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SUMMARY

Learning-dependent cortical encoding has been well
described in single neurons. But behaviorally rele-
vant sensory signals drive the coordinated activity
of millions of cortical neurons; whether learning pro-
duces stimulus-specific changes in population co-
des is unknown. Because the pattern of firing rate
correlations between neurons—an emergent prop-
erty of neural populations—can significantly impact
encoding fidelity, we hypothesize that it is a target
for learning. Using an associative learning proce-
dure, we manipulated the behavioral relevance of
natural acoustic signals and examined the evoked
spiking activity in auditory cortical neurons in song-
birds. We show that learning produces stimulus-
specific changes in the pattern of interneuronal
correlations that enhance the ability of neural popu-
lations to recognize signals relevant for behavior.
This learning-dependent enhancement increases
with population size. The results identify the pattern
of interneuronal correlation in neural populations as
a target of learning that can selectively enhance the
representations of specific sensory signals.

INTRODUCTION

Vertebrate behaviors, fromperception to action, aremediated by

large ensembles of neurons (Averbeck et al., 2006). Learning, in

turn, enables long-term changes in behavior by altering associ-

ations between specific sensory stimuli, actions, and the out-

comes of those actions. Flexible neural representations in

higher-order sensory cortical areas are believed to underlie

these learned associations (Reed et al., 2011). Consistent with

this, changes in single-neuron representations for behaviorally

relevant stimuli are well documented (Blake et al., 2002, 2006;

Gentner and Margoliash, 2003; Jeanne et al., 2011; Meliza and

Margoliash, 2012; Thompson and Gentner, 2010; Thompson

et al., 2013). In contrast, little is known about how, or even if,
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learning might act on the neural ensemble representations by

changing emergent properties not observable in single neurons.

One such property that learning could target is the correlation

between neural firing rates, which can dramatically influence

the fidelity of a population code (Cohen and Maunsell, 2009; Co-

hen andKohn, 2011). Here, we examine howassociative learning

influences the stimulus-specific pattern of interneuronal correla-

tions and encoding among neural ensembles in a high-level audi-

tory region in the songbird brain.

Neurons are inherently noisy: multiple presentations of an

identical sensory stimulus do not produce identical responses

(Huber et al., 2008). Pooling responses across distributed popu-

lations of similarly tuned neurons can enhance encoding fidelity

by averaging out this response variability (known as ‘‘noise cor-

relation’’), but only the component of this noise that is indepen-

dent between neurons (Zohary et al., 1994). Neural variability,

however, is rarely independent between neurons. Throughout

the cortex, values of noise correlation tend to be broadly distrib-

uted, being small but positive on average (Cohen and Kohn,

2011). Consequently, noise correlations are traditionally thought

to limit the value of population response pooling.

The effects of noise correlations, however, can be diverse.

Most cortical circuits contain neuronswith heterogeneous tuning

functions. In such circuits, noise correlations can either enhance

or impair coding fidelity, depending on how the noise correlation

relates to tuning similarity (known as ‘‘signal correlation’’) for

each pair of neurons (Abbott and Dayan, 1999; Averbeck et al.,

2006; Cafaro and Rieke, 2010; Gu et al., 2011; Wilke and Eurich,

2002). Compared to independent noise, positively correlated

noise between two similarly tuned neurons impairs encoding

because no form of response pooling can attenuate the shared

noise without simultaneously attenuating the signal (Bair et al.,

2001; Shadlen et al., 1996; Shadlen andNewsome, 1998; Zohary

et al., 1994). In contrast, positively correlated noise between two

oppositely tuned neurons can improve encoding because sub-

tracting one response from the other can both attenuate the

shared noise and strengthen the signal (Romo et al., 2003).

In the constituent pairs of large neural populations in the cor-

tex, noise correlations tend to positively covary with signal corre-

lations (Bair et al., 2001; Cohen and Maunsell, 2009; Gu et al.,

2011; Kohn and Smith, 2005). Such a correlation structure re-

duces population coding fidelity relative to independent noise
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Figure 1. Experimental Design

(A) Schematic of behavioral training apparatus.

(B) Stimulus design. Each letter denotes a single motif. Task-relevant motifs (green) indicated whether to respond left or right. Task-irrelevant motifs (red) were

paired in sequence with task-relevant motifs and occurred with equal probability in left stimuli and right stimuli. Novel motifs (black) were never presented during

behavioral training but were presented during neural recording.

(C) Example ‘‘go left’’ stimulus (top) and ‘‘go right’’ stimulus (bottom). Arrowheads denote 20 ms silent periods between motifs.

(D) Mean (±SEM) acquisition curve showing increase in performance with training. Blocks are nonoverlapping. Dots at right denote behavioral performance for

each bird during the 200 trials immediately prior to neural recording.

(E) Summary of responses to probe trials. Each probe trial was a single motif presented in isolation (i.e., not paired) and not reinforced. Data shown here are the

percentages of all trials that elicited left responses. Each point represents a single bird. Task-relevantmotifs in isolation show a strong learned association with left

and right responses. Task-irrelevant motifs in isolation show no learned association, with eachmotif eliciting similar responses, on average. Although motifs were

counterbalanced between birds, the labels for task-relevant and task-irrelevant motifs are given as A–D and E–H, respectively, for ease of display and inter-

pretation. The mean task-irrelevant responses were intermediate to the go left and go right responses for all subjects.

(F) As in (E) but for the total number of responses (both left and right). Task-irrelevant motifs elicited response rates nearly as high as task-relevant motifs. Birds

thus associate each task-relevant motif with a pecking in a specific port but associate each task-irrelevant motif only with the general response of pecking.

(G) Schematic of CLMwithin the avian auditory forebrain circuitry. Arrows denote major projection patterns. Hp, hyperpallium; CMM, caudomedial mesopallium.

See also Figure S2.
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because the similarly tuned pairs tend to have high noise

correlation and dissimilarly tuned pairs tend to have low noise

correlation (Gu et al., 2011). Conversely, an inverted correlation

structure in which noise correlations negatively covary with

signal correlations can yield higher-fidelity population represen-

tations relative to independent noise (see Figure S1 available on-

line) (Averbeck et al., 2006; Gu et al., 2011). Thus, the relationship

between signal and noise correlations has considerable impact

on the fidelity of neural representations that cannot be predicted

from the average responses of individual neurons. We hypothe-

sized that learning-driven plasticity in the population correlation

structure could provide a mechanism for selectively strength-

ening neural representations of important sensory signals.

To test this hypothesis, we investigated the effect of associa-

tive learning of natural song components (‘‘motifs’’) on the

relationship between signal and noise correlations in a higher-

order auditory cortical area of the songbird brain. We found

that learning inverted the relationship between signal and noise

correlations in auditory cortex. Remarkably, this effect was
restricted to the subset of motifs that explicitly guided the sub-

jects’ learned behaviors (‘‘task-relevant’’ motifs). Equally familiar

motifs that did not guide behavior (‘‘task-irrelevant’’ motifs) and

novel motifs elicited the canonical positive relationship between

signal and noise correlations. This plasticity in the correlation

structure yielded a modest, but significant, enhancement to

the encoding fidelity of task-relevant motifs by pairs of neurons.

The magnitude of this enhancement, however, grew larger for

larger populations. These results reveal the interneuronal corre-

lation structure as a target for learning-dependent enhancement

of sensory encoding.

RESULTS

Associative Learning of Motifs
To understand how learning influences interneuronal correla-

tions and sensory encoding by neural populations, we first

trained European starlings (Sturnus vulgaris) to associate spe-

cific motifs with behaviors that led to reward (Figures 1A–1D;
Neuron 78, 352–363, April 24, 2013 ª2013 Elsevier Inc. 353
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see Experimental Procedures). In the wild, recognition of learned

motifs underlies behaviors such as mate attraction and resource

defense (Eens, 1997; Gentner and Hulse, 2000). In the labora-

tory, we controlled motif recognition with a two-alternative

choice operant task. On each trial during training, birds heard

a pair of sequentially ordered motifs (e.g., Figure 1C). One motif

in the pair (referred to as ‘‘task relevant’’) always signaled the

correct behavioral response for the trial (i.e., whether to peck

at the left or right port to receive food) and the other motif

(referred to as ‘‘task irrelevant’’) never signaled the correct

response (Figure 1B). The task-relevant motif could be pre-

sented as either the first or the second motif in the pair. The

task relevance of any given motif was held constant within a

bird and counterbalanced across birds. All the training motifs

were equally associated with food reward. All birds (n = 9)

learned to perform this task accurately (Figure 1D).

To verify that learned behavior depended on the task rele-

vance of the motifs rather than the association with reward, we

tested the birds’ behavioral responses to each motif in isolation

(i.e., not paired; Experimental Procedures). As expected, each of

the single task-relevant motifs evoked responses primarily to a

single port, following the learned responses from training (Fig-

ure 1E). In contrast, responses to the task-irrelevant motifs

were evenly distributed between both response ports (Figure 1E).

Importantly, overall response rates for all the motifs were simi-

larly high (Figure 1F). Thus, all of the motifs made familiar during

operant training are associated with the general behavior of

pecking (or perhaps the common outcome of that behavior,

namely food), but only the task-relevant motifs are associated

with the specific choice of pecking either left or right. The primary

difference between the task-relevant and task-irrelevant motifs

was thus the learned association between motifs and explicit

behavioral choices.

Single Neuron Response Properties in CLM
After training, we recorded the simultaneous activity of multiple

well-isolated single neurons in the caudolateral mesopallium

(CLM) in response to task-relevant and task-irrelevant motifs

and a third set of novel motifs under urethane anesthesia (Fig-

ures S2A–S2P; Experimental Procedures). CLM is a higher-order

auditory region in the songbird cortex that is specialized for pro-

cessing learned songs (Jeanne et al., 2011) and projects auditory

information into the vocal premotor region HVC (Bauer et al.,

2008) (Figure 1G).

Because connectivity and response properties within neural

populations depend on cell type (Constantinidis and Goldman-

Rakic, 2002; Hofer et al., 2011; Lee et al., 1998), we divided

our data set into wide spiking (WS) and narrow spiking (NS)

neurons on the basis of action potential width (Barthó et al.,

2004; Mitchell et al., 2007; Experimental Procedures; Figures

S2Q–S2S). We focus on WS neurons (n = 176 pairs from 98

single neurons) because our sample of NS neurons was not suf-

ficient (n = 17 pairs from 36 single neurons) to perform reliable

analysis.

Presentation of motifs evoked complex responses from indi-

vidual neurons in CLM. Figure 2 shows the responses of two

(simultaneously recorded) neurons to the presentation of task-

relevant motifs (Figure 2A) and task-irrelevant motifs (Figure 2B).
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As was typical across our data set, these example neurons re-

sponded with different mean firing rates to different motifs and

had considerable trial-to-trial variability. On average, firing rates

were modestly higher for task-relevant motifs (3.03 ± 0.38 Hz)

than for task-irrelevant motifs (2.74 ± 0.33 Hz, Wilcoxon

signed-rank test, p = 0.0080) and were similar between task-

irrelevant motifs and novel motifs (2.80 ± 0.34 Hz). This finding

is consistent with previous reports that song recognition learning

alters encoding by single neurons in CLM (Jeanne et al., 2011)

and neighboring regions (Gentner and Margoliash, 2003;

Thompson and Gentner, 2010). The modulation of single-neuron

firing rates is subtle, however, especially in light of the animals’

robust changes in behavioral performance over training (Fig-

ure 1D) and differential responding to relevant and irrelevant

motifs after training (Figures 1E and 1F). Sensory representations

may also be distributed across multiple neurons, however, and

features that cannot be observed in single neurons in isolation

can have profound effects on sensory encoding. We thus

hypothesized that learned task relevance influenced interneu-

ronal correlations, a distributed neural feature.

Noise and Signal Correlations in CLM
Learning is known to alter noise correlations in cortical brain

regions (Gu et al., 2011). We thus asked whether noise correla-

tions between pairs of CLM neurons during stimulation with

motifs depended on the task relevance of the motif. Figures 2E

and 2F show the individual trial spike counts (normalized by

the Z score to measure noise correlations independently from

signal correlations) of the same two neurons from Figures 2A

and 2B (Experimental Procedures). The task-relevant motifs

elicited nearly uncorrelated responses from this pair (Pearson

correlation coefficient, r = 0.01), while the task-irrelevant motifs

elicited responses between the pair that were positively corre-

lated (r = 0.20), meaning that when one neuron fired more spikes

than average, the other neuron was likely to do so as well.

This effect, however, was not observed in all neuron pairs.

Figures 2I and 2J show a second example pair in which noise

correlations were very similar between task-relevant and task-

irrelevant motifs.

To investigate potential differences in the population, we

compared noise correlations between all three classes of motif

(task-relevant, task-irrelevant, and novel) for all pairs of simulta-

neously recorded neurons. Consistent with previous reports

(Cohen and Kohn, 2011; Gu et al., 2011; Kohn and Smith,

2005; Zohary et al., 1994), we observed broad distributions of

noise correlations that had small, but positive, mean values

(task relevant: 0.082 ± 0.012; task irrelevant: 0.100 ± 0.012;

novel: 0.087 ± 0.012; Figure 3A). Surprisingly, there were no dif-

ferences in the mean noise correlation between motif classes

(repeated-measures ANOVA, p = 0.21; Figures 3A and 3C). A

difference in mean noise correlation by itself is thus unlikely to

contribute to learning-dependent differences in population

coding of motifs in CLM.

Because learning can alter the receptive fields of cortical

sensory neurons, we asked whether signal correlation between

pairs of CLM neurons depends on task relevance of motifs. As

with noise correlations, the effects of task relevance on signal

correlations were variable. While the first example pair does
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Figure 2. Example Responses from Pairs of

Simultaneously Recorded CLM Neurons

(A and B) Spiking activity in response to task-

relevant motifs (A) and task-irrelevant motifs (B).

The top half of each panel shows spike rasters for

repeated trials. Black dots denote spikes from

neuron 1 and red dots denote spikes from neuron 2.

The bottom half of each panel shows PSTHs for

each neuron superimposed over the spectrogram

of the motif stimulus.

(C and D) Mean ± SD (averaged over the repeated

trials) responses of the same neuron pair from (A)

and (B) to the four task-relevant motifs (C) and to

the four task-irrelevant motifs (D).

(E and F) Normalized responses to each motif

showing no noise correlations for task-relevant

motifs (E) and positive noise correlations for task-

irrelevant motifs (F).

(G–J) Same as (C)–(F) but for a second example pair

of CLM neurons.
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not show a considerable difference in signal correlations

between task-relevant and task-irrelevant motifs (Figures 2C

and 2D), the second example pair shows a large difference (Fig-

ures 2G and 2H).

We investigated whether signal correlations exhibited a sys-

tematic relationship with task relevance. We observed a broad

distribution of signal correlation values for all three motif classes,

indicative of the large range of tuning within CLM (Figure 3B).

However, we found no evidence that task relevance influenced

the magnitude of signal correlations (Figure 3B; Friedman test,

p = 0.18). Thus, as with noise correlation, a difference in the
Neuron 78, 352–
mean signal correlation by itself is unlikely

to contribute to any learning-dependent

differences in population coding.

The average magnitude of the noise

(or signal) correlation is less critical to

encoding, however, than the relationship

between the noise and signal correlation

(Averbeck et al., 2006; Gu et al., 2011;

Wilke and Eurich, 2002). Although no

form of response pooling can dissipate

positive noise correlations between

similarly tuned neurons (positive signal

correlation), subtractive pooling can dissi-

pate positive noise correlations between

dissimilarly tuned neurons (negative signal

correlation). Thus, learning could improve

population coding by altering the relation-

ship between the signal correlation and

noise correlation.

Learning-Dependent Relationship
between Signal and Noise
Correlations
To test whether the relationship between

signal and noise correlations depends on

task relevance, we directly compared
these two measures for each pair of neurons in our data set.

The example neurons depicted in Figures 2C–2J suggest that

although task relevance can influence both signal and noise cor-

relations, it does so following a specific relationship. We thus

asked whether noise correlations systematically covary with

signal correlations, and whether this depends on task relevance.

We found that each class of motifs exhibited a correlation

between signal and noise correlations, but the sign of this

relationship depended on task relevance. For task-relevant

motifs, this relationship was negative (Spearman correlation

coefficient: r = �0.15, p = 0.051, Figure 4A): larger signal
363, April 24, 2013 ª2013 Elsevier Inc. 355
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(A) Distributions of noise correlations for task-relevant motifs (green), task-

irrelevant motifs (red), and novel motifs (black).

(B) Same as (A) but for signal correlations.

(C) Scatterplot comparing noise correlations for task-relevantmotifs with noise

correlations for task-irrelevant motifs. Each point denotes one pair. See also

Figure S3.
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correlations were accompanied by smaller noise correlations.

For task-irrelevant and novel motifs, in contrast, the relationship

was positive (task irrelevant: r = 0.19, p = 0.012; novel: r = 0.23,

p = 0.0022; Figures 4B and 4C): larger signal correlations were

accompanied by larger noise correlations. The difference

between these relationships was highly significant (ANCOVA

motif class 3 regression slope interaction, p = 7.9 3 10�5). In

contrast, we found no effects of learning on the relationship

between mean firing rate and noise correlation and the relation-

ship between distance between neurons and noise correlation

(Figures S3A and S3B).

The relationship between signal correlation and noise correla-

tion thus depends strongly on the learned task relevance of the

motif. This dependence is particularly apparent in neuron pairs

that have strong (either positive or negative) signal correlations

(Figures 4D and 4E). Among neuron pairs with strong positive

signal correlations (>0.4), the task-irrelevant and novel motifs
356 Neuron 78, 352–363, April 24, 2013 ª2013 Elsevier Inc.
evoked significantly larger noise correlations than the task-rele-

vant motifs (Kruskal-Wallis test, p = 0.0038; Figure 4D). In

contrast, among neuron pairs that had large negative signal cor-

relations (<�0.4), the task-irrelevant and novel motifs evoked

significantly weaker noise correlations than the task-relevant

motifs (Kruskal-Wallis test, p = 0.032; Figure 4E). These observa-

tions suggest that learning selectively alters the relationship

between the signal and noise correlations for signals that are

behaviorally relevant.

Relationship between Correlation Structure and Motif
Coding in Neuron Pairs
Previous work has demonstrated that the relationship between

signal and noise correlations can dramatically affect population

coding (Gu et al., 2011). Thus, we asked whether the observed

differences in correlation structure influence the coding of motifs

by CLM neurons. Because motif identity is best regarded as a

nominal, or categorical, variable (i.e., motifs cannot be easily

described with a small number of parameters), we use multino-

mial logistic regression (MNLR) to find the optimal classifier that

maximizes the predictability of motif identity from the firing rates

of multiple neurons (Long, 1997) (Experimental Procedures). This

technique is particularly well suited to our data because it can be

applied toanynumber of neurons andanynumber of nominal cat-

egories (i.e., motifs). Figure 5 depicts the optimal classifier for a

single pair of neurons responding to task-relevant motifs and

shows that the classification boundaries followmany of the firing

rate patterns that distinguish themotifs. In the example case (Fig-

ure 5), the classifier correctly predicted motif identity with 51%

accuracy (far better than chance performance of 25%). The

MNLR model provides a rigorous quantification of the ability of

CLM neurons to discriminate between different motifs.

Using the MNLR model, we first asked whether the relation-

ship between signal and noise correlations benefitted motif

discrimination performance. We expressed this potential benefit

as the ‘‘classification ratio,’’ which is simply the ratio of theMNLR

classification accuracy with correlations intact to the classifica-

tion accuracy without correlations (i.e., with trials shuffled,

Experimental Procedures). Classification ratios greater than

one indicate that correlations improve encoding while classifica-

tion ratios less than one indicate that correlations impair encod-

ing. Consistent with theoretical predictions (Averbeck et al.,

2006; Gu et al., 2011), we find that the effect of correlation on en-

coding depends strongly on the relationship between signal and

noise correlations (Figure 6A). For neuron pairs with positive

noise correlations, the classification ratio is larger for pairs with

negative signal correlations than for pairs with positive signal

correlations (t test, p = 2.2 3 10�10; Figure 6A). Conversely, for

neuron pairs with negative noise correlations, the classification

ratio is larger for pairs with positive signal correlations than

for pairs with negative signal correlations (t test, p = 0.044;

Figure 6A). Thus, our data demonstrate that the observed

correlations improve encoding when signal and noise correla-

tions are of opposite sign and impair encoding when signal

and noise correlations are of the same sign (two-way ANOVA

interaction term, p = 1.8 3 10�8).

This observation, combined with our finding that task-

relevance alters the relationship between signal and noise
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correlations (Figure 4), suggests that task relevance may

improve motif encoding among neuron pairs in CLM. To test

this idea, we computed the mean classification ratio of all pairs

for task-relevant, task-irrelevant, and novel motifs. We indeed

found that task relevant motifs exhibit a higher classification ratio

than the task-irrelevant or novel motifs (Friedman test, p = 0.018;

Figure 6B), consistent with our observations of the correlation

structure. Even in pairs of neurons, therefore, we find that the

learning-dependent change in the correlation structure directly

yields improved sensory coding of motifs.

Role of Correlation Structure on Encoding by Larger
Populations
How does the correlation-dependent encoding in pairs of

neurons translate into encoding by larger populations? Prior

theoretical (Gu et al., 2011; Zohary et al., 1994) and experimental

(Cohen and Maunsell, 2009) studies have demonstrated that

even small changes in average noise correlations can have

very large effects on neural encoding in populations as small

as only 10 or 20 neurons. Furthermore, in larger populations,

noise correlations can have an impact on encoding that is

substantially greater than that from mean firing rates (Cohen

and Maunsell, 2009; Mitchell et al., 2009). We thus asked

whether the changes in correlations that we see in pairs of neu-

rons yield larger effects in larger populations of neurons. Our

data set makes it possible to test this explicitly because many

of the pairs in our data set were actually recorded as sets of

up to eight neurons.

Consistent with the idea that larger population sizes allow

improved coding from a higher dimensionality of response
Neuron 78, 352–3
space, we found that classification per-

formance increased with population size

for all classes of motifs (Figure 7A).

Importantly, classification performance

increased at a faster rate for task-relevant

motifs than for either task-irrelevant or

novel motifs (solid lines in Figure 7A).

This observation could result either from

learning-dependent changes to the un-

derlying single-neuron response proper-
ties or from the changes to the correlation structure described

above. To distinguish these two sources of increased perfor-

mance, we compared the classification performance without

correlations (i.e., with trials shuffled, which does not alter individ-

ual neuron responses) to that with correlations intact. Shuffling

trials considerably reduces classification performance for

task-relevant motifs, but not to the level of task-irrelevant or

novel motifs (dashed lines in Figure 7A). This suggests that the

enhanced coding fidelity for task-relevant motifs results both

from single-neuron response properties and from correlations

between neurons.

To isolate the effects of correlations on coding, we computed

the classification ratio for each class of motif and for each

population size (Experimental Procedures). We find that the

effect of correlations on coding of task-irrelevant and novel

motifs is small and does not depend on population size; in

contrast, for task-relevant motifs, a modest effect in pairs of

neurons grows considerably with population size (Figure 7B).

Associative learning, therefore, can alter neural correlations in

a way that dramatically improves sensory encoding in large neu-

ral populations but only for signals that are behaviorally relevant.

DISCUSSION

Associative learning inverts the relationship between signal

correlation and noise correlation in pairs of CLM neurons. This

inversion enhances population encoding of motifs associated

with learned behavioral goals. Rather than affecting the overall

magnitude of noise correlations, associative learning changes

how noise correlations depend on signal correlations.
63, April 24, 2013 ª2013 Elsevier Inc. 357
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Figure 5. Motif Classification Using Multi-

nomial Logistic Regression

Top row shows the two-dimensional response

distributions of a pair of neurons for each of the

four task-relevant motifs. Probability of observing

each pair of responses is represented in grayscale.

Bottom row depicts the optimal decoder model fit

to the data. The probability of classifying a pair of

responses from these two neurons as each of the

four motifs is represented in grayscale. For this

pair of neurons, the average probability of correct

motif classification was 0.507.
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Noise correlations are widely reported to covary with signal

correlations (Cohen and Maunsell, 2009; Cohen and Newsome,

2008; Gu et al., 2011; Gutnisky and Dragoi, 2008; Hofer et al.,

2011; Kohn andSmith, 2005). Although this relationship depends

on cell type (Constantinidis and Goldman-Rakic, 2002; Hofer

et al., 2011; Lee et al., 1998) and on behavioral context (Cohen

and Newsome, 2008; Lee et al., 1998), it is generally positive.

Positive relationships impair population encoding because com-

mon noise among similarly tuned neurons cannot be removed by

pooling (Averbeck et al., 2006). In contrast, negative relation-

ships can improve population coding because common noise

among dissimilarly tuned neurons can be subtracted, which

strengthens the signal while dissipating the noise.

To our knowledge, a negative relationship between signal and

noise correlations has not previously been demonstrated. Theo-

retical studies, however, have predicted that changes to the sign

of this relationship might underlie cognitive functions such as

attention or learning (Oram et al., 1998). We provide experi-

mental evidence to support this prediction: associative learning

inverts this relationship, substantially enhancing population

encoding of learned motifs. Importantly, our results show that

learning enhances the population code in two ways: by changing

single-neuron responses and by changing interneuronal correla-

tions. Even with shuffled trials, we find that neural populations

better distinguish between task-relevant motifs than between

task-irrelevant or novel motifs (Figure 7A), demonstrating the

plasticity of response properties of individual neurons. However,

with correlations taken into account, the same neural popula-

tions discriminate between task-relevant motifs even better,

without affecting discrimination of task-irrelevant or novel motifs

(Figure 7). Thus, the relationship between the signal and the

noise correlations acts in a stimulus-specific way to enhance

the representation of only those signals made relevant by prior

learning.

Neural Plasticity and Associative Learning
Psychologists have long recognized the wide range of associa-

tive relationships that can change as a result of learning—

associations between different stimuli, between stimuli and

responses and/or reward, and combinations of all these. Neuro-

scientists, for their part, have been relatively slow to explore

these varied relationships. Prior studies of sensory plasticity in

single auditory cortical neurons have pointed to the importance

of actively engaging stimuli in the context of rewarded behaviors

(Blake et al., 2006; Thompson and Gentner, 2010). This, in turn,
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supports the inference that associations between stimuli and

reward (facilitated perhaps by attention or other cognitive pro-

cesses) drive the observed sensory plasticity (Blake et al., 2006).

The design of the present training allows us to test this infer-

ence directly, because the role of reinforcement can be dissoci-

ated from the behavioral responses that lead to reinforcement.

All the motifs used during training were heard equally often in

the context of the task and paired equally with reinforcement,

but only the task-relevant motifs signaled the correct behavioral

response on each trial. Thus, any effect of learning mediated

directly by reinforcement should apply to all of the training mo-

tifs. What we observe, however, is very different. Only the

task-relevant motifs—those that birds learned to associate

with a particular pecking location—elicited neural population ac-

tivity with a negative relationship between signal and noise cor-

relations. In contrast, task-irrelevant motifs—those that birds

never learned to associate with a particular pecking location—

elicited neural population activity with a positive correlation rela-

tionship indistinguishable from that elicited by novel motifs that

birds never heard while awake. Thus, learning-dependent

changes in the interneuronal correlation patterns depend on as-

sociations formed between stimuli and behavior, rather than

experience, familiarity, or reward contingency. Reward is crucial,

of course, in controlling responses (Herrnstein, 1961), but the

role of the stimulus is to signal the appropriate action required

to obtain that reward. In this context, which psychologists refer

to as occasion setting (Schmajuk and Holland, 1998), we sug-

gest that the neural representation of motifs in CLM is less a sen-

sory trace than a predictive mapping of the learned behavioral

response.

Comparison with Previous Studies
Understanding the CLM population representation as a product

of sensory-motor learning may help to interpret our results in the

context of other work involving different forms of learning.

Indeed, a recent study found that perceptual learning did not

alter the slope of the relationship between signal and noise cor-

relations for neurons in the primate medial superior temporal

area (Gu et al., 2011). This study differed from ours in multiple

ways (e.g., species, brain region, and sensory modality) that

make direct comparisons difficult, but one important difference

is in the type of learning. Perceptual learning targets sensory

acuity, forcing animals to resolve fine differences between previ-

ously indistinguishable low-dimensional stimuli. In contrast, the

complex stimuli used in our study are likely to be easily
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discriminated from one another without intense training, and the

predominant learning occurs in the strength of the association

between stimuli and response (Figure 1E). Although some of

the mechanisms of these two forms of learning may overlap

(e.g., Law and Gold, 2008), the observed differences suggest

that other mechanisms may be unique due to differing functional

requirements.

A methodological difference between our study and that of Gu

et al. (2011) is that we used anesthetized animals while Gu and

colleagues used awake animals. We think it is highly unlikely

that anesthesia could account for the differences between our

results for two reasons. First, while noise correlations can, in

principle, be influenced by fluctuations in the depth of anes-

thesia, they can also be influenced by internal factors in awake

animals, such as fluctuations in alertness, attention, or motiva-

tion. Consistently, differences in noise correlation measure-

ments between studies may be more likely to result from factors

such as differences in the mean firing rate or the size of the

temporal analysis window, than by differences in anesthetic (Co-

hen and Kohn, 2011), although more data are necessary. Sec-

ond, and most important, even if anesthesia did influence the

correlations we measured, this influence would apply equally

to all three motif classes because our presentation of motifs

during electrophysiology was fully randomized and all of our

comparisons are within pairs (or populations) of neurons. In

addition, we note that song-evoked responses in the starling

forebrain are qualitatively quite similar between anesthetized

and unanesthetized states, although some quantitative differ-

ences exist (Knudsen and Gentner, 2013; Meliza et al., 2010).
The most parsimonious explanation for our results, however, is

that learning induces long-lasting changes to the neural circuitry

that remain after training has concluded, even under anesthesia.

Possible Biophysical Mechanisms and Circuit Functions
The commonly observed positive relationship between signal

and noise correlations is often accounted for by shared inputs

that provide both signal and noise. In primary visual cortex,

neurons that share receptive field properties are more likely to

share thalamocortical afferent inputs (Alonso et al., 2001;

Michalski et al., 1983). But a negative relationship would require

a decorrelation of similarly tuned neurons and an increase in the

correlation of dissimilarly tuned neurons. Simple feedforward in-

hibition circuits could, in theory, support both requirements.

Recent modeling work has demonstrated that correlated noise

in excitatory and inhibitory input can cancel each other, leading

to decorrelated network states (Middleton et al., 2012; Renart

et al., 2010). Complementary circuitry in which only excitatory in-

puts are correlated could preserve correlated noise in
Neuron 78, 352–363, April 24, 2013 ª2013 Elsevier Inc. 359
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dissimilarly tuned neurons (Figure S4). The plausibility of such

circuitry is supported by a recent network model showing that

learning-driven modulations to feedforward synaptic weights

yields decreased noise correlations for similarly tuned cortical

neurons and increased noise correlations for dissimilarly tuned

neurons (Bejjanki et al., 2011). In addition, experimental work

linking intracortical synaptic connectivity to noise correlations

(Ko et al., 2011) suggests that local circuit mechanisms may

also contribute to the relationship between signal and noise cor-

relation. In our case, because the same population of CLM neu-

rons can represent different stimuli using qualitatively different

correlation structures, the circuitry (local or extrinsic) that con-

trols the correlation structure must be flexible on a short time-

scale. Further experiments will be necessary to elucidate the cir-

cuitry that yields this stimulus-specific flexibility.

Our results also provide initial evidence that flexibility in the

relationship between signal and noise correlations is cell type

specific. For example, the correlations in the pooled population

of NS-NS and NS-WS pairs did not exhibit the same effects as

the WS-WS pairs (Figure S3C). This suggests that the plasticity

of the correlation structure primarily exists within WS (putative

excitatory) neurons, although more data are necessary. One

possible explanation of this is that WS-WS pairs receive less

common input than NS-NS pairs or NS-WS pairs, and thus their

interneuronal correlations are most susceptible to modulation

by local circuitry. Such an idea is supported by findings that

noise correlations are higher among inhibitory interneurons

than excitatory neurons (Constantinidis and Goldman-Rakic,

2002) and that the slope of the relationship between signal and

noise correlations is much shallower for pairs of excitatory

pyramidal neurons than for pairs of inhibitory parvalbumin-

expressing neurons in primary visual cortex (Hofer et al., 2011).

Our results suggest that large neural populations in CLMbetter

discriminate differences between task-relevant motifs than be-

tween task-irrelevant or novel motifs. CLM provides auditory

information directly to HVC (Bauer et al., 2008), a region known

to control song production (Long and Fee, 2008; Nottebohm

et al., 1976). The enhanced population coding in CLM may influ-

ence the flow of auditory feedback into HVC during juvenile song

learning and for adult song maintenance, two behaviors critical

for survival, by selectively emphasizing the most important mo-

tifs. This possibility could be explored by chronically recording

from CLM populations during these behaviors.

Conclusion
We demonstrate that the relationship between signal and noise

correlations is a target of learning-dependent plasticity that

can substantially enhance the representation of specific

stimuli. Moreover, the effects of this plasticity on neural coding

increase substantially with population size, becoming quite

considerable once the population reaches five to six neurons.

Our results support the longstanding hypothesis that these

activity patterns underlie behaviorally relevant discrimination of

sensory signals (Oram et al., 1998). The population correlation

structure carries biologically significant information, indepen-

dent of the activity in single neurons, crucial to the transformation

of purely sensory codes into neural signals that ultimately drive

learned behavior.
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EXPERIMENTAL PROCEDURES

All procedures were carried out in accordance with the guidelines of the

Institutional Animal Care and Use Committee at the University of California,

San Diego.

Stimuli

We constructed all stimuli from 12 motifs (stereotyped multinote elements of

natural starling song) recorded from the song repertoires of three adult

European starlings. Motifs (565–957 ms long) were grouped into three sets:

four motifs (A, B, C, and D) were labeled ‘‘task relevant,’’ four motifs (E, F, G,

and H) were labeled ‘‘task irrelevant,’’ and four motifs (I, J, K, and L) were

labeled ‘‘novel’’ (Figures S2A–S2L). For behavioral training, we presented a

sequential pair of motifs for each trial (Figure 1B). Each pair contained exactly

one relevant and one irrelevant motif, in either order, separated by a 20 ms

silent gap (e.g., Figure 1C). This yielded 32 stimuli; the 16 containing

motifs A or B were used as ‘‘left’’ stimuli and the 16 containing motifs C or D

were used as ‘‘right’’ stimuli. All irrelevant motifs occurred with equal probabil-

ity in both left and right stimuli. Novel motifs were never presented during

training. To ensure that learning effects were not due to intrinsic acoustic

differences between motifs, we counterbalanced motif assignment to task-

relevant, task-irrelevant, and novel categories across birds. During neural

recording sessions, we presented each of the 12 motifs in isolation (i.e.,

not paired).

Behavioral Training

Ninewild-caught adult European starlings (Sturnus vulgaris) were trained using

a two-alternative choice operant conditioning paradigm (Gentner and Margo-

liash, 2003) to recognize the left and right stimuli described above and to asso-

ciate them with food reward. Prior to training, none of the subjects had any

exposure to these stimuli. All training took place inside a sound attenuation

chamber with an operant response panel (Figure 1A). Birds initiated trials by

inserting their beak into the center port of the response panel to start playback

of one of the 32 stimuli from the speaker inside the chamber. After playback,

birds had 2 s to respond by pecking in either the left or the right port. Incorrect

responses (pecking the left port after a right stimulus or the right port after a left

stimulus) were punished by extinguishing the lights and prohibiting trial initia-

tion for 10–90 s. Correct responses were rewarded by a 2 s access to food on a

fixed ratio reinforcement schedule. The number of consecutive correct trials

required for reward was gradually increased over time from 1 to 5. A secondary

reinforcer (flashing of LEDs on the response panel) was used on correct trials

when the food reward was not delivered. Incorrect responses reset the fixed

ratio counter. The fixed-ratio reinforcement ensured that subjects did not

systematically ignore any stimuli and allowed for all stimuli to be presented

an equal number of times. At the end of training, starlings were presented

with random nondifferentially reinforced (with secondary reinforcer only) probe

stimuli consisting of each of the eight trainingmotifs in isolation (i.e., not paired)

to obtain behavioral confirmation that all four task-relevant motifs were recog-

nized (Figures 1E and 1F). Probe stimuli were randomly interleaved on 8%–

20% of all trials during these probe sessions.

Electrophysiology

Starlings were anesthetized with urethane (20% by volume, 7–8 ml/kg) and

head fixed to a stereotactic apparatus inside a sound-attenuating chamber.

A small craniotomy was made dorsal to CLM, and multichannel silicon elec-

trode arrays (177 mm2 electrode surface area, 50 mm spacing, 1 3 16 and

1 3 32 electrode layout; NeuroNexus technologies) were inserted into CLM.

For some subjects, only the 1 3 32 array was used (Figure S2M). Motif stimuli

were presented free field from a speaker 30 cm from the bird at sound pressure

levels matched to those during behavioral training (mean, 65 dB; peak, 96 dB).

Electrode arrays were advanced while presenting the 12 motif stimuli until two

or more auditory single units were isolated. Once single units were isolated, all

12 single motifs and the set of training motif pairs were presented pseudoran-

domly in blocks while the extracellular electrical activity was amplified (5,0003

gain; AM Systems), filtered (high pass, 300 Hz; low pass, 3–5 kHz), sampled

(20 kHz), and saved digitally for offline analysis (Spike2; Cambridge Electronic

Design).
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Data Analysis

Putative action potentials in the recorded voltage traces were identified by

amplitude and sorted into single units with principal components analysis on

waveform shape using Spike2 software (Cambridge Electronic Design). Only

large amplitude spike waveforms that formed a clear cluster in principal

component space and that had very few refractory period violations were

considered to be single units. In our sample, 99.3% (133/134) of all (Wide

Spiking+Narrow Spiking) neurons had no refractory violations (interspike inter-

vals of less than 1 ms) and one neuron had a single violation, which accounted

for less than 0.005% of all measured ISIs for that neuron. Since presentation of

task-relevant, task-irrelevant, and novel motifs was temporally interleaved,

none of the effects reported here can be due to changes in neuron isolation

or changes in anesthetic state. Because the recording sites on each multi-

channel array were only 50 mm apart, stereotrode sorts were used to further

improve spike-sorting quality. All but one of the WS neuron pairs analyzed

here were recorded from different electrode channels on the multichannel

arrays. Omitting the one pair recorded from the same channel does not alter

the main results. Only neurons that were driven by at least one motif were

used in subsequent analyses.

All further analysis was performed using custom-written MATLAB (Math-

Works) software. Spike shape classification was performed using spike width,

the time from the initial trough to the subsequent peak. During recording, data

from some birds were low-pass filtered at 3 kHz and others at 5 kHz. Because

differences in this cutoff frequency can alter the spike shape (Vigneswaran

et al., 2011), we applied a first-order low-pass Butterworth filter with cutoff

frequency at 3 kHz to all spike shapes to equalize these differences. All

mean spike waveforms were cubic spline interpolated to a 2.5 ms sampling in-

terval. The filtering slightly increased the spike widths of all neurons. Thus, our

threshold of 425 ms between WS and NS neurons is toward the upper end of

the distribution of thresholds used in previous reports (Mitchell et al., 2007;

Vigneswaran et al., 2011) but is conservative.

Because connectivity and correlation within neural populations depends on

cell type (Constantinidis and Goldman-Rakic, 2002; Hofer et al., 2011; Lee

et al., 1998), we divided our data set into wide spiking (WS) and narrow spiking

(NS) neurons on the basis of action potential width (trough-to-peak duration;

Figures S2Q–S2S) (Barthó et al., 2004; Mitchell et al., 2007). The distribution

of action potential widths is bimodal (Hartigan’s dip test, p = 0.041; Figure S2S)

(Hartigan and Hartigan, 1985; Mitchell et al., 2007). Based on network

interactions and correlations with intracellular properties, previous studies

have established that WS and NS neurons correspond to excitatory principal

neurons and inhibitory interneurons, respectively (Barthó et al., 2004; Harris

et al., 2000; Tamura et al., 2004). Consistent with these classifications,

our sample of NS neurons (n = 36) elicited significantly higher spontaneous

firing rates (4.61 ± 0.76 Hz) than our sample of WS neurons (n = 98; 1.80 ±

0.21 Hz; Wilcoxon rank-sum test, p = 1.03 3 10�4). Because our sample

of simultaneously recorded pairs of NS neurons was relatively small (n = 17

pairs), we focus our population analysis on pairs of WS neurons (n = 176 pairs

from 6 birds).

Signal correlations were computed for each pair of neurons as the Pearson

product-moment correlation coefficient between the mean (averaged over

trials) firing rates to the four motifs within the task-relevant, task-irrelevant,

and novel classes. Noise correlations were computed for each individual motif

for each pair across trials then averaged for all motifs within a class. Because

motifs were variable in duration (range: 565–957 ms, mean: 756 ms) and the

size of the analysis window can affect measured correlation values (Cohen

and Kohn, 2011), we use only the first 565 ms (the minimum motif duration)

of each response in the analyses reported here. We note, however, that rean-

alyzing our data using the full duration of each motif yields similar patterns of

correlations.

Motif discrimination ability was assessed using a predictive multinomial

logistic regression model (Long, 1997). Logistic regression models the rela-

tionship between a set of continuous predictor variables (here the firing rates

of multiple simultaneously recorded neurons) and a categorical output variable

(here the motif identity), by representing the categorical variable as a probabil-

ity. The multinomial logistic regression model is a generalization of logistic

regression to more than two categorical variables. This is a minimal model

consistent with the chosen set of observations (in this case the firing rate of
neurons) that does not make any additional assumptions, and in particular

does not assume that variations in the neural responses follow a Gaussian dis-

tribution (Graf et al., 2011). A similar approach is also used for conditional

random fields in machine learning research (Lafferty et al., 2001) and for

maximum noise entropymodels in neuroscience (Fitzgerald et al., 2011). Given

a set of neural responses Xi, the classifier produces the probability that this

was caused by motif j as:

PrðMotif = jÞ =

exp

�P
i

bjiXi

�

PK
k = 1

exp

�P
i

bkiXi

�

where each bji is a set of coefficients fitted to the model bymaximum likelihood

estimation, with the index j (or k in the above equation) describing one of the

possible K classification outputs and index i enumerating the neural responses

among the n neurons in the population. This technique provides a convenient

and mathematically optimal way to quantify how well a set of neurons can

discriminate between multiple motifs. To find the coefficients, we used the

MATLAB function mnrfit, and to find the probabilities of each motif from the

model, we used the MATLAB function mnrval (Statistics toolbox, version 7.3,

release 2010a). To avoid overfitting, we fit the model to 75% of the trials for

each population and predicted motif identity for the remaining 25% of trials.

This procedure was then repeated four times, to ensure that all trials in each

population received a prediction. For each trial, the model predicted the prob-

ability that the set of firing rates resulted from each of the four motifs. To

compute the probability of correct classification, the probability of predicting

the correct motif was averaged over all trials and all motifs for each population.

Becausewewere interested in the net effect of correlations onmotif discrim-

ination, we needed an estimate of discrimination performance in the absence

of correlations. To do this, we shuffled the trial ordering of each neuron in each

data set, refit the model, and recomputed the probability of correct classifica-

tion. This destroys trial-by-trial correlations (i.e., noise correlations), while leav-

ing mean firing rates and signal correlations completely unaltered. To ensure

that random correlations introduced by this process did not affect our analysis,

we repeated the shuffling process 50 times and used the average probability of

correct classification from these shuffles. We then computed the classification

ratio as the probability of correct classification divided by the shuffled proba-

bility of correct classification.

To assess the relationship between the number of neurons and the probabil-

ity of correct classification, we considered each simultaneously recorded

population of size greater than or equal to 3 (range: 3 to 8 neurons; n = 12 pop-

ulations). For a population of size k, we considered all possible subsets of the

population of size 2 through k � 1. To avoid oversampling of the larger popu-

lations, we averaged the classification values for all subsets of a given size to a

single data point. Thus for each population of size k, we had a single value for

the probability of correct classification for subpopulations ranging from 2 to k.

We then averaged the values for each subpopulation size together to generate

the values in Figure 7.

Statistical Analysis

All data were tested for normality using the Lilliefors test evaluated at p < 0.05.

When available, nonparametric tests were used when data were not normal.

Central tendencies are reported as means ± SEM, except where noted.

SUPPLEMENTAL INFORMATION
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