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Abstract: A key component of scientific inquiry, especially inquiry devoted to 

developing mechanistic explanations, is delineating the phenomenon to be 

explained. The task of delineating phenomena, however, has not been sufficiently 

analyzed, even by the new mechanistic philosophers of science. We contend that 

Marr’s characterization of what he called the computational level (CL) provides a 

valuable resource for understanding what is involved in delineating phenomena. 

Unfortunately, the distinctive feature of Marr’s computational level, his dual 

emphasis on both what is computed and why it is computed, has not been 

appreciated in philosophical discussions of Marr. Accordingly we offer a distinctive 

account of CL. This then allows us to develop two important points about 

delineating phenomena. First, the accounts of phenomena that figure in explanatory 

practice are typically not qualitative but precise, formal or mathematical, 

representations. Second, delineating phenomena requires consideration of the 

demands the environment places on the mechanism—identifying, as Marr put it, the 

basis of the computed function in the world. As valuable as Marr’s account of CL is in 

characterizing phenomena, we contend that ultimately he did not go far enough. 

Determining the relevant demands of the environment on the mechanism often 

requires detailed empirical investigation. Moreover, often phenomena are 

reconstituted in the course of inquiry on the mechanism itself. 

 

1. Introduction 

 

Bogen and Woodward (1988) convincingly demonstrated that scientific 

explanations are directed at phenomena, not data. Phenomena are regular, 

repeatable types of events, processes, or states; Bogen and Woodward offer 
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examples of what they mean by phenomena: “weak neutral currents, the decay of 

the proton, and chunking and recency effects in human memory” (p. 306). The new 

mechanistic philosophers of science have embraced Bogen and Woodward’s focus 

on phenomena, holding that mechanisms are identified in terms of the phenomena 

they are to explain (Machamer, Darden, & Craver, 2000; Glennan, 2002; Bechtel & 

Abrahamsen, 2005). For the most part they, following the lead of Bogen and 

Woodward, have stayed with textbook accounts of phenomena, offering as examples 

the action potential, glycolysis, protein synthesis, and long-term potentiation. The 

specification of phenomena is generally treated as unproblematic—the challenge is 

explaining them. Kauffman (1971) noted the importance of selecting among the 

many things organisms do before attempting to explain how they do so as that 

selection will affect the explanation offered. Bechtel and Richardson (1993/2010) 

drew attention to the fact that often much research must be done to delineate 

phenomena and that sometimes in the course of developing a mechanistic account 

scientists end up recognizing that the phenomenon is different than they initially 

supposed. For example, research in biochemical genetics began by trying to account 

for the role of genes in generating phenotypic traits, but in the course of their 

research Beadle and Tatum (1941) recharacterized genes as involved in generating 

enzymes. Bechtel and Richardson refer to such revisions in the account of the 

phenomenon as reconstituting the phenomena. But even they do not develop the 

fact that the phenomena for which explanations are sought are typically 

characterized in a far more detailed, quantitative fashion, and that saving such 

quantitative features of phenomena is often a critical challenge in explanation and 

an important criterion in evaluating putative explanations.  

 

Insofar as phenomena are the explananda for mechanistic explanation it is 

important to clarify what a phenomenon is. Although measuring phenomenon 

quantitatively is more important than mechanists have recognized, not everything 

that can be measured quantitatively is treated as a phenomenon to be explained by 

a mechanism, even if it is the effect of a mechanism and plays a role in evaluating 

proposed accounts of the mechanism. In the case of the action potential, the change 
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over time of the electrical charge across the neuron membrane is part of the 

phenomenon, but the temporary increase in sodium concentration inside the 

neuron is not, although both can be characterized quantitatively. Likewise, the 

phenomenon of long-term potentiation is characterized by the increased number of 

action potentials generated by a neuron in response to a stimulus but not by how 

much ATP is consumed in the process. Given the multitude of items that can be 

measured quantitatively, it is important that we be able to differentiate those that 

do and those that do not count as phenomena for which a mechanism is sought. 

 

We will argue that important insights into the role of phenomena in mechanistic 

explanations can be found in Marr’s (1982) characterization of what he called the 

computational level. Marr introduces his well-known account of levels to counter 

what he took to be a shortcoming in the practice of neuroscience: the preoccupation 

with the components of the visual processing mechanism—the properties of cells 

and their behavior. Marr’s objective was not to repudiate the search for mechanism 

but to recast it in terms of his tri-level framework of computational, algorithmic, and 

implementational levels. Marr contended that "Vision is . . . first and foremost, an 

information-processing task." Delineating this information processing-task – the 

phenomenon – is the job of what Marr called the computational level. The 

algorithmic level characterizes the system of representations that is being used, e.g., 

decimal vs. binary, and the algorithm employed for transforming representations of 

inputs into those of outputs. The implementation level specifies how the 

representations and algorithm are physically realized. 

 

What is involved in characterizing vision as performing an information-processing 

task? Marr associates the computational level with two aspects, the what and the 

why. In the introductory, "philosophical outlook", chapter of Vision, Marr says that 

"the most abstract is the level of what the device does and why" (p. 22). The job of 

the what-aspect is to specify what is computed. The job of the why-aspect is to 

demonstrate the appropriateness and adequacy of what is being computed to the 

information-processing task (pp. 24-25). In "Artificial intelligence: a personal view", 
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Marr states that at the computational level, "the underlying nature of a particular 

computation is characterized, and its basis in the physical world is understood. One 

can think of this part as an abstract formulation of what is being computed and why" 

(Marr, 1977, p. 37). 

 

But what exactly Marr means by these what and why aspects of CL? Marr never 

provided a systematic and detailed account of his notion of CL; what he does say 

about it is often brief and somewhat vague.  Instead, Marr provided a set of 

computational theories of specific visual tasks. These impressive theories induced 

an enormous amount of research into computer and biological vision. The 

conceptual task of explicating the notion of a computational-level theory was left to 

philosophers, who provided, in turn, radically different interpretations.  

 

Unfortunately, as we will argue in the next section, none of these interpretations is 

adequate to the distinctive role Marr envisaged for CL. We will review three of the 

most prominent accounts in part 2 and show how each fails short of what Marr 

seems to have had in mind. In part 3 we advance an alternative interpretation that 

we contend better captures what Marr saw as the importance of the what and why 

aspects of CL analysis. CL theory, as we see it, provides a formal or mathematical 

account of the task the visual system performs in the actual physical world in which 

it functions. Our goal, though, is not simply to engage in Marr exegesis. Rather, we 

contend that understanding what Marr had in mind by analysis of CL is extremely 

important for providing an adequate account of the role delineating phenomena 

plays in science, especially science devoted to the identification of mechanisms. As 

we argue in part 4, the phenomena for which mechanisms are sought require formal 

or mathematical characterizations that are grounded in the context in the world in 

which the mechanism functions. In part 5 we will argue that Marr did not go far 

enough in characterizing phenomena in CL terms. The tasks mechanisms are to 

perform are not simply givens to scientists, but typically discovered through 

empirical (observational or experimental), inquiry. Moreover, they are frequently 

revised in the course of developing explanations of them.  
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Following Marr, we will take visual perception as our primary exemplar. But the 

implications of Marr’s approach extend to any phenomena that are appropriately 

characterized in computational terms, that is, information-processing terms. Marr’s 

account was designed for neuroscience and, although some contest it, the 

computational metaphor is appropriate for brain function generally. The task for the 

brain and the various processes occurring in it is to extract and use information to 

control the functioning of an organism. Moreover, the reasons that justify reference 

to computation and information processing in the case of the brain apply far more 

broadly to control processes in living organisms. Cell signaling systems, for example, 

process information to control such activities as use of different metabolites for fuel, 

the repair of DNA, or the synthesis of proteins and researchers are increasingly 

employing information-processing language to characterize these processes 

(Shapiro, 2011).1 But the activities thereby regulated—the transformation of energy 

into ATP, or the synthesis or degradation of proteins—are not appropriately 

characterized in information processing terms. Exploring what insight Marr’s 

account of CL offers to characterizing phenomena in those cases goes beyond the 

scope of this paper. 

 

2. Shortcomings of Extant Accounts of Marr’s Computational Level (CL) 

 

We cannot review all attempts to explicate Marr’s notion of CL, but will focus on 

three whose shortcomings are illuminating. According to the first (the “standard” 

interpretation), CL characterizes the information-processing task, mainly in 

                                                        
1 The concept of information has been employed in many different ways in biology, 
where it took on special significance after Watson and Crick (1953) used it to 
characterize the function of the genetic code. Some, inspired by Shannon (1948) 
have treated information in causal terms (effects carry information about their 
causes). Others such as Maynard Smith (2000) have defended a teleosemantic 
notion in which the content of a signal is fixed by natural selection. Yet others have 
rejected the application of the concept of information to genes as metaphorical 
(Griffiths, 2001). See (Levy, 2011) for a valuable discussion that elucidates the roles 
different accounts of information play in biological theorizing.   
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intentional terms. According to the second, the aim of CL is to provide a 

mathematical or a formal theory, and according to the third, CL provides a sketch of 

mechanism.  

 

2.1. The “standard” interpretation: Specifying an information-processing task 

 

Most interpreters of Marr assume that the role of the computational level is 

specifying an information-processing visual or cognitive task: "At the highest level 

was a specification of what task a system was designed to perform: e.g., in the case 

of vision, to construct a three-dimensional representation of distal stimuli on the 

basis of inputs to the retina" (Horst, 2009).This information-processing task is often 

described in terms of the contents of the input and the output representations: "A 

computational analysis will identify the information with which the cognitive 

system has to begin (the input to that system) and the information with which it 

needs to end up (the output from that system)" (Bermúdez, 2005, p. 18). Thus edge-

detection is the mapping from representations of light intensities to representations 

of physical edges (e.g., object boundaries). Shape-from-shading is the mapping from 

representations of shading to representations of shape, and so on. When put in the 

context of the what and why aspects, the standard interpretation apparently 

associates the what with the mapping of inputs representations to output 

representations, and the why with the informational (or “intentional”) content of 

these representations. Thus the computational level specifies, for example, that 

early visual processes map representations of light intensities to representations of 

oriented lines (“edges”).   

 

Another claim made by the standard interpretation is that these specified visual 

information-processing tasks are the phenomena to be explained. In other words, 

the specification of the information-processing task is “the specification of the 

explanandum – the cognitive task that we are attempting to explain. Marr calls this 

the 'computational' level, where the specification is typically an input-output 

function” (Ramsey, 2007, p. 41). De facto, most interpreters think that the real 



 7 

explanatory level is the algorithmic level where it is shown "how the brain performs 

this representational conversion" (Ramsey, p. 41). Ramsey continues: "In this three-

tiered framework, it is the middle, algorithmic level where the CCTC theories 

attempt to explain the kinds of processes that account for mentality" (p. 42). In the 

last sentence Ramsey mentions classical theories (CCTC), but he adds: "This is the 

general form of cognitive science explananda, even for non-CCTC accounts like 

connectionism" (p. 41).  

 

We agree that the phenomena to be explained are visual information-processing 

tasks, couched in intentional terms of input and output representations (i.e., edge-

detection, shape-from-shading and so on). We also think that this specification itself 

is often not trivial and requires lengthy scientific investigation. We contend, 

however, that this intentional specification is not the job, or at least the main job, of 

CL. It is often made, at least to some extent, before we invoke CL at all. Using 

techniques such as single-cell recording, neuroscientists had discovered that 

photoreceptors are sensitive to light reflectance, that information from the retina 

arrives to V1, and that cells in V1 are sensitive to oriented lines long before Marr 

invoked his computational theories. We see no reason to call a specification of a task 

in terms of informational content of the inputs and outputs a “computational 

theory”. This  would trivialize Marr’s notion of CL-level theory Indeed, those who 

hold the standard interpretation refrain from Marr’s label of computational theory. 

Thus Dennett who associates Marr's computational level with his intentional level, 

says that "this specification was at what he [Marr] called, misleadingly, the 

computational level" (Dennett, 1994, p. 681).2 But, of course, the labeling would be 

misleading only if the job of computational level theories is providing such 

intentional descriptions of cognitive tasks. We will argue, however, that the job of CL 

goes far above and beyond that and that the standard interpretation misses what 

makes CL-level analysis distinctive.  

 

                                                        
2 Sterelny (1990, p. 46), Ramsey (2007, pp. 41, note 43), and Horst (2009) make similar 

comments.  
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2.2. Frances Egan: Providing a mathematical or formal theory 

 

Frances Egan associates Marr's CL with "the specification of the function computed" 

(Egan, 1991, pp. 196-197). She argues that CL provides no more than mathematical 

specifications: "The top level should be understood to provide a function-theoretic 

characterization", and "the theory of computation is a mathematical 

characterization of the function(s) computed" (Egan, 1995, p. 185). The aim of CL, 

on this view, is to specify the input-output mathematical function that the system 

computes (then the algorithmic levels specifies the algorithm by means of which the 

system computes this function, and the implementation level specifies how this 

algorithm is implemented in the brain). Thus, for example, the computational theory 

of early vision provides the mathematical formula 2GI as the computational 

description of what the retina does. As Marr put it: "Take the retina. I have argued 

that from a computational point of view, it signals 2GI (the X channels) and its 

time derivative ∂/∂t(2GI) (the Y channels). From a computational point of view, 

this is a precise specification of what the retina does" (1982, 337).3 

 

Proponents of the standard interpretation might agree with Egan that CL also 

provides a mathematical description of the computed function. Egan departs from 

the standard interpretation in two ways. One is her insistence that CL does not 

provide an intentional, information-processing, characterization of the input-output 

function. Egan (2010) cites Chomsky, who writes that when Marr talks about 

‘representation’, it “is not to be understood relationally, as ‘representation of’” 

(Chomsky, 1995, p. 53). What is being represented, according to Egan, is immaterial 

from a computational point of view: “Qua computational device, it does not matter 

that input values represent light intensities and output values the rate of change of 

                                                        
3 The term I stands for a two-dimensional array (“the retinal image”) of  intensity values 

detected by the photoreceptors (which is the input). This image is convoluted (here 

signified by ‘’) through a filter 2G, where G is a Gaussian and 2 is a second-

derivative (Laplacian) operator. This operation is arguably performed in the retinal 

ganglion cells. 
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light intensity. The computational theory characterizes the visual filter as a member 

of a well understood class of mathematical devices that have nothing essentially to 

do with the transduction of light” (Egan, 2010, p. 255). We invoke the 

representational content only after the computational-level theory has 

accomplished its task of specifying the mathematical function. The cognitive, 

intentional, characterization is what Egan terms a gloss on the mathematical 

characterization provided by the computational theory. This intentional 

characterization “forms a bridge between the abstract, mathematical 

characterization that constitutes the explanatory core of the theory and the 

intentionally characterized pre-theoretic explananda that define the theory’s 

cognitive domain” (pp. 256-257).4 

 

The other departure from the standard interpretation is mentioned in the last 

sentence cited. According to Egan, CL is a mathematical theory whose aim is 

explanatory. What it explains is the intentional, information-processing, 

characterization of the function that the visual system performs. Thus, Egan agrees 

with the standard interpretation as to the need for such an intentional, information-

processing account. She contends, however, that this characterization is pre-

theoretic and so does not constitute part of the computational theory. The 

computational theory, which consists solely of mathematical descriptions, aims to 

explain this pre-theoretic explananda. That the early visual system computes the 

2GI operations explains how it performs edge-detection. The explanation 

(presumably) is that the system detects edges by detecting the zero-crossings 

generated by the second-derivative filters 2GI (where Gaussians are used at 

different scales).  

 

We think that Egan captures very well the way Marr characterizes the what aspect 

of CL. The job of this element is to provide a precise specification of what the system 

                                                        
4 Egan’s main motivation here is avoiding a context-dependent individuation of 
computational states; see Shagrir (2001) for discussion.  
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does, and the precise specification of what the retina does is provided by the 

formula 2G*I. However, Egan downplays the fact that there is another component 

to CL, namely, the why aspect. When Marr says “from a computational point of view, 

this is a precise specification of what the retina does,” he refers to what the retina 

does, not to the why. After characterizing what early visual processes do, Marr says 

that “the term edge has a partly physical meaning – it makes us think of a real 

physical boundary, for example” (p. 68). And, he adds, “all we have discussed so far 

are the zero values of a set of roughly band-pass second-derivative filters. We have 

no right to call these edges, or, if we do have a right, then we must say so and why” 

(p.  68). So it seems that Marr thinks that CL has to cover another aspect, beyond 

providing mathematical characterizations.  

 

2.3. Piccinini and Craver: CL as a sketch of mechanism 

 

In a recent paper Piccinini and Craver (2011) argue that it is best to conceive Marr’s 

computational and algorithmic levels as sketches of mechanism. On the one hand, 

the two levels are not levels of mechanisms “because they do not describe 

component/sub-component relations” (p. 303). On the other hand, the two levels 

“constrain the range of components that can be in play and are constrained in turn 

by the available components” (p. 303). In this sense, of constraining, the 

computational and algorithmic levels are sketches. They are placeholders for 

structural components or sub-capacities in a mechanism. At the beginning of their 

paper, Piccinini and Craver say that a sketch of mechanism is a description in which 

some structural aspects (of the mechanism) are omitted. Once the missing aspects 

are filled in, the description turn into “a full-blown mechanistic explanation”; the 

sketches themselves can be thus seen as “elliptical or incomplete mechanistic 

explanations” (p. 284). They are, in a way, a guide or a first step towards the 

structural components that constitute the full-blown mechanistic explanations.5  

                                                        
5 Kaplan (2011) advances a somewhat similar view arguing that computational 
models in neuroscience are explanatory to the extent that they are tied to the norms 
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We agree with Piccinini and Craver that CL puts constraints on the mechanistic 

explanation of the phenomenon. This seems to align with Marr’s methodological 

approach (to be discussed below). But we reject their attempt to collapse Marr’s 

three levels into two by closely intertwining the computational and algorithmic 

levels. Theirs is not unique among philosophical and theoretical approaches to 

cognitive science in attempting to collapse Marr’s levels (see, e.g., Pylyshyn, 1984; 

Newell, 1980, both of whom collapse Marr's computational and algorithmic level 

before adding an addition semantic (Pylyshyn) or knowledge (Newell) level.) But 

this approach is foreign to Marr. If anything, it is the algorithmic and 

implementational levels that belong together as both look inside the mechanism to 

the operations that enable it to compute a function.6 Piccinini and Craver are right to 

observe that both the computational and algorithmic levels are abstract, in that they 

omit certain structural aspects of the mechanism (both levels are also abstract in the 

sense that they provide mathematical or formal descriptions). But Marr is far keener 

to point to a fundamental difference between the computational and algorithmic 

levels. The algorithmic level (much like the implementation level) is directed to the 

inner working of the mechanism, i.e. to causal relations (signified by arrows) 

between sub-components.7 The computational level looks outside, to identifying the 

                                                                                                                                                                     
of mechanistic explanations. When referring to Marr, Kaplan argues that "according 
to Marr, the ultimate adequacy of these computational and algorithmic 
specifications as explanations of human vision is to be assessed in terms of how well 
they can be brought into registration with known details from neuroscience about 
their biological implementation" (p. 343). 
6Thus Marr (1982) writes that “there must exist an additional level of understanding [i.e., 

CL] at which the character of the information-processing tasks carried out during 

perception are analyzed and understood in a way that is independent of the particular 

mechanisms and structures that implement them in our heads” (p. 19), and that “although 

algorithms and mechanisms are empirically more accessible, it is the top level, the level 

of computational theory, which is critically important from an information-processing 

point of view” (p. 27). 
7 There are reasons to reject as well Piccinini and Craver’s contention that the 
algorithmic level offers only a sketch of a mechanism. An algorithm can provide a 
complete account of the operations in a mechanism. In doing so it will not specify 
the parts of the mechanism, as that is the task of the implementation account, but 
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function computed and relating it to the environment in which the mechanism 

operates. Marr’s former student and colleague, Shimon Ullman, puts this point about 

CL succinctly in his manuscript on visual motion: “In formulating the computational 

theory, a major portion concerns the discovery of the implicit assumptions utilized 

by the visual system. Briefly, these are valid assumptions about the environment 

that are incorporated into the computation” (Ullman, 1979)pp. 3-4).  We will 

elaborate on this point below.  

 

3. Recognizing what is distinctive about CL 

 

We offer an alternative interpretation of Marr’s CL that keeps equally in focus the 

what and why questions associated with it. Accordingly, we emphasize two aspects 

of Marr’s CL. One is the quantitative characterization of the phenomena (associated 

with the what). The other is the role of contextual or environmental constraints 

(associated with the why). To make things more concrete we focus on one specific 

information-processing task – the correspondence problem in stereo vision. As we 

proceed, we identify respects in which our interpretation agrees and differs with the 

three interpretations above. 

 

3.1.The correspondence problem 

 

There is an angular discrepancy in the position of an object in the two retinal 

images. This discrepancy is known as disparity. The disparity is usually larger when 

the object is closer to the eyes (as in looking at a finger touching your nose) and 

smaller when it is further away. The visual system deploys disparity to compute 

several features such as depth. The first step of this process is matching up elements 

from the visual scene – that is, finding the two elements, one from the left retinal 

                                                                                                                                                                     
then the implementation account is also incomplete insofar as it fails to specify the 
operations the parts perform. Moreover, as Levy and Bechtel (2013) argue, it is 
often a virtue in explanation to abstract from details of the mechanism to reveal 
what is actually responsible for the phenomenon of interest.  
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image and the other from the right retinal image – that correspond to the same 

object. The difficulty of the task stems, among other things, from the ambiguity of 

elements in the images and the multiple possibilities of matching elements. 

 

Marr illustrates the ambiguity of elements in Figure 1. The four projections in the 

left eye's view, L1,…,L4, can be paired in 16 possible ways with the four projections, 

R1,…,R4, in the right eye's view, but only 4 are correct (filled circles). The remaining 

12 (open circles) are false targets. The horizontal dashed lines signify the amount of 

(horizontal) disparity; circles (pairs) that are on the same line have the same 

disparity. Strikingly, the visual system solves the correspondence problem even in 

highly ambiguous scenes.  

 

Figure 1. Marr’s portrayal of the ambiguity in matching elements to 

determine the depth of an object. 

 

According to the standard interpretation, characterizing the correspondence 

problem provides an intentional characterization of the input-output description of 

the task and exhausts the role of the computational level. The computational level 
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states that the task at hand is the cognitive function whose input are elements from 

the left and right retinal images (say, edges, bars and so forth), and its output is 

some array of pairs of elements from the left and right images that correspond to 

the same worldly feature. With this characterization of CL, the standard 

interpretation would have researchers turn to the mechanistic levels of algorithms 

and implementations for the explanation. This, however, is not Marr's view. His 

computational level – both its what and why aspects – advance beyond this 

intentional description.  

 

3.2. Specifying the task in quantitative terms (the what) 

 

 Let us start with the what aspect. Marr and Poggio (1976, 1979) provide a 

quantitative, mathematical description of the function solving the correspondence 

problem. This is a pairing function that satisfies two conditions: (a) Uniqueness: a 

black dot from one image can match no more than one black dot from the other 

image. This constraint rules out, for example, the function that matches L1 to R1 and 

also L1 to R2; and (b) Continuity: disparity varies smoothly almost everywhere. This 

constraint rules out functions that match up pairs with very different disparities.  

 

We see, then, that CL provides more than an intentional description of the 

phenomenon to be explained, i.e., matching elements from the left and right images. 

CL provides a quantitative characterization of this matching function: It specifies the 

(input-output) mathematical function that the system computes in order to reach 

matching. CL shows that the visual system solves the correspondence problem by 

computing a pairing function that satisfies the Uniqueness and Continuity 

constraints (in short: UC-pairing function). This role of CL is consistent with Egan’s 

interpretation that highlights the centrality of a mathematical or formal theory. It is 

also consistent with Piccinini and Craver’s claim that CL is a sketch of a mechanism. 

The computed, mathematical, function constrains the possible algorithms that the 

system might use, which are just the algorithms for a UC-pairing function (Marr and 

Poggio, 1979, propose a constraint-satisfaction attractor neural network). And the 
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computational and algorithmic levels constrain the possible “full blown” 

mechanistic explanations that can be provided. However, both Egan, on the one 

hand, and Piccinini and Craver, on the other, do not notice that this quantitative 

characterization of the task is associated with the what aspect of CL: What is being 

computed is a UC-pairing function. This aspect, however, does not exhaust the role 

of the computational level. CL is also involved with embedding this function in the 

environment of the perceiving subject.  

 

3.3.The role of the environment  (the why) 

 

Marr often emphasizes CL is involved with what he calls physical or natural 

constraints. As his students once put it, CL includes "an analysis of how properties of 

the physical world constrain how problems in vision are solved" (Hildreth & Ullman, 

1989, p. 582). These physical constraints are features in the physical environment of 

the perceiving individual (1982, pp. 22-23); they are not features of the mechanism 

described abstractly. To avoid ambiguities with physical features of the inner 

implementing mechanisms we call them contextual constraints. It should be noticed 

that these constraints are not the informational contents of the representations, but 

facts about the physical environment we happen to live in.  

 

In our case, Marr and Poggio relate the Uniqueness and Continuity conditions to 

contextual, environmental physical features. Uniqueness ("a black dot from one 

image can match no more than one black dot from the other image") is motivated by 

the spatial localization constraint, which specifies that "a given point on a physical 

surface has a unique position in space at any one time" (Marr and Poggio 1976, p. 

284; see also Marr 1982, pp. 112-113). Continuity ("disparity varies smoothly 

almost everywhere") is motivated by the cohesiveness of matter constraint, which 

says that "matter is cohesive, it is separated into objects, and the surfaces of objects 

are generally smooth compared with their distance from the viewer" (Marr and 

Poggio 1976, p. 284; see also Marr 1982, pp. 112-113).  
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What is the role of the contextual constraints in the analysis of vision, and of 

cognition more generally? We identify two related but different roles, one 

methodological and another explanatory. The methodological role has to do with the 

discovery of the computed function.  The claim here is that we appeal to physical 

external factors in order to discover the mathematical function that is being 

computed. Thus, for example, we derive continuity (“contextual constraint”) from 

the fact  that the world around us consists of objects whose surfaces are by and 

large smooth; only a small fraction of the image is composed of features such as 

object boundaries that result in changes in depth. Thus overall disparity is mostly 

continuous. Or, returning to the example of edge-detection, the discovery that early 

visual processes compute derivation (either of first or second degree) is made 

through the observation that in our perceived environment sharp changes in light 

reflectance occur along physical edges such as boundaries of objects. This contextual 

feature puts substantial constraints on the mathematical function that is being 

computed, i.e., that it has to do with some form of derivation. 

 

The methodological role of the physical constraints is related to a top-down 

methodology that is often associated with Marr's framework (that the scientific 

investigation should proceed from the top, computational, level, down to the 

algorithmic and implementation levels). A central claim of this approach is that it 

would be practically impossible to extract the computed mathematical function by 

abstracting from neural mechanisms. The way to go is to extract what the system 

computes from relevant cues in the physical world that constrain the computed 

function. The contextual constraints play a central role in this top-down approach.  

 

The other role of the contextual constraints is explanatory (we note that on p. 22 

Marr refers to CL as a “level of explanation”). This explanatory role of constraints is 

tied to the why aspect: The contextual constraints play the role of answering the 

question of why the computed mathematical function is appropriate for the given 

information-processing, visual, task. Thus consider again the correspondence 

problem. After characterizing the what (what is being computed is the UC-pairing 
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function), Marr asks why the UC-pairing function – and not another pairing function 

– provides matching. As Marr puts it: "The real question to ask is Why might 

something like that work? For the plain fact is that if we look just at the pair of 

images, there is no reason whatever why L1 should not match R3; L2 match R1, and 

even L3 match R1" (1982, p. 112; emphasis original). Marr is asking why should 

computing UC-pairing, and not any of the other functions, provide a solution for the 

correspondence problem. The algorithms and the neural mechanisms that underlie 

this function cannot answer to this question. These mechanisms specify how the 

system computes the UC-function, but they do not explain why computing this 

function, and not another function, lead to matching. 

 

Marr explains why the UC-pairing function leads to matching by relating the 

conditions of uniqueness and continuity to facts about the physical world we 

happen to live in. Computing a UC-pairing function leads to matching because the 

UC-pairing function corresponds to spatial localization and the cohesiveness of 

matter in our world. Imagine a world consisting of objects with spiky surfaces that 

give rise to a reflection function that is almost never smooth. This will mean that the 

disparity between the images changes almost everywhere. In our example (fig. 1), 

the disparity between L1 and R1 is very different from the disparity between the 

between L2 and R2, and so on. In this world it might be impossible to find a function 

that satisfies continuity, and end even if there is such function there is no reason to 

assume that computing it will lead to matching. Had we lived in such a  world,  then 

computing this function would not lead to matching, but, if anything, to something 

else. Computing UC-pairing function is appropriate for matching in our case due to 

certain contingent facts about the physical environment in which we are embedded. 

 

The methodological and explanatory roles of the constraints are related, of course.  

On the one hand, the contextual constraints explain, at least partly, the fact that the 

visual system computes the UC-function and not another function. On the other 

hand, Marr’s methodological moral is that we can deploy these constraints in order 
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to discover that the computed function is one satisfying the conditions of 

uniqueness and continuity.   

 

4. Insights from Marr’s CL for Mechanistic Explanation 

 

Having articulated our account of Marr’s CL level that sharply distinguishes it from 

the algorithmic and implementational levels and takes seriously his construal as 

involving both what and why aspects, we can return to mechanistic explanation. As 

we discussed above, Piccinini and Craver treated CL as offering a mechanism sketch. 

On our construal, CL is not providing a sketch of a mechanism but something quite 

different—it is characterizing the phenomenon for which a mechanism is sought as 

explanation. There is an important role for mechanism sketches in developing 

mechanistic explanations, but insofar as the sketch identifies operations in the 

mechanism it is an account at Marr’s algorithmic level and insofar as it identifies 

these operations with component parts of the mechanism, it is at the 

implementational level. With respect to the mechanism, CL only specifies the task 

the mechanism performs and offers no suggestions to how it does it. Thus, it 

characterizes the phenomenon without trying to explain it mechanistically 

(although, as we have noted, it does figure in a different type of explanation, that 

concerned with why the mechanism is appropriate for the task).  

 

Egan is correct to draw out the fact that CL offers mathematical characterizations of 

the task the mechanism is to perform. This is a crucial aspect of the way phenomena 

are delineated in scientific inquiries. If they weren’t delineated mathematically, the 

quest for mechanistic explanation would often be unmanageably underdetermined. 

Many mechanisms can perform in qualitatively the same way, but quantitatively 

their performance differs. The challenge is to explain the actual phenomenon 

characterized quantitatively. This quantitative detail is also important to 

researchers as it provides a major tool for evaluating proposed mechanistic 

explanations. Of course the mechanistic explanation must also appeal to parts and 

operations that are known to constitute the mechanism. Yet, even when this 
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condition is met, researchers find it important to assess whether the proposed 

mechanism could account for the quantitative details of the phenomenon. This is 

where computational modeling plays an increasingly central role in neuroscience 

and biology more generally (Bechtel, 2011). 

 

 

As Egan correctly observes, the mathematical, quantitative, characterization (what 

she calls a mathematical or a formal theory) plays an explanatory role with respect 

to the pre-theoretic, intentionally characterized, explananda phenomenon. What 

Egan disregards, however, is that the mathematical theory has this explanatory role 

only if we embed the mechanism in the physical environment of the perceiving 

individual. The mathematical operation 2GI is explanatory with respect to the 

phenomenon of edge-detection only when we relate this mathematical function with 

the relation that holds between magnitudes existing in the world. As Egan notes, 

correctly again (!), the informational content of the cells in the retina and in the 

primary visual cortex have no explanatory role in CL. They are, perhaps, only a gloss 

on the mathematical characterization that the computational theory provides. But 

this does not entail that there are no other contextual features that play an 

explanatory role. Indeed, according to Marr the relevant contextual features are 

physical (“contextual”) constraints that indicate intensity changes in the image 

result from "surface discontinuities or from reflectance or illumination boundaries" 

(Marr & Hildreth, 1980, p. 187). The upshot is that the formal theory constitutes 

only one part of the explanation (associated with the what). “The other half of this 

level of explanation” (1982, p. 22), as Marr put it, has to do with the why, namely 

with why the visual system performs the mathematical operation 2GI, and not, 

say, exponentiation or factorization when detecting edges.   

 

What makes CL explanatory with respect to edge-detection – so that the what and 

the why conspire to provide an explanation – is an intriguing question. One proposal 

is that the visual system works much like scientific models (for a survey, see Frigg & 
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Hartmann, 2006). It models its environment by preserving certain relations in the 

environment. CL describes this modeling relation, explaining its role in the visual 

task.8 This is shown in Figure 2 in which the top portion identifies the relation in the 

world and the bottom portion the operations occurring on representations in the 

visual system. The dotted arrows indicate that the representations in the brain 

stand in for features in the world itself. The detection of visual edges (say, zero-

crossing segments) mirrors a pertinent relation in the visual field in the sense that 

there is an isomorphism (or some other morphism) between this visual process and 

the visual field. This morphism is exemplified by the (alleged) fact that the visual 

system and the visual field have a shared mathematical description (or structure). 

On the one hand, the visual system computes the zero-crossings of second-

derivative operations (over the retinal pixels) to detect edges; this is shown in the 

bottom span of figure 2. On the other hand, the reflection function in the visual field 

changes sharply along physical edges such as object boundaries. These changes can 

be described in terms of extreme points of first-derivatives or zero-crossing of 

second derivatives.   

 

 

 

Figure 2. Edge-detection. Early visual processes (bottom span) detect "visual edges" 

in the retinal image by computing the zero-crossings of 2GI (see note 3); the 

second-derivative operations 2GI are performed by the ganglion and LGN cells. 

The intensity values encode (dashed arrow) "light intensities" of the visual field that 

combine different factors such as the reflectance of the visible surfaces. The visual 

edges (e.g., segments of co-located zero-crossings) encode physical edges such as 

object boundaries. . 

 

Figure 2 makes clear how the CL accounts for edge detection: It is important to 

compute the function 2GI because that is the relation that holds between 

                                                        
8 This modeling idea is discussed in some detail by Shagrir (2010a).  
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magnitudes existing in the world: a mechanism that computes it will identify edges. 

This match between the task and the mechanism shows why the mechanism 

succeeds. The what aspect provides a description of the mathematical function that 

is being computed. The why aspect employs the contextual constraints in order to 

show how this function matches with the environment.  

 

There are debates about whether the matching relation in models is similarity, 

isomorphism, partial isomorphism or homomorphism.9 And, of course, not all 

mechanisms are perfectly adapted to their environments. There is a long tradition of 

showing that cognitive systems with limited resources employ heuristics that 

succeeded well enough in the actual world, but which can be expected to fail under 

specifiable conditions (Simon, 1996). Our proposal, though, works for heuristics as 

well as optimal procedures—heuristics work as well as they do because they 

capture real relations in the world (between cues and outcomes). The why-aspect of 

CL accounts does not require showing that the computational performed is optimal, 

only that it is grounded in the world in which the visual system is operating.10 

 

 

What are the relations between CL explanations and mechanistic explanations? On 

the one hand, it is important to recognize that the task to be performed is 

conceptually independent of any mechanism that performs it, including the 

particular inputs the organism receives or the specific outputs it produces in solving 

it. While Marr viewed the algorithm he took to be operative in our brains as 

computing 2GI, computing that function would still be a task for a perceptual 

                                                        
9 Swoyer (1991) talks about isomorphism, but others about partial isomorphism 
(French & Ladyman, 1999; Da Costa & French, 2003; Bueno & French, 2011), 
homomorphism (Bartels, 2006) and similarity (Giere, 2004; Weisberg, 2013). 
10 Edge-detection is by no means an isolated example of this kind of CL explanation. 
Shagrir (2010b) discusses the case of stereovision. Another example is Ullman’s 
(1979) structure-from-motion algorithm in which the 3-D structure and motion of 
objects is inferred from the 2-D transformations of their projected images. Here the 
mathematical function computed reflects spatial relations in the target, assuming 
the constraint of rigidity.  
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system even if our brains failed to do so. By actually computing it, our brains solve a 

problem that is specified by the relation between light intensities and physical edges 

occurring in the world, as it is clearly shown in Figure 2.  

 

On the other hand, Marr does not offer CL as an alternative explanation to 

mechanistic explanations, but as a complementary one.  Mechanistic explanations 

describe the mechanisms by means of which the nervous system changes from one 

neural state to another. It describes, for example, how certain activity in the 

photoreceptors (that represent light intensities) lead, through the activity of the 

retinal ganglion cells, to the activation of cells in V1 (that are sensitive to oriented 

lines).  This mechanistic description is surely an explanation at the level of neural 

circuitry. But it does not by itself explain the information-processing task of edge 

detection (This is perhaps what Marr means when he says: "The key observation is 

that neurophysiology and psychophysics have as their business to describe the 

behavior of cells or of subjects but not to explain such behavior" (1982, p. 15)). This 

mechanistic description does not explain why this particular neural mechanism has 

to do with the detection of edges and not, say, with the detection of color. The CL 

provides the answer to this question: The mechanism implements a certain 

mathematical function (of the zero-crossings of 2GI) and this function matches 

the relations in the world, e.g., sharp changes in light intensities that typically occur 

along object boundaries. When the CL explanation is in place, the mechanistic – 

algorithmic and implementational – descriptions explain how exactly the visual 

system computes the mathematical function.  

 

 

While one might accept our contention that Marr’s CL accounts require turning to 

the world to address both the what and why aspects, one might still question 

whether there is a similar need to look outside a mechanism to its context in 

delineating the phenomenon it explains. Isn’t it sufficient to show that the targeted 

mechanism exhibits regular behavior? We offer two responses to this question. 
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First, as we noted at the beginning, not all regularities that can be stated 

mathematically are appropriate targets for explanation. This applies both to 

naturally occurring ones and to ones that can be detected experimentally. Looking 

to the task that needs to be performed by the mechanism given the structure of the 

world provides a way of identifying which regularities require mechanistic 

explanation. Contrasting examples illustrates this. Although the heat generated by 

animals can be quantified, the hundred-year effort to explain animal heat 

terminated quickly when around 1930 it was recognized that heat was a waste 

product, not a source of energy that animals could use to perform work. The 

identification that instead, adenosine triphosphate (ATP) was the molecule in which 

energy released through metabolism was stored, resulted in extensive research to 

explain how, for example oxidative metabolism could result in synthesis of three 

ATPs. As these examples make clear, looking to the environment is important is 

important in mechanistic research in general, but it is especially relevant in the 

context of information-processing mechanisms where the task being performed is 

an important guide to what operations carry information needed for the mechanism 

to perform its task.  

 

Second, it is the world that both sets the task and determines the resources available 

to the mechanism in performing the task. Part of the investigatory strategy 

researchers employ in developing mechanistic explanations is to identify these 

resources and their utilization within the mechanism. Mechanisms are typically not 

closed systems but consist of parts and operations that interact with their 

environment in generating phenomena. The visual system is an example. Although 

Marr and many other vision researchers focused only on the steps in processing 

stimuli and not the activities of the organism that determines what stimuli impact 

its retina, perceivers are often active—they move their eyes, heads, or whole bodies 

in the course of seeing. As they do so, the projections onto their retina change. 

Moreover, some of these movements are directed by the visual system as it actively 

samples the visual array to procure information (Ballard, 1991). Since many 

mechanisms actively engage their environment as they operate, it is important to 
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capture these interactions in characterizing the phenomenon itself. Otherwise, 

researchers end up trying to explain a phenomenon that does not actually occur and 

may require resources that are not available in the mechanism. This concern is what 

lay behind calls for ecological validity in psychology research by Brunswik (1943), J. 

J. Gibson (1979), Neisser (1976), and others. (We discuss Gibson and Marr’s 

response to Gibson further in the following section.) 

 

In this section we have focused on two important insights that can be gleaned for 

the task of delineating phenomena for mechanistic explanation. The first is that 

phenomena are typically characterized not just qualitatively, as they typically are in 

the accounts of the new mechanistic philosophers of science, but also in quantitative 

or formal terms (for recent exceptions, see Bechtel, 2013; Bechtel & Abrahamsen, 

2010; Brigandt, 2013; Kaplan, 2011). In describing the talk of edge detection in his 

CL account, Marr identified the mathematical function that needed to be computed. 

Second, in delineating phenomena researchers often, as Marr did at the CL level, 

focus outwards on the context in which the mechanism operates. Among other 

things, this allows researchers to identify the resources available to the mechanism 

in producing the phenomenon. We will return to show how Marr’s account 

generalizes to other phenomena beyond vision in the concluding section, but first 

point to two limitations of the account Marr offered. 

 
5. Delineating Phenomena: Going Beyond Marr’s Account of CL 
 
As much as Marr emphasized the importance of developing an analysis of CL that 

showed both quantitative rigor and addressed the context in the world in which the 

visual mechanism operated, it is noteworthy that he did not develop two other 

aspects of the CL account that are critical in delineating phenomena—that empirical, 

even experimental, research is required to identify the quantitative relations that 

constitute the phenomena and that characterizations of phenomena are often 

revised in the course of developing mechanistic explanations of them.  

 
5.1. Empirical Inquiry to Delineate Phenomena 
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Despite the attention Marr paid to CL, he pursued CL accounts with an intuitive, 

almost arm-chair approach. Poggio (1981), in articulating and defending Marr’s 

approach and bringing out clearly how CL analysis is directed at the world outside 

the visual systems, nonetheless also claims: “No high-level specific 

preunderstanding is required, but only general knowledge about the physical world. 

An example of such general knowledge is that the world is constituted mainly of 

solid, non-deformable objects of which only one can occupy a given point in space 

and time.” (p. 259). He also notes “It is probably fair to say that most physiologists 

and students of psychophysics have often approached a specific problem in visual 

perception with their personal 'computational' prejudices about the goal of the 

system and why it does what it does.” This almost trivializes the importance of CL 

analysis. But we contend that Marr did, or should have, intended something more 

radical. 

 

We take a cue as to what CL analysis ought to involve from Gibson, of whom Marr 

said: “In perception, perhaps the nearest anyone came to the level of computational 

theory was Gibson.” (1982, p. 29). The basis for this comment is that Gibson more 

than most psychologists took seriously the importance of the environment in which 

perception occurs. Although he adopted the biological term ecological, his principle 

focus was on the physical features of the environment (specifically, those physical 

features about which information is available in the light). Much of Marr’s 

discussion of Gibson is critical, focusing on Gibson’s repudiation of representations 

and internal processing (Gibson claimed that vision was direct—we directly see 

objects in the world by picking up information available in the light). At the same 

period as Marr was writing Vision, Ullman published a detailed criticism of Gibson’s 

account of direct perception (Ullman, 1980). We focus, however, on why Marr saw 

Gibson as the person who came closest to offering a computational theory.11 

                                                        
11 Gibson would have bristled at being associated with anything called a 

computational theory and even more to Marr’s advocacy of analyzing vision in terms 
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What an ecological approach to perception meant for Gibson and many who have 

subsequently pursued his project is that psychologists should study the perceiving 

organism in the context of the world in which it functions, considering both what 

the organism uses vision for and the resources the world provides for performing 

those tasks. Both require empirical inquiry. Studying perceiving organisms reveals 

that they use vision to accomplish biological needs—detect resources and threats in 

their environments and safely navigate through it. Often these tasks can be 

performed by picking up on information in the environment without having to build 

up a complete representation of the world (by converting 2D representations into 

3D representations).12 

 

Gibson referred to what an organism picks up through vision or other senses as 

affordances: “The affordances of the environment are what it offers the animal, what 

it provides or furnishes, either for good or ill” (J. J. Gibson, 1979). In particular, they 

are possibilities for action in the world that are relative to the organism and its 

capacities for acting. An example he used is that a surface that is nearly horizontal 

and flat, sufficiently extended, rigid relative to the weight of the animal, affords 

support that can be walked or run on. Moreover, he stressed that these potentials 

exist regardless of whether the organism has learned to pick up on them. (Gibson 

was a pioneer in treating perception as a skill to be learned; see J. J. Gibson & Gibson, 

1955. ; This topic that became the focus of Eleanor Gibson's research; see E. J. 

                                                                                                                                                                     
of algorithms. It is possible, however, to view Gibson’s arguments for direct 

perception and his eschewal of internal processing as methodological—as a strategy 

for focusing on the richness of what he called “information in the light” that was 

neglected by most psychologists who jumped too quickly to address how organisms 

process stimuli that they have designed to probe the visual system with less 

attention to how such stimuli reflect the inputs the visual system typically confronts. 

In this he is allied with Marr’s contention of the importance of CL analysis. 

12 Such inquiry has been pursued subsequently by, for example, Turvey (1992). 
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Gibson, 1969.) When the objects of vision are other agents, vision captures 

emotional information and presents others as entities to engage, fight, flee from, etc. 

Gibson maintained that these affordances were not in the organism but in the world, 

although they might only be relevant to organisms with particular capacities for 

action and so “picked up” by them.  

 

In identifying affordances the perceiver is typically not passive but moves about in 

the world, and even when not moving physically, moves its eyes to focus on 

different parts of the visual field. As we noted in the previous section, once one 

recognizes that perceivers move to acquire information, it is not sufficient to 

characterize the input they use when functioning in their environment in terms of 

retinal images. Rather, it is better to focus on what Gibson termed the “optic 

array”—the pattern found in the light that changes as either the perceiver changes 

vantage points or objects in the world move. Among other things, the optic array 

provides information as to how the perceiver and perceived objects are situated vis-

á-vis each other.  

 

Gibson initiated a research program that has provided substantial information 

about the information in the optic array. Lee and Reddish (1981), for example 

showed that a parameter , easily calculated from the rate of expansion in the optic 

array, specifies time to impact even for accelerating agents such as gannets diving 

into the ocean. By experimentally manipulating the size of doorways, Warren and 

Whang (1987) showed that the optic array carried information about whether a 

person could simply walk through or whether they would have to turn sideways. An 

important offshoot of Gibson’s research are investigations such as those of Findlay 

and Gilchrist (2003) into how agents determine appropriate eye movements 

(saccades) to secure useful information. 

 
From the perspective of attempts to explain the information processing involved in 

vision, these inquiries are all CL inquiries. But, contrary to Poggio, they reveal 

information about how the visual system is situated in the body and world that was 
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not part of general knowledge but stemmed from empirical investigations. Although 

we have not emphasized it, the results of these inquiries into the world in which 

vision operates can be stated in a precise, quantitative manner.  

 
 
5.2. Reconstituting Computational Level Accounts 
 
A standard picture of scientific inquiry is that researchers begin with a problem to 

be solved such as a phenomenon to be explained and their efforts are then directed 

at solving the problem or explaining the phenomenon. But as we are all aware, 

attempts at solving a problem often leads to recognition that the problem was 

somewhat different from what it was initially taken to be. Likewise, efforts at 

explaining a phenomenon by studying the mechanism can lead scientists to 

recognize that the phenomenon is different than they took it to be (Craver, 2007, p. 

261). One of the most important developments in the analysis of vision since Marr 

has been the discovery that there are two streams of visual processing beyond V1: 

the ventral stream projects to areas in the medial temporal lobe while the dorsal 

stream projects to areas in the parietal lobe. In their paper identifying these 

pathways, Mishkin, Ungerleider, and Macko (1983) characterized them as involved 

in respectively determining the identity of an object and its location. Subsequently, 

Milner and Goodale (1995) offered evidence to support the claim that the dorsal 

stream serves to identify possibilities for action. These two streams, however, are 

not fully independent as there are connections at several points between them (van 

Essen & Gallant, 1994) and, as Findlay and Gilchrist (2003, Chapter 1) discuss, areas 

such as the frontal eye fields, critical in regulating saccades, receives inputs from 

both. These discoveries revealed that there are at least two components of the 

phenomenon of vision that were not differentiated prior to research on the 

responsible mechanism. 

 

Even the characterization of the object recognition process on which Marr focused 

has been significantly revised in recent years. Although the fact that there are at 

least as many and likely many more recurrent as feed-forward projection through 
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cortex has been known since the pioneering research of Lorente de Nó (1938), there 

was little understanding of what function these might serve. References to top-down 

processing were frequent, especially in cognitive science, during the period in which 

Marr was working, but he was highly skeptical of them since they seemed 

incompatible with the fact that we often see what we don’t expect to see. But 

evidence of the prevalence of recurrent activity in the brain has continued to grow 

and recently a number of researchers have developed accounts that accommodate it 

(Dayan, Hinton, Neal, & Zemel, 1995; Rao & Ballard, 1999; Llinás, 2001; Hawkins & 

Blakeslee, 2004; Hohwy, Roepstorff, & Friston, 2008; Huang & Rao, 2011; Clark, in 

press). They have recast the phenomenon of vision as starting with the brain 

predicting what it will next encounter through its senses and only engaging in 

further processing of input information when it contravenes what it predicted. 

Through the combination of empirical and conceptual research, the phenomenon of 

vision on which Marr focused is being reconstituted.  

 

Marr was right to emphasize both the what and why elements of CL, but he did not 

go far enough in exploring how these are to be identified. Empirical investigations 

conducted at the point at which the mechanism engages its environment are 

required to determine what are the stimuli to which the perceiver is responding 

and, although we have not addressed it, the uses to which the perceiver puts the 

information. Moreover, the CL account is not final when investigation of the 

mechanism begins but often must be revised in light of what is discovered by the 

mechanism itself.  

 

 

 

 

6. Conclusion 

 

Our goal in this paper has been to develop a characterization of CL that is more 

adequate to Marr’s insistence that it involves both a what and a why aspect than 
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extant interpretations. The what aspect requires developing a mathematical 

description of the task for vision. The why aspect forces researchers to look to the 

structures in the world that the organism engages through its visual system. It 

shows that the function computed by the visual system is effective because it 

matches a mathematical relation that exists in the world (e.g., between light 

intensities and physical edges). We argued, however, that Marr did not go far 

enough either in recognizing that empirical inquiry such as Gibson pursued is often 

required to identify the task confronted by the visual system or that the 

characterization of the task must often be revised as research on the mechanism 

proceeds. The CL analysis, so construed, identifies the phenomena of vision—the 

visual system processes information provided by light so as to compute functions 

that correspond to those realized in the physical world, thereby enabling organisms 

to perform their activities.  

 

Following Marr, we have focused on the visual system and thus discussed CL 

analyses of visual information available to organisms. But as we indicated at the 

outset, this perspective can be extended to other brain systems. The most 

straightforward extensions are to other sensory systems and motor systems that 

compute functions that relate directly to structures in the environment. Motor 

systems must compute commands that enable the body to operate in the 

environment, including changes in the environment that result from the execution 

of the motor processes. It is by looking to the environment that researchers can 

identify the function that the motor system must compute. A nice example involves 

the oculomotor system that controls eye movements. One of its tasks (performed by 

the vestibulo-ocular reflex or VOR) is keeping the visual world stable on the retina 

when the head is moving. Experimental studies show that the system converts 

transient eye-velocity-encoded inputs into persistent eye-position-encoded outputs. 

It was thus concluded that the system network is a neural integrator.13 In this case 

                                                        
13 It is hypothesized that the neural integrator also serves for other eye-movement 
operations such as saccadic and pursuit movements (Robinson, 1989; Goldman, 
Kaneko, Major, Aksay, Tank, & Seung, 2002). 
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the researchers infer from contextual cues (“contextual constraint”) that the 

relations between the encoded velocity and position are that of integration to the 

claim mathematical integration is what is computed (Shagrir, 2012).   

 

 

The challenge in characterizing CL analysis is somewhat greater for more central 

cognitive activities such as episodic memory. Following Ebbinghaus, memory has 

often been studied using laboratory tasks such as learning lists of words that are 

relatively far removed from those humans typically confront. Inspired by Gibson, 

researchers such as Neisser (1982; Neisser & Winograd, 1988) investigated real 

stimuli and real tasks (e.g., providing testimony in legal proceedings). One of the 

upshots of this endeavor was to demonstrate how reconstructive memory is (a 

claim that has been pursued by other researchers as well; see, e.g., Schacter, 1996). 

What makes it reconstructive is that, in the process of recall, pieces of information 

that are retrieved are organized together in ways that are at least partly responsive 

to the context in which retrieval is required. This points to the retrieval context as 

partly shaping the task of memory recall. It is much more challenging to 

characterize memory retrieval in terms of a mathematical function, and this may be 

one of the reasons why research on the mechanisms of episodic memory is less 

advanced than the research on the mechanisms of vision. 

 

The information processing perspective applies more generally than just to brain 

function.  Biological systems often employ systems that control other systems. At 

the cellular level, this is carried out chemically through cell signaling system. In 

single-celled organisms, which are the most prevalent life forms on the planet, 

molecular systems pick up information about the internal state or conditions in the 

environment of the cell, and regulate such activities as the synthesis of new 

proteins. In characterizing these phenomena, both the what and why aspects of 

Marr’s CL level are appropriate: researchers both specify the relationship between 

the signal picked up and the response generated mathematically, and relate this to 

conditions external to the control system. This outward focus is important, as it is in 
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vision, to specifying which mathematical relations constitute the phenomena to be 

explained and the resources available to the system in generating the phenomena. 

 

We have limited our discussion in this paper to information processing contexts.  

But we think that Marr’s account of CL provides insights into the tasks confronted in 

delineating phenomena and can help fill a lacuna in the accounts the new 

mechanists in philosophy of science have offered of the task of delineating 

phenomena. For example, mechanistic explanations are also advanced for 

phenomena such as protein synthesis and the generation of action potentials that do 

not themselves serve to process information. Developing detailed accounts of the 

phenomena and the contexts in which they are performed is also vitally important 

in those endeavors. Hence, some of the lessons derived from the CL analysis may 

extend to these explanations. However, since these explanations do not involve 

processing information, the distinctive why feature of CL analysis which we have 

emphasized does not apply. Our contention is that Marr’s valuable insight is that 

with information processing mechanisms, the CL level plays a crucial role in 

identifying the relation in the world that the information processing system must 

compute in order to succeed. Moreover, we have argued that without a CL analysis, 

the quest for mechanism would be impaired and a crucial part of the explanation 

would be unavailable.   
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