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1. From Molecular Biology to Systems Biology .

The 20® cenmry witnessed the growth of biology into a major interdisciplinary field.
Especially, the.elucidation of the ﬁolecular organizéu‘ori of living cells serves as an example:
e.g. the discovery of enzymes {cf. Chapter 7 in Bechtel & Richardson (23))", of metabolic
pathways (the elucidation of glycolysis was finished by the end of 1930"s (23)), of
compartmentation (organelles), of ailosteric regulatiori (290, 389}, of the structure of DNA
(403), of the proton motive force (264), of the central dogma of molecular biclogy (cf. 402),
and the determination of the DNA sequences of many organisms, including man (396). These
are all examples of major biological and scientific achievements that have had, and are
anticipated to continue to have, large consequences for technology, society, and for our
understanding of nature, At present, the accumulated knowledge of the properties of the
macromolecules that make up living cells is daunting in magnitude and continues to grow at
an enormous pace.

Nowadays, it has become relatively straightforward to obtain organism-wide data sets
(X-omics data sets) of the levels of mRNAs (transcriptomics), proteins (proteomics),
metabolites {metabolomics), and fluxes (fluxomics) for populations of cells growing at
defined and controlled conditions (e.g. (13, 30, 54, 74, 86,99, 115, 126)). With such methods
a large propottion of the average state of a population of cells can be assessed. The
simultancous determination of those data sets should enable the determination of the cell’s
state almost in its entirety. The integration of X-omics data sets with computational and
theoretical methods is anticipated to become important (153, 158, 211, 415). Technology that
will facilitate the analysis of the spatial organization of cells by analysis of the
(spatiotemporal) states of single cells is being developed actively (60, 169, 170, 220, 252).
All of this illustrates that the developments in contemporary biology have become highly
dependent on technological innovations.

The wezlth of biological data that is now being generated is being stored in enormous
databases. They contain, for example: the DNA sequence of entire organisms, the functional
annotation of their genes, the three-dimensional structure of many of their proteins, and the
structure of their biochemical reaction networks (metabolic pathways, signaling networks, and
genetic networks). These databases continue to grow in number and in sophistication (122).
Nowadays we can compare entirc organisms regarding the organization of their genome on

the basis of genome-sequence homology, i.e. which proteins are liksly to be present or not.

" In the first decade of 1900, most biochemizal research was done in yeast - ‘¢nzyme’ means 'in yeast'.
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This facilitates the analysis of the evolutionary history of and relationships among species. In
addition, it allows for the formulation of a hypothesis on the stoichiometric structure of the
biochemical reaction network of sequenced organisms, of which only a limited amount of
biochemical data, or none at all, js available, on basis of the comparison of its unannotated
genome with the annotated genomes of related organisms. Bioinformatics is the brauch of
biology that maintains and analyses these databases and has become an extremely data-rich
and promising discipline.

Despite the enormous achievements in molecular biology, genetics biochemistry, and
cellular biology, precise manipulation of living cells for medical, technological, or scientific
purposes remains problematic. These three disciplines have in common that their focus is
intralevel, i.e. on either the behavior of the components of cells or the behavior of cells as a
whole. At the present time, many scientists argue that the integration of these disciplines — to
form an interlevel systems biology — should enable biology to take the next step forward (see
the special issue on systems biology in Science (1™ of March issue of Science, 295, 2002) and
in Nature (14™ of November issue of Nature, 420, 2002) and (13, 153, 158, 211, 415)).

The need for a systems biology approach becomes evident from an example taken
from oncology. Cancerous cells display common characteristics majoly at the systemic
cellular level, i.e. dysregulated growth of cells, These systemic aberrations are due to the
malfunctioning of a number of cellular cémponenrs, (proteins), which uitimate!y results from
a number of mutations in the genome of this particular cell induced by, for instance, UV-
radfation or smoking. To be able to restore ‘healthy” cellular functioning, ideally a number of
specific processes have to be targeted by the administration of drugs (inhibitors or activators
of cellular processes), In most practical cases, however, it is not known to what extent
particular processes contribute to systemic functioning in cancerous cells and therefore it is
not clear which processes have to be targeted. (Accordingly, present day cancer therapy
focuses for a large part on the elimination of the cancerous cells.} Metabolic contrel analysis

{MCA) has iilustrated that the control of particular processes on systemic propetties is likely
to be distributed over many different processes and that the control distribution changes with
the state of the cell (134, 179); for an illustration of the application of MCA to eukaryotic
signal transduction see Homberg er al. (154, 155) and Krauss et al. (226, 227). MCA
indicates that qualitative data on the importance of a particular processes for systemic
functioning terely suffices to identify drug targets (34, 259). Cell biology appears to be in
need of a method that links the behavior of macromolecules to the behavior of cells in a

quantitative manner. A critical component in this methed seems to be the development and
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analysis of detailed kinetic models of signaling networks.

The disciplings that analyse macromolecular and cellular behavior have classically
een biochemistry and physiology, respectively. These disciplines were once very large, but
they have lost terrain after the molecular-genetic revolution that eventually led to the rise of
the molecular biology and, more recenily, of X—omicg {i.e. metabolomics, transcriptomics,
proteomics, fluxomics). At the same time, advances in biophysics, immunology, and
microscopy have pushed cell physiology more towards molecular-cell biology; where the
relation between the cell and its constituent molecules is the focus. At present, the research
into natworks of interacting macromolecules as a bridge between macromolecular and cellular

is becoming a promising field under the name of ‘Systems Biology” {158, 211, 409). Systems

‘i biology investigates how the behavior of cells is brought about by the interactions and

spatiotemporal organization of their molecular constituents and, therefore, its emphasis differs
from that of biochemistry (which sought function in individual macromolecules) and
physiology (which describes function without referring to the molecules basis). Thus systems
biology aims at becoming an inferleve! science that connects two levels of cell-biological
organization, i.e. the cell and its constituents. In contrast, biochemistry and physiclogy
appear more intralevel in their focus.

The nonlinearity of the cell, considered as a system of organized and interacting
(macro)molecules, makes the use of mathematical models of biochemical networks practically
a necessity (see Section 2.8 for an example). Mathematical models constructed on the basis
of the accurately measured kinetic and physicochemical properties of the macromolecules and
the structure of the network, i.e. so-called silicon cells (409), aim at being as precise replicas
We They *opcrationalize’ molecular-bmlogzcal and biochemical
xnowledge conform the laws of physics and allow for the calculation of the systemic
comsequences of particular macromolecular properties in the context of the networking with
other macromolecules; they attempt to bridge the gap between molecules and cells.
Subsequently, the model predictions can be tested in the laboratory; lack of correspondence
then points at incomplete molecular or organizational understanding and need for model
improvement. The iteration between mathematical-model predictions, subsequent testing in
the laboratory, and model refinement is a promising paradigm that has proven to be successful

in physics and chemistry and has now become within reach of cell biology.
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2. The description of cellular networks ir szlzco

2.1 Intracellular argamzal:on

Many mathematical models of cells attempt to reconstruct thevbehavior of macromolecules in
vivo. Hereby they assist in describing and even analyzing the cellular mechanisms at work (9,
137, 387, 388, 407). However, the construction of gquantitative mathematical models of
cellular phenomena requires a critical evaluation of the organization of the interior of cells.
The cellular milieu in which the interactions among the molecules take place is likely to be far
from the conditions generally applied ir vitro (93) (cf. Figure 1; Table 1). One of the more

obvious determinants of the complicated interior of an eukaryotic cell is its spatial

organization, e.g. arising from compartmentalization in organelles or from diffusion

limitation. A dynamic spatial crganization (e.g. waves) may resnlt from diffusion gradients
and unonlinear processes (186). Macromolecular crowding may lead to decreased diffusion |
coefficients of macromolecules as compared to their values in more diluted environment as
frequently used in vitro {94). Macromelecular crowding can also influence the values of rate
constants and, concomitantly, of dissociation and association constants (92, 130, 263, 324,
341, 385, 433). Concentration gradients caused by low diffusion rates could lead to
spatiotemporal structure formation including cytosolic waves of intermediates in signaling
networks (4?_, 186). Confinement of proceéses to areas adjacent to membranes may enhance
association equilibria (193). Macromolecular crowding may also enhance the occurrence of
channeiling: the direct transfer of catalytic products by donor enzymes to acceptor enzymes as
substrates — in many cases these enzymes are part of large enzyme complexes (286, 324).
Another source of complexity in the organization of cells is the stochastic nature of
many intraccllular processes. The occurrence of low molecule numbers or severe nonlinearity

may increase the magnitude of fluctuations in particle numbers and increase the significance

‘ of stochastic behavior of processes (8, 88-90, 251). Recently, it was shown that biochiemical

networks that operate in regimes with zero-order kinetics may display large fluctuations even
if the copy numbers of the individual molecular species are on the order of thousands (83,
303). This illustrates that the generally applied rule of thumb that for processes removed from
thermodynamic equilibrium fluctuations in the concentration of an intermediate x are
approximately of the order of the inverse of the square root of its average (macroscopic) copy
number 7"’_’: ie. l/ J<x>, has only limited validity. Stochastic fluctuations may be

particularly important in systems that are close to criticality (a saddle-node bifurcation) or in

signaling networks that contain zero-order ultrasensitive signaling cycles (e.g. 90, 301).
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The aforementioned intracel{ular phenomena may influence each other in vivo in non-
intuitive ways. This may result in differences between the dynamics of ceilular networks in
vivo and the networks reconstructed in sifice on the bases of in vitro kinetic data. On the
other hand, there are many examples where in vifro kinetic data proved to suffice in models
that did not include diffusion, crowding, and stochastic descriptions (e.g. 17, 146, 378). Only
in some cases, discrepancies between in vivo and in’sifico behavior necessitate the use of
more complicated modeling approaches. For instance, low diffusion coefficients may
necessitate the use of partial differential equations (reaction-diffusion equations (e.g. 111)}
whereas low particle numbers or the possibility of critical behavior may necessitate usage of
the master equation for the description of stochastic phenomena (e.g. 8, 89, 90). Other
approaches include particle-based modeling and hybrid modeling (combining ordinary,
partial, and stochastic differential equations). Another possibility for discrepancies between
in vive and in silico behavior is that the kinetic data have 10 be determined ir vivo rather than
in vitro. [n Figure 2 the differences of various modeling descriptions on the dynamics of

metabolic systems is illustrated with an example.

Figure 1.

An artist impression of E. coli bused on the relative dimensions of its macromolecuiar constituents (123). The
cell wall is displayed (harboring a protruding flageltum). which survounds the cytasol. The cytosol containg
proteins, ribosomes, mRN/As. DNA teoiled around bacterial nucleosomes), and DNA polymerases. Used with

permission from David Goodsell (htip-fiwww.seripps.edi/pub/goodsell)).
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2.2 Intraceliular processes )

Not only the type of modeling description, e.g withywithout diffusion or with/without
stochast:city, is to be decided upon, bat also the level of biochemical détaii has .to be chosen
(Figure 2 & 3). The latter aspect of network model construction is not entirely independent of
what was discussed in the previous section, but for simplicity we will discuss this separately.
The level of biochemical detail depends to a large extent on the Ei_rge_ scale of interest, the
quantitative nature of the question, and the quality and the amount of the experimental data
available. For instance, if the dynamics of metabolites upon a perturbation of metabolism is
of interest, enzymes can be generally approximated with quasi-steady state kinetics, e.g. by
Michaelis-Menten type rate equations, provided certain dynamic criteria are met (¢f. (216,
321, 353)). On the other hand, if shorter time scales are of interest, the intra-enzymatic
conversions should be considered; that is, the dynamics of enzyme-substrate complexes
themselves (333).

Table 1. Characteristics of Escherichia coli,

Characieristic Quantiry

Shape Cylinder with spherical pales

Diameter 0,5-1,5 pm (1}

Length 24 um (1)

VolumelArez 2.9 wn'12.6 pm’

Muss of oag cell 12 pa (7% water and 30% biomass) (2)
Diffusion 2onstant Prolein: 3.6-7.7 pri? 57 7 Glucose: 670 pm’ 5™ (L
Geneme s:ze 4,6%10" bp (4377 genes: 4290 proteins rest RNAs) (3)
Kinds of molecules 1500 {2)

Macromeolecules {34 of toial drw) 96.1 (2} (4

Soluble pool (% dtw) 291

Inorganic ions (% of total d-w) 1

Doubling thme 20-60 minutes

Ly

2. (162} (growik conditions. mineral medium, gheeose, doubling time 40 minutess).
3. http/users.ica.com/ikimball.ma.ultranet/BiologyPages/G/GenomeSizes. html
4, proteinRNA/DNA/Lipid/Lipid/polysaccharide/Peptidoglycan/Glycogen=55/20,5/3.1/9,1/3.4/2.5/2.5 {161)

There exist also models that do not contain any kinetic information on the processes
but solely contain th: stoichiometry of the reactions that make up the network. (For instance,
for the reaction 2A<>A; the stoichiometric coefficient of A and A; in®the direction of

synthesis of Az is -2 and 1, respectively.) Such models will be referred to as stoichiometric
ot
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ino/de_'ls {Figure 3). Stoichiometric models are mostly constructed for analysi; of the steady-
state flux properties of metabolic networks to address problems related to, for instance; the
flux distribution (374), the ﬂe'xibility and robustness of metabolism (368), the flux
distribution with optimal yield of some desire¢ product (344), the identification of minimal
cut sets (214) and enzyme subsets (294), or the viability of mutarts (345). (For a recent
application to signaling networks see (100).) ’

Meniseticon

16*“'
epe
B.
kil ]
)| 4—-—Ir'—) T — xz.ﬂ—l' 3
C.

[x1]

0.00 (X0}

0.02 0.0 s

time [-]

Figure 2.

Different modeling methods and descriptions itlustrated for one metabolic pothway. Figure A and B depict the
same pathway but with different levels of coarse graining. In A, the individuol binding events dare considered
and described by mass action kinetics (MA). In B, the enzymes are treated as who'es described by quasi-sieady
state enzyme kinctics (OS5} in C. the differenices in the dynamics of x; is shown between: (i} the mesoscopic
description In termy of the master equation (116} and the macroscopic description in terms of ode's using mess
actlon kinerics fe.g. 137). and (ii} the macroscopic descriptions in terms of quasi-steady state (qss) enzyme
kinetics {353) and a lin-log approximation (NET) of the enzyme rate equations. The lin-lag approximation is
based on description of rates of enzpmes by irreversibie thermodynamics (397, 407). The mesoscopic
description is the fluctnating fine around the selution oblained with mass-action biretics. Nete that MA and 055

abtain the same steady state_for x; but that NET deseribey a different steady state value.
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Roughly, two types of kir;q_tic models can be discerned (Figure 3). The first type is the
core model. ije models have"ﬂc;m“vsimpliﬁed kinetics and simplified stoichiometric
Mg. lumped enzyme reactions. Examples of simplified kinetics are simplified rate
equations {e.g. irreversible, product independent, simplified mechanism, etc.) and educatec
guesses for kinetic constants. This means that these models are less detailed and that they
mimic i vivo behavior qualitatively at best. Their advantage is that they are easy to analyze
and that they are small. The second type of kinetic mode! is the detailed model with bott
exactly detenmined stoichiometric structure and kinetic properties, ie. a silicon cel:
{www.jjj.bio.vinl). Glycelytic oscillations provide an interesting example of a biologica
phenomenon where both core medels (121, 354) and detailed models (157, 310) have beer.
used. Table 2 compares the different models of cellular networks according to five criteria.
Clearly, the detailed model is the most complete description but, therefore, also hard ic
analyze to obtain specific explanations for behavior,

Stoichiometric and kinetic analysis of cellular networks is combined in ths analysis of
the dynamics and the contro} of cellutar networks as will be shown in some detail in the nex:

sections.

structure of
ceflular network

stoichiometric regulatory
(mass flow) fallosteric interactions)

Kinetic properites of
molecules
"

stoichiometric mode! kinetic model

core mode! detailed modet
(qualitative) {quaniitative)

Figure 3.

Different kinds of models can be constructed for cellular networks. The model descriptions differ with respect
the type of information on the celhdlar nerwork and the Ievel of detail that is used  This scheme couid be
expanded by including models take into accoumt additionally, the spatial organization of the cetiular nerwork
macromoleculur erowding andfor the stochastic nature of processes, but, for reasons of simplicity, this is no!

shown,




Table 2. Comparison of three different types of models of cellular networks.

Model type Quantitative ~ Dynamics Regulation  Kinetics Analyzability

Stoichiometric | + - o . +
Cere 3 + + +f- +
Detailed + + + + %

" for an exception see (67) & (241).

2.3. Dynamics of biochemical reaction networks

The networks considered here will be described in terms of autonomous ordinary differential
equations (ode’s); that is, it will be assumed that mass transport by diffusion is sufficiently
fast to prevent the development of concentration gradients and that fluctustions in
concentrations are too small to determine systemic behavior. In addition, we will assume that
the volume of the cellular system remains constant over time (for a relaxation of this
assumption see (321}). We will use the following notation: scalars, vectors and matrices will
be denoted by normat face, bold normal face and bold capital letters, respectively — with the
flux vector J as an exception,

The dynamics of a cellular network composed of » reactions (e.g. membrane transport,
dissociation or association events, catalytic coaversioms, covalent modifications) and m
variable intermediates {e.g. metabolites, enzymes, transcription factors, mRNA’s) can be
captured in terms of m ode’s that describe the rates of change of the concentrations of the m

variable species at time ¢ and constitute the mass balances (137):
d
-d—ts(!.P)=F(S(f‘D)'P)=N'V(S(1,P),P) (1)

The mx! vector s{t,p) denotes the concentrations of all the molecules with variable
cencentrations at time #: it represents the state of the cellular network at time 7. It additionally
depends on parameters contained in the vector p that characterize: (i) the kinetic and
thermodynamic properties of the molecular constituents (e.g. half-saturation constants (K,
maximal rates (Vyax), equilibrium counstants {Kgq), dissociation constants (Kp)), (ii) the
environment {constant (intra- or extracellular) concentrations, temperature), and (iii) the
concentrations of the variable intermediates at time zero (5¢=8(0,p)). The mxr stoichiometric
mateix N contains the stoichiometry of the cellular network, e.g. a positive (or negative) (i,f)-
th entry 6f N givés the number of molecules 5; produced (or consumed) by the j-th reaction v;

of the rx] rate vector v. The stoichiometric matrix is identical to the matrix 8§/dv (with
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$ =ds/at). The changes in the rates at time ¢ can be obtained from, ¥ = dv/és$.

Many metabolites take part in moiety-conservation relationships. These relationships
are linear combinations of concentrations of metabolites that remain constant within a
particular time window and generally involve metabolites that have no net transport in or out
of the cell, e.g. the total phosphate concentration Pr on a particular time scale can, for
instance, obey Pr=Pi+AMP+2ADP+3ATP (assuming no import and export of Pi). In seme
cases, moiety-conservation relationships between metabolites are readily recognized and may
be taken into account by resolving to descriptions in terms of attractive independent variables
such as the ATP/ADP or NADH/NAD ratios (416). In complicated networks it is often hard
to recognize the moiety-conservation relationships and a more systematic approach is
necessary. These relationships are reflected by linear dependencies berween the rows of the
stoichiometric matrix N (309), The number of independent metabolites equals the rank of the
stoichiometric N and is demoted by my. Linearty-dependent rows can be identified by row
reduction into echelon form (¢f. (63}), where software packages such as Mathematica, Maple,
Gepasi (256, 257), Jdesigner or Jarnac can be of assistance, Each moiety-conservation
relationship makes the concentration of one metabolite dependent on the concentrations of
other metabolites. Thus the number of dependent metabolite concentrations equals the
number of moiety-conservation relationships, fe. m-my The metabolite vector can be
decomposed into two subvectors: a subvector that contains independent variable
concentrations and a subvector that contains dependent variables, ie. x and x, respectively.
in other words, s=(x,x%)T (with superscript “T” denoting the transpose of a matrix or a vector).
The decomposition of s can be paralleled by a decomposition of N into [N%N’]7, which has

the following consequences for the description of the dynamics of the network (309):

d

- Xep= N°v(x(t,p),x” (x(¢,p)), p) (2a)
1

4 dfx o |d 14 d .

=8 " -|ox® | Lx=| | Lx=pLy=Litv=

&’ dt[x”] %x“ a .[L}drx " v=Nv (@)

These equations indicate that the dynamics of the dependent intermediates can be obtained
from the dynamics of independent intermediates. A simple method to compute the L matrix
is from (137, 334):

L'N'=N'" = [-L I]»[:‘i}o
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" Themairix [-1' [ is defined as the conservation matrix G ard so we obtain:
GN=0¢ = NG =0
Which means that L can be obtained from the right nullspace of N” or from the left nullspace

of N. Alternative methods for determining the L matrix can be found in Sauro & Ingalls
(334).

2.4. Description of rates of processes

Entries of the rate vector v are equations that characterize the dependency-of a rate of a
particular process on the concentration of the enzyme, on the concentrations of the substrates,
the products, and the effector molecules, and on the kinetic parameters of the process, For
instance, the rate of enzyme j that catalyzes a single-substrate (concentration: S) single-
product (concentration: ) reaction v; and which is inhibited by a noncompetitive effector
{concentration; 7} can be described by a reversible product-dependent rate equation such as

(of (353)):

proS__y- P p S [I_P/S]
KM.-S‘.J KM.P.; - KM.S.} KEQJ

v, = = 3
I S P I 5 P
1+ 1+ + 1+ 1+ +
KM.IJ KM.SJ KM,PJ KM.I.} KM,Sj [<M.P.;i

The kinetic parameters of this reaction are the half-saturation constants Ky.s;, Kucp;, and Ky

of the enzyme for §, P, end [, respectively, the maximal rate in the forward and backward

direction, respectively, i.e. ¥, (the product of a catalytic rate constant and the concentration

of the enzyme: £, ,-¢, }and ¥ (k_, ;-e;), and the equilibrium constant of the reaction
KEQJ'.

The Haldane relationship relates the kinetic parameters of the enzyme to the
equilibrium constant, which is determined by the thermodynemic properties of the substrate
and product molecules {cf. 56, 353):

ViKups

KEQJ = VK €]
J

M8
The rate of an enzymatic reaction is connected to the thermodynamic properties of reactants

through the inass-action ratio (T; = P{5) and the chemical potential of the reaction Az, ).

Fora one substrate and one product reaction we obtain:

A, = RT It = RT I

S Kep, £0.

This equation indicates that if the reaction is in thermodynamic equilibrium the chemical
potential is zera and that its rate will also equal zero (see Eq 3) (407). The displacement
from thermodynamic equilibrium (1-T, /K £o; ) @ppears in the equations for the (scaled)

clasticities of enzymes towards their substrates and products (102, 407);
S

8,5{ giny Ky

1
aln[S]lm - L S5,F )

£Q Ks K.P

S
2;5[ BInv) _ Ko _ K.
2ln{P] is] 1__1‘_ l+i+

il
Keo Ks K,

Figure 4.

The upper ond lower figures respectively depict the rates (A, D) and elasticities to substrate {B, E) and product

1C. F) for a reversible and an irreversible enzume following an upi-uni Michaelis-Menten kinetic f

Farameters: Ks=i, Kp=1, V=1, and Keg={0 (reversible case). Dashed lines correspond to a value Jor P af's
and full lines correspond to a value jfor P of 0.



Chapter I

The total elasticity of the rate of the enzyme towards the metabolite environment dzcreases

with the total saturation of the enzyme:

If the saturation term is negligible (if 5<<Ks and P<<Kp or when the saturation term is
entirely absent in case of mass-action kinetics) the sum of the elastieities is 1, which indicates
that the rate increases proportionally with a simultaneous equal fractional change in the
concentration of § and P. If the enzyme is saturated ($>>Ks and P>>Kp) the total elasticity
converges to zero although the two individual elasticities do not. The rates and the elasticities
of an enzyme modelled as Eq. 3 without the inhibition term is depiced in Figure 4.

In the sixties and seventies of the previous century, the determination of the
mechanisms by which enzymes convert their substrates into groducts and how the catalytic
rate depends on the conceniration of effectors and physicochemical conditions was 3 large
field of resezrch within enzymology (cf. 57, 58, 59, 223, 266, 353). Unfortunately,
considering the present need for kinetic models, the determinaticn of kinetic properties of
enzymes per se was not considered important in those days. Enzymologists determined just
as many kinetic properties as necessary to clucidate the catalytic mechanism of an enzyme,
Also, the conditions under which the mechanism was determined, using' purified enzymes or
enzymes in diluted cel! free extraci, were mostly far from the conditions in the cytoplasm of
cells, e.g. different pH, ionic strength, and extent of macromolecular crowding werc used. In
many cases, the mechanisms were found to be random - the substrates and produc:s did not
bind in 2 particular sequence to the enzyme — and frequently those mechanisms were
approximated by more simple mechanisms that are ‘preferrzd’ by the enzyme. Random
mechanisms are nototious for featuring large numbers of kinetic parameters (353). The
kinetics of enzymes with complicated mechanisms are frequently simplified in computer
models to ordered quasi-steady state (207) ot equilibrium-binding mechanisms (353). The
kinetics of muftimeric enzymes is further complicated by the possibility of cooperative
behavior. Cooperative behavior stands for the phenomenon that the kinetic properties of a
particular subunit of & multimeric enzyme msy depend on the binding state of one or more
other subumits of the same enzyme. Cooperative behavior may lead to complicated
dependencies of the rates of multimeric enzymes on the concenrations of their substrates,

products, and effectots. Whereas these dependencies are mostly hyperbolic for monomeric

20
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enzymes, they may show maxima and minima for multimeric enzymes. The rate equations of
multimeric enzymes are also very complicated and incorporate My rate constants (223, 266,
318, 353). So. far, the kinetics of mmitimeric enzymes have been mostly investigated
theoretically for multimeric enzymes catalyzing irreversible single substrate and single
product reactions. Reversible reactions have been considered by Hofmeyr (149) and Popova
(297). Popova (297) considered in addition descriptions of cooperativé enzymes catalyzing
multi-substrate and multi-product reactions.

2.5. Steady states of biochemical reaction networks
Cellular networks settle either to a peint, a periodic, or a sirange (chaotic) attractor {¢f (128)).
Here we will focus on point attractors. A point attractor is a steady state, in which s =3, if,
after some time of relaxation, the following holds (where “=" denotes definition):
N"v(5(:,p)p) =0 (5a)
v(3(¢, p),p) = 3{3(s,p),p) withatleastoneJ, =0 (5b)
The system is in thermodynamic equilibrium with s=sgg if v(szo{4,p),p}=0 for all vev.
(Note that in mathematics no distinction is made between a steady state and an equilibrium
state.) The steady-state rate vector, v(5), will be denoted by the flux vector J.
fhe flux vector is a linear combination of the columns of the nullspace or kernel of N
denoted by K: the columns of K span the steady-state flux space. The number of columns of

K equals the number of r-m, independent fluxes of the network (each equation in Eq. 5 makes

one flux dependent on other fluxes within the same equation). The following relationships
hold:

NK=0 (6a)
N°K =0 (6b)
Reordering the rows of the flux vector with the independent fluxes ¥ on top yields the

following equation (with J° as the dependent fluxes) (309):

e

This equation indicates that all fluxés can be written as a linear combination of the
independent fluxes. The columns of the kernel matrix are a nen-unique set of independent
pathways, so-called flux modes, that are each in steady state (or thermodynamic equilibrium)

if the entire system is in steady state — not taking into account any kinetic information of the
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processes involved. This only means that if all but one of the pathways correspanding to.
columns of the kemel would be remioved from the network that this one pathway could attain
a steady state on its own but it will have dif‘ferenf values for the fluxes and the concentrations
of its variable intermediates than in the original system. A zero entry i the kernel matrix
refers to a reaction that is in equilibriumn while the entire system is in a steady state (137).
Unique sets of independent steady-state flux modes can be obtained by the determination of
extreme  pathways (55, 288, 339, 340) or elementary modes (294, 344-346, 40C). Both
methods take, besides the kemel matrix, the thermodynamically preferred direction of the
reactions into account {e.g. on basis of values for equilibrium constants). Elementary flux
modes are minimal sets of enzymes that can each generate valid steady states with all
ireversible reactions proceeding in the direction presctibed thermodynamicaily, i.e. on basis
of equilibrium constants. An elementary flux mode is elementary if it is non-decomposable.
Any steady-state flux pattern can be expressed as a non-negative combination of the
elementary flux modes (345). The number of extreme pathways is the minimal number of
independent steady-state pathways, which means that, in some cases, there are more
elementary modes than extreme pathways (288). For an in deptt comparison of these two
methods the reader is referred to Klammt et al. (215), Palsson ef al. (288} and Papin ef al.
(289). Combined with linear programming techniques, flux distributions leading to
opﬁmization of; for instance, yields of product formation — such as biomass - or growth rate,
can be predicted with flux balance analysis and compared to experimentally determined flux
distributions (e.g. 31, 110, 354, 395).

2.6. Control and regudation

Systemic properties of cellular networks are determuined by: (i) the organization of the
network (spatial and interactional), (if) the kinetic (e.g. Kas, Pax) and the physical properties
(e.g. diffusion coefficients) of the components, and (iii) the environment (e.g. temperature,
nutrient sources, or product sinks). Such constant aspects of cellular networks are generally
referred to as parameters. Analysis of coniro!l of cellular networks involves the determination

of the effects of changes in particular parameters on cellufar functioning. Bifurcation analysis

focuses on the behavior of dynamical systems as functions of parzmeters (123). Analysis of .

regulation determines how the system sustains or changes particular functions in response to
changes in the environment of the system (147, 148, 182, 183). An analysis of control could
address the effects of diffusion coefficients on fluxes in biochermical networks (291} or the

effects of kinases and phosphatases on signaling (154). An analysis of regulation could
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investigate how the cell maintains the ATP/ADP homeostasis in spite of continuous changes
in its environment. Below we will see that the notioas of control and of regulation are related.

Individual processes, such as a rate of an enzyme-catalyzed conversicn or a moiecular
binding event, controf sysiemic properties: when the rates of a process is changed — by
changing a parameter that characterizes this process — systemic propertics are affected
quantitatively (in some cases even qualitatively, e.g. a change from a steady state to an
oscillatory regime, i.e. a Hopf bifurcation {128, 145)). The rates of processes, and, therefore,
also their control coefficients, depend nonlinearly on the state of the cellular network. In
other words, the determination of the controi properties of a cellular network necessitates the
appreciation of the system as a whole (in silico or in vivo) 1o determine the state (i.e. s(s,p))
and, subsequently, its responses to changes in parameters, such as levels of nutrients, growth
factors, or hormones. Here we will focus oa the control of cellular networks by their
constituent processes. Emphasis on regulation of cellular networks can be found in Hofmeyr
etal (147, 148, 152) and Kahn & Westerhoif (182).

Metabolic control analysis (MCA) is a theoretical framework that is well suited to
analyze control and regulation of cellular networks (102). It was pionecred by Heinrich &
Rapopert (134) and Kacser & Bums (179) in the scventies for steady-state metabolic
networks with early experimental applicati'on by Flint et el (108, 109) and Groen et a/. (127).
MCA relates changes id systemic properties quantified by response or control coefficients to
propertics of enzymes in terms of elasticity coefficients. Also the control properties and
elasticity coefficients of enzymes of a particular cellular nerwork depend nenlinearly on the
state of the cellular network. MCA has later been extended to include: control analysis of
branched and cyclic pathways with and without moiety conservation {103, 104, 150, 180, 199,
200, 309, 333, 335, 337, 413), concentration control theory (410), energy coupling (416),
control of generalized variables (343), control of trznsition times (85, 255), systems involving
quasi-equilibrium reactions and time-scale separation (83, 201); oscillatory systems (159, 160,
191, 192), signaling networks (46, 194), channeling (189}, intra-enzymatic processes (203),
hierarchical networks with gene expression, signaling, and metabolism (46, 151, 168, 181,
360, 414), modular biochemical networks (347), reaction-diffusion systems (42, 291), and
transient trajectories (1, 136, 161). Tt has been applied frequently to the experimental analysis
of bicchemical networks (e.g. 2, 3 127},
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2.7 Transient-state and steady-state control analysis “
The control properties of the processes constituting the cellular network cau be readilyi
obtained from the differential equations (and the initial conditions) that govern the dynamics
of the cellular network (Eq 2) by implicit differentiation with respect to the parameter vector
that is perturbed (I, 136, 161):

j}f:;(t,p) = (N"ﬂ)-ji(t,ph N’ %

(Note that it is agsumed that the reaction stoichiometries are not dependent on parameters but

®

remain  fixed.) The matrix of unscaled -elasticity coefficients is defined as
dvfos = [Bv/ax ovfex”® ]s £ and the Jacobian matrix as N°EL. The values of the entries of
both these matrices depend nonlinearly on the state of the cellular network.

Eq. 8 describes a system of linear ordinary differential equations with either constant
or variable coefficients depending on the state of reference at which the parameter
perturbation is applied. If the reference state of the cellular network at which the parameter
perturbation is applied is: (i) a trajectory, thie entries of the Jacobian matrix are time
dependent and Eq. 8 has to be evaiuated explicitly together with Eq, 2a and 2b {161) or {ii) an
asymptotically stable steady state, the entries of the Jacobian matrix are time independent, and
Eg. 8 can be evaluated on its own (136, 161). The initial conditions of Eq. 8 depend on
whether kinetic parameters or initial conditions of Eq. 2 are pertutbed. If an initial condition
is perturbed, for instance of x;, ie. dp=dx(0,p), the initial condition of the perturbation,
dx/dp(0,p), équais 1 and all others zero. If a kinetic parameter is perturbed all initial
conditions of the dynamic description of the perturbed system (Eq. 8) are zero (161). Here
only perturbations of kinetic parameters will be considered.

[f the reference state is an asymptotically stable steady state, then the Jacobian matrix
evaluated at the steady state of reference describes the dynamics of the system in the vicinity
of the steady state (e.g. 376, 386). (More can be found on the anmalysis of stability of
biochemical networks in Stucki (376), Tyson & Othmer (386), Higgins (145), Westerhoff &
Van Dam (416), and Heinrich (133, 137).) This means that Eq. 8 can be evaluated

independently of Eq. 2. In this case an analytical solution for this equation can be found (i.e,
with dvidn{M=0) (126)-

%“‘PF fplveL- o)1) (veL) v D=er 0 2 o

X
. &p op

This equation gives the concentration contro! coefficients in the network at each moment in
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|
XLy, +dv )= x,(8,v,)

x,{4,v,)
v, +dvf -V

Ch=
v
Where x(z,1) is the concentration of x; in the wnperturbed (reference) system, which rerains
in the reference steady state, i.e, x,(2,y;) does not change over time. The concentration of x; in
the perturbed system, /e denoted by x(t,v+dvy), does depend on time and for long enough
times will become constant: it will settle to a new steady state value (due to the assumed
asymptotic stability of the reference steady state). The value for this concentration control
coefficient in the new steady state equals the value of the classical coutrol coefficient (defined
in 410). This is illustrated in the following example. We consider the following network. ‘

> X %5 The rate equations for the two enzymes are given by: |
: |

The steady state concentration of x, i.e. Xy, equals 0.7071 and the steady state flux v equals“
0.414. At this steady state the unscaled elasticities equal £ = -0.343, and £ =0.343 (it is|

a coincidence that these numbers are equal). The transient behavior of the scaled

concentration control coefficient of the first enzyme (Eq. 9) is given by:

Cl(py="te

g

M vl

G}

. &
After a long enough period of time, this contro! coefficient equals the classical concentration
control coefficient (1, 161, 410): ‘\

-1

v el

gt E.f

CFooy=

Figure 5 displays the transient behavior of this control control coefficient and the dynamics of
the perturbed network. Using the values of the steady state flux, steady state concentrations
of X, and the elasticities of the reference steady state the aforementioned coatrol coefficients
equals, 0.85, (Using Figure 5A we can calculate also this control coefficient, ie. ((0.7077-
0.70713/0,7071)/0.001=0.85.)
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Figure S,
Transient behavior of the two-enzyme and one metabolite pathway discussed in the text, A, the transient
behavior of the network when the first enzyme is increased by factor of 1.001 in activity. The dashed line gives
the steady state of reference at which the perturbation was applied. B. the wansient behavior of the scaled

concentration control cogfficient of the first rate an the concentration of x.

The value of the (unscaled) flux control coefficients in the matrix €7 () at time ¢ can
be abtained from the implicit differentiation of J = v{x{t,p),p} with respect to p (136):

&
dp

Multiplication of the time dependent (unscaled) concentration control matrix CF () with the

~ N B
j—f)(ap);u (r.p)+%=(EL-Cf(t)+f)%=§:(r)5 o)

elasticity matrix (€L ) results in the connectivity theorem that applies during the relaxation of
the perturbed system to the new steady state:

Cr (L = exp(N°EL-¢)-1) (1)
The connectivity theorem for {(unscaled) flux control matrix has the following form:

C/{t)EL = TL- exp(NZL 1) ‘ 12)
The connectivity relationships relate the systemic control coefficients to the elasticity
coefﬁciénts, which depend on the kimetic properties of the enzymes and the state of the
network.

The summation theorems of the contro! coefficients are defined by the multiplication
of the control matrices with the kernel of the stoichiometry matrix. For the concentration

control coefficients summation theorem we obtain:

CHK=0 (13)
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The summation theorem for the flux control coefficients is given by: ‘

C/K=K ' (14)

These two equations show that a simultaneous change in the raies of the processes that
together form an independent flux mede for the system to reach a steady state (i.e. those
processes that are combined in one column of K); (i) does not affect the values for x during
the relaxation (Eq. 13) and (ii) the rates will change according to the entries in K during the
relaxation (Eq. 14). These can be considered laws that restrict the total maguitude of the
control exerted by pracesses on the concenirations and the rates within the system. They are
generalizztion of the steady state flux and concentrations summation theorems.

The flux control coefficient matrix can be decomposed into two submatrices; that is,
one confaining the conwol coefficients on the independent and the other the control
coefficients on the dépendent fluxes. The connectivity theorem changes into (v’ stands for the
rates of the independent reactions in the nstwork):

~ . !
G (L= %%L-exp(N"?:’L‘t) (1%)

The summation theorem of the flux control coefficients on the independent fluxes becomes:
¢/ (K =1 . (16) -

Eqgs. 13 to 16 can be compacted into one matrix equation that describes the ‘control on the

independent concentrations and independent flux in the network (136):

Ff[({)}[K ar)e |t - SgLloesp(NEL ) an

Ef(r) 0 (—Ofxp{N"EL-!)-b I)
Frequently control coefficients and elasticities are used in a scaled format. Scaled control
cocfficients quantify the fractional change in fluxes or concentrztions upon a fractional
change in the activity of an enzyme. Scaled clasticity coefficients quantify the fractional
change in the rate of an enzyme upon 2 fractional change in the concentration of a substrate,
of a product or of an effector of that enzyme. To obtain scaled coefficients the matrices have
to be chanzed in the following way:

x=Dg(J)"-K.Dg(3’)

el.= Dg(J)™ - ¥L-Dg(x)

C) =Dg(x)"-C) - Dg(¥)

C; = Dg(3)y"-C! Dg(J)
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We now obtain the following matrix equation:

> 5\" .
[C ) (:)}[K —ep]<|T - Dg(d'y* -6§L~exp(N°§L-t)Dg(x) (18)
o 0 Dg(x)*(cexp(NUEL 1)+ 1)Dg(x)

We have assumed the steady state to be asymptotically stable which means the real parts of all
the eigenvalues of the Jacobian matrix are smaller than zero and that the matrix exponent

exp(N" “EL- r) comverges to a zero matrix for t—co. Eq. 18 then simplifies into (204, 412):

s 10
ol

This equation is sometimes abbreviated by:

C-E=I 20)
Interestingly the following relationship holds:

C=E" (E=C") @y
Eq. 20 indicates that the control properties of system described by Eq. 2 can be obtained from
its structural propertics (N®, K and L} and kinetic properiies (€) by metabolic control
analysis. This is an important result, since it relates changes in the systernic properties of
biochemical network — the ‘physiology’ — to changes in the activity of its components — the

*diochemistry’ - and the interaction structure — the ‘organization’ - of the network.

Figure 6.
A biochemical network composed of five reactions (v,..vs), five variable intermediates (x;..x;, a and b) and three
boundary metabolites (5, Py, and Py) that are kept constani! (indicated in bold). The first rate is inkibited by the

intermediates x; and x; (denoted by a dashed arrow).

2.8 Example of the analysis of a biochemical reaction network
This section will illustrate the analysis of a kinetic model with the methods that have been
outlined the previcus subsections. The simple biochemical network displayed in Figure 6 will

be analyzed. It consists of five reactions, five variable metabolites, and three fixed
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metabolites.

2.8,1 Structural analysis
The network displayed in Figure 6 has the following stoichiometric matrix N:

vl 2 w3 vd V5
xt 1L -1 -1 0 0

2 0 0 1 -1 9
a -1 @ 0 1 1
x 0 1 0 0 -1

& 1 0 0 -1 -1
The network contains three independent intermediates, which is reflected by the number of
columns of the Link matrix L;

xl x2

a
x 1 ¢ 0
x2 0 1 0
a 0 0 1
x3 -1 -1 -—1
5 0 0 -l

Here x;, x>, and a have been chosen as the independent intermediates. The moicty

conservation relationships arc given by the relationship:

. =[x,)_[—l -1 -1 :’l =(a+x, +x3+x,]
b 0 ¢ -! a+b
a
There are therefore two pools of metabolites, the cbvious a+b and the less imtuitive
atx(+xo+x3, that remain constant during any behavior of the biochemical netwack. The
reduced stoichiometric matrix N?, which contains only the stoichiometric coefficients of the
independent intermediates, is given by:
vl v2 w3 vd VS
x 1 -1 -1 0
x2 0 0 1 -1 90
a -1 0 0 1 1

(=]

When the network is in steady state the number of independent fluxes are given by the

number of columns of Kemel matrix K:
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&~
S

Pl
—_— = O
S o =

JS
The independent fluxes in steady state correspond to J; and J;. Note that J, and Js could have
been chosen as welt. Sach column of the kernel matrix corresponds to a pathway in the
network that can independently attain a steady state. The first column corresponds to the
overall conversion of S into P; and the second column corresponds to the conversion of § into
Py. (Had we added the conversion of ATP into ADP to reaction 3 and would we have kept the
concentration of ATP and ADP fixed we would have obtained for the second column the
overall conversion S+ATP—ADP+P,. Such kind of analysis allows for the discrimination of
alternative pathways on basis of energy expenditure for instance.)

The overall reaction of the two independent flux modes can be obtained from:

—x X
el i
1 o101 e L
K.T»R=[ —a+b-5+x =(p‘ S]
01110 P =5

a—b+p-x
a-b+p,—x
Where R is defined as the vector that contains the j-th reaction as its j-th entry and

Zn,;. -8 +Z"u‘ - p, wita ny as the (i,f)-th entry of N and with 5; and p; as the substrates and

products of the j-th reaction. The chemical potential of the net conversions in a particular

steady state can be obtained by (302):

Agg,
i)

7, In
[1 010 1] ! [Ap,+Apz+A;tj]=RT 5 Kgpy Kigr Keps
In

KT AI.! = =
Agy + Ay, + g, D
5 Keoy Keps Kepa

Ay

On the basis of the sigas of the entries in the last matrix it can be decided in which direction

the flux runs at Steady state, If for instance the first entry is negative then mass will flow from -

s 1o ps. If entries in this vector are evaluated as zero in a particular steady state, then the
comresponding reactions form a subsystem at equilibrium.

Suppose that enzyme 3 is irreversible. The extreme pathway matrix is taen identical
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to the kemnel matrix. But the elementary rode matrix contains one extra columa:

J, 10 1
J0 1 -1
Jo1 1 0
J, 01 -1
Jo1 o0 1

The extreme pathway matrix contains the minimal number of steady state flux modes with all
reaction operating in their preferred thermodynamic direction. The elementary mode matrix
contains all those flux modes that can independently generate a steady state, with all rates
operating in their thermodynamically preferred direction, and with all flux modes as non-
decomposable. Non-decomposable means that the removal of one reaction from the
elementary would yield a flux mode that cannot reach a steady state on its own. (Note that the
third elementary mode can be obtained from a lincar combination of the extreme pathway
matrix.) The overall reactions and their Gibbs free energy difference at steady state can be
obtained for the elementary flux modes and extreme pathways in a similar manner as has been

shown above in terms of the kernel matrix.

2.8.2. Control analysis

The topology of mass flow regulation of the network is described with the unscaled elasticity

matrix €, given by:

x: x2 a x3 b
wl

vi gl &L & e, &
w2 ]

vz g7 0 0 g5 0

viogh g2 0 0 0

4 9
vd D gy ot 0 g

Vo0 0 g g8 5;’

o 3

The Jacobian matrix N*EL of this particular network has the following form:

R S ) Wl el w2
Eo =g mEyTEqTEy EpTEgTEgtE, £, —Ey —E3TES
] vl vd wd wd
£y £ T —&, tg
el vl ] W 4 vl .3 vl 4 -] L A 1 ]
EatE:—E, —ELtELtE, —EL —E) HE VE] tE) —& tEL &y

The Jacobian matrix plays a dominant role in the analysis of dynamical systems. It can be
used for, e.g. local stability analysis by evaluating the eigenvalues of this matrix (128),
metabolic contral analysis {(see previous section), and the determination of the response of the

system to step and sinusoidal changes in parameters with frequency analysis {160).
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The E matrix of MCA that equals the augmented matrix composed out of the scaled

kemnel matrix and the scaled elasticity matrix, i.e. (k —&L), is now given by:

Iy Ay e *2 &
1, X m N | [ |
J, L 0 —gl+tey —ehvte; —Elt—g +—EL
2 # x *x b x3
w1 X e X2 v a
01 —ei+Ley ey, &3
Xy Xy X
ddh oue —e 0
i il £ x2
1 1
J v vi B v
J, 0 = i —£5 -+ g
3 E
I, b
J kA X3 s I L B 1
JS 2 0 —15:3 —2'533 _Ea +_€b +_£:3
A X, Xy b Xy

(Note that in this equation the elasticity matrix has been supplied with a different ordering of
the rows, identical the ordering in the K matrix.) The inverse of this matrix gives the control
matrix, which contains the control coefficients of all rates on the independent fluxes and
concentrations in the network as a matrix:

K 432 42 J2 2

Cv’; Cv] Cvl cvl CVS

73 43 J3

C:’ZJ C\{; Cvl CN CVS

t (] { l

crocyoclocl

2 2 2 2 x2

C: O3 G G C

B oCh G CL
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2.8.3 Dynamic analysis

The reactions were described with the following rate equations:

y. 2. S [ bxl
'K, K, a-S-K,

2 Y 3 Y a b AY x1
1+ + 1+ +— 1+ —+
lez le} K]g Klb Kl.: lel

Vz-xl'l— x3 V;-XI'I— x2
) Ko x-K,, Ky x1-K,,
V2=

,v3=

1+Jcl_'_x3 1+x1+12
Khl K?,x} 3x] 3x2
(o o) IO P (e 7
" -x2. N - x5
vh = P ;2 . o7 V5= 56 $x3 )
(1+ g +—J[l+—+Lz ] 1+—a—+i I+—P—+ x3
K-la K4b K4P K4x3 Ksa Kﬁb KSp KSJ(J
(Note that reaction 5 has been chosen reversible again.) The transient behavior of the network
is displayed in Figure 7.
20
Xz
@ 15 = ]
5 |7 i
‘g 19 i *3
] 1 R i e ‘—:—_'——_'"5—_'
=
8os| Vo
_____________ o
040
[ 10 20 40 50
time
Figure 7.

Transient behavior of the network displayed in Figure 6. The kinetic constams und bowndary conditions were
chosen as: K=t (all K's). §=5. P<t, Keq=100, V,=10, Vo=l Vi=0, Vi=l, Vi=2. The following initiaf conditions
were chasen: af0] =1, b{0] =1, x,f01=1, x,{0}=1. x50} =1.

In steady state, the following concentrations were calculated:
x1=0.360, x;=1.58, a=1.20, x;=0.86, b=0.80

Note that indeed the pool concentrations are conform the moieties that were found given the
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initial conditions of the network. The fluxes were calculated as:
Ji=0.28, [=0.16, J;=0.12, J,=0.12, J;=0.16

We sec. that the following rélationships told; J,=J:+J3, J,=J; and Js=J5. This confirms that
there exist only two independent fluxes in the system (i.e. three relations exist for five fluxes)
in accordance with the kernel K that was found above for this network. Also this flux
distribution is a linear combination of the flux modes ((3'J°)'=KJ", the clementary flux
modes (with nonnegative coefficients for the linear combination that sum to unity (344)), and
the extreme pathways (with coefficients for the linear combination that form the so-called o-
spectrumn); for a discussion see Papin ef af. (289). Note that in extreme pathway analysis and
elementary mode analysis the coefficients used in the linear combination are not unique and

that they are always nonnegative (289).

2.8.4 Steady-state control analysis

In the steady state, the control coefficients were calculated for the extent to which each
process controlled any of the independent fluxes and concentrations (an (i/)-entry in this
matrix refers to the control on variable { by process f):

v2 v3 vl v v3
J2 08l =-095 042 077 -006
J3 022 -041 043 .22 -046
xl 010 -134 0351 Li2 -039
x2 ~021 029 006 -032 0.18
a —-022 038 -0260 -027 037

. i n .
The entire flux control matrix, KC , is given by:

J2 f3 1 J4 J5
J2 081 -095 042 077 -0.06
J3 022 ~041 043 122 -046
J1 056 072 043 095 -0.23

The entire concentration control matrix, LCY' is given by:

v2 v3 vl vd v5

x010 -134 051 112 -0.39

22 =021 029 006 -032 0.8

¢ =022 038 -026 -027 037

x3 066 -051 003 049 -~0.68

b 033 -057 039 040 -0.56
One would expect enzymes to have positive control on their own rates. (Someone who is
more inclined to think reductionistically would go as far as to think that each enzyme should
control its own rate with a control coefficient of 1: not taking into account that also the other
enzymes exert conircl and that the sum of control is bounded by the summation theorems of
MCA). However, in this particular example we observe that enzymes 3 and 5 exert negative
control on all fluxes of the system (including their own flux). In this example additional
violations of rules of thumb occur. The following ‘intuitions’ are violated: (1} enzymes
contro their own rate positively and (ii) in branched systems the enzymes that are part of the
same branch have positive control on each other’s fluxes and negative control on the fluxes
within other branches. The reasons for such violations of ‘basic intuitions’ often derive from
the existence of feedback and feedforward loops, or from moicty conservation relationships,
For instance, the model with the feedbabck regulation (ie. the effects of x» and x; on v;
removed) removed has the following flux and concentration control matrix:

v2 v3 vl vd %)

J2 053 ~025 013 020 040
J3 003 031 0.14 063 007
JI 024 001 013 039 026
J4 —-0.03 031 014 063 0.07
J3 053 025 013 020 040

v2 v3 vl v v5

J4 022
J5 0381

-0.41
—-0.93

0.43
0,42

1.22
0.77

-0.46
-0.06

x —034 -057 419 049 023
x2 -022 035 001 -0356 (22
g 0G.18 010 -082 046 0.29
x3 030 039 -001 039 -0.80
& -D03 0.02 013 ~007 -0.05

.34

However, we still observe a violation of the second rule’of thumb. For instance, rate 5 does
not negatively control the flux through the other branch. The second rule of thumb is no

longer violated if, in addition, the moiety-conservation relationships are removed, that is, by
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removal of @ and & from the reactions of the model. Then we find: z 5= m o
w2 v3 vl v4 v5 i dlnt
J, 685 -002 0.0 -002 010 Performing this summation at time 5 and 20 we obtain the resulis shown in Table 3, The
J, =007 050 014 043 -001
xl1 =051 -026 105 -022 -0.06
x2 027 206 056 —-232 -0.03
x3 153 -0.04 018 -0.04 -1.62

control coefficients at time 20 are already quite similar to their steady-state values that were

shown in the matrix above.

In sumumary, many rules of thumb do not consider the effects of feedback loops and

20 zn 20 20 A0
moiety conservation relationships in their argumentation. Unfortunately, feedback loops and IR S8 e 8 | 18l s
. . L - . . . z1a ERE 210 ST B ™
moiety conservation relationships are ubiquitous in cellular networks, most noticeably m PR 5 si
signaling and metabolic networks. Therefore, mathematical models of cellular networks are 8

essential for the evaluation of control and regulation if the networks considerad are intricately

organized structures with many feedback loops, branches, cycles, and moiety-conservation

relationships.

2.8.5 Transient-state control analysis

A component of metabolic control analysis that has not been given much attention in the past

is the contrel of transient phenomena (noticable exceplions bave been 1, 136, 161, 191). This
part of control analysis may become important in signal transduction where transient statcs,
more so than steady statcs, are perceived as the functional states. Even though in metabolism,
steady states arc considered the functional states, transient control analysis aiso becomes
important there to understand adaptive physiological changes. Figure 8 displays all the
concentration control coefficients as function of time during the relaxation towards the steady

state for the system displayed in Figure 7. The ccntrol coefficients were obtained from

integration of the differential equations and simultaneous evaluation of Eq. 8, The control

coefficients portray the difference between the dynamics of the unperturbed network and the

network where one maximal rate has been increased by a differentially small amount. The

Figure 8.

networks had the same initial conditions — hence, the only difference is the perturbed )
? Y P Transient behavior of the state of the unperiurbed nerwork (first row of figres; and the evolution of the scaled
parameter. Since, there are five reactions m the network, five maximal rates have been

concentration control coefficients {remaining figures).
independently perturbed, i.e. not all at the same time.

The sum of the transient concentration control coefficients on x; are a particular time ¢
has been shown to equal the scaled rates of change of x; at time ¢ brovided that time zero is
chosen to represent the time point at which the perturkation of the rates were performed (154,
191, 291):
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Table 3. Transi j ' :
e 3. Transient concensration control coefficients at rwo points in time and an iustration

of the summation theorem.

Control\time | § 20
ch 0.50 0.49
Iord 042 0.075
c 419 13
c 0.59 1.06
ord 0.13 -0.37

Z cr -0.3%9 0,074

ﬂn_Xl_ | -0.39  .0.074
dns

All the calculations within this section have been performed with a kinetic modeling package

developed in Mathematica. This kinetic modeling package does all of the calculations

displayed in this section (and 2 lot mmoere} with & minimal input of the biochemical network, [t
can be obtained together with the example model shown above from the author. - The full

model including feedbacks and moiety conservation relationships can aisc be obtained from

the author as a file to analyze with Gepasi, Jdesigner, or in SBML format. The model can be

investigated online at the JWS online website (http:
can be abtained from the anthor).

#fjjj biochem.sun.ac.2a) (more information

2.9 The organization of hiochemical reaction networks
2.9.1 Small-world organization

Recently, many studies have analyzed the (near
cellular networks,

ly) system-wide organization of various
e.g. metabolism (excluding allosteric interactions) {7, 105, 173, 296, 308

399), genetic circuitry (105, 173, 261, 296, 357, 399, and the protein interaction network

(172, 293, 365, 432). All cases have in common that they consider the networks as (directed
or undirected) graphs with the molecular species as nodes and the interactions/conversions as
‘edgcs. In the analysis of metabolism thesc studies do not consider the presence of allosteric
Interactions and moiety conservation (for inclusion of moiety conservations and its
consequences see (7). These studies have shown that many networks have a common

underlying scale-free organization (19, 105, 173, 296, 404) (for an exception see (7). [
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random networks® the degree distribution py. /.e. the probability of a nede to have k edges: the
fraction of nodes with k edges, is binomially distributed, which approaches a Poison
distribution for large numbers of nodes (n) (at constantk)}, /.e. Pe=(ze2Yk! with z as the mean
number of edges per node (4, 276). The only property of that makes networks scale free is the
fact that their degree distribution is not 2 function of the number of nodes but only of %, Le.
pe-k® with an exponent o which is characteristic for the network and independent of the
number of nodes # (4, 276). The exponent for a metzbolic network composed of 765 nodes
and 3686 undirected edges was found to be 2.2 (173). In other words, these networks have
only a few nodes with a high number of edges and many nodes with a small number of edges.
As a consequence, they have short average path lengths between nodes (just like many
random graphs). In addition, they proved to display a high level of clustering. The clustering
coefficient C; of node i with &; edges is defined as the actual number of edges between its &
neighbours divided by the maximal number of edges possible between its neighbours, which
is given by ki(ki-1)/2 {404). The clustering coefficient of the entire network is given by

C =-I-ZC,, . For a random network the clustering cozfficient is given by the probability for
sy

an edge p, i.e. C=z/n. For the small-world network of Barabasi & Albert (19) the clustering
coeffizient is found to be ~5 times higher than the random graph models (4). Scale-Tee
networks with these two properties, i.e. scale-freeness and clustering, are frequently refemed
to as smail-world networks. The metabolic network of E. coff and many other cellalar
netwerks, have been show to be small world (105, 173, 296, 399).

The success of understanding the behaviors of systems in terms of the behaviors of
their components is not seif-evident. There are many different decompositions of systzms
into parts possible and only some of them are sufficiently insightful to lead to undcrstanding
of how systems work (185, 424). Likewise, to understand how a computer program works, it
is nol always most insightful to look at its binary code. This illustrates that the search for
functional organization — the organization that illustrates the roles of components — rather than

merely the physical organization is not necessarily obviovs and intuitive. Functional

* One way to construct random undirected networks is 1o connect cach pair of nedes in an # nede nerwork with a
probability p. The probability fo ebtain 8 graph with m edges is then given by BLp™ with M={aln-13/2 &5

the maximum number of edges. The mean degree (number of edges per node) is given by

Z=Zk'ﬁ = pln—1}-
3
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organization is also not necessarily in terms of the physical or isolable constituents of a
system but may be in terms of functional units that are more vague and dynamic of shape
{420). So far it is unclear what the functional consequences are of scale-free organization of
biological networks or whether it is merely a reflection of the process that led to them, ie. of
namral selection and of random mutation.
2.9.2 Modular arganization & modular control analysis
Many studies have focused on the modular organization of celtular networks (3, 46, 112, 134,
151, 202, 238, 293, 307, 308, 319, 325, 347, 348, 357, 365, 381, 407). Frequently, the
modules defined in these stadies carrespond to subsystems with components that have more
interactions among themselves than with extramodular components (308). However, the
underlying motivation for the search for modules is in most cases the hope 10 find functional
modules or, even, motifs that perform a specific task within the cell (131, 387, 407, 426).
Three functional mot'fs consisting of either 3 or 4 nodes were found in the genetic circuit of
E. coli (357) on the basis of their high probability of occurrence as compared to their
probability of eccurrence in an ensemble of thousand random networks thet had the same
number of nodes as the genetic circuit of £ coli (n=424 and k=577} (for an alternative
method see (163)). In particular, the feedforward motif (the other two are the single-input
module, and dense-overiapping regulons) has interesting properties (242, 243). It remains to
be sccn; however, to whal extent the functional properties of these recurrent subnetworks are
invariant with respect to the strength of the interactions they have with other subnetworks in
living cells. In other words, the robustness of motif function is an interesting property to
investigate.

None of the structural methods based on graph theory consider the strength of the
interactions and in mast cases the kinetic parameters of processes that cceur within motifs are
unknown. Therefore, the usefulness of the identification of functional motifs on structural
information alone remains to be shown,

The rnodular methods derived in control analysis have a more functional perspective.
Madular control analysis studies the responses of cellular networks in terms of interactions
between modules (107}, It gives quantitative rules for the definition of modules within
networks, The criteria for modular organization of steady-stéte cellular networks derived
within control analysis on the basis of the so-called structural properties and interaction
structures, will be discussed now. The structural properties of cellular networks are the

kinetically invariant aspects of the network. Examples are the stoichiometric matrix N, its
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kemel matrix K, and the link matrix L. The interaction structure of the network is reflected
by the elasticity matrix € or €L,

Control analysis makes use of the principle that a subsystem (obeying certain criteria
that will be mentioned below) attains the same steady state when the entire system is allowed
to relax to a new {global) steady state upon a parameter perturbation, as it does when all the
extramodular intermediates it communicates with are changed to their steady-state values that
correspond to the perturbed global state, and the subsystem is then allowed to relax. For
subsystems that are directly affected by the perturbed parzmeter, the parameter also has to be
perturbed to the valie that correspends to the perturbed state. Subsystems display this
chacacteristic if they obey two conditions to be mentioned below (cf. 137, 347). These
subsystems can be treated as modules within control analysis.

The first condition is that moiety-conservation relationships only occur within
modules: molecules that are part of different modules should not be engaged in the same
moiety-conservation relationship (137, 347). If 2 moiety-conservation relationship crosses
modular boundaries, the subsystem attaius a local steady state when its extramodular
communicating intermediates and the parameter are perturbed, that is different frorm its steady
state when the entire system is allowed to relax, because the moiety is distributed differently
over its molecular ‘carriers’ in the two cases.

The second condition is that all intermediates that affect extramodular or bridging
reactions through a regulatory interaction, ¢.g. inhibitory/activatory fcedfcﬁaﬁ or feedback
interactions, or, product or substrate interactions, should be treated as communicating
intermediates, respectively. [n other words, these intermediates should be considered
explicitly. Interactions between a reaction and an effector metabolite that are part of the same

module — intramodular interactions — may remain ‘hidden’ within modules, The latter
possibility allows modules to be treated as ‘black boxzs™ only the varizbles that affect
processes outside of the module, ie. the communicating intermediates that affect
extramodular and bridging reactions, are considered in the analysis; the intermediates that arc
solely involved in intramodular processes and the intramodular processes themselves are not
treated explicitly. Interestingly, the modules can also be considered as transtucent boxes such
that their modular propertics can be expressed in terms of their intemal and external
interactions {46, 151, 181, 347)

The two congitions for medular analysis are reflected in the organization of the L
matrix and the elasticity matrix £ {or L) of the network. Subsystems that have separate

moiety conservation relationships, such that no molecules of different subsystems oceur in the
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same moicty conservation relationship, are reflected by an L-matrix that can be block
diagonalized. Therefore, cellular networks that ‘can be modularized have a block-
diagonalizable L matrix. The nonéero catries or blocks'within the L matrix cdnespond to
groups of molecules that can be chosen to form one module.

Scheme A (Figure 9) can be modularized into two modules on the basis of the blocks
in its L matrix, i.e. one module comprising x;, x2, v; and vy and one comprising x3, x4, v;, and
vs. Intermediate x; is the communicating intermediate in this system. There are no bridging
reactions that transport mass between the subsystems. This is apparent both from the reaction
scheme A and the block-diagonal K matrix. The block-diagonal character of the K matrix
derives from the fact that in steady state the two modules will not share net mass flow (181),

Scheme B (Figure 9) is 2 more detailed version of scheme A. In scheme B the
enzymes are treated not as a whole but as networks composed of substrate complexes and

.single free enzymes, Schieme B also has a block-diagonal K matrix indicating that there is no
net mass transport between the two subsystems of the network that each contain the reactions
associated with onz of the blocks in the K matrix. (Note that this was not immediately
obvious from the biochemical scheme.) However, the L matrix cannot be block-diagonalized
indicating that none of the subsystems correspond to a truc module. Interestingly, the shift in
detail from scheme A to scheme B leads to a loss of effective modular functioning (cf. 151).

There are two tyzes of modules that correspend to blocks within the L matrix, The first
type is a level. These modules contain rates that form a block within the K matrix, Kahn &
Westerhoff (181) initially took diagonal blocks in the stoichiometric matrix as conditions for
level-modularity, but this was later proven to be a sufficient rather than a necessary condition
by Heinrich and Schustec {137): they showed the block-diagonality of the K matrix to be the
nccessary condition. These kinds of modules do not exchange net mass flow with other
modules in steady statc. Level-type modular systems have interesting control properties as
has been analyzed by (44, 46, 151, (81, 194, 197). The second type of module does not have
a block-diagonal K matrix, but solely a block-diagonal L matrix. These kinds of medules
have been analyzed by (35, 325, 347, 407, 416).
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Figure 9.

Twg tier cascade. The biochemical scheme depicred in 4 s depicted in more detail in B. All the mateices in

Figure A are block diagonal whereas only the kernel can be block diagonalized in Figure 8.

3. Ammonium assimilation by Escherichia cofi

Ammonium is considered the preferred nitrogen source for £, cofi, since all other nitrogen
sources result in slower growth rates. Ammonium is transported across the plasma membrane
via passive diftusion or via the transport protein AmtB (362, 364, 382). Tﬁe mechanism by
which AmtB transports ammonium, Le. facilitated diffusion or active transport, is still under

experimental investigation. It has becn shown that the AmtB transporter is active only under
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severe limitation of an?monium (66, 163). At [NH, ]<5uM the AmtB transporter is active
and above 50 uM it is inactivated by the binding of a protein called GInK (66, 165, 390) (see
below). The level of GInK increases with the intracellular nitrogen status as monitored by
ghutamine. GlnK and Ami¢B are part of the same operon glnKAmtb {382). The activity of the
ammonium transporter is regulated via an intricate mechanism by GInK (66). The cytosolic
processes associated with ammonium assimilation are dispiayed i Figure 10 excluding
ammonium transport.

E. coli uses two mechanisms to assimilate ammonium. One is the G8/GOGAT system
composed of glutamine synthetase (GS) and glutamate synthase (GOGAT) (315),

NH! +GLU + ATP % GLN + ADP + Pi

GLN + KG + NADPH «%%47_, 3 GLU + NADP
{With GLN referring glutamine and KG to a-ketoglutarate.) The second mechanism involves
glutamate dehydrogenase (GDH) (315),

NH[ + KG + NADPH < , GLU + NADP

The net difference between the two mechanisms is the net hydrolysis of one molecule of ATP
per molecule of ammonium assimilated by GS/GOGAT. This difference makes GS/GOGAT
the energetically unfavorable altemative (138, 139). GS/GOGAT is preferentially used under
ammonium limitation and GDH gradually takes over ammonium assimilation upon ap
increase in the ammonium concentration (313). GS has a higter affinity for ammonium than
GDH does (254, 328). At high ammonium concentrations, GS is inactivated by reversible
adenylylation of all of its twelve subunits (132, 208): the maximal rate of GS decreases in an
inversely sigmoidal fashion (117). There are only minor cooperative effects among the
twelve subunits of GS (84). The bifuncticnal enzyme that acts as the covalent modifier and
demodifier is adenylyltransferase (ATase) (208, 356). The adenylylating and deadenylylating
activitics of this enzyme are sensitive to at least three allosteric effectors; GLN, PIIUMP;KGs,
and PIIKG (164, 178). The latter two species are the functionally most significant two out of
the sixteen possible forms of the trimeric protein PII (280). This protein can be covalently
modified by uridylyl-transferase (UTasc) on each subunit (176). PIl does not have any
catalytic activity but solely functions as a regulatory protein (280). In order to be functional
and to act as a substrate for UTase each of its subunits has o bind ATP (176). Given the
range of cytosolic concentration of ATP and the dissociation constant of PII and ATP, Pil is
essentially always saturated with ATP (176). For convenience, the fuactional form of Pil, i.e.

PHATP;, will be denoted simply by Pl throughout the remainder of the text. PII can in
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addition bind a-ketoglutarate (176). The uridylylation and deuridylylation activity is
allosterically regulated by glufamine and is independent of the a-ketoglutarate concentration
(176).

PII not only affects the activity of ATase but also acts as the signal for the two-
component signal transduction system NRI-NRIL (177). The sensor of this system NRII (or
NrB) becomes activated by autophosphorylation of & histidine residue (174, 175, 282, 406).
For the response regulator NRI {0z NtrC) to become phosphorylated NRII~P has to transfer its
inorganic phosphate onto an aspa:tate residue (295, 406). Also acetyl-phosphate can actas a
phosphate donor {cf. 132). Dephosphorylation of NRI~P is carried out by the complex NRII-
PIIKG; (177, 280). Spontaneous dephosphorylation of NRI~P occurs as well (132).

The phosphorylated form of NRI activates transcription of promoters that are part of
the Nir (Ntr: nitrogen regulated; regulen (281). This regulon comprises approximately a
hundred genes (312). Their expression depends on the level of NRI-P (10). The gindALG
aperon is part of the Ntr regulon and is activated by NRI~P via one of its three promoters, i.e.
gindp?. 1t contains three structural genes gind (GS), glnl (NRII) and ginG (NRI) (47). Two
of the three promoters of the gindLG operon are upstream of glnA, ie. gindp! and gindp2,
and the third glnlp is upstream of ginl (281). Alsc upstream of ginlp a transceiptional
terminator is located, which appears to be ledky‘ (132). Transcription at gindp! and ginlp

7 dependent, and takes place when cells

occurs independently of NRI~P, is sigma factor @
grown in niteogen rich medium and is inhidited by NRI (132). At high levels of NRI and
NRI~P, ie. in ammonium limited medium, transcription starting at gindp! and ginl is
inhibited and {s taking over by the morc potent promoter gindp2 activated by NRI~P (281).
Transcription from gindp2 makes use of an enhancer mechanism and of the sigma factor '
{or 6%} (132). This mcchanism involves thz formation of a loop in the DNA that ailows for
twa phosphorylated molecules of NRI, bound to the DNA at so-called enhancer sites at some
distance from the ginAp2 promoter, to make contact with the " -RNA polymerase complex
to the gindp2 promoter. Upon contact, the DNA is melted, open complex formation occurs,
and transcription is started. (t has been suggested that the o -RNA polymerase complex is
bound so tightly to the DNA that the glnAp? promotor can be considercd occupied at all times
in ceils in which this complex is present (332). At higher levels of NRI~P, transcription of
glnAp2 is inhibited by NRI~P, possibly by its binding to two low affinity bin_ding sites present
between gindp2 and the enhancer binding sites (281). Hereby NRI~P inhibits the formation
of the DNA {oop and inhibits is own ﬁ'anscription and that of NRII and GS. This mechanism
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presumably prevents accumulation of GS, NRI, and NRIL. Transcription from the glndp!
operon of glnd has been shown to be activated by CRP-cAMP (CRP stands for cAMP
receptor protein and is some times referred to as catabolite gene activator protein (CAP)),

(132, 383). During growth on glucose (PTS-carbohydrates) the concentration of CRP-cAMP
is low (383).

Slgral mnsaucsion

Matabalism

Transcapdeairaasiahon
1gart of this Mer Rusgulen;

. i
[ | ik &5 [ “ G, <RI !|—|\'\..;|.r;n“
Ghdpl Gnac? Giap ik
I,.f"' nt -

N symit
Prdsmif | Prot duge

.

@0 €0

Figure 10.

Madutar decomposition (on basis of the K mutrix} of the regulutory network underl ving ammonium assimilatior

in Escherichia coli. The nerwork is decomposed into three modules, i.e. boli:

fortd

L4 un.)Cr:r f

and signal transduction, The signal luction dut

of three interacting subnctworks, ie.
characterized by UTase, ATase, and NRI-NRI nvo-compenent signal transduction, The grey-boxed metabolite:
are axswned 1o be huffered by the remainder of metabolism. The intermediates displayed outside the modud

(s

are the icuting intermedi

that govern the intercomnections between the modules, The interaction:
besween the modules are depicted as dashed arrows. Activators and inhibitors are depicled in bold and plain
Sormat, respectivelv. Abbreviations; GLN: gh ine, NH: fim, GLU: gl

4,

Mypps the tvlation

state of GS, METqy & METgy metabolites (e.g. amino acids) derived from 2l
respectively.

and gl ! ‘

46

Introducrion ‘

The transcription of GDH from gdhd is under the control of Nac (49, 124, 269). The
expression of nac is activated by NRI~P (10}, ‘Transcription of gliBD encoding the two
subunits of GOGAT is under the control of Lep (96, 97, 311). GInK, a homologue of P1j, is
expressed under conditions of severe ammonium starvation (12, 28, 382, 390). The roles of
Nac, Lrp, and GloK. in ammonium assimilation will not be further discussed here (cf. (132,
311).

The glutamine synthetase cascade that constitutes the metabalic regulatory machinery of
ammonium assimilation has been intensively analysed since the seventies (132, 366). This
network constitutes an ideal candidate for the construction of a detailed model, both from the
perspective of its complexity and from the detail with which it has been experimentally
assessed during the last decades. The kinetic properties of the major proteins have been
studied and it appears that the majority of the regulatory Interactions are known. Therefore, a
silicon cell type of model of this network might approximate the physiological behavior of
ammonium assimilation by £. coli, This model can assist in the further analysis of the
network, which may lead to proposals for experiments and to the discovery of previously

unanticipated regulatory phenomena.

4. Consequences of contemporary biology for the philosophy of biolegy

4.1 Scientific practice and philosophy

The biclogical scicnces have evolved enormously in the previcus century. The developments
have not only had technological and scientific consequences. Many insights of modem
biology also have had philosophical consequences. For instance, nowadays cells are
considered in principle explicable in terms of physics, whereas in the late 19" and earty 20"
century many influential scientists argued that there exist a ‘vital force” that makes living
systems alive and which is not within reach of physical explanation (51). In addition. the
development of nonlinear science and its influences on biology have had great consequences
for the philosophy of biclogical systems (118, 278, 295, 384). [t led to the awareness that.
and it explained how, systemic propertics that were not displayed by any of the components in
isolation can arise out of nonlinear interactions among components of systems. In the next
section, a simple example will illustrate this point. In particular, many of the properties that
arise at the level of biological organization are not evident at lower levels of ‘organizalion.
For instance, function, evolution, adaptation, diauxic growth, and cooperativity can be
considered properties that ‘emerge” at the leve] of biological systems.

Nature is organized in a mereological (part-whole) manner; larger systems arc
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composed of smaller subsystems, which are composed of even smaller sub-subsystems. In
addition, it is generally accepted that given the environment the systemlc propemes result
from the properties of the pans and their interactions.
‘The notion of & level implies a partial ordering, such that higher entities are
composed of lower level entities, and, in a universe where reductionism is a good
research strategy, the properties of higher level entities are predominantly best
explained in terms of the properties and interrelations of lower level entities’ (pg
680 in Wimsatt (422))
In principle, the decomposition of systems into parts can be repeated until we end up at the
lowest level of elementary particles and their interactions. The ccusequences of this view
have led to all kinds of questions that are of interest to both philosophers and scientists. Their
answers may coniribute to a better understanding of the organizaticn and the functioning of
cornplex systems and, in particular, the systems studied in biclogy.
The succesé of physics and the molecular biosciences have convinced many of us that
living organisms are physical systems, i.e. that they can be undersiood in terms of theories
about physical entities. Consider this quote from Richard Feynman:
‘For example, life itsclf is supposedly understandable in principle from the
movements of atoms, and those atoms are made out of neutrons, protons and
electrons, [ must immediately say that when we state that we understand it in
principle, we only mean that we think that, if we could figure everything out, we
would find that there is nothing new in physics which ceeds to be discovered in
order to understand the phenomena of life. Another instance, the fact that the stars
emit energy, selar energy or stellar energy, is presumably also understood in terms
of nuclear reactions among these particles. All kinds of details of the way atoms
behave are accurately described with this kind of model, at least as far as we know
at present. In fact, I can say that in the range of phenomena today, so far as I know
there are no phenomena that we are sure cannot be explained this way, or even that
there is deep mystery about.” (Richard Feynman, pg 145 in (107))

Statements like this one have given rise to many discussions about the status of higher-level

propersies; e.g. about whether they can be considered emergent, about whether the sciences

that study them can preserve their antonomy from physics, and about whether they are

reducible to physics (— and about what reductions mean in this contexi?).
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4.2 Nonlinear science and complexity

In 1948, Weaver notlced that, so far, science had been mostly successful in the construction of
theories about systems either with a small number of variables that can be treated with
mechanics {e.g. the motion of two billiard balls) or with an enormous number of variables that
can be treated with statistical mechanics (e.g. average propertics of ideal gases) (405).
Weaver terms the kind of complexity displayed by the latter kind of systems: “disorganized

complexity”. The middle region of phenomena, which ‘nvolve systems with ouly a moderate

number of variables that i 2 i compiexity”. It was

organized complexity that has been left mostly untouched in the natural sciences before the
fifties of the last century {405). ‘They are all problems which involve dealing simuitaneously -

with a sizeable number of factors which are interrelated into an organic wholg. They are all,

in the language here proposed, problems of organized complexity.” (pg 539 in Weaver {405)).
{In present day terminology, what Weaver meant with “interrelated” and with “organic
wholc” comes close to “nonlinearly related” and “complex system” in more modetn terms,
respectively.) Since 1948, science has made a great leap forward with the introduction of
computers, with the development of theories on the dyramics of nonlinear systems, and with
the mechanistic elucidation of a number of complicated biological systems. Similar analysis
of the profound differences between *old’ physics and nonlinear systems can be found in the
works by Prigogine & Stengers (299), Anderson (6‘),_ Monod (265), and Krebs (228).

4.3 Appearance of new behavior
WNonlinearity and its consequences become apparent in systems that are displaced from
thermodynamic cquitibrium (118, 278}, To illustratc the concept and the consequences of
nonlinearity a simple example taken from Nicolis & Prigogine (pg 59-60 in Nicolis &
Prigogine {278)) will be analyzed. It consists of the two chemical reactions given below.
A+2X o3X
X8
The former reaction involves the autocatalytic synthesis of three molecules of X out of one
moiecule of A and two molecules of X. The latter reaction involves the conversion of X into
B. Both reactions are considered reversible and the concentration of A and of B shall be
assumed fixed. When defined in this manner, the systera contains only the concentration of X

as the dynamic variable. The change in X at time ¢ is given by its differential equaticn,
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alsc Figure 2).

4.4 Reductionism )
The concept of reductionism will be explained on the basis of an example taken from
biochemistry, i.e. the kinetics of enzyme catalysis (Figure 12). This figure displays a lower
level that contains the parts and a theory Ty (physical chemistry) that describes the properties
of the parts only and a higher level that is composed of the same parts engaging in
interactions. The net effect of the interactions in the system at the higher levet is that the
product p is formed from the subsirate 5 (and vice versa) with enzyme ¢ acting as the catalyst.
The system property of interest is the rate of change of p, Le. dp/dt. With respect to this
system property, the behavior of the system can be described by two theories, Ti, and Tie.
Theory Ti is a mass-action description of the reactions taking place in the system. Theory
Ty is 2 description of the enzyme using quasi-steady state enzyme kinetics of the reactions
taking place in the systern. When do philosophers speak of reduction in this context? Is there
a difference between reduction of theories, /.e. the reduction Ty to Ty or the reduction Tip to
Ti, and the reduction of phenomena {such as dp/ds)? A
One of the classical works on reduction comes from Emest Nagel, who focused on

reduction in his analysis of scientific progress (271). Nagel was interested in theory
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reduction, because he considered it to be a primary event within the progress of all sciences.
Nagel formulated formal rules for ﬁe reduction of theories based on Hempel’s deductive-
nomological model of explanation. Nagel distinguished between homogeneous and
nonhomogeneous reduction (270). The latter meant that the theory to be reduced needed
amendments in order to allow for the reduction, while in the former case the reduction was
direct. Such amendments have been termed ‘bridge laws’. Bridge laws are necessary in
noahomogeneous reductions. Most reductions are nonhomogeneous. A classical example of
reduction of theories is the redaction of macroscopic thermodynamics to statistical
thermodynamics, e.g. the identification of the temperature of a system with the average
kinetic energy of its molecules.

Many are opposed to Nagel’s interthearetic model for reduction and for many different
reasons. For our purposes, the mest interesting ctitique is that the model of intertheoretic
reduction of Nagel is rarely found in scientific practice (¢ft (422)). Wimsatt (422} (and many
others) has tried to give an account of reduction that does justice to scientific practice.

Wimsatt distinguishes between two forms of reduction: (i) successional or intralevel
reduction and (ii) explanatory or interlevel reduction (422). [ntralevel reduction has to with
the relaticnship between Ty and Ty,  These two theories can describe the same systemic
property (in this case dp/ds). They can therefore be considered ‘competing’ theories.
Wimsatl argues that theory succession cr theory elimination — frcquéntly associated with
reductionism — is only meaningful in the case of intralevel reductions. [n our example, Tuz
can be derived from Ty if it is assumed in Ty, that the concentration of es remains effectively
constant on the time scale of the coaversion of s into p; this is known as the quasi-steady state
assumption (62)." However, many biochemists would not consider this an elimination of Tyjz:
descriptions that make use of quasi-steady state enzyme kinetics are used at least as frequently
as descriptions bascd on mass-action kinetics (Tw).

Interlevel or explanatory reduction is the form of reduction more scientists speak of.
Explanatory reduction is generally not in terms of reduction of theories but it involves the
search for a mechanism that can account for a systemic behavior in terms of the interacting
parts of the system (422). This form of reduction is in contemporary philosophy referred to as
mechanistic explanation (120, 240).

4 1€ seems that this reduction obeys the formal model of Nagel, but it will not be considered here any farther.

This example of reduction would qualify as a nonhomogenous reduction: the quasi-sieady state assumption of es

then serves as the bridge law.
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4.5 Irreducibility and emergence
One way to question the reductionist tendency towards reduction of phenomena in terms of
more fundamental theories, such as theories of physics, would be to show that there exist
higher-level phenomena — higher than the level of physical phenomepa — that cannot be
reduced to physics. This would mean that such higher-level phenomena necessitate laws that
are irreducible to the laws of physics. The putative existence of such irreducible phenomena
has been fiercely debated in the philesophy of science community and this discussion
resurfaces now and then. One inferpretation of emergent phenomena is that they arc
phenomena which are intrinsic to particular levels of organization and that they cannot be
reduced on the basis of the phenomena that take place on lower levels of organization alone
(e.g. (205)). However, perhaps also weaker forts of emergence can be defined which are still !
compatible with reductionism without trivializing emergence, and still refer to a class of “
systemic properties in a meaningful way. \
Stephan (370, 373) discussed various definitions of emergence. His *weak emergentism’
is compatible with property reduction. A property that is weakly emergent has to comply
with three conditions: i. physical monism: ‘Entities existing or coming into being in the
universe solely consist of material parts. Likewise, properties, dispositions, behaviors, or
structures classified as emergent are instantiated by systems consisting exclusively of physical
parts.” {pg 50 in Stephan (373)), ii. systemic properties’: ‘emcrgent properties are systemic
propertics. A property is a systemic property if and only if 2 system possesses it, but no part
of the system possesses it.” (pg 50 in Stephan (373)), and iii. svnchronic determination: * A
system’s preperties and dispasitions to behave depend nomologically on its micro-structure,
that is to say, on its parts and their arrangement’. There can be no difference in the systemic
properties without there being some differences in the properties of the system’s parts or their
arrangement.” (pg 51 in Stephan (373)). All stronger forms of emergence defined in Stephan
(373) comply to the conditions for weak emergence and to some additional conditions. A/
weakly emergent property becomes synchronically emergent if it is irreducible; ‘A systemic“
property [organizational property] is irreducible if (a) it is neither micro- nor macroscopically|

behaviorally analyzable, or if (b) the specific behavior of the system’s components, over‘

% So far systemic properties have been defined rather loosely. To prevent any confusion, the condition of
systewic properties will be referred a the condition of organizationaf properties from l;tow on. Organizationa)
properties were termed “reducible characteristics of the order” by Broad (pg 78 in (41)). Broad termed
properties had by the systems and had by its parts “ordinally neutral properties” (pg 78 in (41)). ‘
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which the systemic property supervenes, does not follow from the component’s behavior in
isolation or in other (sirnp}er) constellations.” (pg 52-53 in Stephan (373)). In contrast to
synchronically  emergent properties, diachronically emergent properties Have ‘2 temporal
companent, e.g. a weakly emergent property becomes diachronically emergent if it could not
have predicted before its first observation of instantiation (373). Diachronically emergent
properties will not be further discussed here.

At present status many concrete examples of biochemical reaction networks exist that
have been characterized molecularly to such an extent that the construction of detailed kinetic
model becomes possible. In addition, the systemic behavior of those models can be compared
to in vivo behavior to investigate whether our molecular knowledge can account for the
systemic behavior. Such kinetic models are ideal vehicles to investigate the present status of

reductionism and emergence (n the anaiysis oI CeLl DIOIOLY.

5. Outline of this thesis

The central problem addressed in this thesis is how properiies and behaviors of living cells
can be understood in terms of the properties and behaviors of their constituent
macromolecules.  The thesis consists of two parts. The first part is concerned with the
philosophical aspects and the second part with the systems-biological aspects of the central
problem,

The first part deals with philosophical issucs in refation to research of living systems
in terms of the propertics of and interactions between their components. This part consists of
Chapter 2 & 1 of the thesis. Chapter 2 is concemed with the philosophical issue of
mechanistic explanation. [t starts with a review of the major developments in the philosophy
of science that have led to the present theory of mechanistic explanation. It analyzes to what
extent the current theory of mechanistic explanation can accommodate the type of
mechanistic explanations found in systems biology. It offers suggestions to further develop
the theary of mechanistic explanation. Chapter 3 offers an account of emergence and a new
definition of emergent properties applicable to the analysis of biochemical reaction networks.
It starts with a discussion of definitions of emergent properties offered by other philosophers.
The definition of emergent properties proposed in this chapter is compatible with a
mechanistic explanation of emergent properties. [n this chapter it is also explained why
mechanistic explanations of the behavior of living cells in terros of their molecules is done in
terms of the behavior of the molecules within the system rather than in terms of the properties

of the molecules that can be determined in isolation.
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The second part is concerned with the systems-biological analysis of biochemical
reactions netwotks. This part consists of Chapters 4 to 6 of this thesis. Chapter 4 presents a
detailed kinctic model of the metabolic regulation of ammonium assimilation in Escherichia
codi. In this chapter, the model is analyzed for its steady and transient state characteristics as a
function of the nitrogen and the carbon status of the cell. A method is developed to dissect
the transient regulation of the rate of glutaminé synthetase into the contributions of the
regulators present in the systern. The effects of gene expression of glutamine synthetase,
glutamate dehydrogenase, and glutamate synthase on the steady-state ammonijum assimilation
flux are discussed. Chapter 5 presents modular response analysis, an extension to modular
control analysis, as a method to analyze systemic responses of modular biochemical networks
in terms of the strength of the interactions among their constituent modules. The modules
considered communicate by way of regulatory influences only, and not by way of mass flow.
The method allows for a significant reduction of complexity by offering the possibility to
focus only on the intermediates that engage in intermodular interactions. The remaining
intermediates, which are only involved in intramodular interactions, can be omitted from the
analysis, Because of its modular character, modular response analysis also allows for a
gradual increase in the complexity of the analysis of the modular system by offering a method
to sequentially ‘open’ more modules as the analysis progresses. The method is illustrated by
calculation of the modular interaction strengths in the kinctic model presented.in Chapter 4.
Chapter 6 offers a definition of robustness of blochemical reaction network properties in
terms of metabolic control analysis. [t provides three methods that explain the occurrences of
robustness of system properties of biochemical reactions networks. [n addition, interesting
cases of robustness from a cell biological perspective are distinguished from trivial cases of
robustness on the basis of the presence or absence of a molecular mechanism that actively
brings about robustness, The robustness of the ammonium-assimilation flux with respect to
changes in the ammonium concentration observed in Chapter 4 is explained in terms of the
medular interaction structure of ammeonium assimilation in £, cofi. '

Chapter 7 offers a general discussion of the thesis. [t discusses the main results in

relation to the central problem that is addressed in this thesis,
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Mechanistic explanation

“The goal of understanding the world is a theoretical goal, and if the world is a machine - a vast atrungement
of nomic connections —~ then our theory ought 10 give us some insight into the structure and warkings of the
mechanism, above and beyond the capability of predicting and controlling its outeumes ... Knowing enouh
10 subsume an event ander the right kind of laws is not, therefore, tantamount 1o knowing the how and why of

it. As the expl Y inad ies of ful proctical disciplines remind us: explanation must be more

q

than potenifalfy-predictive inferences ot law-invoking reeipes.”
(Railton, P., A Deductive-Nomologicul Model of Probabilistic Explanation, Philosophy of Science, 45. 206-
224, 197%)




