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CHAPTER 1 

The Philosophy 
and the Approach 

l.J BACKGROUND 

The problems of visual perception have attracted the curiosity of scientists 
for many cemuries. Important early contributions vvere made by Newton 
(1704), who laid !he foundations for modern work on color vision, and 
Helmholtz (191 0), whose treatise on physiological optics generates interest 
even today. Early in £his cenrury, Wertheimer (1912, J923) noticed the 
apparent motion not of individual dots but of wholes, or ''fields," in images 
presented sequentially as in a movie. ln much the same way we perceive 
d1e migration across d1e sky of a flock of geese: the flock somehow con
stitutes a single entity, and is nor seen as individual birds. This observation 
started the Gestalt school of psychology, whlch was concerned with descrlb· 
ing the quallties of wholes by using terms Uke solidarity and distinctness, 
and with trying to formulate the "laws" that governed the creation of these 
wholes. The attempt failed for various reasons, and the Gestalt school 
dissolved Into the fog of subjectivism. With the death of the school, many 
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1.1 Background 

Figure 1-1. A random-dOt stereogram of the type used extensively by Belajulesz. 
The left and right Images are identical except for a central square region that is 
displaced sl.ightly io o ne image. When fused binocularly; the images yield the 
impression of the central square floating in from of the background 

of its early and genuine insights were unfortunately lost to the mainstream 
of experimental psychology. 

Since then .. students of the psychology of perception have made no 
seriOliS attempts at an overall understanding of what perception is, con
centrating instead on the analysis of properties and performance. The tri
chromatism of color vision was firmly established (see Brindley, 1970), and 
Lhe preoccupation with motion continued, with the most interesting devel
opments perhaps being the experiments of Miles 0931) and of Wallach 
and O'Connell (1953), which established that under suitable conditions an 
unfamiliar three-dimensional shape can be correctly perceived from onJy 
its changing monocuJar projection.* 

The development of the digital electronic computer made possible 
a similar discovery for binocuJar vision. In 1960 Eela Julesz devised 
cornpurer-genera£ed random-dot stereograms, which are image pairs con
structed of dot patterns that appear random when viewed monocu larly but 
fuse when viewed one through each eye to give a percept of shapes and 
surfaces with a clear three-ctimensional srrucrure. An example is shown ln 
Figure 1-1. Here the image for the left eye is a matrL"{ of black and white 
squares generated at random by a computer program. The iJnage for the 

*Tile rwo dimensional Image seen by :1 single eye 
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10 11Je Pbilosophy and the Approach 

right eye is made by copying the left image, shifting a square-shaped region 
at its center slightly to the left, and then proViding a new random pattern 
to fill the gap that the shift creates. If each of the eyes sees only one matriX, 
as if the matrkes were both in the same physical place, the result is the 
sensation of a square floating in space. Plainly, such percepts are caused 
solely by the stereo disparity between matching elements in the images 
presentt:u to ead1 eye; from sut:h experiments, wt: knuw that the analysis 
of stereoscopic information, like the analysis of motion, can proceed inde
pendently in the absence of other information. Such findings are of critical 
importance because they help us to subdivide our study of perception into 
more specialized parts which can be treated separately. I shall refer to these 
as independent modules of perception. 

The most recent contribution of psychophysics has been of a different 
kind but of equal importance. It arose from a combio.ation of adaptation 
and threshold detection studies and originated from the demonstration 
by Campbell and Robson (l968) of the existence of independent. spatial
frequency-tuned channels-that is, channels sensitive to intensity variations 
in the image occurring at a particular scale or spatial interval-in the early 
stages of our perceptual apparatus. This paper Jed to an explosion of art i
des on various aspects of these channels, which culminated ten years later 
widl quite satisfactory quantitative accounts of the characteristics of the first 
stages of visual perception (Wilson and Bergen, 1979). 1 shall discuss this 
in derail later on. 

Recently a rather different approach has attracted considerable at
tention. In 1971, Roger N. Shepard and Jacqueline Metzler made line draw
ings of simple objects that differed from one another either by a three
dimensional rotation or by a rotation plus a reflection (see Figure 1-2). 
They asked how long it took to decide whether two depicted objects dif
fered by a rotation and a reflection or merely a rotation. They found that 
the time taken depended on the three-dimensional angle of rotation nec
essary to bring tbe two objects into correspondence. indeed, the time 
varied linearly with this angle. One is led thereby to the notion that a 
mental rotation of sorts is actually being performed-that a mental descrip
tion of the first shape in a pair Is being adjusted incrementally in orientation 
until it matches the second, such adjustment requiring greater time when 
greater angles are involved. 

The significance of this approach Ues not so much in its results, whose 
interpretation is controversial, as ln the type of questions 1t raised. For untlJ 
then, the notion of a representation was not one that visual psychologists 
took seriously. This type of experiment meant that the notion had to be 
considered. Although the early thoughts of visual psychologists were naive 
compared with those of the computer vis:ion community, which had had 



1.1 Background 

(a) (b) 

Figure 1-2. Some drawi.Qgs similar to those used in Shepard and Metzler:S exper
iments on mental rotation. The ones shown in (a) are identical, as a clockwise 
turning of this page by 80° will readlly prove. Those in (b) are also identical, and 
again the relative angle between the two is 80°. Here, however, a rotation in depth 
will make the first coincide with the second. Finally, those in (c) are not at all 
identical, for no rotation will bring them into congruence. The time taken co decide 
whether a pair is the same was found to vary Unearly witb the angle through which 
one figure must be rotated to be brought Into correspondence with the other. This 
suggested. to the. investigato rs that a stepwise mental rotation was in fact being 
performed by the subjects of their e"q>ectments, 

to face the problem of representation from the beginning, it was not 
long before the thin.ltiog of psychologists became more sophisticated (see 
Shepard, 1979). 

But what of explanation? For a long time, the best hope seemed to lle 
along another line of investigation, that of electrophysiology. The devel
opment of ampUfiers allowed Adrian (1928) and his colleagues to record 
the minute voltage changes that accompanied the transmission of nerve 
signals. Their investigations showed that the character of the sensation so 
produced depended on which fiber carried the message, not how the fiber 
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12 The Philosophy and the ApproadJ 

was stimulated-as one might have expected from anatomical studies. This 
led to the view that the peripheral nerve fibers could be thought of as a 
simple mapping supplying the sensorium with a copy of the physical events 
at the body surface (Adrian, 1947). The rest of the e.'Cplanatioo, It was 
thought, could safely be left ro the psychologists. 

The ne."t development was the technical improvement in amplificarjon 
that made possible the recording of single neurons (Granit and Svaetichin, 
1939; Hartline, 1938; Galambos and Davis, 1943). This led to the notion of 
a cell 's "receptive field" (Hartline, 1940) and to the Harvard School's famous 
series of studies of the behavior of neurons at successively deeper levels 
of the visual pathway (Kuffler, 1953; Hubel and Wiesel, 1962, 1968). But 
perhaps the most exciting development was the new view that questions 
of psychological interest could be illuminated and perhaps even explained 
by neurophysiological experiments. The dearest early example of this was 
Barlow's (1953) study of gmglion cells in the frog retina, and l cannot put 
it better than he did: 

If one explores the responsiveness of single ganglion cells in the frog's retina 
using handheld targets, one finds that one particular type of ganglion cell is 
most effectively driven by something like a black disc subtendlng a degree or 
so moved rapidly to and fro within the units receptive field. This causes a 
vigorous discharge which can be maintained without much decrement as long 
as the movement is continued Now, if the stimulus which is optimal for this 
class of cells is presented to Intact frogs, the behavioural response is often 
dr,unatic; they rurn towards the l:l.l'get and make repeated feeding responses 
consisting of a jump and soap. The selectivity of the retinal neurons and the 
frogs reaction when they are selectively stimulated, suggest that they are "bug 
detectors" (Barlow 1953) performing a primitive but vilally important form 
of recognition. 

The result makes one suddenly realize that a large part of the sensory 
machinery involved in a frogs feeding responses may actually reside in the 
retina rather than In mysterious "centres" that would be too difficult to under
stand by physiological methods. The essential lock-like property resides in 
each member of a whole class of neurons and allows the cell to discharge 
only to the appropriate key pattern of sensory stimulation. Lettvin et al. (1959) 
suggested that there were five different classes of cell In the frog, and Barlow, 
Hill and Levick (1964) found an even larger number of categories in the rabbiL 
[Barlow eta/. ] called these key patterns "trigger features,'' and Maturana et aL 
(1960) emphasized anomer lmpormnt aspect 0f the behaviour of these gan
glion cells; a cell continues to re~pond to the s<une trigger feature in spite of 
changes in light intensiry over many decades. The properties of the retina are 
such that a ganglion cell can, figuratively speaking, reach out and determine 
that something specific is happening In front of the eye. Light is the agent by 
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which it does this, but it is the detailed pattern of the light that carries the 
information, and the overall leveJ of illumination prevailing at the time is 
almost totally disregarded (p. 373) 

Barlow (1972) then goes on to summarize these findings in the fol
Lowing way: 

The cumulative effect of all the changes I have tried to outline above has been 
to make us realise that each single neuron can pe1jorm a much more complex 
ami subtle task tban bad previously been thought (emphasis added). Neurons 
do not loosely and unreliably remap the luminous intensities of the visual 
image onto our sensorium, but instead they detect pattern elements, discrim· 
inate the depth of objectS, ignore irrelevant causes of variation and are 
arranged In an intriguing hierarchy. Funl1ermore, there is evidence that they 
give prominence to what is informationally important, can respond with great 
reliability. and can have their pattern selectfviry permanently modified by early 
visual experience. This amounts to a revolution in our ouLiook. It is now quire 
inappropriate to regard unit activit}' as a noisy indication of more basic and 
reliable processes involved in menral operations: instead, we must regard 
single neurons as the prime movers of these mechanisms. Thinking is brought 
about by neurons and we should not use phrases like "unit activity reflects, 
reveals, or monitors thought processes," because the activities of neurons, 
quite simply, are thought processes. 

This revolution stemmed from physiological work and makes us realize 
that the activity of each single neuron may play a signjficam role in perception. 
(p. 380) 

This aspect of his thinking led Barlow to formulate the first and most 
important of his five dogmas: 'A description of that <~ctivity of a single nerve 
cell which is transmitted to and influences other nerve cells and of a nerve 
cell's response to such influences from other cells, is a complete enough 
description for functional understanding of the nervous system. There is 
nothing else "looking at" or controlling this activity, which must therefore 
provide a basis for understanding how the brain controls behaviour' (Bar
low, 1972, p. 380). 

I shall return later on co more carefully examine the validity of this 
point of view, but for now let us just enjoy it. The vigor and excitement of 
these ideas need no emphasis. At the time the eventual success of a reduc
tionist approach seemed Ukely. Hubel and Wiesel's (1962, 1968) pioneer
ing studies had shown the way; single-unit studies on stereopsis (Barlow, 
Blakemore, and Pettigrew, 1967) and on color (DeValois, Abramov, and 
Mead, 1967; Gouras, 1968) seemed to confirm the close links betWeen 
perception and s ing le-cell recordings, and the intriguing results of Gross, 
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14 /be Philosophy and the Approach 

Rocha-Miranda, and Bender (1972), who fou nd "hand-detectors'' in the 
inferotemporal cortex, seemed to show that the application of the reduc
tionist approach would not be limited just to the early parts of the visual 
pathway. 

It was, of course, recognized that physiologists had been lucky: If one 
probes around in a conventional electronic computer and records the 
behavior of single elements within it, one is unlikely to be able to cliscem 
what a given element is doing. But the brain, thanks to Barlow's first dogma, 
seemed to be built along more accommodating lines-people were able 
to determine the functions of single elements of the brain. There seemed 
no reason why the reductionist approach could not be taken all the way. 

I was myself fully caught up in this excitement. Truth, I also believed, 
was basically neural, and the central aim of all research was a thorough 
functional analysis of the structure of the central nervous system. My enthu
siasm found expression In a theory of the cerebellar cortex (Marr, l969). 
According to this theory, the simple and regular cortical structure is inter
preted as a simple but powerful memorizing device for learning motor 
skills; because of a simple combinatorial trick, each of the 15 million Pur
kinje cells in the cerebellum is capable of learning over 200 different 
patterns and discriminating them from UJlleamed patterns. Evidence is 
gradually accumulating that the cerebellum is involved in learning motor 
skills (Ito, 1978), so that something like this theory may in fact be correct 

The way seemed clear. On the one hand we had new experimental 
techniques of proven power, and on the other, the beginnings of a theo
retical (lpproach that could back them up with a fine analysis of cortical 
structure. Psychophysics could tell us what needed e.xplalning, and the 
recent advances in anatomy- the Fink-Heimer technique from Nauta's lab
oratory and the recent successful deployment by Szentagothai and others 
of the electron mjcroscope- could provide the necessary information 
about the structure of the cerebral cortex. 

But somewhere underneath, something was going wrong. The initial 
discoveries of the 1950s and 1960s were not being followed by equally 
dramatic discoveries in the 1970s. No neurophyslologisrs had recorded 
new and clear high-level correlates of perception. The leaders of the 1960s 
had turned away from what they had been doing-Hubel and Wiesel con
centrated on anatomy, Barlow turned ro psychophysics, and the mainstream 
of neurophysiology concentrated oo development and plasticity (the con
cept that neural connections are not fixed) or on a more thorough analysis 
of the cells that had already been discovered (for example, Bishop, 
Coombs, and Henry, 1971; Schiller, Finlay, and Volman, 1976a, 1976b), or 
on cells in species like the owl (for e.'Cample, Pettigrew and Konishi, 1 976). 
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None of the new studles succeeded in elucidating the junction of the visual 
cortex. 

It is difficult tO say precisely why thls happened, because the reasoning 
-was never made explicit and -was probably largely unconscious. However, 
various factors are identifiable. In my own case, me cerebellar study had 
two effects. On the one hand, it suggested that one could eventually hope 
to understand cortical structure in functional terms, and this -was exciting. 
But at the same time the study has disappointed me, because even if the 
theory was correct, lt did nor much enlighten one about the motor sys
tem- it did not, for e.~ample, tell one how to go about programming a 
mechanical arm. It suggested that if one wishes to program a mechanical 
arm so that it operates in a versatile way, then at some point a very large 
and rather simple type of memory will prove indispensable. But it did not 
say why, nor what that memory should contain. 

The discoveries of the visual neurophyslologists left one in a similar 
situation. Suppose, for example, that one actually found the apocryphal 
grandmother cell.* Would that really tell us anything much at all? Jt would 
tell us that it existed-Grosss hand-detectors tell us almost that-but not 
why or even how such a thing may be constructed from the outputs of 
previously discovered cells. Do the single-unit recordings-the slmple and 
complex cells-tell us much about how to detect edges or why one would 
Wcl.flt to, except in a rather general way through arguments based on econ
omy and redundancy? l f we really knew the answers, for example; we 
should be able to program them on a computer. 13ut finding a hand
detector certainly did not allow us to program one. 

As one reflected on these sorts of issues in the early 1970s, it gradually 
became dear that something important was mJssing that was not present 
In e ither of the disciplines of neurophysiology or psychophysics. The key 
observation is that neurophysiology and psychophysics have as their busi
ness to describe the behavior of cells or of subjects but not to e.-qylain such 
behavior. What are the visual areas of the cerebral cortex actually doing? 
What are the problems in doing it that need explaining, and at what level 
of de.~criptioo should such explanations be sought? 

The best way of finding out d1e difficulties of doing something is to 
try to do it, so at thjs point l moved to the Artificial Intelligence Laboratory 
at MJT, where Marvin Minsky had collected a group of people and a power
ful computer for the express purpose of addressing these questions. 

•A cell !hat fires only when one's grandmother c:omes lmo view. 
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16 71;e Philosophy and the Approach 

The first great revelation was that the problems are difficult. Of course, 
these days this fact is a commonplace. But In the 1960s almost no one 
realized that machine vision was difficult. The field had to go through the 
same experience as the machine translation field did in its fiascoes of the 
1950s before it was at last realized that here were some problems that had 
to be taken seriously. The reason for this rnisperception is that we humans 
are ourselves so good at vision. The notion of a feature detector was wel I 
established by Barlow and by Hubel and Wiesel, and the idea that extracting 
edges and lines from images might be at all difficult simply did not occur 
to those who had not tried to do it. It rurned out to be an elusive problem: 
Edges that are of cdtical importance from a three-dimensional point of 
view often cannot be found at aU by looking at the intensity changes in an 
image. Any kind of textured image gives a multitude of noisy edge seg
ments; variations in reflectance and illumination cause no end of trouble; 
and even if an edge has a clear existence at one point, it is as likely as not 
to fade out quite soon, appearing only in patches along its length in the 
image. The common and almost despairing feeling of the early investigators 
like B.K.P. Horn and T.O. Binford was that practically anything could happen 
in an image and furthermore that practically everything did. 

Three types of approach were taken to try to come to grips with these 
phenomena. The first was unashamedly empirical, associated most with 
Azriel Rosenfeld. Hls style was to take some new trick for edge detection, 
texture cliscrimlnation, or something similar, run it on images, and 
observe the result. Although several interesting ideas emerged in this way, 
including the simultaneous use of operators* of different sizes as an 
approach to increasing sensitivity and reducing noise (Rosenfeld and 
Thurston, 1971 ), these studies were not as useful as they could have been 
because they were never accompanied by any serious assessment of boV.7 

well the different algorithms performed. Few attempts were made to com
pare the merits of different operators (although Pram and Deutsch, 197S, 
did try), and an approach like trying to prove mathematically which oper
ator was optimal was not even attempted. Indeed, it could not be, because 
no one had yet formulated precisely what these operators should be trying 
tO do. Nevertheless, considerable ingenuity was shown. The most clever 
was probably Hueckel's (1973) operator, which solved in an ingenious way 
the problem of finding the edge orientation that best tit a given intensity 
change in a small neighborhood of an image. 

•operator refers to a local calculation to be applied at each location In the Image, malting 
use of r.he intensity there and in the immediate vidnlt)'. 
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TI1e second approach was to try for depth of analysis by restricting the 
scope to a world of single, illuminated, matte white roy blocks set against 
a black background. The blocks could occur in any shapes provided only 
that all faces were planar and all edges were straight. Tllis restriction 
allowed more specialized techniques to be used, but il still did not make 
the problem e~-y. The Binford- Horn line finder (Hom, 1973) was used to 
find edges, and both it and its sequel (described in Shirai, 1973) made use 
of the special circumstances of the environment, such as the fact that all 
edges there were straight. 

These techniques did work reasonably well, however, and they allowed 
a preliminary analysis of later problems to emerge-rough!~ what does 
one do once a complete Hne drawing has been extracted from a scene? 
Studies of tWs had begun sometime before with Roberts (1965) and Guz
man (1968), and they culminated in the works of Waltz (1975) and Mack
worth (1973), which essentially solved the interpretation problem for line 
drawings derived from images of prismatic solids. Waltz's work had a par
ticularly dramatic impact, because it was the first to show e~-plicitly that an 
exhaustive analysis of all possible local physical arrangements of surfaces, 
edges, and shadows could lead to an effective and efficient algorithm for 
interpreting an actual image. Figure 1- 3 and its legend convey the main 
ideas behind Waltz's theory. 

The hope that lay behind this work was, of course, that once the toy 
world of white blocks had been understood, the solutions found there 
could be generalized; providing the basis for attacking the more complex 
problems posed by a richer visual environment. Unfortunate!~ tWs turned 
out not to be so. For the roots of the approach that was evenmally suc
cessful, we have to look at the third kind of development that was taking 
place then. 

Two pieces of work were important here. Neither is probably of very 
great significance to human perception for what it actually accomplished
in the end, it is likely that neither will particularly reflecr human visual 
processes-bUt they are both of importance because of the way in whlch 
they were formulated. The first was Land and McCann's (1971) work on the 
retinex lheory of color vision, as developed by them and subsequently by 
Horn (1974). The starting point is the tradjtional one of regarding color as 
a perceptual approximation to reflectance. This allows the formulatfon of 
a clear computational question, namely, How can the effects of reflectance 
changes be separated from the vagaries of the prevailing illumination? Land 
and McCann suggested using the fact that changes in illumination are usu
ally gradual, wherea<> changes in reflectance of a surface or of an object 
boundary are often quite sharp. Hence by filtering out slow changes, those 
changes due to the reflectance alone could be isolated, Horn devised a 
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Figure 1-3. Some configurations of edges are physically realizable, and some are 
not. The trihedral junctlons of three convex edges (a) or of three concave edges 
(b) are realizable, whereas the configuration (c) is impossible. Walrz cataloged aJJ 
the possible junctions, Jocluding shadow edges, for up to four coincident edges. 
He then found that by using this catalog to implement consistency relations [ requir
ing, for e.xample, that an edge be of the same type all along its length like edge E 
in (d)], the solution to the labeling of a line drawing that included shadows was 
often uniquely determined. 

clever parallel algoritlun for this, and I suggested how it might be imple
mented by neurons in the relina (Marr, 1974a). 

I do nor oow believe that this is at all a correct analysis of color vision 
or of the retina, but it showed the possible style of a correct analysis. Gone 
are the ad hoc programs of computer vision; gone is the restriction to a 
special visual miniworld; gone is any explanation in temJS of neurons
except as a way of implementing a method. And present is a clear under
standing of what is to be computed, how it is to be done, the physical 
assumptions on which the method is based, and some kind of analysis of 
algorithms that are capable of carrying it out. 



1.2 Understarlding Complex Information-Processing Systems 

The other piece of work was Horn's (1975) analysis of shape from 
shading, whlch was d1e first in what was to become a distinguished series 
of articles on the formation of images. By carefully analyzing the way in 
which the illumination, surface geometry, surface reflectance, and view
point conspired to create the measured intensity values in an image, Horn 
formulated a differential equation that related the image intensity values 
to the surface geometry. lf the surface reflectance and illumination are 
known, one can solve for the surface geometry (see also Horn, 1977). Thus 
from shading one can derive shape. 

The message was plain. There must exist an additional level of under
standing at which the character of the information-processing tasks carried 
out during perception are analyzed and understood in a way that is inde
pendent of the particular mechanisms and structures that implement them 
in our heads. This was what was missing-the analysis of the problem as 
an information-processing task. Such analysis does not usurp an under
standing at the other levels-of neurons or of computer programs- but 
it is a necessary complement to them, since without it there can be no real 
understanding of the function of all those neurons. 

l11is rea.lization was arrived at independently and formulated together 
by Tomaso Poggio in Ti.ibingen and myself (Marr and Poggio, 1977; Marr, 
1977b). It was not even quite new-Leon D. Harmon was saying something 
similar at about the same time, and others had paid Up service to a similar 
distinction, But the important point is that if the notion of different types 
of understanding is taken very seriously, it allows the study of the infor
mation-processing basis of perception to be made rigorous. It becomes 
possible, by separating explanations into different levels, to make explicit 
statements about what is being computed and why and tO construct theo
ries stating that what is being computed is optimal in some sense or is 
guaranteed to function correctly. The ad hoc element is removed, and 
heuristic computer progran1s are replaced by solid foundations on which 
a real subject can be built. This realization-the formulation of what was 
missing, together with a clear idea of how to supply it-formed the basic 
foundation for a new integrated approach, whlch it is the purpose of this 
book to describe. 

1.2 UNDERSTANDING COMPLEX 
INFORMATION-PROCESSING SYSTEMS 

Almost never can a complex system of any kind be understood as a simple 
extrapolation from the properties of its elementary components. Consider, 
for example, some gas in a bottle. A description of thermodynamic effects-

19 



20 The Pbilosopby and the Approach 

temperature, pressure, density. and the relationships among these fac
tors-is nor formulated by using a large set of equations. one for each of 
the particles involved Such effects are described at their own level, that of 
an enormous collection of particles; the effort is to show that in prindple 
the microscopic and macroscopic descriptions are consistent with one 
another. If one hopes to achieve a full understanding of a system as com· 
plicated as a nervous system, a developing embryo, a set of metabolic 
pathways, a bottle of gas, or even a large computer program, then one must 
be prepared to contemplate different k.ind5 of explanation at di!ferem lev
els of description that are linked, at least In principle, into a cohesive whole, 
even if linking the levels in complete detail is impractical. For the specific 
case of a system that solves an information-processing problem, there are 
in addition the twin strands of process and representation, and both these 
ideas need some discussion. 

Representation and Description 

A representation is a formal system for making explicit certain entities or 
types of information, together with a specification of how the system does 
this. And I sball call the result of using a representation to describe a given 
entity a description of the entity in that representation (Marr and Nishihara, 
1978). 

For example, the Arabic, Roman, and binary numeral systems are all 
formal systems for representing numbers. The Arabic representation con
sists of a string of symbols drawn from the set (0, 1, 2, 3, 4, 5, 6, 7, 8, 9), 
and the rule for constructing d1e description of a particular integer n is 
that one decomposes n into a sum of multiples of powers of 10 and unites 
these muJUp.les into a string with the largest powers on tbe left and the 
smallest on the right. Thus, thirty-seven equals 3 x 101 + 7 x 10°, which 
becomes 3 7, the Arabic numeral system's description of the number. What 
this description makes explicit is the number's decomposition into powers 
of 10. The binary numeral system's description of the number thirty-seven 
is l 00101, and Lhis description makes explidt the number's decomposition 
!nto powers of2.ln the Roman numeral system, thirty-seven is represented 
as XXXVII. 

This definition of a representation is qu1te general. For example, a 
representation for shape would be a formal scheme for describing some 
aspects of shape, together with rules that specify how the scheme is applied 
to any particular shape. A musical score provides a way of representing a 
symphony; the alphabet allows the construction of a written representation 
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of words; and so forth. The phrase "formal scheme" is critical to the defi
nition, but the reader should not be frightened by it The reason is simply 
that we are dealing with information-processing machines, and the way 
such macWnes work is by using symbols to stand for things-to represent 
things, in our terminology. To say that something is a formal scheme means 
only that 1t is a set of symbols with rules for putting them together-no 
more and no less. 

A representation, therefore, is net a foreign idea at all-we all use 
representations all the time. However, the notion that one can capture 
some aspect of reality by making a description of it using a symbol and 
that to do so can be useful seems to me a fascinating and powerful idea. 
But even the simple examples we have discussed introduce some rather 
general and important issues that arise whenever one chooses to use one 
particular representation. For example, if one chooses the Arabic numeral 
representation, it is easy to discover whether a number is a power of 10 
but difficult to discover whether lt Is a power of 2. If one chooses the binary 
representation, the situation is reversed. Thus. there is a trade-off; aoy 
particular representation makes certain information explidt at the expense 
of information that is pushed into the background and may be quite hard 
to recover. 

This issue is important, because how information is represented can 
greatly affect how easy it is to do different things with it. This is evident 
even from our numbers example: It is easy to add, to subtract, and even to 
multiply if the Arable or binary representations are used, but it is nor at all 
easy to do these thlogs- especially multiplication-with Roman numerals. 
This is a key reason why the Roman culture failed to develop mathematics 
in the way the earlier Arabic cultures had. 

An analogous problem faces computer engineers today. Electronic 
technology is much more suited to a binary number system than to the 
conventional base 10 system, yet humans supply their data and require the 
results in base 10. The design decision facing the engineer, therefore, is, 
Should one pay the cost of conversion into base 2, carry out the arithmetic 
ln a binary representation, and then convert back into decimal numbers 
on output; or should one sacrifice effidency of circuitry to cari)t out oper
ations directly in a decimal representation? On the whole, business com
puters and pocket calculators take the second approach, and general pur
pose computers take the first. But even though one is not restricted to 
using just one representation system for a given type of information, the 
choice of which to use is important and cannot be taken lightly. It deter
mines what information is made explidt and bence what is pushed further 
into the background, and it has a far-reaching effect on the ease and 
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difficulty with which operations may subsequently be carried out on that 
information. 

Process 

The term process Is very broad For example, addition is a process, and so 
is taking a Fourier transform. But so is making a cup of tea, or going 
shopping. For the purposes of this book, I want to restriCt our attention ro 
the meanings associated with machines that are carrying out information
processing tasks. So let us e.'Glmine in depth the notions behind one simple 
such device, a cash register at the checkout counter of a supermarket. 

There are several levels at which o ne needs to understand such a 
device, and it is perhaps most useful to think il1 rerms of three of them. 
The most abstract is the level of what the device does and wby. What it 
does is arithmetic, so our first cask is ro master the theory of addition. 
Addition is a mapping, usually denoted by + , from pairs of numbers into 
single numbers; for example, + maps the pair (3, 4) to 7, and 1 shall write 
this in the form (3 + 4) ~ 7. Addition has a number of abstract properties, 
however. It is commutative: bod1 (3 + 4) and (4 + 3) are equal to 7; and 
associative: the sum of 3 + ( 4 + 5) is the same as the sum of (3 + 4) 
+ 5. Then there is the unique distinguished element, zero, the adding of 
which has no effect: ( 4 + O)--+ 4. Also, for every number there is a unique 
"inverse," written ( -4) in the case of 4. which when added to the number 
gives zero: [4 + ( -4))--+ 0. 

Notice that these properties are part of the fundamental tbeory of 
addition. They are true no matter how the numbers are written-whether 
in binary; Arabic, or Roman representation-and no matter how the addi
tion is executed. Thus part of this first level is somethlng rhat might be 
characterized as wbat is being computed. 

TI1e oilier half of this level of explanation has to do wim me question 
of why rhe cash register performs addition and not, for instance, multiplj
cation when combining the prices of the purchased items to arrive at a 
final bill The reason is mat the rules we intuitively feel to be appropriate 
for combining the individual prices in fact define the mathematical oper
ation of addition. These can be formulated as constmints in the following 
way: 

1. If you buy nothing, it should cosr you nothingi and buying nothing 
and something should cost the same as buying just the something. (The 
rules for zero.) 
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2. The order in which goods are presented to the cashier should not 
affect the total. (Commutativity.) 

3. Arranging the goods into two piles and paying for each pile sepa
rately should not affect the total amount you pay. (Assodativiry; the basic 
operation for combining prices.) 

4. If you buy an item and then return it for a refund, your total expen
diture should be zero. (Inverses.) 

It is a mathematical theorem that these conditions define the operation of 
addition, which is therefore the appropriate computation to use. 

This whole argument is what l caU the computational tbeo1y of the 
cash register. Its important features are (1) that it contains separate argu
ments about what is computed and why and (2) that the resulting operation 
is defined uniquely by the constraints it has to satisfy. In the theory of viSual 
processes, the underlying rask is to reliably derive properties of the world 
from images of it; the business of isolating constraints that are both pow
erful enough ro allow a process to be defined and generally true of the 
world is a central theme of our inquiry. 

In order that a process shall actually run, however, one ha'i to realize 
it in some way and therefore choose a representation for the entities that 
the process manipulates. The second level of the analysis of a process, 
therefore, involves choosing two things: (l) a representation for the input 
and for the output of the process and (2) an algorithm by which the 
transformation may acrually be accomplished. For addition, of course, the 
input and output representations can both be rhe same, because they both 
consist of numbers. However this is not true in general. ln the case of a 
Fourier tranSform, for example, the input represenration may be the time 
domain, and the output, the frequency domain. If the first of our levels 
specifies what and why, this second level specifies bow. For addition, we 
might choose Arabic numerals for the representations, and for the algo
rithm we could foUow the usual rules about adding the least significant 
digits first and "carrying" if the sum exceeds 9. Cash registers, whether 
mechanical or electronic, usually use this rype of representation and algo
rithm. 

There are three impmtant points here. First, there is usually a wide 
choice of representation. Second, the choice of algorithm often depends 
rather critically on the particular representation that is employed. And 
third, even for a given fi.:'{ed representation, there are often several possible 
algorithms for carrying out the same process. Which one ls chosen will 
usually depend on any particularly desirable or undesirable characteristics 
that the algorithms may have; for example, one algorithm may be much 
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more efficient tban another, or another may be sUghtly less efficient but 
more robust (that is, less sensitive to slight inaccuracies in the data on 
which it must run). Or again, one algorithm may be parallel, and another, 
serial. The choice, then, may depend on the type of hardware or machinery 
in which the algorithm is to be embodied physically. 

This brings us to the third level, that of the device in which the process 
is to be realized physically. The important point here is that, once again, 
the same algorithm may be implemented in quite different technologies. 
The child who methodically adds two numbers from right to left, carrying 
a digit when necessary, may be using the same algorithm that is imple
mented by the wires and transistors of the cash register in the neighbor
hood supermarket, but the physical realization of the algorithm is quite 
different in these two cases. Another example: Many people have written 
computer programs to play tic-tac-toe, and there is a more or less standard 
algorithm that cannot lose. This algorithm has in fact been implemented 
by W. D. Hillis and B. Silverman in a quite different technology, in a com
puter made out ofTinkertoys, a children's wooden building set. The whole 
monstrously ungainly engine, which actually works, currently resides in a 
museum at the University of Missouri in St. Louis. 

Some styles of algorithm will suit some physical substrates better than 
od1ers. For example, in conventional digital computers, the number of 
connections is comparable to the number of gates, while in a brain, the 
number of connections is much larger ( x 104

) than the number of nerve 
cells. The underlying reason is that wires are rather cheap in biological 
architecture, because they can grow individually and in three dimensions. 
In conventional technology, wire laying is more or less restricted to rwo 
d imensions, which quite severely restricts the scope for using parallel 
techniques and algorithms; the same operations are often better carried 
out serially. 

The Three Levels 

We can summarize our discussion in something like the manner shown in 
Figure 1-4, which illustrates the different levels at which an information
processing device must be understood before one can be said to have 
understood it completely. At one extreme, tlle top level. is the abstract 
computational theory of the device, in which the performance of the device 
is characterized as a mapping from one kind of information to anotl1er, the 
abstract properties of this mapping are defined precisely, and its appro
priateness and adequacy for the task at hand are demonstrated. ln the 
center is the choice of representation for the input and output and the 
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Computational theory 

Whar is the goal of the 
computation, why Is Jt 
appropriate, and what 
is the logic of the strat
egy by which it can be 
carried out? 

Representation and 
algorithm 

t-low can Lhis computa
tional theory be imple
mented? ln particular, 
what is the representa
tion for the input and 
output, and what is the 
algorithm for the trans· 
formation? 

Hardware 
implementation 

How can Lhe represen
tation and algorithm be 
realized physically? 

Figure 1-4. The d1ree levels at which any machine carrying out an information
processing taSk must be understood. 

algorithm to be used tO transform one into rhe other. And at the other 
extreme are the details of how the algorithm and representation are real
ized physically-the detailed computer architecture, so tO speak These 
three levels are coupled, but only loosely. The choice of an algorithm is 
influenced for example, by what it has to do and by the hardware in which 
ir must run. But there is a wide choice available at each level, and the 
explication of each level involves issues that are rather independent of the 
other two. 

Each of the three levels of description will have its place in the evenrual 
understanding of perceptual information processing, and of course they 
are logically and causally related. But an iroport<lot point to note Js that 
since the three levels are only rather loosely related, some phenomena 
may be explained at only one or two of them. This means, for example, 
that a correct explanation of some psychophysic.'11 obseiVation must be 
formulated at the appropriate level. In attempts to relate psychophysical 
problems to physiology, too often there is confusion about the leveJ at 
which problems should be addressed. For insLance, some are related 
mainly to the physical mechanisms of vision-such as afterimages (for 
example, the one you see after staring at a light bulb) or such as the fact 
that any color can be matched by a suitable mixture of the three primaries 
(a consequence principally of the fact that we humans have three types of 
cones). On the other hand, the ambiguity of d1e Necker cube (Figure 1-5) 
seems to demand a different kind of explanation. To be sure, part of the 
explanation of its perceptual reversal must have to do with a bistable neural 
network (that is, one with two distinct stable states) somewhere inside the 
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(a) (b) (c) 

Figure 1-5. The so-called Necker illusion, named after L. A. Necker, the Swiss 
naturalist who developed it in 1832. The essence of the matter is that the two
dimensional representation (a) has collapsed the depth out of a cube and that a 
certain aspect of human vision is to recover this missing third dimension. The 
depth of the cube can indeed be perceived, but rwo interpretations are possible, 
(b) and (c). A person's perception characteristically flips from one to !he other. 

brain, but few would feel satisfied by an account that failed to mention the 
exiStence of twO different but perfectly plausible three-climensional inter
pretations of this two-dimensional image. 

For some phenomena, the type of explanation required is fairly 
obvious. Neuroanatomy, for e.-xample, is clearly tied prindpally to the third 
level, the physical realization of the computation. The same holds for syn
aptic mechanisms, action potentials, inhibitory interactions, and so forth. 
Neurophysiology, too, is related mostly to this level, but it can also help us 
to understand the type of representations being used, particularly if one 
accepts something along the lines of Barlow's Views that 1 qumed earlier. 
But one has to exercise e."treme caution in making inferences from neu
rophysiological findings about the algorithms and representations being 
used, particularly until one bas a clear idea about what information needs 
to be represented and what processes need ro be implemented. 

Psychophysics, on the other hand, is related more directly to the level 
of algorithm and representation. Different algorithms tend to fail in radi
cally different ways as they are pushed to the limits of their performance 
or are deprived of critical information. As we shall see, primadly psycho
physical evidence proved to Poggio and myself that our first stereo-match
ing algorithm (Marr and Poggio, 1976) was not the one that is used by the 
brain, and the best evidence that our second algorithm (Marr and Pogglo, 
1979) is roughly the one that is used also comes from psychophysics, Of 
course, the underlying computational theory remained the same in both 
cases, only the algorithms were different. 
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Psychophysics can also help to determine the nature of a represen
tation. The work of Roger Shepard (1975), Eleanor Rosch (1978), or Eliz
abeth Warrington (1975) provides some interesting hints ln this direction. 
More specifically, Stevens (1979) argued from psychophysical experi
ments that surface orientation is represented by the coordinates of slant 
and tilt, rather than (for example) the more traditional (p, q) of gradient 
space (see Chapter 3). He also deduced from the uniformity of the size of 
errors made by subjects judging surface orientation over a wide range of 
orientations that the representational quantities used for slant and tilt are 
pure angles and not, for example, their cosines, sines, or tangents. 

More generally, if the idea that different phenomena need to be 
explained at different levels is kept clearly in mind, lt often helps in the 
assessment of the validity of the different kinds of objections that are raised 
from time to time. For example, one favorite is that the brain is quite 
different from a computer because one is parallel and d1e other serial. The 
answer to this, of course, is that the clistlnctlon between serial and parallel 
is a distinction at the level of algorithm; It Js not fundamental at all
anything programmed in parallel can be rewritten serial ly (though nOI 
necessarily vice versa). The distinction, therefore, provides no grounds for 
arguing that the brain operates so differently from a computer that a com
puter could not be programmed to perform the same tasks. 

Importance of Computational Theory 

Although algorithms and mechanisms are empirically more accessible, it 
is the top level, the level of computational theory, which is critically impor
tant from an information-processing point of view. The reason for this is 
that d1e nature of the computations that underlie perception depends more 
upon the computational problems d1at have to be solved than upon the 
panicular hardware in which their solutions are implemented. To phrase 
the matter another way, an algorithm is likely to be understOod more 
readUy by understanding the nature of the problem being solved than by 
examining the mechanism (and the hardware) in which it is embodied. 

ln a similar vein, trying to understand perception by studying only 
neurons is like trying to understand bird flight by studying only feathers: 
It just cannot be done. ln order to under tand bird flight, we have to 
understand aerodynamics; only then do the structure of feathers and the 
different shapes of birds' wings make sense. More to the point, as we shall 
see, we cannot understand why retinal ganglion cells and Lateral genicu late 
neurons have the receptive fields they do just by studying their anatomy 
and physiology. We can understand how these cells and neurons behave 
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as they do by studying rheirwiring and interactions, but in order to under
stand why the receptive fields are as they are~why they are circularly 
symmetrical and why their excitatory and inhibitory regions have d1arac
teristic shapes and distributions- we have tO know a little of the theory of 
differential operators, band-pass channels, and the mathematics of the 
uncertainty principle (see Chapter 2), 

Perhaps it is not surprising that the very specialized empirical di'>ci 
plines of the neurosciences failed to appreciate fully the absence of com
putational theory; but it is surprising that this level of approach did not 
play a more forceful role in the early development of artificial intelligence. 
For far too long, a heuristic program for carrying out some task was held 
to be a theory of that task, and the distinction between what a program did 
and how it did it was not taken seriously. As a result, (1 ) a style of e..'Xpla
nation evolved that invoked the use of special mechanisms to solve partic
ular problems, (2) particular data structures, such as the lists of attribute 
value pairs called property listS in the LISP programing language, were 
held to amount to theories of the representation of knowledge, and (3) 
there was frequently no way to deienu.ine whether a program would deal 
with a particular case other than by running the program. 

Failure to recognize this theoretical distinction between what and how 
also greatly hampered communication between the fields of artificial intel
ligence and linguistics. Chomsky's (1965) theory of transformational gram
mar is a true computational theory in the sense defined earlier. It is con
cerned solely with specifying what the syntactic decomposition of an 
English sentence should be, and not at all with how rhat decomposition 
should be achieved. Chomsky himself was very clear about this- it is 
roughly his distinction between competence and performance, though his 
idea of performance did include other factors, like stopping in mldutter
ance-but the fact that his theory wa'> defined by transformations. which 
look like computations, seems to have confused many people. Winograd 
(1972), for example, felt able to criticize Chomsky's theory on the grounds 
that it cannOt be inverted and so cannot be made to run on a computer; I 
had beard reflections of the same argument made by Chomsky's colleagues 
in linguistics as they turn their attention to how grammatical structure 
might actually be computed from a real English sentence. 

The explanation Is simply that finding algorithms by which Chomsky's 
theory may be implemented is a completely different endeavor from for
mulating the theory itself. In our terms, it is a study at a different level, and 
both tasks have to be done. This point was appreciated by Marcus (1980), 
who was concerned precisely with how Chomsky's theory can be reaUzed 
and with the kinds of constraints on the power of the human grammatical 
processor that might give rise to the structural constraints 1n syntax that 
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Chomsky found. It even appears that the emerging "trace" theory of gram
mar (Chomsky and Lasnik, 1977) may provide a way of synthesizing the 
two approaches-showing that, for example, some of the rather ad hoc 
restrictions that form part of the computational theory may be conse
quences of weaknesses in the computational power that is available for 
implementing syntactical decoding. 

The Approach of]. ]. Gibson 

In perception, perhaps the nearest anyone came to the level of computa
tional theory was Gibson (1966). However, although some aspects of his 
thinking were on the right lines, he did not understand properly what 
information processing was, which led him to seriously underestimate the 
complexity of the information-processing problems involved in vision and 
the consequent subtlety that is necessary in approaching them. 

Gibson's important contribution was to take the debate away from the 
philosophical considerations of sense-data and the affective qualities of 
sensation and to note instead that the important thing about the senses is 
that they are channels for perception of the real world outside or, in the 
case of vision, of the visible surfaces. He therefore asked the critically 
important question, How does one obtain constant perceptions in everyday 
life on the basis of continually changing sensations? This is exactly the right 
question, showing that Gibson correctly regarded the problem of percep
tion as that of recovering from sensory information "valid" properties of 
the external world. His problem was that he had a much oversimplified 
view of how this should be done. His approach led him to consider higher
order variables-stimulus energy, ratios, proportions, and so on-as 
"invariants" of the movement of an observer and of changes in stimulation 
intensity. 

"These invariants," he wrote, "correspond to permanent properties of 
the environment. They constitute, therefore, information about the per
manent environment." This led him to a view in which the function of the 
brain was to "detect invariants" despite changes in "sensations" of light, 
pressure, or loudness of sound. Thus, he says that the "function of the 
brain, when looped with its perceptual organs, is not to decode signals, 
nor to interpret messages, nor to accept images, nor to organize the sen
sory input or to process the data, in modern terminology It is to seek and 
extract information about the environment from the flowing array of 
ambient energy," and he thought of the nervous system as in some way 
"resonating" to these invariants. He then embarked on a broad study of 
animals in their environments, looking for invariants to which they might 
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resonate. This was the basic idea behind the notion of ecological optics 
(Gibson, 1966, 1979). 

Although one can criticize certain shortcomings in the quality of Gib
son's analysis, its major and, In my \1ew, fatal shortcoming lies at a deeper 
level and results from a failure to realize two things. First, the detection of 
physical invariants, Uke image surfaces, is exactly and prectsely an infor
mation-processing problem, .in modern terminology. And second, he vastly 
underrated the sheer difficulty of such detection. I o. discussing the recovery 
of three-dimensional information from the movement of an observer, he 
says that "in motion, perspective information alone can be used" (Gibson, 
1966, p. 202). And perhaps the key to Gibson is the following: 

The detection of non-change when an object moves in the world is not as 
difficult as it might appear. It is only made to seem difficult when we assume 
that the perception of constant dimensions of the objecr must depend on the 
correcting of sensations of inconstant form and size. The information for the 
constant dimension of an object is normaJly earned by invariant relations in 
an optic array Rigidity is specified. (emphasis added) 

Yes, to be sure, but how? Detecting physical invariants is just as difficult as 
Gibson feared, but nevertheless we can do it. And the only way to under
stand how is to treat it as an information-processing problem, 

The underlying point is that visual information processing is actuaUy 
very complicated, and Gibson was not the only thinker who was misled by 
the apparent simplicity of the act of seeing. The whole tradition of philo
sophical inquiry into the nature of perception seems not to have taken 
seriously enough the complexity of the information processing involved. 
For example, Austin's (1962) Sense and Sensibilia entertainingly demo
lishes the argument, apparently favored by earlier philosophers, that since 
we are sometimes deluded by illusions (for example, a straight stick 
appears bent if it is partly submerged in water), we see sense-data rather 
tl1an material things, The answer is simply that usually out perceptual 
processing does run correctly (it delivers a true description of what is 
d1ere), but although evolution has seen to it that our processing allows for 
many changes (like inconstant illumination), the perturbation due to the 
refraction of light by water is not one of them. And iocidentally, although 
the example of the bent stick has been dtscussed since Aristotle, I have 
seen no phUosphical inquiry into the nature of the perceptions of, for 
instance, a heron, which is a bird that feeds by pecking up fish first seen 
from above the water surface, For such birds the visual correction might 
be present. 

Anyway, my main point here is another one. Austin (1962) spends 
much time on the ldea that perception tells one about real properties of 
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the e.".1ernal world, and one thing he considers is '' real shape," (p. 66), a 
notion which had cropped up earlier in his discussion of a coin that 
"looked elliptical" from some points of view. Even so, 

it had a real shape which remained unchanged. But coins in facr are rather 
special cases. For one thing their outlines are well defined and very highly 
S[able, and for another they have a known and a nameable shape. But there 
are plenty of things of which this is nor true. What is the real shape of <1 

cloud? ... or of a cat? Does its real shape change whenever it moves? Tf not, 
In what posture is its real shape on display? Furthermore, is its real shape such 
as to be fairly smooth outlines, or must It be finely enough serrated to take 
account of each hair? It is p1·etty obvious that tbere is no answer to these 
questions-no rules according to wbich, no procedure by wbid1, answers are 
to be detennined. (emphasis added), (p. 67) 

But there are anS\'\>ers to these questions. There are ways of describing 
the shape of a cat to an arbitrary level of precision (see Chapter 5), and 
there are rules and procedures for arriving at such descriptions. That is 
e.xactly what vision is about, and precisely what makes it complicated. 

1.3 A REPRESENTATIONAL FRAMEWORK 
FOR VISION 

Vision is a process that produces from images of the external world a 
description that is useful to the viewer and not cluttered with irrelevant 
information (Marr, 1976; Marr and Nishihara, 1978). We have already seen 
that a process may be thought of as a mapping from one representation to 
another, and in d1e case of human vision, the initial representation is in no 
doubt-it consists of arrays of image intensity values as detecred by the 
phororeceprors in the retina. 

It is quite proper to think of an image as a representation; the items 
that are made explicit are the image intensity values at each point in the 
array, which we can conveniently denote by I (XJ~ at coordinate (x,y). In 
order to simplify our discussion, we shall neglect for the moment the fact 
that there are several different types of receptor, and imagine instead that 
there is just one, so that the image Is black-and-white. Each value of I (x,y) 
thus specifies a particular level of gray; we shall refer to each detector as 
a picrure element or pixel and to the whole array I as an image. 

But what of the output of the process of vision? We have already agreed 
that it must consist of a useful description of the world, but that require· 
ment is rather nebulous. Can we not do better? Well, it is perfectly true 
that, unlike the input, the result of vision is much harder to discern, let 
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alone specify precisely, and an important aspect of this new approach is 
that it makes quite concrete proposals about what that end is. But before 
we begin that discussion, let us step back a Little and spend a little time 
formulating the more gener-.al issues that are raised by these questions. 

The Purpose of Vision 

The usefulness of a representation depends upon how well suited it is to 
d1e purpose for which it is used. A pigeon uses vision to help it navigate, 
fly, and seek out food. Many types of jumping spider use vision to teU the 
difference between a potential meal and a potential mate. One type, for 
example, has a curious retina fonned of two diagonal strips arranged in a 
V. If it detects a red V on the back of an object lying in from of it, the 
spider has found a mate. Otherwise, maybe a meal The frog, as we have 
seen, detects bugs with its re tina; and the rabbit retina is full of special 
gadgets, including what is apparently a hawk detector, since it responds 
well to the pattern made by a preying hawk hovering overhead. Human 
vision, on the other hand, seems to be very much more general, although 
it clearly contains a variety of special-purpose mechanisms that can, for 
e.'Glrople, direct the eye toward an unexpected movement in the visual field 
or cause one to blink or otherwise avoid something that approaches one's 
head too quickly. 

Vision, in short, is used in such a bewildering variety of vvays that the 
visual systems of different animals must differ significantly from one 
another. Can the type of formulation that 1 have been advocating, in terms 
of representations and processes, possibly prove adequate for them all? I 
think so. The general point here is that because vision is used by different 
animals for such a wide variety of purposes, it is inconceivable that ~U 
seeing animals use the same representations; each can confidently be 
expected to use one or more representations that are nicely tailored to the 
owner's purposes. 

As an example, let us consider briefly a primitive but highly efficient 
visual system that has the added virtue of being well understood. Werner 
Reichardt's group in Thbingen has spent the last 14 years patiently unrav
eling the visual flight-control system of the housefly, and in a famous col
laboration, Reichardt and Tomaso Poggio have gone far toward solving 
the problem (Reichardt and Poggio, 1976. 1979; Poggio and Reichardt, 
1976). Roughly speaking, the fly 'svisual apparams controls its flight through 
a collection of about five independent, rigidly Inflexible. very fast respond
ing systems (the time from visual stimulus to change of rorque is only 21 
ms). For example, one of these systems L'i the landing system; if the visuaJ 
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field "explodes" fast enough (because a surface looms nearby), the fly 
automatically "lands" toward irs center. If this center is above the fly, the fly 
automatically inverts to land upside down. When the feet touch, power to 
the wings is cut off. Conversely, to rake off, the fly jumps; when the feet no 
longer touch the ground, power is restored to the wings, and the Insect 
flies again. 

ln-flight control is achieved by independent systems controlling the 
fly's vertical velodty (through control of the lift generated by the wings) 
and horizontal direction (determined by the torque produced by the asym
metty of the horizontal thrust from the left and right wings). The visual 
input to the horizontal control system, for example, is completely 
described by the two terms 

r(\jl)~ + D(\jl) 

where rand D have the form illustrated in Figure 1- 6. This input describes 
how the fly tracks an object that is present at angle \jl in the visual field and 
has angular velodty ~. This system iS triggered to r.rack objects of a certain 
angular dimension in the visual field, and the motor strategy is such that 
if the visible object was another fly a few inches away, then it would be 

(a) 

(b) 

_..,.._ . .- ..... .,. . _-¥. 

'-.~"'...... .: ---. .._.., .. ...._ .... .,· 

r' ... ._, ...... _,.,. ... ....,., ____ ~- ' .. ........ ....,. ............ .. -..,..."' .. .. ~ ....... -.· 
I I 

- -rr/2 0 + 'TT/2 
---1~-~ .... 

Figure 1-6. The horizontal component of the visual input R to lfle 
fly's flight system is described by the formula R = D(\)1) - r(\)1) 1)1, 
where 1)1 is the direction of the slimulus and ~ Is !tc; angular velodty 
in the fly's visualfield.D(\)1) is an odd function, as shown in (a), wWch 
has the effect of keeping the target centered in the fly's visual field; 
r(ljt) is essentially constant as shown in (b). 
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intercepted successfuJJy. lf the target was an elephant 100 yd away, inter
ception would fail because the fly's built-in parameters are for another fly 
nearby, not an elephant far away. 

Thus, fly vision deUvers a representation in which at least these three 
things are specified: (1) whether the visual field is looming sufficiently fast 
that the fly should contemplate landing; (2) whether there is a small 
patch-it could be a black speck or, it turns out, a textured figure in front 
of a textured ground- having some kind of .motion relative to its back
ground; and lf there is such a patd1, (3) IIJ and 11J for this patch are delivered 
to the motor system. And that is probably about 60% of fly vision. In par
ticular, it is extremely unlikely that the fly has any explicit representation 
of the visual world around him- no true conception of ~ surface, for 
example, but just a few triggers and some specifically fly-centered param
eters like IIJ and ~. 

It is clear that human vision is much more complex than this, although 
it may well incorporate subsystems not unUke the fly's to help with specific 
and rather low-level taSks like the control of pursuit eye movements. Never
theless, as Poggio and Reichardt have shown, even these simple systems 
can be understood in the same son of way; as information-processing tasks. 
And one of the fascinating aspects of their work is how they have managed 
not only to formulate the differential equations that accurately describe the 
visual control system of the fly but also to express these equations, using 
the Volterra series expansion, in a way that gives direct information about 
the minimum possible compleXity of connections of the underlying neu
ronal networks. 

Advanced Vision 

Visual systems like the fly's serve adequately and with speed and precision 
the needs of their owners, but they ~re not very complicated; very lfttle 
objective information about the world is obtained. The information is all 
very much subjective-the angular size of the stimulus as the fly sees it 
rather than the objective size of the object out there, the angle that the 
object has in the fly's visual field rather than its position relative to the fly 
or to some e.'<l:ernal reference, and the objecfs angular velocity; again in 
the fly's visual field, rather than any assessment of its true velocity relative 
to the fly or to some stationary reference point. 

One reason for this simplicity must be that these facts provide the fly 
with sufficient information for it to survive. Of course, the information is 
not optimal and from time to time the fly will fritter away its energy chasing 
a falling leaf a medium distance away or an elephant a long way away as a 
direct consequence of the inadequacies of its perceptual system. But this 
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apparently does not matte r \'ery much-t11e fly has sufficient excess energy 
for it to be able to absorb mese extra costs. Another reason is certainly mat 
translating mese ramer subjective measurements into more objective qual
ities involves much more computation. How, then, should one think about 
more advanced visual systems-human vision, for example. What are the 
issues? What kind of information is vision really delivering, and what are 
the representational issues involved? 

My approach to these problems was very much influenced by !he 
fascinating accounts of clinical neurology, such as Critchley (1953) and 
Warrington and Taylor (1973). Particularly important was a lecture that 
Elizabeth Warrington gave at MIT in October 1973, in which she described 
me capacities and limitations of patients who had suffered left or right 
parietal Jesions. For me, the most important thing that she clid was to draw 
a clistlnclion between the two classes of patient (see Warrington and Taylor, 
1978). For those with lesions on the right side, recognition of a common 
object was possible provided that the patient's view of it was in some sense 
straightforward. She used the words conventional and uncmwentional
a water pail or a clarinet seen from the side gave "conventional" views but 
seen end-on gave "unconventional" views. If these patients recognized the 
object at all, they knew its name and its semantics-that is, itS use and 
purpose, how big it was, how much it weighed, what it was made of, and 
so forth . .If their view was unconventional-a pail seen from above, for 
example--not only would the patients fall to recognize it, but they would 
vehemently deny mat it could be a view of a pall. Patients with left parietal 
lesions behaved completely differently. Often mese patients had no lan
guage, so mey were unable w name me viewed object or state its purpose 
and semantics. But they could convey that they correctly perceived its 
geometry-that is; its shape--even from the unconventional view. 

Warrington's talk suggested two things. First, the representation of me 
shape of an object Is stored in a different place and is therefore a quite 
different kind of ming from the representation of its use and purpose. And 
second, vision alone can deliver an internal description of me shape of a 
viewed object, even when me object was not recognized in the conventional 
sense of understandjng its use and purpose. 

This was an important moment for me for two reasons. The general 
trend in the computer vision community was to believe that recognition 
was so difficult that it required every possible kind of information. The 
results of thjs point of view duly appeared a few years later in programs 
like Freuder's (1974) and Tenenbaum and Barrow's (1976). tn the latter 
program, knowledge about offices-for example, that desks have rete
phones on them and that telephones are black- was used to help "seg· 
ment" out a black blob halfway up an image and "recognize" it as a tele
phone. Freuder's program used a similar approach to "segment" and 
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'' recognize" a hammer in a scene. Clearly, we do use such knowledge in 
real life; 1 once saw a brown blob quivering amongst the lettuce in my 
garden and correctly Identified Jt as a rabbit, even !hough the visual infor
mation alone was inadequate. And yet here was this young woman calmly 
telling us not only that her patients could convey to her that they had 
grasped the shapes of things that she had shown !hem, even though !hey 
could not name the objects or say how they were used, but also that they 
could happily continue to do so even if she made the task extremely difficult 
visually by showing them peculiar views or by illuminating the objects in 
peculiar wctys. It seemed clear that the intuitions of the computer vision 
people were completely wrong and that even in difficult circumstances 
shapes could be determined by vision alone. 

The second important thing, 1 thought, was that Elizabeth Warrington 
had put her finger on what was somehow the quintessential fact of human 
vision-that it tells about shape and space and spatial arrangement Here 
Jay a way to formulate its purpose-building a description of the shapes 
and positions of things from images. Of course. that is by no means all that 
vision can do; it also tells about the illumination and about the reflectances 
of the surfaces that make the shapes-their brightnesses and colors and 
visual textures-and about their motion. But these things seemed second
ary; they could be hung o ff a theory in which the main job of vision was 
to derive a representation of shape. 

To the Desirable via the Possible 

FinaUy, one has to come to terms with cold rea1ity. Desirable as it may be 
to have vision deliver a completely invariant shape description from an 
image (whatever that may mean in detail), it is almost certainly impossible 
in only one step. We can only do what is possible and proceed from there 
toward what is desirable. Thus we arrived at the idea of a sequence of 
representations, starting with descriptions that could be obtained sLraight 
from an image but that are carefuUy designed to fadlitate the subsequent 
recovery of gradually more objective, physical properties about an object's 
shape. The main stepping stone toward this goal is describing the geometry 
of the visible surfaces, since the information encoded in images, for exam
ple by stereopsis, shading, texture, contours, or visual motion, is due to a 
shape's local surface properties. The objective of many early visual com
putations is to extract this information. 

However, this description of the visible surfaces turns out to be unsuit
able for recognltion tasks. There are several reasons why, perhaps the most 
prominent being that like aU early visual processes, It depends criticaUy 
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on the vantage point. The final step therefore consists of transforming the 
viewer-centered surface description into a representation of the three
dimensional shape and spatial arrangement of an object that does not 
depend upon the direction from which the object is being viewed. This 
final description is object centered rather than viewer centered. 

The overall framework described here therefore divides the derivation 
of shape information from images into three representational stages: (Table 
1-1): (1) the representation of properties of the two-dimensional Image, 

Table 1-1. Representational framework for deriving shape Information from 
Images. 

Name 

Image(s) 

Primal sketch 

2Y1-D sketch 

3-D model rep
resentation 

Purpose 

Represents intensity. 

Makes explicit important 
information about the two
dimensional Image, primar
ily the intensity changes 
there and their geometrical 
distribution and organiza
tion. 

Makes explicit the orienta
tion and rough depth of the 
visible surfaces, and con
tours of discontinuities in 
these quantities in a viewer
centered coordinate frame. 

Describes shapes and their 
spatial organization in an 
object-centered coordinate 
frame , using a modular 
hierarchical representation 
that includes volumetric 
primitives ( i.e., primitives 
that represent the volume 
of space that a shape occu
pies) as well as surface 
primitives. 

Primitives 

Intenslry value at each point 
in the image 

Zero-crossings 
.Hiobs 
Terminations and discontin
uities 
Edge segments 
Vinual lines 
Groups 
Curvilinear organization 
Boundaries 

Local surface orientalion 
(the "needles" primitives) 
Distance from viewer 
Discontinuities In depth 
Discontinuities in surface 
orientation 

3-D models arranged hier
arducally, each one based 
on a spatial conflguraLion of 
a few sticks or a..xes, to 
which volumetric or surface 
shape primitives are 
attached 
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such as intensity changes and local two-dimensional geometry: (2) the 
representation of properties of the visible surfaces in a viewer-centered 
coordinate system, such as surface orientation, distance from the viewer, 
and discontinuities in these quantities; surface reflectance; and some coarse 
description of the prevailing illumination; and (3) an object-centered rep
resentation of the three-dimensional structure and of rhe organjzation of 
the viewed shape, toge-ther wlth some description of Its surface pwperties. 

This framework is summarized In Table 1-1. Chapters 2 through 5 give 
a more derailed account 
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