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Summary

Developments over the past two decades in the identification of models of environmental
systems are reviewed, with special reference to the quality and pollution of surface
freshwaters. As in so many fields, the early 1970s were a time of great expectations: it
would not be long, we believed, before the admittedly less well defined problems of
environmental systems analysis would nevertheless yield to the already vast array of
methods available from applied mathematics and control theory (which had been so
successful in their application, for example, to the analysis of aerospace systems). Such a
yielding has still to come to pass, at least for multivariable models of more than, say. five
or six state variables. In the past decade, because of the seemingly insuperable difficulties
of model identifiability. we have promoted the pragmatic view that what really matters is
the ability to generate "robust" predictions that are maximally insensitive to a lack of
identifiability. Such pragmatism, coupled with a continuing dearth of successful techniques
of system identification, does not bode well. The digital computing technology on which
we are able to realise our "set of concepts” (our models) continues to expand rapidly. A
similar expansion, although less dramatically so, is apparent in the technology of instru-
mentation and remote sensing, through which our "given data" are acyuired in ever greater
volumes. No such expansion is evident in the capacity of the brain to juggle with disparate
facts and figures until the ever more comprehensive, given data can be reconciled with the
increasingly massive sets of concepts. Whither, then, is environmenta! system identifica-
tion bound in the next decade? A modest attempt to answer this question will be made, by
way of conclusion.

Keywords Kalman filter, system identification, identifiability, predictability, uncertainty,
water pollution
1. Introduction
In a recent article -- on interactive computing as a teaching aid - MacFarlane (1990) has
presented a three-element characterisation of knowledge. According to the American
philosopher Lewis these three elements are (as reported by MacFarlane):

(1) the given data;

(i) a set of concepts; and

(i1i) acts which interpret data in terms of concepts.

It is readily apparent that the problem of system identification (the derivation of a model
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whose behaviour bears the closest possible resemblance to the observed behaviour of the
actual system) is covered exactly by the third of the three elements. What then are the
prospects for success in these "acts which interpret data in terms of concepts”, that is, for
success in reconciling the candidate model with the given data? In other words, what are
the prospects for progress in understanding uncertain environmental systems?

From contemporary experience we know that the scope and resolution of both the "given
data” and the "set of concepts” necessary for understanding the behaviour of environ-
mental systems are expanding at an increasing rate. We know too that this rate of
expansion, if anything, is greater in respect of the set of concepts (the model) . The
General Circulation Models (GCMS) of climatology and meteorology are of suitably
massive proportions, with typically seven or more state variables (wind velocities, air
temperature, and so on; Folland et al., 1991) to be accounted for at over 10° spatial
locations -- and doubtless soon to be still more. The computing capacity now available for
realising models of the behaviour of a system offers us a truly staggering, expanding
universe of possibilities. Indeed, in the popular scientific press this potential is neatly
captured in headlines such as "Is It Real, Or Is It A Cray?" (Pool, 1989) or "Speculating
In Precious Computronium” (Amato, 1991).

Technical support for manipulating the logical consequences of our "set of concepts™ is
thus assured. Technical support for acquiring the "given data” is likewise assured, although
it might always be argued to be (relatively) inadequate. For example, in the area of
modelling ocean circulation patterns it has been said that the rate of expansion in
computing power (for realising ever more refined models) will bring about a need for a
ten-fold increase every six years in data acquisition (for defining boundary and initial
conditions). Given that US$2 billion per annum are reported to be required to service the
current data-retrieval systems for monitoring ocean circulation, it is almost inconceivable
that access to data will ever expand at a rate faster than the access to computing power.

No such assurances as these exist for development of the technical support necessary for
engaging the model in a meaningful interpretation of the data. Indeed, how does such
"interpretation” come about? It is a result of juggling with, and sifting through, a unique
assortment of disparate facts and figures assembled by the individual, upon which some
kind of order is eventually imposed. It is a subjective mental process. News of advances in
computational capacity is abundant; news of advances in the technology of instrumentation
and remote sensing is commonplace; news of the increasing capacity of the brain to juggle
with disparate facts and concepts is non-existent.

Furthermore, what form of technical support would be desirable for promoting, provok-
ing, or stimulating acts that interpret the data in terms of a set of concepts? This review of
the tentative attempts to answer such questions is organised on a simple chronological
basis, beginning with the hope of enlightenment in the 1970s,, passing through the clouds
of uncertainty gathering during the 1980s and now, in the 1990s, looking forward to the
prospeet of rekindled hopes of further enlightenment.

2. Enlightenment: a better sense of the problems

Few of us -- working in the early 1970s -- could have guessed at the richness of "para-
digms” now available for description and computerbased realisation of our theories about
the behaviour of environmental systems. There are, for example, the following options: of
classical differential calculus; of qualitative simulation (and the calculus of fuzzy logic); of
cellular automata; and of pictorial simulation. All but the first of these have either been
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enabled or profoundly influenced by developments of just the past decade in the hardware
and software of electronic computing. All are applicable, in principle, to the
characterisation of problems associated with the contymination of surface water systems
(Camara et al.. 1987, 1990; Castro et al., 1993).

But such choice was not available to us two decades ago. Systems were conceived of as
assemblies of mechanisms, characterised by state variables (x) subjected to input load
disturbances (1) that generate various forms of output response (v). It was almost beyond
question that description of their behaviour should take the form of a set of algebraic
and/or differential equations. In terms of Lewis's three-element characterisation of
knowledge, albeit perhaps with some licence:

(i) the input-output data [u,y) constituted the external description of the system’s
behaviour and were the "given data”;

(ii) the states and parameters (o) of the model, i.e., [x,al, constituted the internal
description of the system’s behaviour and were therefore a formal realisation of the
"set of concepts”; and

(iii) calibration of the model was the "act which interpreted the data in terms of the set
of concepts”.

In respect of this last. it was generally assumed that all of the appropriate constituent
hypotheses of the model would already have been assembled and correctly expressed; all
that remained was to tune the parameters of the model, as an instrument requiring
calibration for subsequent prediction. In retrospect, of course, one can ask whether the fine
tuning of an already well structured instrument is the essence of progress in understanding,
especially in the presence of gross uncertainty (attaching both to one’s prior theories and
to the observations of behaviour).

This restatement of Lewis's characterisation of knowledge presumes an important
distinction between the input-output space (u,y| and the state-parameter space [x.0.

Such a distinction is important on two accounts. First, the recourse to a state-parameter
space description of the system’s behaviour suggests that the objective is indeed to
reconcile an assembly of constituent hypotheses (the model, or the set of concepts) with a
set of observations. This does not suggest that a model cast in the input-output space is
devoid of. or unrelated to, a set of concepts -- as we shall see later -- but that it may not
ultimately be the most useful vehicle for interpretation of the field data. The inputoutput
models of time-series analysis are rather primitive vehicles for such interpretation. They
might best be used as the means of preparing the data for subsequent interpretation
through some other form of model (Beck, 1991). Second, for reasons of academic
discipline, a state-parameter space description is by far the more popular form of express-
jon of the models of environmental systems analysis.

Choosing thus a middle course, between the partial differential equations of what might
frequently be referred to as a “physicsbased” model and the algebraic, discrete-time
equations of the "black-box" models of control theory and time-series analysis, we have
the following form of "conceptual” model

0 = flewoct) + £ (la)
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y(t) = hixout} + n(t) (1b)

in which the dot notation in #(f) denotes differentiation with respect to time ¢, £ is a
vector of unknown disturbances (or errors of model structure, or errors of observation of
u) associated with the state vector dynamics and 1y is a vector of errors associated with
observations of y. assumed pragmatically to have been made at discrete instants in time f,.

2.1 Filtering theory as the conceptual framework

One can look at the problem of calibration as a matter of signal processing. Such a view
is entirely sympathetic to the notion of models as vehicles * for the interpretation of data.
And the classic solution to the problem of reconstructing information about [x,a] from
information about [u.y] in the presence of uncertainty (or noise), as all control theorists
will know, is the filtering theory of Kalman (Kalman, 1960; Kalman and Bucy, 1961),
Quintessentially, the filter reconciles a prediction from the model with an observation of
the system through a process of feedback (to the model!), in which the account taken of
the mismatch between theory and observation is modulated according to the balance of
uncertainties attaching to these two "elements of knowledge”.

Over the years filtering theory has come to reflect something of a universal framework
for exploring and formally defining -- yet not necessarily solving (as will become readily
apparent) -- many of the most interesting sub-problems of uncertainty, identifiability and
predictability. This is, however, a very personal, perhaps idiosyncratic, view (Beck, 1987).

Within this framework, and with reference to the model of equation (1), the problem of
calibration can formally be defined as the problem of combined state-parameter estimation:

Problem #1: State-parameter estimation

Given the observations and the model structure, i.e., given {u.y;f,h], and given assump-
tions about the various sources of uncertainty, i.e., {P_(t,), Pu(ty). S(t). O(t). R(,)},
determine the best estimates of [x,&] and the uncertainty attaching to these estimates,
e, (P (1). Pt}

Here, P, is defined as the variance-covariance matrix of the state estimation errors, P, is
the variance-covariance matrix of the parameter estimation errors, S and R are respectively
the variance-covariance matrices of the input and output observations, and Q is the
variance-covariance matrix of the process (excluding the errors now accounted for
explicitly under S). ¢, and t, represent respectively the discrete instants of time at the
beginning and end of the observation period, with k = 0, 1, 2, ..., N sampling instants. In
fact, to be pedantic, prior estimates of [x,a} at #, must also be assumed in the above
problem definition.

The obvious flaw in this statement of calibration -- as the first act of reconciling the
model with the data -- is that the model structure, as reflected in (f.h) (and also in the
choices of the elements in [x.t]), is not given a priori. Before determination of a -best [x,a]
the problem of model structure identification, defined formally as follows, must be
addressed:
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Problem #2: Model Structure ldentification

Given the observations {u,y] and given assumptions about the various sources of uncer-
tainty, ie., {P (1), P(1,). St). O@), R(t) determine [fA:x.a] and the accompanying
‘Pn(lN,)v P(!(!(IN)"

Between these two statements (of state-parameter estimation and model structure identifi-
cation). the degree of belief in the likely success of our prior theories in describing in
general the behaviour of an environmental system has diminished. The burden of specify-
ing [f.h] correctly has shifted, from an almost complete reliance on prior theory and
conjecture, to some engagement of the field observations in this process (which would in
fact be more consistent with Lewis’s three-element characterisation of knowledge). This
change, and elucidation of the problem of model structure identification, did not arise from
any philosophical consideration, but rather from a case study of organic waste degradation
in a stretch of lowland river in eastern England (Beck and Young, 1976).

In short, the instrument of prediction may need more than just finetuning; it may need
substantial re-design. The questions of interest to reconciliation of the model with the data
are: which design is closest to the "truth™; how can we approach this "truth” at the fastest
possible rate from some starting point; and what is a useful starting point for the prior
model structure?

Exactly how one might go about answering these questions -- within the framework of
filtering theory -- is summarised in Beck (1986, 1987) . The fact that one can obtain
recursive estimates {[£(1,), 6,)} across the period of the observed record from t, to f, has
been crucial, however, to insights about the nature of the problem of model structure
identification. And this capacity to provide temporally varying parameter estimates is in
turn the distinctive feature of a filtering-like algorithm. which thereby sets it apart from
any other approach to a solution of this problem. But like any other approach. the filter
cannot directly identify the "true” structure [f,h], since this implies, inter alia, a means of
estimating integer valnes for the numbers of differential and algebraic equations in the
model. Its distinction lies in revealing unreasonable fluctuations in the recursive estimates
of G(z) that result from significant discrepancies between the structure underlying the
observed field data [f.4] and the structure of the candidate model, let us say [f 4] In
fact, we would hope these fluctuations are only superficially "unreasonable” and that
behind them lies a plausible explanation,

Since individual parameters relate to constituent model hypotheses we have, in principle,
a means to establish the "success™ or failure of these individual hypotheses (as opposed to
the more customary assessment of whether the model as ¢ whole succeeds or fails) .
Furthermore, after working on a number of case study problems (Beck and Young, 1976;
Beck, 1982, 1985) it was possible to distil out a more systematic organising principle for
the procedure of model structure identification, which comprised the following elementary
questions of (Beck, 1986):

(1) how to expose the failure (inadequacy) of the constituent hypotheses of a model
structure;

(i) how to infer the form of an improved model structure from diagnosis of the failure
of an inadequate structure?
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Preparing tests of the model structure in order to answer these questions can again be
realised within the framework of filtering theory. Respectively:

(i) It can be assumed that the constituent parameter is unknown but invariant with
time, i.e., o, with the expectation that a variable parameter estimate, i.e., 6i(s,), will
deny that prior assumption; or

(i) It can be assumed that the parameter is variable, but varying in an unknown
(random-walk) fashion, i.e., o(t,), with the expectation of the posterior result that a
more useful model of the parameter variations can be postulated through interpreta-
tion of 6u(z,).

Access to these tests is gained via the use of an assumed intensity of random perturbation
of the parameter dynamics, by analogy with the state vector dynamics. Thus, distinguish-
ing now between Q. as the variance-covariance matrix of the unknown state perturba-
tions, and Q.. as the variance-covariance matrix of a comesponding set of unknown
parameter perturbations, the specification of the latter can be equated with a quantitative
characterisation of the degree of confidence attaching to each constituent model hypothe-
sis.

Moreover, setting Q,,, = 0 is the most dramatic way of formulating the test of (i) above;
it ought to have the greatest possibility of exposing unambiguously the failure of a
constituent model hypothesis. The ability of a physical engineering structure to resist
deformation when placed under a test load is, by analogy, dependent upon the mechanical
properties of its structural members; and these can be likened to the degree of confidence
attached to each constituent hypothesis in an abstract model. The more confidently, or the
more boldly the hypotheses are assumed to be stated, so the model structure is less
flexible, more rigid, more brittle, and the more demonstrative should be the failure of the
test structure.

Quite the opposite, however, is needed for the test of (ii) above. In this, speculation
about a possibly improved specification of the model structure is the objective. The test
draws its strength from the inherent flexibility of the model structure, which can be easily
moulded to the patterns in the data and which can, therefore, be suggestive of ways in
which to modify hypotheses.

All this, of course, is fine in principle, but not in practice.

2.2 Towards the limits

It is "fine in principle” because of the philosophical underpinnings that can be attached to
what is in effect a Popperian programme of falsifying boldly stated, constituent hypoth-
eses. And such association has uniquely been enabled as a result of using filtering theory
as the conceptual framework for grappling with the problems of identification. In terms of
understanding uncertain environmental systems and the evolution of knowledge
MacFarlane (1990) equally so establishes a strong association between the work of Lewis
and Popper:

Popper's and Lewis’s approaches to knowledge are essentially the same, with different
emphases. Both split concepts from interpretations, and both emphasise the distinct role
of the individual mind in generating and using knowledge. Both regard the acquisition of
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knowledge as an iterative feedback process. Popper emphasises the objectivity of
concepts. and Lewis emphasises the pragmatic role of the individual mind.

It is poor in practice because, first, too many prior assumptions - on {P (1), P,(5,), S(t,),
O(4). R(1)) not to mention the prior estimatexs of lx.a] at 1, -- must be made in order to
implement the filter.

Second, it is equally poor in practice because of the difficulty of absorbing and interpret-
ing the sheer volume of diagnostic information yielded from the filter (i.e.. in the temporal
variations of {P,(¢,), P_(t,)) and the recursive estimates [6(t;), 6Ut,)) themselves). This
was especially true in the more ambitious exercises in model structure identification
attempted at the time, principally in respect of higher-order, state-space descriptions of the
degradation of organic material and the proliferation of algal populations in the Bedford
Ouse River (Beck, 1982: 1983). In anything but the smallest of models it is difficult to
determine unambiguously where the constituent model hypotheses can be said to have
failed. A lack of variation with time of a parameter estimate can result from two causes:
the associated hypothesis is crucial and “correct”; or it is simply redundant (not identifi-
able), and no relevant information has been transferred from the external description of the
system to this particular constituent of its internal description. One might then be able to
resolve this ambiguity of interpretation through inspection of the variations with time of
the diagonal. and then off-diagonal, elements of Pu(t) (although these possibilities were
not greatly exploited at the time). But in short, the self-same sophistication of the
questions that could be asked through the framework of filtering theory had become the
barrier to progress in unscrambling the answers so generated. Precisely the same advantage
that had led to insights into what the problems actually were, had become the cause of
downfall in progress towards their practical solution.

Third, for a progranmme of research that had shunned the use of larger-scale, arguably
"physics-based”, models as vehicles for the interpretation of field data, not least because of
the presumed difficulty of discriminating between key and redundant hypotheses, limits to
the notion of the alternative "small being beautiful" had become apparent. From where, for
example, would one pick a (posterior) hypothesis for replacing a demonstrably failed
hypothesis in a prior model of insufficient content? This is no easier to answer than the
alternative of identifying and casting out a redundant hypothesis from a prior model with
surplus content.  Unlike the input-output models of time-series analysis, there are no
systematic rules for extension or reduction of the number of terms (hypotheses) in the
structure of these conceptual, state-space models.

Fourth. the power of the classical experiments of laboratory science lay presumably in
promoting the possibility of "acts which interpret data in terms of concepts” by reducing
the “set of concepts” under scrutiny to as small a set as possible and by maximising the
scope for acquiring a large volume of the "given data”. In principle, the possibility of
progress in the identification of a model should be enhanced when the order of lu,y) is
very much greater than the order of |x.0t) or. more succinetly, Olu,y) >> Olx,0] (where
order ((7) increases with the number of elements in the respective vectors and, for the
external description, is an increasing function of the density of temporal sampling).
Achieving the condition of Ofu.y] >> Olx.a) can rarely be the case in the analysis of
environmental systems. But where it is, as in the paucity (not simplicity) of the set of
concepts required to describe pollutant transport and dispersion in a river, in combination
with the facility of implementing repeatable dye-tracing experiments with high-frequency
sampling. progress can be dramatic (Beer and Young, 1983; Young and Wallis, 1986). It
may even prompt a shift in paradigm of the set of concepts (Young and Lees. 1993),
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though notably through the formal identification of input-output models cast resolutely in
terms of the external description of the system’s behaviour {u,y|. Such models do not
directly permit reconciliation of the data with the set of concepts, in the sense intended
here. They enable a translation from a "raw", [u,y], to a “refined", {4, 9], external
description of the system’s observed behaviour, where the latter may provoke insights into
the possible nature of [x,a] that are different from those apparent from the former (as, for
example, in understanding what may lie beneath the now celebrated time-series of carbon
dioxide variations in the upper atmosphere; Young et al., 1991).

Such, however, is not the norm, the epitome of which is quite the opposite, i.e., Ofu.y]
<< Olx,a]. Above all, it was this that rendered the conceptual framework of filtering
theory "poor in practice” or, rather more correctly, poor in widespread practice.

We had come to understand better what the problems were, in the process of assisting
these "acts which interpret data in terms of concepts; some principles for their more
systematic resolution had emerged; yet even in the analysis of the relatively small-scale
systems upon which the development of these principles had been based, it was extremely
difficult to make them work well.

3. Uncertainty: the escape to pragmatism

By the mid-1980s the search for a method of resolving the problem of model structure
identification, as posed above, had had to be put to one side. So too, though less con-
sciously and with less speed, had the notion that there might be some “true” structure to
be revealed through systematic reconciliation of the model with the observed patterns of
behaviour.

In retrospect, our view of what was possible had been drifting: away from these more
philosophical and "absolutist" ideas; towards a more pragmatic and “relativistic" position,
This was not without purpose (nor without success) . After all, in the light of the above, it
was natural to ask just what -- at bottom -- would be achievable? And still more so was
this questioning needed, given that even for hydrological systems with copious volumes of
data, it had long been found that it was not possible to recover a uniquely best set of
parameter estimates allowing a match between the model and the observations (Ibbitt and
O’Donnell, 1971; Johnston and Pilgrim, 1976; Sorooshian and Gupta, 1983). Given a
candidate specification of the model structure, [x,a], the imperative was to establish what
choice and form of observation [u,y] would make this internal description identifiable? Or,
put the other way round, what {x,&] could be recovered unambiguously from a give.n
{uy}? In fact, could we ever recover the "true" values of the parameters? And would it
matter if we could not?

3.1 Identifiability: theoretical bounds on the possible

These questions, though seemingly theoretical, have a certain practical significance. In
secking to understand the acidification of surface waters, correct identification of the paths
along which water flows from its impact with the ground and subsequent entry into a
stream is crucial. These flow paths determine the soils and minerals with which the water
has contact, the nature of the chemical interactions experienced and the duration of these
interactions. Their significance is reflected in the values assumed by the various parame-
ters in a conceptual state-space model. Hence there is a distinct need to know what form



302 4. Systems sciences

of observational data Ju,y] -- on water flows, on which natural chemical “tracers"”, at what
sampling frequency, in what sequence, and with what degree of confidence -- will enable
in theory the deterinination of a set of unambiguously estimated values for these parame-
ters.

In other words, by a suitable rearrangement of the sets of "knowns" and "unknowns" in
the previous definitions of state-parameter estimation and model structure identification, it
is possible to develop a definition of a priori identifiability as follows:

Problept #3: A Priori Identifiability

Given a candidate model structure {f.h] and given assumptions about {P, (£}, P {t)
Q(1,)} deterniine which candidate set of observations {u,y], with what degree of uncer-
tainty {S5(£), R(z)), will allow the estimation of [x,a] with an acceptable degree of
micertainty (P (1), P (1)}

This clearly goes beyond the notion of a priori identifiability in the deterministic sense of
Bellman and Astrom (1970), Pohjanpalo (1978). or Godfrey et al. (1982). Here “a priori"
connotes simply the act of establishing what is possible before implementation of the
progamme of observatious in the field, thus giving the problem a title not strictly in
conformity with usage elsewhere (as in Walter and Pronzauto, 1990).

In welcome contradistinction to what has been said earlier, Problem #3 is a problem to
which the framework of filtering theory allows a successful solution (Beck et al., 1990,
Kleissen ¢t al., 1990). This success is bonght at some expense, however, principally in
that: (i) the analysis must be conducted for specific parameterisations &), and may
therefore be but localised; (ii) {6} must be prevented (within the filter) from varying with
time, if there is to be any clarity in interpreting the results of the analysis (this is
accomplished by assnming the hypothetical observations (u,y] available to the filter are
identical with those generated from the nominal refereuce trujectory of the model’s
solution); and (iii) the identifiability of a paranieter must be equated with expansion and
contraction over tine of the elements of the estimation error variance-covariance matrix
P ().

The test of Problem #3 seeks not to determine whether convergent estimates of the
model’s parameters can as such be obtained but is instead designed to explore the way in
which uncertainty is propagated through the model and, in particular, how information (as
the reciprocal of uncertainty) is transferred from the external description of the system
fuyf to the component parts of its internal description [x,ot]. In contrast to the problems of
mode! calibration und model structure identification, whose focus is on the nature of the
estimates of {x,a}, the focus in this test is on the properties of P, (7). Whether, and to
what extent, the eleinents of this matrix contract or expand will be indicative of whether
the constitnent inodel parameters are more or less identifiable. The information-transcri-
bing nmechanism, uniquely associated with the filtering algorithm, is itself revealing of how
access to which observations, and which combinations of field conditions and naturally
perturbing events, can enhance (or corrupt) the confidence attaching to the various parts of
the model.

Yet such analysis, in the context of needing to understand the behuviour of uncertain
environniental systems, is in the end only shadow-boxing. It does uot facilitate acts which
interpret data in terms of concepts. Rather, since it deals with hypothetical data from
contemplated experiments, it merely enables bounds to be set on what is possible for such
reconciliation in the best of all theoretical worlds. This is not, however, without practical
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implications, as, for example, in the design of better pumping tests for the identification of
aquifer paranseters in the characterisation of groundwater fields.

In the real world, as well as in this theoretical world, we now know that the bounds on
what is possible are close by. At most just a handful of parameters o can be recovered
unambiguously from a single input-output pair, monitored with a high frequency
(Hornberger er al. 1985; Beven, 1989; Jakeman et al., 1990; Kleissen et al., 1990). This
has the ring of relativism about it, in the sense that we may expect it to hold irrespective
of the scale of resolution of the observations. Yet it may not be a linear property, in the
sense that two input-ontput pairs will probably not permit as many as two handfuls of
mnodel parameters to be recovered. And there is evidence of a theoretical nature suggesting
that the presence of nonlinearities in the candidate model will degrade still further the
“degree” of identifiability of the parameters (Kleissen ef al., 1990).

A number -- and it is notably small -- has been placed on what is achievable.

3.2 Sparseness of the data: progress under substantial uncertainty
We might draw at least three conclusions from this experience, that:

(i)  most, if not vistually all, of the conceptual state-space models used to describe the
behaviour of environmental systems are not identifiable and are therefore incapable
of unambiguous reconciliation with the given data (which is not to say that they
are not useful models);

(ii) the entire concept of identifiability is, as a consequence of (i), simply not useful (or
that our quantitative analysis of it is defective); or

(iii} from the pragmatic point of view of making predictions, this inability to eliminate
ambiguity is not material (what matters is that the ambiguity is apparent and its
implications quantifiable).

This last is an area in which progress has been made, although it might in fact be seen as
something of a retreat: from seeking the ideal of acquiring a uniquely optimal set of
parameter estimates; through a search for a cluster of merely relatively good candidate
parameterisations of the model; to being content with just an acceptable set of such
candidate parameterisations.

This retreat was not actually a matter of conscious pursuit. 1ts origins were born of
other motivations. One of these was the recognition (in the late 1970s) that Ofu,y] may be
so small as to amount to little more than merely a subjective, expert, qualitative appreci-
ation, {"u","y"] say, of the external description of the system’s behaviour. So common was
(and still is) this the case -- of “rich" sets of concepts confronted with "impoverished" sets
of sparse data -- that the absence until then of systematic methods enabling some kind of
progress to be made under these conditions, is a curiosity (Hornberger and Spear, 1981).
Having thus shifted fromn a quantitative to a qualitative description of observed behaviour,
expectations of what is possible from the acts which interpret the field data in terms of a
set of concepts must similarly so be drawn back. One can at most investigate which,
among the many constituent mechanisms (hypotheses) in this rich set of concepts, are key
(and which redundant) to discriminating between the model's capacity to generate what is
defined as acceptable behaviour and its complement (not-the-behaviour). Crucially, it
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would then be to a better understanding of the nature of these key mechanisms so
identified that the inevitably limited capacity for implementing field experiments should
gainfully be directed (Hornberger and Spear. [980: Spear and Hornberger. 1980).

In the face of gross uncertainty the distinction sought in this analysis. between key and
redundant mechanisms, must necessarily be based on a sufficiently large sample of
randomly generated candidate model parameterisations. Each parameterisation classified as
acceptable constitutes an equally probable interpretation of past behaviour so that. with a
twist to the original intention of the analysis. the ensemble of such acceptable parameteri-
sations may be used for computing an ensemble of predictions (Fedra er al.. 1981). Any
ambiguity. distortion, or uncertainty residing in the model following this justifiably passing
attempt at its reconciliation with the data. is thereby apparent and quantitatively reflected
in its predictions of future behaviour.

3.3 Identifiability, predictability and pragmatism

We can thus escape to the pragmatism of making predictions: and there have been many
subsequent examples of precisely this (Keesman and van Straten. 1991: Klepper et al..
1991; Beck and Halfon, 1991: and Beven and Binley. 1992). Again, in the case of surface
water acidification. all the attraction of so doing is readily evident. For a situation of
Olu.y] >> O[x.a] even the best attempts at identification lead to ambiguous. if not contra-
dictory. interpretations of past behaviour: [x.a]' and [x.a]®. In effect. it is found that the
water has contact either strictly with an upper soil horizon alone or strictly with both an
upper and lower soil horizons (Beck et al.. 1990). Either could be used for predictive
purposes.

The interesting question -- called herein a question of "predictability” (albeit not in the
terms discussed by Wegman (1989), for example) -- is whether this makes any material
difference.  More formally, and once more rearranging the sets of "knowns" and
"unknowns" in the preceding problem definitions, we have:

Problem #4: Predictability

Given [f.h:]. together with assumptions about {Q(1,). S(t), Ry}, and two (or m0r|ez)
interpretations of past behaviour crystallised through [xal'? and {P_(1y). Puu(tN)l'.
determine whether {y! diflers significantly from [y} in the light of (T and (TG

Here |y]'? are understood to be output responses of interest. upon which decisions may be
based. and which are generated from [x.ct]"? respectively: {T(f)}' are the respective error
variance-covariance matrices associated with [y]'%. It should also be noted that r, now
refers to discrete instants in time over a forecasting horizon starting at ty. for which a
future pattern of input disturbances u is assumed to be known, albeit with a degree of
uncertainty (as expressed by S(1,)).

It will come as no surprise that this problem can be approximately solved within the
context of filtering theory, simply by assuming that the next sampling instant for obser-
ving the system's behaviour is infinitely far into the future (Beck. 1983: Beck and Halfon,
1991).
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4. Contemporary scene

If there is a "true” structure believed to govem the behaviour of the system -- which is
essentially the assumption that motivated the developments of the 1970s (Section 2 above)
-~ our goal may not necessarily be to have this “truth” revealed by systernatic and
protracted attempts at reconciliation of the model with the data. Our outlook on the way in
which we seek to understand the world around us and, perhaps more pragmatically, to
utilise this understanding, has changed. Progress throughout the 1980s (as set out in
Section 3) has brought to us to a position in which we recognise that each successive
attemnpt at reconciling the model with the data will result in a distorted interpretation of
what is observed: this distortion can be quantified (not least within the conceptual
framework of filtering theory); its effects can be faithfully reflected in the predictions
generated from the distorted model structure: and the task is then to choose between
alternative courses of policy and regulatory action in a manner that is maximally insensi-
tive to this ambiguity and distortion. In a sense too, the field has drawn back from the
search for optimality in the performance of its models.

4.1 Behaviour under novel conditions: reachable futures

There is a paradox. The greater the degree of extrapolation from past conditions, so the
greater must be the reliance on a model as the instrument of prediction; hence. the greater
the desirability of being able to quantify the reliability of the model. yet the greater is the
degree of difficulty in doing just this. What is more, the contemporary problems of
environmental protection are increasingly of such a form where prediction of behaviour
under quite novel conditions is called for. For example, there is a need to predict the fate
of utterly novel chemicals in the environment before they are released into that environ-
ment. Or alternatively. in the case of surface water acidification, there is a need to
extrapolate from small-scale catchments observed over a matter of years to behaviour over
entire continental regions and over decades into the future.

We are strongly accustomed to the idea of behaviour being specified in terms of time-
series of observations of the system’s inputs and outputs [u,y]. This is not only rarely the
case, as already acknowledged in the work of Hornberger, Spear and Young (Young ef al.,
1978: Hornberger and Spear, 1980: and Spear and Homberger, 1980), it is also very
restrictive. The notion that [u.y] can be replaced by more qualitative. linguistic descriptors
["w” , "y"] may come to have a profoundly liberating influence on the subject of under-
standing uncertain environmental systems.

The analyst has immense freedom to be creative in defining the task or purpose, of a
model. Fitting the historical data as closely possible has been a traditional such purpose,
although this was not an end in itself, merely a means to a better understanding of the
system’s behaviour. In their seminal work Young et al. (1978) were concerned to locate a
sample of randomly generated values for the model’s parameters that enabled the model
outputs to satisfy certain crude constraints, i.e.. ["u", "y"], on what is defined (not actually
observed) to be an acceptable statement of past behaviour. Yet if behaviour can be so
defined for the past. so too can it be for the future (Beck. 1987, 1991), such that the task
shifts to that of locating a sample of randomly generated values for the model’s parame-
ters that enable the model outputs to match certain crude constraints on what has been
defined to be radically different behaviour of the system in the future.

The questions of interest become ones of whether and how a prespecified pattern of



306 4, Systems sciences

future behaviour is, as it were, "reachable” (Beck, 1991). They can formally be defined
thus:

Problem #5: Reachable Futures

Given [£.h"u") and ["y"]). a prespecified pattern of furre output responses (that may be
radically different from those of the past), determine from |"x", "o which constituent
parameters Ja|* are key to enabling the model to generate ["y"| and which Jalf are re-

dundant.

Here {"u" . "y"} has been assumed, loosely speaking, to subsume the previous use of [u.yl
and [S(r).R(1)) and likewise ["x", "] subsumes [x,ol and [P, (1), Pn). QUL
Though this may seem a novel problem at first sight, it is not. It is merely a modest
rearrangement of the more familiar control problem of finding what input, regulatory
action {u] (as onnosed to Ja]) will transfer |y] to some desired performance level [y"]. In
practice, answers to such questions are of current interest in determining. for example,
what aspects of a lake's biochemistry, possibly in combination with which changes in the
lake's local climate. will lead to an expressly feared radical change of behaviour in the
future.

But to turn matters entirely on their head. if such future responses |"y"| are truly
radically different from those of the past. then in theory the values of [ec} thus identified
ought strictly not to be identifiable (or at most barely identifiable) from the observed
record of past behaviour. Now this, if a sensible assertion, would make a virtue out of a
lack of model identifiability! Indeed, it provides pointers for where to search -- within the
low amplitude, perhaps relatively low-frequency noise of the short records of past
behaviour -- for the barely identifiable seeds (constituent mechanisms) of the radically
different behaviour that is feared in the future. We have been preoccupied with identifying
the major. dominant modes of behaviour captured unambiguously in the “signal”. Yet it
may well be the minor modes of behaviour, buried within the "noise” at the fringes of our
understanding. that have the capacity of becoming the dominant modes of future behav-
our.

4.2 Filtering theory: a renaissance

In the end. then. there is a distinct impression of things tuming back on themselves,
perhaps nowhere more so than in the revival of interest in filtering theory as a means of
solving the problem of model structure identification. For we also need pointers, as
observed in Section 2. for where to search for a (posterior) hypothesis for replacing a
demonstrably failed hypothesis in a prior imodel of insufficient content.

In 1979 Ljung published a paper on a modified form of extended Kalman filter (let us
say LEKF for short) that would improve the estimation of parameters in a conceptual,
state-space model (Ljung. 1979). The attraction and potential of this algorithm for the
purposes of identifying the model’s structure were immediately obvious (Beck, 1987). It
held out the possibility, among other advantages. of changing significantly the composition
of two of the most important practical difficulties of solving this problem. because (with
reference back to Section 2): :

(i) It reduced the nwmber of arbitrary prior assumptions that had been necessary (o
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implement the EKF, specifically from the plethora of [P, (t,), P.(t,). S(t), O(t),
R(1)) to just (P, (1), S(), R(1))

(ii) It provided access to estimates not only of {x(1,), c(t,)] but also the elements of the
gain matrix K(1,). the focal point of the feedback mechanism whereby the filter
modulates the account taken of the mismatch between theory and observation
according to the balance of the uncertainties attaching to the model and the data.

The balance between "prior assumptions” and "posterior performance”, as gauged not just
by [£(r)), 6(t)), nor merely with (P (1)) in addition, but now also with K(1,), has been
markedly shifted towards the latter. Indeed. the very way in which the set of concepts are
reconciled with the given data -- through use of the filter’s gain matrix -- has been made
more sensitive to the confrontation of the one "element of knowledge"” with the other.

The potential of Ljung’s algorithim seems to have remained largely unrealised since its

- publication, and undoubtedly so in the field of environmental systems analysis, at least

until very recently, that is (Stigter, 1993). In fact, liberated thus from the confines of a
conventional view of filtering theory, all manner of interesting questions may be opened
up. For example:

(1) Does the LEKF have a useful directional property, in the sense of revealing
through its "posterior performance” (rather than by "prior assumption”) to which

constituent hypotheses in the model the failure to match the given observations is
due?

(ii) Should the gain matrix of a filter be chosen not -- as is conventionally the case --
in order to minimise the variance of the state-parameter estimation errors but rather
to maximise sensitivity to the detection of a structural error or the "seeds" of a
structural change”?

(iii) Or indeed, should the gain matrix be specified through a neural net trained to
detect structural anomalies?

These, however, are already in the realm of speculation for the distant future.

5. In conclusion

Progress can seem painfully slow at times. For many of the ideas reviewed towards the
end of this paper are not new. It is really rather disquieting, for example, to have to draw
attention to the gap of fourteen years between the publication of Ljung’s algorithm and its
subsequent successful implementation on a problem of interest to this paper. What is
rather different from previous such reflections is the organisation of this review around
Lewis’s three-element characterisation of knowledge: (i) the given data; (ii) a set of
concepts; and (iii) acts which interpret data in terms of concepts. It is this last that has
been of principal interest, albeit within the context of making predictions of future
behaviour, and inevitably under uncertainty.

At the heart of filtering theory -- as admittedly with any algorithm of system identifica-
tion - is a feedback mechanism of correction, adaptation and learning. Drawing a parallel
with Lewis's third element of knowledge, what the filter achieves so elegantly is modula-
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tion (through its gain matrix) of the account taken of the mismatch between the data and
the set of concepts according to the balance of whether the data are believed to be less
uncertain than the set of concepts, or vice-versa. Moreover, in contrast to other algorithms,
estimated values of the model’s parameters can be generated as a function of time. These
estimates are accompanied by estimates of the variance of the parameter estimation errors,
which are also available as a function of tirmne.

The conceptual framework of filtering theory facilitates insights of a general nature into
the mechanics of reconciling the set of concepts with the given data. Fluctuations over
time of the reconstructed model parameter estimates are indicative of the failure (or
success) of the constituent hypotheses of the model. By analogy with a physical engineer-
ing structure, these fluctuations are conditioned upon the strength of the hypotheses and
their ability to withstand the various loads imposed on the structure (as a consequence of
the mismatch between the model and the data). Such an insight has a very strong
association with Popper’s view on the acquisition of knowledge. The fundamental
difficulties with this, however, are that: (i) the principles of model structure identification
o derived can barely be made to work successfully for even the simplest of models; (ii)
much of any distortion of the model's structure may be governed by a plethora of
notoriously arbitrary prior assumptions: (i) the evidence gathered from the test is
voluminous and not easily distilled into the essence of understanding how the model’s
structure might be improved; and (iv) the algorithims of filtering theory are being used for
a purpose for which they were never intended.

Given this impasse it was easier to make progress on other fronts.

Thus first, decisions are made on the basis of predictions. All predictions are subject to
uncertainty; this uncertainty derives in part from the residual uncertainty in the model; and
the pattern of residual uncertainty in the model is a function of whatever distortion, or
ambiguity, remains as a result of all the preceding attempts to recondile the set of
concepts with the data. What matters is whether or not the same decision should be made
in the light of these distortions and ambiguities. This is a line of enquiry we can success-
fully pursue, using, if nothing else, the ubiquitous Monte Carlo simulation. Pragmatically,
it may not matter that the distortions are incapable of rectification and the ambiguities
incapable of resolution. It is crucially important that they can be quantified, however,
through measures of model uncertainty, and their consequences accounted for in the
propagation of prediction errors.

Second, and entirely theoretically, if there were a need to rtesolve the ambiguities in
understanding the past, what form of field observations with what accuracy would be
needed? This too is a question for which there is a means of obtaining an answer.
Contraction and expansion of the uncertainty attaching to the model’s parameter estimates,
as uniquely illuminated through the estimated variance-covariance matrices of a filtering
algorithm, determine when information in the external description of the system (the data)
can be productively and counter-productively brought to bear on the constituents of its
internal description (the model).

Third. the obligation of forecasting the future under conditions substantially different
from those of the past will be the downfall of most, if not all, models. There is a dilemma
(Beck, 1983). The "large” model -- that will result from including everything of conceiv-
able relevance to the problem at hand -- may indeed be capable of predicting "correctly”
such radically different behaviour; but we would place little confidence in this prediction.
The “small” model -- that will result from any honest analysis of the past data -- may
quite "incorrectly” predict behaviour in the future essentially similar to that of the past.
worse still. we might place great confidence in this erroneous prediction. There is. of
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course, no way in which we could have fore-knowledge of either of these results. Instead
more fruitful progress can be made in identifying which constituent mech‘anist-ns in thé
model, and/or what degree of climate change, for instance, may be key to the reaching (or
?;)ttzrzf some predefined radically different “target” behaviour of the given system in the

Last, and turning to matters of contemporary interest, progress may now be possible in
two of the principal areas where the original insights of filtering theory failed nevertheless
to enfible the development of practical solutions to the problems of interpreting the givé;l
data'ln terms of a set of concepts. Certain modifications of the basic algorithms allow us
to (:llSan.\'e with some of the arbitrary prior assumptions and to have access to a greaier
variety of fee * dback, diagnostic information. It remains to be seen whether there are

ways of manipulating all of this information for the i ili
a : s purposes of accelerating a cili-
ation of the model with the data. g @ reconcll
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