 
farther apart than the English and American dialects of the English lan- 
guage. Serbian is written in the Cyrillic alphabet, while Croatian is written 
in the Roman alphabet. As a consequence, Serbs and Croats can read each 
other’s newspapers only with the greatest difficulty. 

The difficulty does not disappear for a person who knows both alphabets 
well, but each only the context of particular languages. For example, some- 
one who reads Russian fluently when it is written in the Cyrillic alphabet 
and English in the Roman alphabet will have great difficulty in reading 
Russian transcribed to the Roman alphabet or English to the Cyrillic. (For 
similar effects of chess notation, see Chase and Simon [1973]). 

It follows that we will be unable to recognize knowledge that is relevant 
to a situation and retrieve it from long-term memory if the situation is not 
presented in a representation matching the form of existing productions. 
This specificity of access is presumably remediable by training, but only at 
the cost of acquiring whole new sets of productions with condition sides 
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adapted to the specific representation that is employed. While the specificity 
favors no particular form of representation, it does severely limit the imme- 
diate substitutability of one representation for another. 

Because a representation is useful only if one has the productions that 
can use it, we can readily understand the common complaint of physics pro- 
fessors that students “refuse to draw diagrams” or “don’t appreciate their 
value.” If the students lack productions for making physics inferences from 
diagrams, they may not only fail to “appreciate” the value of diagrams, but 
will find them largely useless. 

Inference. In view of the dramatic effects that alternative representations 
may produce on search and recognition processes, it may seem surprising 
that the differential effects on inference appear to be less strong. Inference 
is largely independent of representation if the information content of the 
two sets of inference rules is equivalent-i.e., the two sets are isomorphs as 
they are in our examples. But it is certainly possible to make inference rules 
that are more or less powerful, independently of representation. 

Examples of this phenomena are suggested by the everyday use of the verb 
“see” when no explicit visual processes are present. What is this metaphori- 
cal “seeing” and how might it connect to information-processing differences 
between sentential and diagrammatic representations? We speculate that 
this metaphor refers to inferences that are qualitatively like perceptually 
“seeing” in that they come about through productions with great computa- 
tional efficiency. This efficiency might arise from low search and recogni- 
tion costs, or from very powerful inference rules or from both. 

Consider, for example, a physical chessboard which we would represent 
as a set of squares, each with an (XJ) location and connections to adjacent 
squares. With each square is associated the name of any piece on it. Any 
person can “see” on what squares the pieces lie and locate adjacent or nearby 
squares. These inferences come from primitive production rules that every- 
one has. But a chess expert may “see” things in the board not evident to the 
non-expert observer. For example, an important feature of a chess position 
is an open file: a sequence of squares that are vacant, running from the play- 
er’s side of the board toward the opponent’s side. In what sense is this “see- 
ing” if everyone cannot see it? This recognition could be accomplished by a 
production that, upon noticing an open square in the first row, would trace 
this square to the “North” until a piece was encountered, then store this 
feature in memory, indexed to its location on the board. For the chess player 
who has such a production in his or her repertory, an open file is “seen,” 
meaning that it is easily recognized. But for a person without such a set of 
productions only the individual unoccupied squares may be visible, when 
attended to, but not the open file. In exactly the same sense, a logician, pre- 
sented with symbol structures for A and A --B, may “see” the conclusion: B. 
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2. A SIMPLE EXAMPLE 

To make concrete our comments about differences in computational effi- 
ciency for two problem representations containing identical information, 
we work here a simple example from physics. In this example we will see, 
for the diagrammatic representation, considerable computational advan- 
tages in search, plus a subtle advantage due to different needs for labeling. 
We leave to a second example the more complex, but probably more impor- 
tant, utility of diagrams in aiding recognition. 

We begin our comparison of representations by analyzing a simple pulley 
problem from elementary mechanics. After stating the problem verbally, we 
provide a formal sentential encoding of the problem statement. Then we 
write, in a semi-formal notation, inference rules (productions) that embody 
the laws of statics relevant to solving the problem. Next we construct a dia- 
grammatic interpretation of the system consisting of the problem data struc- 
ture and the rules. Finally, we compare the computational efficiency of the 
sentential and diagrammatic representations. In this example, the principal 
differences between the representations derive from the amounts of search 
they demand, rather than from differences in recognition or inference. 

2.1. The Given Data Structure and Program 
Consider a problem given in the following natural language statements. We 
have three pulleys, two weights, and some ropes, arranged as follows: 

1. The first weight is suspended from the left end of a rope over Pulley ‘A. 
The right end of this rope is attached to, and partially supports, the sec- 
ond weight. 

2. Pulley A is suspended from the left end of a rope that runs over Pulley 
B, and under Pulley C. Pulley B is suspended from the ceiling. The right 
end of the rope that runs under Pulley C is attached to the ceiling. 

3. Pulley C is attached to the second weight, supporting it jointly with the 
right end of the first rope. 

The pulleys and ropes are weightless; the pulleys are frictionless; and the 
rope segments are all vertical, except where they run over or under the pulley 
wheels. Find the ratio of the second to the first weight, if the system is in 
equilibrium. 

Presented with the pulley problem, everyone we’ve observed reaches for 
pencil and paper, and draws a sketch of the situation somewhat like Figure 1. 
However, for the moment, we ignore the sketch, and proceed directly from 
the natural language statement of the problem. 

We formalize and simplify the natural language sentences in this problem 
to produce the elements listed in Table la. The labels la, lb, and so forth, 
refer to the sentence numbers above, with the decimal numbers labeling suc- 
cessively elements produced from a single sentence. 
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Figure 1. Diagram of the pulley problem. 

The first propositions in each sentence associate labels with appropriate 
objects. We read subsequent propositions, for example, (la. 1) as: the weight 
WI is suspended from the rope Rp. We read proposition (la.2) as: The rope, 
consisting of the left-hand segment Rp and the right-hand segment Rg, runs 
over (or under) the wheel of the pulley Pa. Sentences 2 through 3 are simi- 
larly translated. At the end, we add element (4.1) giving a specific simple 
value to the weight WI which can then be related to the value of weight W2 
in order to answer the question. We have captured the original problem 
statement, accurately we believe, in these formal elements that use the rela- 
tions of hangs, pulley-system, and value. 

In this data structure the various object labels (e.g., WI,Rx) are essential. 
It is only through these labels that one can infer that two different elements 
(e.g., lb.1 and 3b.3) both refer to the weight W2. In the original problem 
statement these connections were provided (somewhat obscurely) by a com- 
bination of labels and anaphoric, numeric, and locational references (e.g., 
“supporting it jointly with the right end of the first rope”). 

We now turn from the given data structure to the program, composed of 
physics knowledge, that will act on it to solve the problem. This program 
consists of the following inference (or production) rules based on a few 
principles of statics. Pointed brackets (< >) indicate variables that refer to 
particular objects (e.g., ropes, pulleys). 

Pl . Single-string support. Given a weight of known value c n > and a rope 
<R > from which it hangs, if there is no other rope from which it 
hangs (indicated by the symbol -), 
then the supporting rope also have value (tension) <n > associated 
with it. 



74 LARKIN AND SIMON 

TABLE 1 

Formof (a) Dato Structure and (b) Program for the Pulley Problem 

(10.1) 

(10.2) 

(1b.l) 

(20.1) 

(20.2) 

(2~1.3) 

(2b.l) 

(2b.2) 

(30.1) 

(30.2) 

(3b.3) 

(4.1) 

(0) 
(Weight Wl) (Rope Rp) (Rope Rq) (Pulley Pa) 

(hangs Wl from Rp) 

(pulley-system Rp PO Rq) 

(Weight W2) 

(hangs W2 from Rq) 

(Rope Rx) (Pulley Pb) (Rope Ry) (Pulley PC) (Rope Rz) 

(Rope Rt) (Rope Rs) (Ceiling c) 

(hangs PO from Rx) 

(pulley-system Rx Pb Ry) 

(pulley-system Ry PC Rz) 

(hangs Pb from Rt) 

(hangs Rt from c) 

(hongs Rx from c) 

(hangs Rs from PC) 

(hangs W2 from Rs) 

(value Wl 1) 

b) 
Pl. 

P2. 

P3. 

P4. 

Single-string support. (weight < Wx >) (rope <Ry >) 

(value <Wx> <n>) (hangs <Wx> <Ry>) 

-(hangs <Wx> <Rx>) 

- (value <Ry> <W-number>) 

Ropes over pulley. (pulley <P>) (rope <Rl>) (rope <R2>) 

(pulley-system <Rl > <P> <R2>) (value <Rl > <nl >) 

- (value <R2> <nl>) 

Rope hangs from or supports pulley. (pulley <Rl >) (rope <Rl >) (rope R2>) 

(pulley-system <Rl > <P> <R2>) { (hongs <R3> from <P>) or (hangs <P> 

from <R3>) } (value <Rl> <nl>) (value <R2> <n2>) 

- (value <R3> <nl + <n2>) 

Weight and multiple supporting ropes. (weight <Wl >) (rope <Rl >) (rope 

R2>) (hangs <Wl> <Rl>) (hangs <Wl> <R2>) -(bongs <Wl> <R3>) 

(value <Rl> <nl>) (value <R2> <n2>) 

- (value <Wl> <nl> + <n2>) 

P2. Ropes over pulley. If a pulley system c P> has two ropes <RI > and 
< R2 > over it, and the value (tension) associated with < R J > is < nJ > , 
then < nJ > is also the value associated with rope c RJ > . 

P3. Rope hangs from or supports pulley. If there is a pulley system with 
ropes <RI > and < R2> over it, and the pulley system hangs from a 
rope < R3 >, and < RJ > and c R2> have the values (tensions) <n J > 
and < n2 > associated with them, 
then the value (tension) associated with c R3 > is the sum of < nJ > 
plus <n2>. 
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P4. Weight and multiple supporting ropes. If a weight c WI > hangs from 
both ropes c RI > and c R2>, but hangs from no other ropes, and 
the values < nl > and < n2> are associated with <RI > and < R2 > , 
then the value associated with c WI > is the sum of < nI> plus < n2>. 

Table lb shows these rules, stated then in a formal notation matching 
that used for the data structure in Table la. In this notation symbols with 
pointed brackets can be matched to any symbol. A “- ’ indicates an element 
that may not appear in the current data structure if the conditions of the 
rule are to be satisfied. 

These inference rules are based on two physics principles. (1) The total 
force on an object at rest is zero. (2) The tensions are equal in all parts of an 
ideal (massless, frictionless) rope, even if this rope passes over ideal (mass- 
less, frictionless) pulleys. The productions are directions for applying these 
principles in several specific situations relevant to our problem. Principles 
must be rewritten as active inference rules for any problem solving system. 
(Indeed students may well be unable to solve problems in part because they 
learn principles, and do nof translate them into inference rules.) We might 
have made the list of productions shorter, but at the cost of more complex 
explanations. 

Our system, now includes a data structure and a program (rules of infer- 
ence). It remains to consider how the data structure is searched to find in- 
formation the inference rules can use, how such information is recognized, 
and how the inferences are made. 

2.2 Sentential Representation 
If we consider the data structure in Table Ia as a sequential list of elements, 
then, by our earlier definition, this is a sentential definition of the pulley 
problem. Using the program in Table Ib, the problem can be solved by a 
simple non-algebraic procedure. Applying our physics inference rules, we 
develop sequentially values associated with objects in the problem, ultimately 
finding the desired value associated with weight W2. In English, the steps of 
this solution are: 

1. Because weight WI (value 1) hangs from rope Rp and no other rope, 
the value associated with Rp is 1. 

2. Because Rp (value I) and Rq pass over the same pulley, the value of Rq 
is 1. 

3. Because Rp and Rq have values 1, and the pulley Pa over which they 
pass is supported by Rx, the value associated with Rx is 1 + 1 =2. 

4. Because Rx (value 2) and Ry pass over the same pulley, the value of Ry 
is 2. 

5. Because Ry (value 2) and Rz pass under the same pulley, the value of Rz 
is 2. 
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6. Because Ry and Rz have values 2, and the pulley PC under which they 
pass is supported by Rs, the value associated with Rs is 2 + 2 = 4. 

7. Because weight W2 is supported by rope Rq (value 1) and rope Rs (value 
4) and by no other ropes, its value is 1 + 4 = 5. 

This sequence of inferences is not logically complex, yet the reader has 
probably already discovered its psychological complexity. The major diffi- 
culty is that each inference requires locating simultaneously one or more re- 
cently developed values, together with sentences in the original data structure 
supporting the next inference. For example, consider the inference that the 
value associated with pulley Pa is 2 (see Figure 1 for relief). In the sentential 
representation, making this inference requires holding in memory the value 
associated with rope Rp (and perhaps also Rq), locating in the original data 
structure the relation (pulley-system RpPuRq), and perhaps also sentences 
identifying these objects appropriately as ropes and pulleys. Throughout 
the solution there is this continual need to hold on to values while searching 
for relational information. The search is particularly difficult for step 7 
using production P4. 

Weight and multiple supporting ropes. If a weight < WI > hangs from both 
ropes <RI > and <R2>, but hangs from no other ropes, and the values 
<nl> and <n2> areassociated with <RI> and <R2>, 
then the value associated with < WI > is the sum of < n J > plus < c n2 > . 

The reason is that information about two ropes, one mentioned much 
earlier, must be held in memory or recorded and then discovered by search; 
and then it must be verified that no other ropes support the weight. 

To make these observations quantitative, we assume the following simple 
linear attention-control mechanism: Attention is initially at the first sentence. 
After each inference is made, the attention pointer is left at the beginning of 
the last sentence in which relevant information was found. New elements, 
added to the data structure are searched first, and in reverse order of their 
addition. Finally, if a production specifies that some element may not ap- 
pear, then all data-structure elements must be searched to make sure this is 
the case. 

Table 2 shows the seven steps of the solution using the formal repre- 
sentation developed earlier. The original elements of the data structure are 
listed at the left, and the seven steps,with the production applied, across the 
top. At the bottom are the new elements added to the data structure in that 
step. In each column, an x indicates an element that must be present for the 
inference rule to apply, and an o indicates an element that must be searched 
(assuming the simple linear search strategy outlined above) in order to verify 
that the production applies. 

In step 1, for example, rule PZ, Single-string support, is matched by the 
four x’d elements to conclude that the value associated with rope segment 
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TABLE 2 

Solution to the Pulley Problem Using the Sentential Representotion. 

Original Steps 1 2 3 4 5 6 

Element Productions Pl P2 P3 P2 P2 P3 P4 

2. (Weight Wl) x --- 0 0 0 0 

(Rope RP) x --- x x 0 0 

(Rope 4) 0 --- x x 0 x 

(Pulley Pa) 0 --- x x 0 0 

(hongs Wl from Rp) x --- 0 0 0 0 

(pulley-system Rp PO Rq) 0 x x 0 0 0 
---~- 

(Weight W2) 0 0 0 0 0 x ___---- 
(hangs W2 from Rq) 0 0 0 0 0 x ~---- 

2. (Rope Rx) 0 x x 0 0 0 ~---- 
(Pulley Pb) 0 0 x 0 0 0 ~---- 
(Rope RY) 0 0 x x x 0 ___---- 
(Pulley PC) 0 0 0 x x 0 

~----~ 
(Rope Rz) 0 0 0 x x 0 ~---- 
(Rope Rt) 0 0 0 0 0 0 ~---- 
(Rope Rs) 0 0 0 0 x x 

~---- 
(Ceiling c) 0 0 0 0 0 0 ~---- 
(hongs Pa from Rx) 0 x 0 0 0 0 ~---- 
(pulley-system Rx Pb Ry) 0 x --- 0 0 0 

(pulley-system Ry PC Rz) 0 x x 0 -- 
(hangs Pb from Rt) 0 0 0 -~ 
(hangs Rt from c) 0 0 - 0 

3. (hangs Rr from c) 0 0 0 -___ 
(hangs Rs from PC) 0 x - 0 

(hangs W2 from Rs) 0 0 - x 

(volue Wl 1) x 0 -- 0 

New Elements 

1. (value Rp 1) 
2. (value Rq 1) 

3. (value Ry 2) 

4. (vofue Rx 2) 

5. (value Rz 2) 

6. (value Rs 4) 
7. (value W2 5) 

Total Elements Searched: 138 

x x x - 
x 0 

x 0 

x -- X 0 

X 0 

X 

0 

25 7 20 19 14 22 31 

Rp is 1. All other elements must also be searched, however, to assure that 
weight WI is not supported by any rope other than Rp, one of the condi- 
tions of this inference rule. This kind of difficulty arises in using any infer- 
ence rule based on finding all instances of a particular class, and examples 
in physics are common. (The net force is the sum of all forces acting on the 
system; energy is conserved if there are no dissipative processes.) 
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2.3. Diagrammatic Representation 
A diagrammatic representation permits information at or near one locality 
to be accessed and processed simultaneously. Table 3 shows our pulley prob- 
lem with such an indexing system. Each element contains one or more loca- 
tions (labeled a-m). 

To use this indexing by location, we need an attentional control mecha- 
nism with the following properties: (1) When one location is attended to, all 
information at that location is automatically available. (2) The system can 
switch attention to any location mentioned by the elements currently attended 
to. The attention switching can be handled by a simple inference rule of the 
form 

(< anyobject > < location1 > < location2 >) (current-attention < location 1 >) 

(change the last element to read: current-attention < location2 > ) 

This mechanism is analogous to that proposed for the sentential repre- 
sentation, in which attention switched from one sentence to an adjacent one 
in the data structure. We define “adjacent” to mean that the two locations 
are mentioned in a single element of the data structure. 

To aid in interpreting Table 3 and the solution based on it, Figure 2 shows 
the locations a through m roughly as they would appear in a diagram. The 
lines connect locations that are adjacent because they appear in the same 
element in the data structure. Attention moves from one location to another. 
At most there are two possible adjacent locations, and search is limited to 
these locations. 

TABLE 3 

Data Structure for the Pulley Problem, with Locations Indicated by Lower Case Labels a, b, c, 

(10.1) 

(la.2 

(lb.1) 

(20.1) 

(20.2) 

(2a.3) 

(2b.l) 

(2b.2) 

(30.1) 

(30.2) 

WI 

(4.1) 

(Weight a) (Rope b) (Rope c) (Pulley d) 

(hangs a from b) 

(pulley-system b d c) 

(Weight e) 

(hangs e from c) 

(Rope f) (Pulley g) (Rope h) (Pulley i) (Rope i) 

(Rope k) (Rope I) (Ceiling m) 

(hangs d from f) 

(pulley-system f g h) 

(pulley-system h i i) 

(hangs g from k) 

(hangs k from m) 

(hangs i from m) 

(hangs I from i) 

(hangs e from I) 

(value a 1) 
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Figure 2. Schematic diagram of locations in the diagramatic representation. “Adjacent” 

(see text) locations ore connected. Steps in the solution are shown in bold, with the value 

added to the location following the relevant step.) 

Based on this data structure, and using the same physics program as be- 
fore, the solution to the pulley problem is as follows: 

1. A weight at a, with associated value 1, hangs from something at b, 
which is a rope. Therefore the rope at b has associated value 1. (Single- 
string support, No search, Attention now at 6.) 

2. The rope at b is in the pulley-system at d which also contains the thing 
at c which is a rope. Therefore the rope at c has associated value 1. 
(Ropes over pulley. Possible to make false attempt to apply Rope hangs 
from or supports pulley to (b c d f). Will fail because value at c is un- 
known. Attention now at c.) 

3. The rope at c (value 1) is in the pulley-system at d which hangs from the 
thing atfwhich is a rope. The pulley-system at d also contains the thing 
at b which is a rope with value 1. Therefore the value associated with 
the rope atfis 2. (Rope hangs from or supports pulley Possible alterna- 
tive step: Apply Weight and multiple supporting ropes to (c e 1). Will 
fail because value at I is unknown. Attention now at f.) 

4. The rope at f(value 2) is the pulley system at g which also contains the 
thing at h which is a rope. Therefore the value associated with the thing 
at h is 2. (Ropes over pulley. Attention now at h.) 

5. The rope at h is in the pulley-system at i which also contains the thing at 
j which is a rope. Therefore the value associated with the rope at j is 2. 
(Ropes over pulley. Possible alternative step: Apply Rope hangs from 
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or supports pulley to (h i j). Fails because value at j is unknown. Atten- 
tion now at j.) 

6. The rope at j (value 2) is in the pulley-system at i which also contains the 
thing at h (a rope, value 2) and suspends the thing at I which is also a 
rope. Therefore the value associated with rope I is 4. (Rope hangs from 
or supports pulley. No search alternatives. Attention at 1.) 

7. The thing at I (a rope, value 4) suspends the thing at e which is a weight, 
also suspended from the thing at c which is a rope with associated value 
1. Therefore the value of the weight at e is 5. (Weight and multiple sup- 
porting ropes. No search alternatives. Attention at e.) 

We assume that change of attention to an adjacent location is a computa- 
tionally easy process. Therefore, the searches and inferences indicated above 
comprise essentially all of the work of solving this problem. There are in- 
stances where a false effort may be made. These efforts all fail immediately, 
leaving the solver with only the correct possibilities. Compared with the 138 
considerations of elements for the sentential representation (see Table 2), 
the diagrammatic representation provides a large saving. 

Note also that the object labels in the sentential data structure (e.g., 
W1,PA) have been replaced by locations. Thus in addition to cutting search, 
a diagrammatic representation eliminates the overhead of keeping track of 
object labels. 

Finally, this example illustrates that the program used with the sentential 
data structure is not immediately applicable to the diagrammatic data struc- 
ture. The later assumes additional location-based changes in attention. 

2.4. Computational Power in Inference Rules 
Inference rules can be more or less powerful, whatever the representation 
(diagrammatic or sentential) on which they operate. In the example con- 
sidered here, the physics inference rules (used in both representations) are 
far more powerful computationally than the physics principles on which 
they are based; For example, when Single-string support is used to infer the 
tension on Rp from the weight of WI, Newton’s Third Law is being assumed 
implicitly: if the rope is in equilibrium, then the downward pull of WI must 
be exactly balanced by the tension in the rope. Also when Rope hangs from 
or supports pulley is used to infer the tension on Rq from the tension on Rp, 
Newton’s Third Law is also being assumed implicitly: each small part of the 
rope is being pulled by a force exerted by the segment adjoining it on one 
side, which must be exactly balanced by the opposite force exerted by the 
segment adjoining it on the other side. 

Thus, each production represents a “theorem” which could itself be de- 
rived by reasoning from the Laws of Motion. But the expert problem solver 
does not re-create this derivation each time. He or she simply incorporates it 
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in a powerful operator. The analog in theorem-proving systems is a process 
for storing theorems that have been proved and using them directly as prem- 
ises in subsequent proofs (Newell & Simon, 1956). In systems like the ones 
described here, instead of representing these theorems sententially, we embed 
them in operators represented as productions. When we say that reasoning 
is carried out “intuitively,” we are often referring to just these kinds of pro- 
cedural replacements of declarative knowledge. Information processing 
schemes for making such replacements are largely based on the formalism 
of adaptive production systems (Waterman, 1970). An early example of a 
program capable of converting declarative statements defining a problem 
into processes is UNDERSTAND (Hayes & Simon, 1974). This idea has 
subsequently been developed extensively by Neves and Anderson (1981) and 
others. 

The benefits of more powerful inference rules are, of course, not limited 
to physics. For example, in the most austere forms of logic, where proposi- 
tions are viewed as sentences in the predicate calculus (or other formal sys- 
tem), new information is obtained by applying truth-maintaining rules of 
inference (perhaps in the form of productions) to these sentences, and add- 
ing to the store the new sentences that are thus produced. This is the basic 
representation of all systems that accomplish problem solving by theorem 
proving. If the rules of inference are very limited in number and power (say, 
consisting of modusponem alone), the system is likely to be highly ineffi- 
cient from a computational standpoint. If other knowledge (e.g., physics) is 
also incorporated in the system in propositional form (as axioms), without 
addition of inference rules, the inefficiency is compounded. 

A simple example will make the point clear. Suppose we have a system 
whose only inference rule is modus ponens: 

I f  A, and (A implies B)-B. 

Suppose, further, that the system contains an axiom stating that xy is com- 
mutative; i.e., (xy implies JJX). Now if (XJJ is true, then a search will reveal a 
match of xy and (XJJ implies yx) with the conditions of modus ponens, and 
yx will be produced. 

On the other hand if the system contains the inference rule: 

then in the presence of xy, the condition of this rule is matched without fur- 
ther search, and xy will be produced immediately. Similarly, a system that 
has productions allowing it to assign the same tension to all segments of a 
rope will proceed more expeditiously than one that has to reach this result 
from general reasoning based on Newton’s Third Law. 

In general, powerful inference rules will contain information that is spe- 
cific to a particular task domain: they will be task dependent. A good deal 
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of skill acquisition in any domain can be attributed to the gradual acquisi- 
tion of domain-specific inference procedures, specifically, acquisition of the 
corresponding productions, including both actions and the conditions that 
cause them to be evoked when relevant. 

3. A MORE DEMANDING EXAMPLE 

We now apply the analysis procedure illustrated in the previous problem to 
one that is more complex and interesting. Here we will see not only advan- 
tages to the diagram in search and labeling, but also a large and important 
role in facilitating recognition. 

As in the preceding section, we will introduce an example, this time from 
geometry, and consider how it might be solved using a sentential and then a 
diagrammatic problem representation. In this case, again we find that the 
diagrammatic representation dramatically reduces search and removes con- 
siderable need for labeling. But we will find that, in contrast to the pulley 
example, the given data structure does not match the given program. There- 
fore to solve the problem at all, the problem solver must enhance the data 
structure in ways that prove considerably easier with diagrams than with 
sentences. 

We first introduced the given data structure and given program. We then 
develop an enhanced sentential data structure and corresponding program 
that allow solution of the problem. Then we alter the data structure and 
program to see how the solution would proceed with a diagrammatic repre- 
sentation. 

3.1. The Given Problem Representation 
The given problem representation consists, as stated below, of a verbal 
statement of the problem (the given data structure), together with textbook 
statements of the definitions and axioms needed to solve the problem (the 
given program). 

1. Two transversals intersect two parallel lines and intersect with each 
other at a point x between the two parallel lines. 

2. One of the transversals bisects the segment of the other that is between 
the two parallel lines. 

3. Prove that the two triangles formed by the transversals are congruent. 

Figure 3 provides a diagram for this statement, but for now we will concen- 
trate on the sentential representation. 

The given program consists of the following axioms and theorems from 
geometry. 

Pl. Definition of Bisector. If something is a bisector, then it divides a line 
segment into two congruent segments. 
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Figure 3. Diagram for the geometry problem. Labels correspond to Table 5 

P2. Alternate Interior Angles. If two angles are alternate interior angles, 
then they are congruent. 

P3. Vertical Angles. If two angles are vertical angles then they are congru- 
ent. 

P4. ASA. If two angles and the included side of one triangle are congruent 
to the corresponding two angles and included side of another triangle, 
then the triangles are congruent. 

As in the pulley example, we rewrite the preceding natural-language state- 
ments into a sequence of propositions and a set of production rules, each 
using a limited set of predicates. 

Formalizing the initial statement of the problem is straightforward and is 
given in Table 4a. For sentence 1 we use the element (transversal tl 11 12) to 
mean that line t 1 is a transversal cutting parallel lines 11 and 12. Sentence 2 
introduces a segment that is part of one of the transversals (tl), between the 
parallel lines and bisected by the other transversal t2. But then we are asked 
to prove congruent two triangles that have not been mentioned. This situa- 
tion already contrasts with that of the pulley problem, where every neces- 
sary element was specified in the problem statement. In just interpreting the 
problem statement we already have significant difficulty in recognizing all 
mentioned elements. 

The given program can also be formalized straightforwardly as shown in 
Table 4b. When we compare the given program to the given data structure, 
however, we see further recognition problems. The condition elements in 
the program mention many terms (e.g., alternative interior, vertical, sides) 
for which there is no mention in the given data structure. Therefore neither 
a sentential nor a diagrammatic representation of this problem can be suc- 
cessful until we enhance the data structure and modify the program so that 



TABLE 4 

The (a) Given Data Structure, and (b) Program in Semi-formal Notation. 

(4 
(line 11) (line 12) (line 11) (line 12) 

(la.1) (parallel I1 12) 

(la.2) (transversal 11 I1 12) 

(la.3) (transversal t2 I1 12) 

(10.4) (intersect 11 12 x) 

(10.5) (between x I1 12) 

(2a.l) (segment sl of 11) (between sl I1 12) 

(20.2) (bisector 12 sl) 

(30.1) Prove: (congruent trl tr2) 

b) 
(p bisector 

(bisector <b> segment <s>) 

(forms-subsegments <b> <s> <sl > <s2>) 

(congruent <sl> <s2>) 

(P vertical 

(vertical <al > <a2>) (angle <al >) (angle <02>) 

(congruent <al > <a2>)) 

(P alt-int 

(alternate-interior <al > <a2>) 

(angle <al > <a2>) 

(congruent <ol > <a2>)) 

(P asa 

(triangle <tl > haspart <sl >) (side <sl >) 

(triangle < t2 > haspart <s2 >) (side < s2 >) 

(trhngle <tl> haspart <aa>) (angle <aa>) 

(triangle <tl > haspart cab>) (angle <ab>) 

(triangle <t2> haspart <ac>) (angle <ac>) 

(triangle <t2> haspart <ad>) (angle <ad>) 

(congruent objects <ac> <aa>) 

(congruent objects <ad> <ab>) 

(congruent objects <s2> <sl >) 

(congruent <tl> <t2>)) 

84 
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the elements in one can be recognized and operated on by the other. In short, 
while search was the major difficulty in the pulley example, we will find that 
recognition of appropriate elements for inference is the major difficulty 
here. 

3.2. Sentential Representation 
Starting with the given data structure, we first develop an enhanced data 
structure, and then add conditions to the given program so that it can use 
this data structure. 

3.2.1. The Perceptually Enhanced Data Structure. We call this new data 
structure “perceptually” enhanced because it includes exactly those ele- 
ments that a person looking at a diagram like that in Figure 3 could immedi- 
ately recognize. This enhanced data structure includes explicitly the points, 
segments, angles, and triangles implied by the given problem statement, and 
evident in the diagram in Figure 3. Although this data structure includes 
perceptually obvious elements, we initially represent it sententially, as the 
sequence of elements listed in Table 5. For simplicity we have omitted ele- 
ments [e.g., (line 4)] that simply assert the existence of an object. 

The initial elements shown in part (a) of Table 5 are those from the given 
problem. Parts (a) and (b) together form the perceptually-enhanced data 
structure and include all the points, segments, angles, and triangles that a 
human could readily identify in Figure 3. 

This data structure is produced by a set of “perceptual” inference rules 
that operate on the given data structure to produce the elements of the per- 
ceptually enhanced data structure. The first set of these interpret various 
given data elements in terms of points and segments. Specifically, four pro- 
ductions make the following inferences that interpret the elements described 
at the left (given problem elements) by adding the elements described at the 
right. These latter elements interpret the former in terms of perceptually ob- 
vious items (segments, points, and lines). 

Given element 
Segment between two lines: 

Segment and line elements added 
a segment with endpoints that are inter- 
section points with the two lines. 

Point between two lines, lying on the point lies on the segment with end- 
a line intersecting two lines points at the intersection points. 

Two lines intersect: There is a point that lies on both lines. 

A second set of perceptual productions identify segments, angles, and 
triangles, elements that are readily seen by a human and that appear in the 
given program of geometry theorems and definitions. The production in- 
ferring segments simply creates a segment with endpoints at any two points 



TABLE 5 

Elements in the Final Perceptually Enhanced Dato Structure, including (a) Original 

Elements, (b) Elements added by Perceptual Productions. and (c) Elements Added by the 

Geometry Program. 

(0) 
(porollel lines 4 and 5) 

(transversal 6 of 4 and 5) 

(transversal 7 of 4 and 5) 

(intersect 6 and 7 in x) 

(between x lines 4 5) 

(segment 16 of 6) 

(segment 16 between 4 and 5) 

(bisector 7 of 6) 

b) 
(point x on lines 6 ond 7) 

(point 14 on lines 6 and 4) 

(point 15 on lines 6 and 5) 

(segment 16 from 14 to 15) 

(point x on segment 16) 

(segment 18 joining x and 15) 

(segment 19 joining x and 14) 

(point 20 on lines 5 and 7) 

(segment 21 joining 20 and x) 

(segment 22 joining 20 and 15) 

(point 23 on 4 and 7) 

(segment 24 joining 23 and 20) 

(point x on segment 24) 

(x is between 20 and 23) 

(segment 26 joining 23 and x) 

(segment 27 joining 23 and 14) 

(point 23 in line 6 region 1) 

(point 20 in line 6 region 2) 

(point 23 in line 5 region 1) 

(point 14 in line 5 region 1) 

(point x in line 5 region 1) 

(point 20 in line 4 region 1) 

(point 15 in line 4 region 1) 

(point x in line 4 region 1) 

(point 15 in line 7 region 1) 

(point 14 in line 7 region 2) 

(angle 38: vertex 14 line 6 region 1 line 4 region 1) 

(angle 39: vertex x line 7 region 2 line 6 region 1) 

(angle 40: vertex 23 line 7 region 2 line 4 region 1) 

(triangle 41 is: 23 x 14) 

(segment 27 is in triongle 41) 

(segment 26 is in triongle 41) 

(segment 19 is in triangle 41) 

(angle 42: vertex 15 line 6 region 2 line 5 region 1) 

(angle 43: vertex x 7 line 1 region 6 line 2 region) 

(angle 44: vertex 20 line 7 region 1 line 5 region 1) 

(triangle 45 is: 20 x 15) 

(segment 22 is in triangle 45) 

(segment 21 is in triangle 45) 

(segment 18 is in triangle 45) 

(cont)nued) 
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TABLE 5 (continued) 

(4 
(olternote interior angles 44 40 

angle vertex 20 line 7 region 1 line 5 region 1 

ongle vertex 23 line 7 region 2 line 4 region 1) 

(vertical angles 39 43 

vertex x line 6 region 1 line 7 region 2 

vertex x line 6 region 2 line 7 region 1) 

(alternate interior ongles 42 38 

angle vertex 15 line 6 region 2 line 5 region 1 

angle vertex 14 line 6 region 1 line 4 region 1) 

(sements 15 x ond 14 x ore congruent 

definition of bisector) 

(congruent triangles 

segments 15 x ond 14 x 

angles vertex 15 line 5 region 1 line vertex 14 line 4 region 1 

angles vertex x line 6 region 2 vertex x line 6 region 1) 

that lie on the same line. In order to define an angle, however, we need a 
way of distinguishing the two sides of a line. Each pair of intersecting lines 
makes four angles depending on which sides of the lines are considered. 
Therefore three productions define “regions” on the two sides of a line. 
Initially one point (not on the line) is arbitrarily assigned to lie in region 1 
(for that line), and the other to region 2. Thereafter, any point not lying on 
a line is assigned to one region or the other depending on whether or not a 
segment joining it to the original point crosses the line. (A segment “cross- 
ing” a line means the segment has a point in common with the line) The 
double arrows in Figure 3 point to region 1 for each line. 

With regions defined, four unique angles can be defined for each inter- 
section, although, in order to make the program run faster, we restricted it 
to angles lying in the two triangles. With angles and segments defined, a 
final perceptual production collects appropriate triples and identifies the 
two triangles. 

The result is the perceptually enhanced data structure, including the origi- 
nal elements together with the elements shown in part (b) Table 5. Because 
(for good reason, as we shall see) Table 5 is hard to understand, Figure 3 is 
labeled to show in diagrammatic form most of the elements of Table 5. 

In Table 5, explicit labels are necessary for each element, as they were for 
the sentential representation of the pulley problem. For example, we have a 
(triangle 41). It must be labeled, because that label, 41, provides the only 
connection to other elements concerning it (e.g., segment 27 is in triangle 
41). 

Looking again at the given program (theorems and definitions) described 
in Table 4b we find that many of the conditions on the left side of these in- 
ference rules still have no corresponding elements in our perceptually en- 
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hanced data structure. For example, there are no “alternate interior” or 
“vertical” angles. We therefore have a choice. We could further enhance 
the representation to include elements like “alternate interior” used by the 
program. Alternatively, we can leave the data structure as it is and make 
changes in the program so that it can recognize elements in the existing data 
structure. We choose the latter to make a conservative distinction between 
perceptually obvious elements and elements that must be developed by 
reasoning. We argue that all elements currently in the perceptually enhanced 
representation (including points, segments, angles, and triangles) are per- 
ceptually obvious to any educated person looking at a diagram like that in 
Figure 3. Although we could add patterns like alternate interior angles, it is 
not clear that such patterns are obvious to everyone, and we will develop 
our program to reason about them explicitly. 

In summary, we now have a data structure including all the primitive, 
visually obvious elements in the problem situation. It remains (a) to modify 
the given program so that it can interact with this data structure, and (b) to 
see how these modified inference rules solve the problem. 

3.2.2. The Program. Table 6 lists the four inference rules, corresponding 
to the original given program, but replacing elements undefined in the exist- 
ing data structure with their definitions in terms of elements already defined. 
For example, in the alternate-interior-angles rule, the single predicate “alter- 
nate-interior” has been replaced by a set of elements that state explicitly 
what alternate interior means in the current data representation in terms of 
“parallel, ” “between,” “region,” “side,” and so on. 

Thus, the angles have different regions with respect to the transversal 
(they are “alternate”). The angles have overlapping regions with respect to 
the parallel lines (they are “interior” to these lines). Similar additions are 
needed for the other inference rules as given in Table 6. These inference 
rules add to the data structure in Table 5 the final five elements in part (c) 
which include the desired conclusion that the triangles are congruent. 

In summary, Table 5 shows the data structure after the problem is solved. 
This structure includes the original problem elements (part a), those added 
by perceptual inference rules (part b), and those added by geometric infer- 
ence rules (part c), the latter modified to refer to primitive elements like 
points and segments rather than constructs like alternate interior angles. 

3.2.3. Costs of Recognition and Search. The perceptual elements in part 
(b) of Table 5 and the modified conditions of the geometry inference rules in 
Table 6 capture what is necessary to allow the given geometry program to 
interact with the given data structure. Producing this data structure and 



TABLE 6 

Formol Geometry Progrom in Terms of Primitive Elements (points, lines, and segments). 

(p bisector 

(bisector by <b> segment <s>) 

;<s> bisected by <b> 

;original condition 

(line <b>) 

(point <p> on <b>) 

;line <b> with <p> on it 

;definition of bisector 

(segment < s > ) 

(point <p> on <s>) 

;segment <s> with <p> on it 

(segment <s> endpoints <pl> <p2>) 

;endpaints of <s > 

(segment <sl > endpoints <pl > <p>) 

(segment <s2> endpoints <p2> <p>) 

;subsegments of <s > formed by <p> 

- (congruent <sl> <s2>) 

; this inference hosn’t already been mode 

(congruent <sl> <s2>) 

(p vertical 

(angle <al > vertex <v> line <I1 > region <nl> 

line <l2> region <n2>) 

(angle ( <a2> < > <al > ) vertex <v> 

line <I1 > region ( <n3i < > <nl> ) 

line <l2> region ( <n3> < > <nl > }) 

- (congruent object <al > <a2>) 

(make congruent > obiects <al > <a2>)) 

(p olt-int 

(porollel <l2> <l3>) 

(between> point <x> <l2> <l3>) 

(region side <nl > ofline <l2> containspoint <x>) 

(region side <n3> ofline <l3> containspoint <x>) 

:these are interior ongles 

(angle <al > vertex <vl > line <l2> side <n2>) 

line <I1 > side <nix>) 

(angle { <02> < > <al > ) vertex ( <v2> <> <vl> } 
line <l3> side <n3>) 

line <I1 > side ( <nly> < > <nix> } ) 

;these ore alternate angles 

- (congruent object <ol > other <02>) 

(congruent> obiects <al > <02>)) 

(continued) 

89 
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TABLE 6 (continued) 

(P asa 
(triangle <tl > object <sl >) 

(segment <sl > point <pa> other <pb>) 

(triangle ( <t2> < > <tl > } obiect <s2>) 

(segment <s2> point <PC> other <pd>) 

;corresponding sides 

(triangle <tl > obiect <oa>) 

(angle <aa> vertex <pa> line <la> side <no >) 

(triangle <tl > obiect <ob>) 

(angle <ab> vertex <pb> line <lb> side <nb>) 

;corresponding angles 

(triangle <t2> object <oc>) 

(angle <ac> vertex <PC> line <lc> side <nc>) 

(triongle <t2 > object <ad >) 

(ongle <ad> vertex <pd> line <Id> side <nd>) 

:corresponding angles 

(congruent obiect <ac > other <oo >) 

(congruent object < od > other cab >) 

(congruent object <s2 > other <sl >) 

- (congruent object <tl > other <t2>) 

;congruences 

(make congruent obiects < tl > < t2 >)) 

program is the cost of being able to recognize useful elements in the data 
structure. Neglecting the costs of modifying the program (probably a con- 
siderable cost to students of geometry), the costs of developing the percep- 
tual elements are evident in Table 5 which includes 40 elements in part (b) 
(compared with just 5 in part (c) added by the geometry program). The 
computer-implemented production system language (0~~5, see Brownston, 
et al., 1985) used to produce this table uses a slightly different system of ele- 
ments. In this form the given data structure has 15 elements, the perceptual 
productions add 78 more in 41 steps, and the geometry productions just 10 
more in five steps. The overt costs of recognition are clearly large. 

Even with a data structure adequate for recognition, search is still prob- 
lematic. If we imagine a sentential representation consisting of the list of 
elements in Table 5, then to match each element in an inference rule, we 
must search through the entire list until we find it, an average of 48/2 = 24 
tests. 

In short, in this simple geometry problem, recognition of the conditions 
for an inference rule, and search for matching conditions are both signifi- 
cant problems in a sentential representation. We discuss now how these dif- 
ficulties are diminished by using a diagrammatic representation. 
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3.3. Diagrammatic Representation 
In constrast to the pulley problem considered earlier, the major efficiency 
difference between the sentential and diagrammatic representations in this 
problem arises from differences in recognition rather than from differences 
in search (although here search is also important). The reason is that the 
original given statement (and its corresponding formal representation) does 
not include elements that can be recognized by the inference rules in the 
given program (i.e., in the theorems and definitions of geometry). There- 
fore, to solve the problem in the sentential representation, we must first do 
a great deal of perceptual enhancement of the data structure (addition of 
points, lines, segments, etc.). We chose to limit this enhancement to just 
those elements that a human viewer can obviously detect unambiguously on 
a diagram. To make the program work with this data structure required also 
enhancing the inference rules so that high-level elements like “alternate in- 
terior angles” were replaced (using the definition of alternate interior) by 
sets of elements that appear in the data structure. When we turn to the dia- 
grammatic representation, the perceptual enhancement of the given repre- 
sentation is done by processes that are computationally very cheap, i.e., the 
processes of drawing and viewing the diagram. Since this phase comprises 
most of the work in the sentential representation, we already have a major 
saving, but there are two other advantages for the diagrammatic representa- 
tion. 

The first is a computational difference in recognifion. With the percep- 
tual work done, the (enhanced) geometry rules can readily recognize their 
conditions. In the sentential representation, the perceptual work of recogni- 
tion is explicit and extensive; in the diagrammatic representation, it is auto- 
matic and easy. 

In addition to these large differences in recognition, however, there are 
also considerable search differences. How can we take the data structure in 
Table 5 and the program in Table 6 and interpret it as a diagrammatic repre- 
sentation? As in the case of the pulley problem, let us assume that we have a 
perceptual control mechanism that allows the system to have instant access 
to all information at a given location; specifically, we assume that if two 
elements refer to the same point, then they are at the same location. The 
spacing in Table 6 groups together (for the first three rules) elements at a 
single location. For these rules, information is always present at just one or 
two locations. If we make the primitive assumption that there is no guidance 
for locating the first object in a group, then search will be required through 
an average of (48/2) = 24 elements. But thereafter no further search is re- 
quired for any elements in a location group. The number of elements that 
must be checked to satisfy a production referring to n locations is therefore 
n*(48/2), assuming also that each group is found independently of the last. 
In contrast, the number of elements checked in the sentential representation 
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is N*(48/2) where N is the number of elements in the production. Therefore 
the grouping of about 10 elements per production in Table 6 into one or two 
location groups reflects the search advantage of a diagrammatic represen- 
tation. The fourth rule (ASA) contains two location groups, each corre- 
sponding to one triangle, and each related to three point locations joined by 
segments. The rule is written to emphasize the pairs of congruent parts, 
rather than the locations. By our criterion that “same location” means 
“contains a common point,” this rule covers four locations in two adjacent 
pairs, Furthermore, the points in the two locations are related in percep- 
tually predictable ways (although this organization is not captured by our 
formal representation). 

These estimates of relative search difficulty are extremely conservative. 
If a person can search for two or three things simultaneously, one search 
can find the conditions of a production with spatial groupings. Further- 
more, two separate location groups in a production are often at predictably 
related locations (e.g., at opposite ends of a transversal). 

3.4. Summary and Comparison of Representations 
The major difference in a diagrammatic representation, we believe, is dif- 
ference in recognition processes. We have seen that formally producing per- 
ceptual elements does most of the work of solving the geometry problem. 
But we have a mechanism-the eye and the diagram-that produces exactly 
these “perceptual” results with little effort. We believe the right assumption 
is that diagrams and the human visual system provide, at essentially zero 
cost, all of the inferences we have called “perceptual.” As shown above, 
this is a huge benefit. If the geometry problem is given verbally, without a 
diagram, all of these elements must be constructed explicitly (or perhaps in 
part by some internal imaging process). It is exactly because a diagram 
“produces” all the elements “for free” that it is so useful, 

In this problem, as in the pulley problem, using a diagram removed the 
need for labelling the objects. Because there are so many objects in the 
geometry problem, this is a considerable saving. In the formal OPSS sys- 
tem, all objects are defined in terms of points, that is, in terms of their loca- 
tions. Informally, it is common to construct a geometry proof simply by 
making corresponding congruent elements in a diagram that need not in- 
clude any labels at all. The labels are needed only when a conventional proof 
is written-and that is, in fact, a sentential representation. 

Finally the inference rules contain information that can be used to guide 
attention when the desired information is not at the current location. For 
example, suppose the system is attending to one segment on a line while 
applying the definition of bisector. Within the inference rule is the informa- 
tion that the second segment can be found on the same line and at one end 
or the other of the currently attended segment. 

Although in the geometry problem there are large differences in the recog- 
nition and search processes required by the sentential and diagrammatic 
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representations, there are no differences in inference processes. In each case 
four geometric inferences are required to solve the problem. 

We can, however, imagine at least two ways in which geometric inference 
rules can be more or less powerful. First, these rules might incorporate 
powerful recognition capabilities, so that in one step, without any need for 
search, an entire high-level pattern could be recognized. Examples of such 
patterns include alternate interior angles, vertical angles, and ASA patterns 
for triangles. Second, the textbook theorems and definitions could be broken 
down into special cases that apply recognition. This has already been done 
for our definition of bisector. The original definition states that a line or 
segment bisects a segment if and only ifthe subsegments produced are con- 
gruent. We have divided this single statement into two parts, one of which 
we have used to make the inference that if there is a bisector, then the seg- 
ments produced are congruent. In other cases, the traditional inference-rule 
statements are quite specific. For example, rules for alternate interior and 
alternate exterior angles could readily be stated as a single general inference 
rule, but most geometry texts separate them. In all cases, the special-case 
rules require less search and recognition for their application. 

Second, as was also illustrated with the pulley problem, we can imagine 
inference rules that make more powerful inferences. For example, one rule 
might apply the alternate-interior-angle theorem twice and also conclude . 
that two sets angles are therefore congruent, eliminating the need for applying 
the vertical-angles theroem. As observed earlier, independent of representa- 
tion, such powerful inference rules would increase computational efficiency 
in either a diagrammatic or a sentential representation. 

4. “ARTIFICIAL“ DIAGRAMS 

The examples considered so far describe systems in real spaces (the pulley 
system) or ideal space (the geometry problem). Diagrams often, however, 
do not describe an actual spatial arrangement. Examples include graphs and 
vector diagrams. These “artificial” diagrams provide a test of the properties 
we have argued are central to the utility of diagrams. Are these simply prop- 
erties of the spatial world that are then portrayed in diagrams of that world? 
Or are they properties having psychological utility in problem solving? If 
the latter is true, then they should also be seen in the diagrams depicting 
relations among non-spatial variables that people use in solving problems. 
To explore this issue, we consider briefly three further examples. 

4.1. Graphs in Economics 
Diagrams were the principal tool for reasoning in economics throughout 
much of its modern history. In the preface to the first edition of his famous 
Principles of Economics, which dominated the scene for 60 years after 1890, 
Alfred Marshall had this to say: 
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It is not easy to get a full view of continuity in this aspect without the use of 
mathematical symbols or diagrams. The use of the latter requires no special 
knowledge, and they often express the conditions of economic life more accu- 
rately, as well as more easily, than do mathematical symbols. . [Elxperience 
seems to show that they give a firmer grasp of many important principles than 
can be got without their aid; and that there are many problems of pure theory, 
which no one who has once learned to use diagrams will willingly handle in any 
other way. (Marshall, 1890) 

The following is a simple and typical example of their use (see Figure 4): 
The abcissa of the diagram represents the quantity of a commodity that 

is produced or demanded, and the ordinate, the price at which that quantity 
will be supplied or purchased. 

The line D is a demand curve, indicating the quantity that would be pur- 
chased at each price. It slopes downward to express the assumption that the 
lower the price, the larger the quantity that will be demanded. 

The lines S and S’ are supply curves, indicating the quantities that would 
be offered on the market at each price. They slope upward to express the 
assumption that the higher the price, the larger the quantity that will be 
offered. Notice that perceptually obvious features (e.g., slope) are used to 
represent important information. 

We can immediately read off from the diagram the equilibrium price and 
quantity, as the ordinate and abcissa, respectively, of the intersection, E, of 
S and D (or E’, of S’ and D). At this price, supply and demand are equal. 
The information needed to make this inference is located together and again 
uses perceptually obvious features (e.g., intersections). 

Next, we ask what the effect on the equilibrium will be of imposing a 
manufacturer’s tax of k dollars on a unit of the commodity if the initial sup- 
ply curve is S and the initial equilibrium E. The price at which any given 
quantity will be supplied will now be k dollars higher than the price at which 
it would have been supplied before, moving the supply curve from S to S’, 
and the equilibrium from E to E’. 

P 

Figure 4. Graph used in an argument from economics. 
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Again, we see immediately that the equilibrium price will increase, but by 
less than the amount of the tax, while the quantity exchanged will decrease. 
By considering demand curves of different slopes in the neighborhood of 
the equilibrium we would also see directly that the increase in price would be 
less, and the decline in quantity greater, the flatter the demand curve (the 
more “elastic” the demand). 

As in our other examples, the great utility of the diagram arises fromper- 
ceptual enhancemenf, the fact that it makes explicit the relative positions of 
the equilibrium points, so that the conclusions can be read off with the help 
of simple, direct perceptual operations. It would be a useful exercise for the 
reader to undertake to reach the same conclusions from the problem state- 
ment using either a sentential representation or an algebraic one. 

4.2. Free Body Diagrams in Physics 
Figure 5a shows a physical situation commonly studied in elementary physics. 
The solver might be asked to relate the masses of A and B. Figure 5b shows 
the artificial “free-body” diagrams that are always recommended for solu- 
tion of such problems (Halliday & Resnick, 1970, Sears, Zemansky & 
Young, 1981, Heller & Reif, 1984). There are two diagrams, one for car A 
and one for car B. F,, is the force on car A due to car B, and F,, is the force 
on B due to A. These forces have equal magnitude, but opposite directions. 
Does this conventionally used, artificial diagram have the properties we 
have argued are important in our earlier examples? 

1. 

2. 

3. 

Localization. Below each of the free-body diagrams in Figure 5b are the 
equations central to solving this problem. Each equation comes from 
one free-body diagram. Information used together is grouped together 
in the free-body diagrams. This localization is achieved by the conven- 
tional rule for free-body diagrams-they include all the forces on a par- 
ticular system. This need not have been the case. Indeed novices often 
draw their version of “free-body” diagram that places, for example, 
the force F~A, the force on B due to A, in the A diagram rather than in 
the B diagram, thus violating the locality property for the free-body 
diagram. 
Minimal labeling. The only important functions of labels in Figure 5 is 
to relate parts of the real-world diagram unambiguously to the force 
diagram. Even this relation is often made unnecessary by experts who 
simply draw the force diagrams on top of the objects in the original pic- 
ture. 
Use of perceptual enhancement. In this example, the acceleration of the 
train is towards the right. Note that the skilled solver has drawn the first 
force diagram with the right-directed force larger than the left-directed 
force. This allows a quick, probably perceptual, check of whether the 
force diagram is consistent with the physical situation. In the vertical 
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F,,- 1, = M,a F-f, - F,,: M,a 

(b) 

Figure 5. (a) Two cars (masses mA and m,) attached to an engine that exerts a force F. 

(b) Corresponding free-body diograms and equations of motion for the cars. 

direction, the forces are of equal magnitude, and so there is no accelera- 
tion. In the horizontal direction, the left-directed forces are shorter or 
non-existent, and so acceleration is towards the right. Such quick 
checks can be important, especially in more complex problems. 

4.3. Energy-Level Diagram 
Figure 6 shows the energy E for a hydrogen atom as a function of the strength 
B of a magnetic field surrounding it. When the magnetic field is 0, there are 
just two possible energies for the atom. But when a field is applied, these 
levels “split” into four. One can readily see that, for large values of B levels 
I and HZ, and levels II and IV have a constant separation, but this is not the 
case for levels ZZZ and II. The horiziontal lines represent various possible 
“energy states” of the atom for the field strength indicated by the dotted 
line. Consider the properties of this diagram using the following criteria for 
utility of diagrams developed earlier. 

1. Locality. This diagram is used to guide computation of the energy re- 
leased when there is a transition of an electron from one energy state to 
another. Various possible transitions are indicated in Figure 6 by vertical 
arrows between the states. As the atom makes this transition, its energy 
is reduced by the amount El-E2, where El is the energy of the higher 
state and E2 the energy of the lower state. This then is the amount of 
energy released (as a photon). Again we find that all information needed 
to make this calculation is readily available in predictable locations with 
the lines representing the two energy levels. 

2. Minimizing labeling. The labels in Figure 6 serve only to let us talk 
about the elements there. They are not essential to any of the inferences 
made. 
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Figure 6. Graph showing energy levels in a hydrogen otom 

3. Use of perceptual enhancement. The diagram represents perceptually 
the qualitative knowledge of the relative sizes of the energy levels. It is 
also drawn at least roughly to scale, so that the relative size of energies 
released by transition can be checked against the diagram. For example, 
transition a clearly releases more energy than does transition 6.’ 

4.4. A Comment on Mental Imagery 
In this paper we have limited ourselves to the use of diagrams as a form of 
external memory. Our only references to psychological processes (other 
than the subject-matter inference rules) have been to rather obvious phe- 
nomena of perception: that people can focus attention on part of a diagram, 
and that they can detect cues there (e.g., simple objects like pulleys or angles), 
and use them to retrieve problem-relevant inference operators from memory. 
These assumptions agree with everything that has been learned in the past 
two decades about expert performance. 

We cannot end our discussion however, without a few comments on men- 
tal imagery-the uses of diagrams and other pictorial representations that 
are not stored on paper but are held in human memory. We have no new evi- 
dence to offer, but we do offer the speculation that mental images play a 
role in problem solving quite analogous to the role played by external dia- 
grams (and that this role is also played in the two memories, internal and ex- 
ternal, in concert). By this we mean that mental images, while containing 
substantially less detail than can be stored in external diagrams, have similar 

I Figure redrawn from (Feynman et al., 1966). 
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properties of localization of information and can be accessed by the same 
inference operators as the external diagrams. This implies also that the crea- 
tion of a mental imagine (for instance, from a verbal description) employs 
inference processes like those that make information explicit in the course 
of drawing a diagram. 

Thus, when we draw a rectangle and its two diagonals, the existence of 
the point of intersection of the diagonals is inferred automatically-the 
point is created on the paper, accessible to perception. In exactly the same 
way, when we imagine a rectangle with its two diagonals, we imagine (“see”) 
the point of intersection in memory. 

In this paper, we have represented external diagrams symbolically as list 
structures, and the inference processes as list processes in a production sys- 
tem language. These representations and processes could equally well be in- 
terpreted as denoting mental images and imagery processes in the brain. But 
much difficult psychological research, the exact character of which we can 
only dimly perceive, will be required to test this hypothesis. Until then it 
must remain a speculation, albeit one that appears consistent with such psy- 
chological evidence as exists. 

5. CONCLUSION 

For external problem representations, we have provided a simple distinction 
between sentential representations, in which the data structure is indexed by 
position in a list, with each element “adjacent” only to the next element in 
the list, and diagrammatic representations, in which information is indexed 
by location in a plane, many elements may share the same location, and 
each element may be “adjacent” to any number of other elements. While 
certainly not the complete story on this important representational issue, 
this simple distinction lets us demonstrate the following reasons why a dia- 
gram can be superior to a verbal description for solving problems: 

. Diagrams can group together all information that is used together, thus 
avoiding large amounts of search for the elements needed to make a 
problem-solving inference. 

l Diagrams typically use location to group information about a single ele- 
ment, avoiding the need to match symbolic labels. 

l Diagrams automatically support a large number of perceptual infer- 
ences, which are extremely easy for humans. 

None of these points insure that an arbitrary diagram is worth 10,000 of any 
set of words. To be useful a diagram must be constructed to take advantage 
of these features. The possibility of placing several elements at the same or 
adjacent locations means that information needed for future inference can 
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be grouped together. It does not ensure that a particular diagram does group 
such information together. Similarly, although every diagram supports 
some easy perceptual inferences, nothing ensures that these inferences must 
be useful in the problem-solving process. Failing to use these features is 
probably part of the reason why some diagrams seem not to help solvers, 
while others do provide significant help (Paige & Simon, 1966, Larkin, 
1983). 

The advantages of diagrams, in our view, are computational. That is dia- 
grams can be better representations not because they contain more informa- 
tion, but because the indexing of this information can support extremely 
useful and efficient computational processes. But this means that diagrams 
are useful only to those who know the appropriate computational processes 
for taking advantage of them. Furthermore, a problem solver often also 
needs the knowledge of how to construct a “good” diagram that lets him 
take advantage of the virtues we have discussed. In short, the ideas we have 
presented, not only provide an explanation of why diagrams can be so use- 
ful, but also provide a framework for further study of the knowledge re- 
quired for effective diagram use. 
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