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Experimenting on Theories

The Argument

This paper sets out a framework for understanding how the scientific community
constructs computer simulation as an epistémically and pragmatically useful
methodology. The framework is based on comparisons between simulation and
the loosely-defined categories of “theoretical work™ and “experimental work.”
Within that framework, the epistemological adequacy of simutation arises from
its role as a mathematica! manipulation of a complex, abstract theoretical model.
Toestablish that adequacy demands a detailed “theoretical” grasp of the internal
structure of the computer program, Simultaneously, the pragmatic usefulness of
.simulation arises from its role as a “virtwal laboratory.™ That role is made
possible by black-boxing 1he internal structure of the program, such that the
scientist can interact with the computer in an intuitive, “experimental” manner.
Thus simulation is rendered authoritative, opening up encoded theories to a
novel, “experimental™ type of manipulation.

Introduction

A scientist running a computer simulation performs an experiment upon a theory.

An abstract, mathematical model of a physical system is implemented on a
concrete machine. Through that machine, the model can be manipulated as if it
were a physical experimentat target.! The mathematical model can then be ap-
proached and analyzed using skifls traditionally associated with experimental
work: visual observation, “tinkering” with the machine, and intuition about the
behavior of the concrete system, :

This “new mode of doing scientific work™ (Galison 1996, 137) is inseparable
from the technology used to perform it: the digital computer, Without the approp-
riate medium it is not possible to interact with mathematical models in this way.
Technoiogicat change has been accompanied by changes in scientific heuristics
and practices.

! 1take the phras<(*experimental tacge1” rom Hacking 1992, He defines it looscly as that which
(together with various mstru nstitutes “the matéricl of the experiment.” I is clear from the
context that he uses the phrase for the physical system toward which the experimental activitics of the

scientist are directed — for whatever belongs at the cnd of the sentence “the scientist did an
experimentona....”
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Although this style of scientific practice has spread across almost all fields of
scientific research, the methodelogy of simulation has rarely been discussed in the
large literature describing scientists’ epistemic and practical activities. With that in
mind, 1 take a broad view of simulation as it is practiced across multiple scientific
disciplines. Other articles in this issue focus on particuiar instances of simulation,
providing more detailed insight into the local construction of the methodologyina
specific setting. This study, however, focuses more on what is common to
simulation-based science, offering a general framework for describing the new
methodology by analogy to more traditiona! scientific practices.

Rather than attempting a justification or criticism of simulation-based research,
this paper examines how simulation is presented as useful.and aut horitative by the
Ppractitioners themselves (Pickering 1992; Latour 1987). The paper draws strongly
on scientists’ accounts of their own practices, focusing particularly on the categories
of “theory,” “experiment,” and “computer simuiation.” These categories provide a
framework 1o elucidate how simulation is commonly located on scientists'maps of
their own methodologies. Competent use of stmulation draws on many typically
“experimentai” skills and practices, while also demanding a “theoretical™ stance
with respect to the abstract, mathematical computer program.

The paper is based on thirty-five interviews with scientists who use computer
simulation as part of their professional research. The respondents work in a wide
range of felds, including physics. meteorology. chemistry, physiology, artificial
life. and compuler science. It is also based on textbooks about scientific computer
simulation, and on numerous recent scientific publications reporting simulation-

based resuits from a wider range of fields, among them sociology, aerospace

engincering, botany, robotics, and artificial intelligence.

A Useful Ambiguity

Peter Galison, in his historical study of “Monte Carlo™ simufations, argues that
this novei scientific practice is “at once nowhere and everywhere on the usual
methodological map™ (Galison 1996, 120). The “ysual methodological map”drawn
by Galison in this context has two clear landmarks: “theoretical work™ and
“experimental work.™ Much of his paper is devoted to locating simulation with
respect to these {wo landmarks,

A similar methodological map is sketched by philosopher of science Fritz
Rehrlich:

computer simulation provides . . . a gualitatively new and different metho-
dology for the physical sciences. . . . This methodology lies somewhere
intermediate between traditional theoretical physical science and its empirical
methods of experimentation and observation. . . . Computer simulation is
consequently of considerable philosophical interest, {Rohrlich 1990, 507)
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The ambiguous position of simuiation with regard to “theory” and “experiment"is
widely acknowledged in the scientific literature and by the respondents described
above. Simulation can be aligned with whichever methodological cafegory suits
the local circumstances. In this regard, compuler'simulation plays different roles
according to the requirements of the narrative. |

In one interview, for example, a biologist argued: “Look, simulation must be
theoretical.” That comment was made in the context of discussing the intellectual
aspects of designing a simulation, and his simulation’s basis in biological knowl-
edge. In a subsequent interview, while discussing the process of observing how the
svstem works, he took the opposite position: “I think we have to say that simulation
is experimentation.”

Sometimes the rhetorical positioning of simulation serves a social function
(Hine 1995, 120). Labeling a research technique as “theory” or “experiment”
makes a difference to its status, to publications, and te coliaborations. One
respondent, from the biological sciences, presented his computer as a remarkably
fast and efficient theorist, to support a grant application. He hoped to structure the
way the funding body conceptualized his work, suggesting that it was similar to the
type of theoretical research they routinely supported. Another respondent, in
physics, described the difference in social status between the “theorists™ and
“experimentalists™ in his department, To align his work with the higher-status
“theory,” he drew an epistemic distinction between his own “theoretical” style of
computational physics and the more “experimental”style of standard simulation.
“I call my work ‘simulation” on bad days,” he said, on the basis that his work, like
“theory,” was elegant, analytical, and broadly applicable, whereas most simulation,
like “experiment,” was “clunky, " repetitive, uncontrolied, and narrowly applicable.

As well as serving Social functions, different positionings of simulation on a
methodological map support different aspects of application and analysis of the
technique. In contexts where the accuracy and manipulation of the encoded
equations are at issue, it is appropriate to draw on simulation’s function as
symbolic representation, to locate it with “theory.” In contexts where analogies are

Forexample, a respondent in pharmaceutical chemistry routinely compares his
computer simulation with more abstract “theoretical” models of molecular systems.
While describing these comparisons he argued that his simulation is similar to, but
different from, “theory™ “Its a theory, but it’s not a fundamental theory.”

Under other circumstances, the same scientist compares the resuits of the same
simulation with experiments. As such, his simulation is also presented as similar
to, but not the same as, experiment: “It’s an experiment, , . . although it's a
computer experiment.”

Simulation is constructed as both “theoretical” and “experimental” not only in
scientists’ choice of language but also in the ways they design and interact with
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computer simulation programs. This paper describes in detail the types of argu-
ments thal scientists use to locate simulation with either “theory” or “experiment,”
and it describes the types of “theoretical™ and “experimental” practices that
simulators draw on as they construct simulation as a useful methodological
hybrid.

Defining “Simulation™ with Respect to “Theory” and “Experiment”

The categories “theory™ and “experiment” are rarely imagined to be either mutually
exclusive or clearly defined. However, they are broadly understood across the
scientific communuity and are commonly used as landmarks in locating the metho-
dology of “simulation.”

Although many, sometimes contradictory, definitions of “theory” and “experi-
ment™ arose in interviews, two distinctions were broadly agreed on and frequently
raised. The first is based on what the scientist works with; the “theorist™ generates

-7 and manipulates “representations,” or “descriptions,” while the “experimentalist™
* works with “things,” or “reality.” The second emphasizes the rype of activity the
scientist engages in. The “experimentalist’s” work involves such activities as
adjusting things, testing things. and waiting for data to emerge. The “theorist’s™
work is characterized as the analytical, relatively predictable manipulation of
equations and devefopment of ideas.

For example, one respondent (a physiologist) defined “experiment” using the
latter criterion of the fype of work involved, then defined “theory™ using the
former criterion, of warking with descriptions: *Y ou have experimentalists and
theoreticians, right? Now the experimentalist does experiments to lest things. And
the theorist uses mathematical descriptions.”

What the scientist warks with The sype of activity involved

“Theory" “Representations” « Manipuiating equations
: e Developing ideas

» Fiddling with machines
“Experiment” | “Things” or “reality” » Trying things out
« Watching to s¢e what happens

Se ... Simulation is like theory Simulation is like experiment

Flgure 1: The Distinction between “Theory™ and “Experiment”

These two common distinctions between “theory™ and “ex periment” provide a
useful framework for characterizing computer simulation (see figure 1}, The first
can be used to present simulation as “theoretical™ itis a technique for manipulating

“mathematical descriptions™ or “representations.”™ As a programmer expressed
this argument: “What you're working with in a simulation is a theory. You're
computing a theoretical equation and the effects thereof.” A respondent from
physics made the same point more emphatically; “Of course it's theory! It's not
reall™

The second distinction can be used to present simulation as “experimental™ the
scientist running a simulation also “does experiments to test things.” The unpre-
dictability of a simulation run makes the activity of simulation similar to the
activity of performing a physical experiment. The scientist prepares the system,
sets initial conditions, then takes a relatively passive role, waiting to find out how
the system will respond (Pickering 1993, 23).

Analogies between simulation and this type of activity are often presented in
simulation texts: “Simulation is essentially an experimental approach to solving
problems” (Payne 1982, 158). Such analogies were aiso regularly expressed by
respondents. For example a biochemist argued: “I think [computer simulation)
has all the characteristics of what people would classicaily call an experiment. . ..
Varying parameters, and just seeing .. . whether or not your cutput is consistent
with your assumption. You do that whether or not you're on a computer, you do
that whether or not you're deing it with petri dishes.” In an extension of this
analogy between “simulation” and “experiment,” it is commonplace to present the
output of a simulation as “observatiens,” “samples,” and “data.”

7"~ Most respondents characterized simulation as similar to “theory”in terms of its
relatienship to “reality,” and characterized simulation as similar to “experiment™
in terms of the types of activity it entails. Simulation is thus presented as a hybrid
of traditional scientific practices, facilitating “experiments” on “thearies.”

Strategic Black-Boxing
o fw ,
To “do an experiment” on a computer simulation, it must be characterized as an
opaque, unpredictable entity, with which one car interact in an “experimental”
manner. Such a characterization of the machine is significantly different from
presenting it as a large calculator or an electronic mathematician.

A physiologist, for example, found it appropriate to present his simulation as an
experimental target similar to those he was accustomed to “prodding” in the
laboratory. “You don’t give the [simulation] system a problem. You prod the
system and it reacts in the way its been constructed to react.”

Lucy Suchman has argued that it is the complexity of a computer program that
invites the user to treat the system as a unitary entity, and to inferget with it, the
way one would interact with a person or object:

? Some respondents also used a second, more narrow sense of the ward “theory,” defined by the
type of mathematics used. Such secondary definitions do not contribute significantly to the argument
presented here.
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Insofar as the machine is somewhat predictable, in sum, and yet is also both
internally opaque and liable to unanticipated behaviour, we are more likely
to view ourselves as engaged in interaction with it than as just performing
operations upon it, or using it as a tool to perform operations upon the
world. (Suchman 1987, 16)

The results of a simulation are unpredictable. They are typically based on calcula-
tions that are analytically intractable, and the computer's numerical computation
of the solutions is far too rapid to be followed by an individual scientist.

The complexity and unpredictability of a simulation program invite the scientist
to present it as a black box, interacting with it in an experimental manner, trying
things out to see what will happen. A respondent from chemistry argued: *If’s
experimental in the sense that when you set up your simulation you're waiting for
the result, and when the result comes out, it can genuinely be something that you
don’t expect -— because of this remoteness of the computer processes.” The
computer processes are “remote™ they are not, and cannot be, grasped or followed
by a scientist during a simulation run, ,

However, this black-boxing of the simulation program differs from the opacity
of many nonscientific computer programs,’ in that the black-boxing is only
temporary. To analyze the manipulations of the “theory™ performed by the
computer, the technology must be characterized less as an opaque, interactive
entity and more as a transparent calculating machine,

While it is pragmatically convenient to suspend interest in the internal mecha-
nisms of a working simulation, it is professionally reprehensible to be ignorant of
those workings. Both designers and users of simulations argue that a competent
scientist should have a clear, analytic grasp of the mathematics built into the
program. A simulation programmer exclaimed, “people should get into the code
and say OK, what is really going on here? 1 mean it's just crazy not to do that.”
Similar expectations were found in interviews across all the fields sampled, with
researchers strongly aware that “these methods are not foolproof. They are stillin
development. To really use them efficiently [ think you have to know what they are
doing, what are the strengths, what are the approximations, what are the difficult
points, the pits you can fallinto.” A pharmaceutical chemist argued emphatically
that a responsible user of simulation must “try to break down that sense that,
because this number came out on the printed form, it’s got to be right. You have to
constantly check your premises and estimate things on the back of an envelope to

t In commercially nvailable software, see for example Winograd and Flores 1987, 5: “'What is a
word processor?”. .. It is a medium for the creation and modification of linguistic structures 1hat play
a role in human communication. For the purchaser of the ward processor, this is the relevant domain.
The word processor exists as a collection of hardware or programs only when it breaks down.” In
education, see for example Cabrera 1990, 82: “Students can then investigate the structure of these
physical models in an interactive envitonment, even though the mathematical sophistication of the
models is often beyond their grasp.” See also the literature on virtuaj reality — e.p., Sherman and
Judkins 1992; Woolley 1992; Heim 1993; Casti 1997; Morse 1994,

[T
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make sure.” Opening the black box in this way is necessary to the establishment of

g simulat_ion's__l_e_:gilimacy_.;‘l! is the code inside the box that determines the authority
. with which the program can claim to mimic an experimental target.

~—The process of computér sIMulatronTequires Goh an analytical URAerstanding
of the mathematical principles programmed into the machine, and a temporary
suspension of interest in those principles, in order to interact with the computer as
if it were a black box.

These two modes of interaction with computer simulation are reminiscent of the
modes of human-computer interaction identified by Sherry Turkle. Turkle argues
that there are two primary “modes™ of interacting with computers: the “calculation”
mode, where one is conscious of, and interacting with, the internal mechanisms
behind the machine's outward behavior, and the “simulation™ mode, where one
negotiates the interface of the computer, without paying attention to its underlying
programming (Turkle 1995, 36-43). The competent professional use of scientific
computer simulation demands both levels of interaction. It requires knowledge of
the mathematical principles driving the machine’s behavior, and it requires tem-
porary, strategic suspension of interest in those principles, in order to treat the
computer as an interactive entity and perform an “experiment™ on it.

Combining “Theoretical” and “Experimental” Aspects

This temporary black-boxing of the computations involved in simulation allows
scientists to interact with theories as if they were entities that could be adjusted,
observed, and measured. Thus “theoretical™ projects, manipulations of represen-
tations, can be approached through “experimental™ procedures.

On the basis of simulation’s role as a manipulation of a representation, many
applications of simulation are proposed and analyzed as theoretical projects.
Simulations are often compared to experimental results, in a Popperian check of
the “validity of the representation,” or to predict the behavior of “represented”
systems. Analysis of simulation results draws attention to such traditionally
“theoretical” issves as the underdetermination of the model by the available data,
or the degree to which the representation is “biased " ( Taylor 1989; De Landa 1994;
Oreskes et al. 1994; Suppe 1996).

What is novel about these “theoretical” projects is the “experimental™ procedures
used to tackle them. The integration of theory and experiment can be seen in this
excerpt from an article in the Journal of Computational Physics. |t describes
interactions with a particular simulation.

If one adds adamping term, the oscillation decays. However, if one switches
on a constant bias (that is, a constant is added to the right side of [an
equation]) for an appropriate time interval, a tunable periodic oscillation is
obtained. (Zabusky 1981, 220)
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There is a strong sense of experiment in the description of this procedure. Things

are “added” or switched on and off, and responses are recorded. Given that the

oscillation is presented as a graphic on a computer screen, and that the mechanisms
“behind the behavior of the oscillation accur too fast to be observed, there is a
strong sense of trial and observation. However the things that are added or
switched are not chemicals or currents: they are mathematical terms and constants.
And the process of switching on “for an appropriate time interval” can be translated
into the mathematical addition of a constant tc an equation.

Another example of this experimental approach to traditionally “theoretical”
projects is the mathematical work of Waiter Fontana, on complexity. Fontana’s
computer program chooses mathematical functions at random and applies them
to one another. (For example the function fJg]is “plugged in™ to the function A{fJ,
thus transforming f [according to 4] into a new function.) Fontana carefully
constructs an analogy between his program and a physical system, presenting his
work as practical experimentation with a concrete, unpredictable population of
entities.

The work that goes into constructing that metaphor is not empty poetry. The
metaphar helps to “set up amodel that also provides a workbench for experimen-
tation” (Fontana 1991, 166). The “results and discussion™ section of Fontana's
work bears little resemblance to a mathematical paper. His results are presented in
terms of observations of the system's behavior, such as: “Most of the computer
experiments exhibit very complicated short-lived states that reduce to simpler
cooperative metastable transients™ and, “Polymets consisting of monomers nested
into one single tree branch have been observed™ (ibid., {86, 193). In this way the
analytical process of manipulating a mathematical model can be approached
through a negotiation with the computer interface. Mathematical calculation and
experimental practice come together in an unprecedented form.

Tinkering, Noticing, and Intuition

Fontana, Zabusky, and other scientists can cross the boundaries of figure 1 to
manipulate “represemations™ using “experimental™ practices, as a result of the
strategic, partial black-boxing of their computer simulations. The program is
“open™ at a level through which a general analytical grasp of the theory is possible.
At another ievel the program is sufficiently “closed” that {(as Papert and Turkle
argue) the abstract mathematical theory can be manipulated as if it were a
concrete, physical object (Lévi-Strauss 1972; Turkle and Papert !991 Wilensky
1991):

The computer stands betwixt and between the world of formal systems and
physical things; it has the ability to make the abstract concrete. In the
simplest case, an object moving on a computer screen might be defined by
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the most formal of rules and so be like a construct in pure mathematics; but
at the same time it is visible, almost tangible, and allows a sense of direct
manipulation. (Turkle and Papert 1991, 162)

A sense of direct manipulation encourages simulators to develop a “feel” for their
mathematical models with their hands and their eyes, by finkering with them,
noticing how they behave, and developing a practical intuition for how they work.
Because the simutation is presented as an experimental target, the researcher can
interact with it as if it were a “real” target, drawing on the physical skills of
recognition and reaction.

The quick generation of data through simulation allows scientists to patch ideas
together, to explore possibilities, to build up a broad base of experiences, and thus
to develop a more-intuitive, “*hands-on™ understanding of a mathematical model.
Many formal applications of simulation use a systematic process of parameter
variation tn order to “explore the solution space™ (Kaufmann and Smarr 1993,
4-7). The author of a journal article on simuiation in physics notes:

It is clear that interactive and rapid turn-around computing provides an
opportunity to concentrate deeply and develop a special intuitive “feel” for
the results. This noninterrupted mode augments the innovative process. This
is also easy to achieve for systems with a few dependent variables. A similar
remark also applies to processing and visualizing the data base obtained
from long-guration runs of large-scale simulations, (Zabusky 1981, 232)

Alarge element of skill andmis involved in developing this “intuitive
feel” for a computer simulation. The same author claims that he has “found it
difficult to relate this mode of working via lectures. Perhaps this mode is still an art
form understood by committed practitioners in benign computer environments
and learned only by apprenticeship” (ibid., 196).

A respondent from inorganic chemistry made a similar claim about the way he
used his own simulation; :

1 wouldn’t say at the moment that simulation is strictly a science, It's sort of
more like anart. ... It's just, you have to have a feel. In this case, the reason
why things are not coming to equilibrium is because the run isn't long
enough of it’s not short enough, or I haven't had enough interchange
attempts. It’s something you pick up, I suppose, with experience.

An important part of the exploration of a simulation’s behavior is the typically
“experimental” skill of noticing visual patterns generated by an inscription device,
As Hacking has argued, *The good experimenter is often the observant one who
sees the instructive quirks or unexpected outcomes of this or that bit of the
equipment” (Hacking 1983, 167). The good simulator requires a similar ability.
Most computer simulations are equipped with data analysis routines and graphic
interfaces, so that the output appears in the form of tables, graphs, and diagrams
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that are intended to be as intuitively clear to the user as possible. This way, the
scientist can make intuitive sense of the program’s behavior, and be alert to
patterns and oddities. A biochemist, for example, can interpret the output of a
computer program in terms of the three-dimensional shape of a molecule: “You
can see things with different representations that you can't just see out of the
numbers. So you can see if the DNA is bent.” Similarly, graphic presentation can
allow a physicist to interpret a series of mathematical results as a moving wave: “In
a film depicting the time evolution of an initially sinusoidal solution of the KdV
equation, made by Gary Deem at Bell Laboratories under the direction of Kruskal
and Zabusky, there are eight clearly distinguishable ‘solitons,’ each pursuing its
own path™ (Lax 1975, quoted in Zabusky 1981, 227). .

These skills of tinkering and noticing have become important practices in the
development of scientific theory. Unstructured interaction with the computer
builds a base of experience of a mathematical models behavior, which can
strengthen a genera! understanding of the model or suggest new directions for
research. As one respondent put it: “Simulation is useful when you don't know
what to do next, and you just want to mess around and see what happens, and look
for something unexpected and interesting.”

Interplay between sirnulation resuits and intuitions is the core of the process
of model invention, and occupies the lion's share of the development time. ...
We have often found it to be usefui to pick a single point in the parameter
space, generate predictions (perhaps somewhat noisy), think about the
results, choose another single point, etc., thereby learning not anything
about a best fit but something about the logic of the model. (Shiffrin and
Nobel 1996, 4, 5)

A more directed exploration of such a semi-opaque systemn can generate “data
sets,” “observations,” and “discoveries " regarding the system’s behavior. A neuro-
physiologist related the discoveries he had made by “experimenting” with different
values for particular parameters in his simulation:

For example when 1 started mucking around with canduction velocities,
which is the rate the signal gets from one cell to the next, | had expected that
would be a very critical parameter. It turns out to have some role, but very
very little in relationship to things that I thought it would be eritical-{or. And
that was something of a shock. On the other hand I hadn’ thought the
threshold would be impertant, but when we started mucking with that we
found that that actually produces more variation than varying the conduc-
tance velocity. Which is again a surprise.

Experimental practices such as “mucking around™ and noticing surprising aspects
of acomputer’s behavier can generate important changes in scientists' understand-
ing of the systems they study.
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Conclusion
-

Corn.parisons of scientific computer simulation with “theory” and “experiment”
provide a convenient framework for examining the construction of simulation-
based methodology. Within that fi ramework, computer simulation is presented as
us»:el'ul and authoritative iasofar as it opens an epistemically justified “theory” to
skilled “ex pe_:rimema! " manipulation. The authority of scientific simulation relies
onan an'fllytlcal knowledge of the underlying “theoretical” mathematics, while the
pragmatic utility of simulation relies on the scientist’s ability to black-box the
program, to delegate the computations to the machine and to interact “experimen-
tally” with the surface, "

'Many authors in the social studies of science emphasize the close interre!lation-
ships bet}veen technological and epistemic concerns in scientific practice, showing
how “articulated knowledge and machinic performances are reciprocally tuned to
one apother“ (Pickering 1995, 29; see also Clarke and Fujimura 1992). In the
S(::Il?:nllﬁc use of computer simulation, an abstract modei is manipulated through a
dag'nal machine, entwining the epistemic and the technical inextricably together.

is technique of embodying a representation in a machine has facilitated a “new
method for extracting information from physical measurements and equations”
(Galison 1996, 120).

By con}bining an analytical grasp of a mathematical model with the ability to

t?mporan[y “black-box" the digital manipulation of that model, the technique of
§|mulati0n allows creative and experimental “playing around” with an otherwise
impenetrable set of equations, to notice its quirks or unexpected outcomes. The
refults of alarge and complex'set of computations are thus presented in a way that
brings the skills of an observant experimenter to the development of mathematical
theory. '- .
The usefulness of computer simulation thus depends on the construction and
maintenance of this methodological ambiguity. In their everyday interactions with
the computer, and in their choice of language in varied narrative contexts, scientists
strategfcal]y manage simulation’s flexible position with respect to “théory" and
“Fxpenment. " In this way they facilitate a significantly novel, and highly produc-
uveé :node, of scientific work: creative experimentation with a mathematical
model,




References

Cabrera, B. 1990, “Early Experiences with Physics Simulations in the Classroom.”

In Computers in Physics Instruction, 77-83. Raleigh: Addison-Wesley.
v/ Casti, . L. 1997. Would-be Worlds. New York: Wiley.

Clarke, A., and J. Fujimura, eds. 1992. The Right Tools for the Job: At Work in
Twentieth-Century Life Sciences. Princeton, N.J.: Princeton University Press.

De Landa, M. 1994, “Virtual Environments and the Emergence of Synthetic
Reason.” In Flame Wars: The Discourse of Cyberspace, edited by M. Dery,
263-85. Durham, N.C.: Duke University Press.

Dowling, D. 1998. “Experiments on Theeries: The Construction of Scientific
Computer Simulation.” Ph.D. diss., University of Melbourne. Dissertation
Abstracts International 59:9A.

Fontana, W. 1991. “Algorithmic Chemistry.” In Artificial Life II: Proceedings of
the Workshop on Artificial Life Held February 1990 in Santa Fe, New Mexico,
edited by C. G. Langton, C. Taylor, J. D. Farmer, and S. Rasmussen, 159-209.
Redwood City, Calif.: Addison-Wesley.

Galison, P. 1996. “Comgputer Simulations and the Trading Zone.” In The Disunity
of Science: Boundaries, Contexts, and Power, edited by P. Galison and D. J.
Stump, 118-57. Stanford, Calif.: Stanford University Press.

Hacking, 1. 1983. Representing and Intervening. Cambridge: Cambridge Univer-
sity Press.

— 1992. *The Self-Vindication of the Laboratory Sciences.” In Science as
Practice and Culture, edited by A. Pickering, 29-64. Chicago: University of
Chicago Press.

Heim, M. 1993. The Metaphysics of Virtual Reality. New York: Oxford University
Press.

Hine, C. 1995. “Information Technology as an Instrument of Genetics.” The
Genetic Engineer and Biotechnologist 15(2-3):113-24.

\/Kauf mann, W. J. 1., and L. L. Smarr, 1993. Supercomputing and the Transforma-
tion of Science. New York: Scientific American Library.

Latour, B. 1987. Science in Action. Milton Keynes: Open University Press.

Lévi-Strauss, C. 1972. The Savage Mind. London: Weidenfeld and Nicolson.

Morse, M. 1994, “What Do Cyborgs Eat? Oral Logicin an Information Society.”
In Culture on the Brink: Ideologies of Technology, edited by G. Benderand T.
Druckrey, 157-89. Seattle: Bay Press.

Oreskes, N., et al. 1994, “Verification, Validation and Confirmation of Numerical
Models in the Earth Sciences.” Science 263:641-46.

Payne, J. A. 1982. /ntroduction to Simulation: Programming Techniques and
Methods of Analysis. New York: McGraw-Hill. '

Pickering, A., ed. 1992. Science as Practice and Culture. Chicago: University of
Chicago Press.

Experimenting on Theories 273

—. 1993, “The Mangle of Practice: Agency and Emergence in the Sociology of
Scnence " American Journal of Sociology 99(3):559-89.

~— 1995. The Mangle of Practice: Time, Agency and Science. Chicago: Umversuy
of Chicago Press.

\/Rohrllch F, 1990. “Computer Simulation in the Physical Sciences.” Phs!osophy
of Science Association 2:507-18.

Sherman, B., and P. Judkins. 1992. Glimpses of Heaven, Visions of Hell: Virtual
Reality and 115 Implications. London: Hodder and Stoughton.

\ /ﬁhiffrin., R. M., and P, A, Nobel. 1996. The Art of Model Development and
Testing. Report 167, Research Report Series, Cognitive Science Department
Indiana University. ,

Suchman, L. 1987, Plans and Situated Aciions: The Problem of Human Machine
Communtication. Cambridge: Cambridge University Press.

~— Suppe, F. 1996. “The Epistemology of Simulation Modeling” — draft copy.

Taylor, P. 1989. “Revising Models and Generating Theory,” Qikos 54(1):121-26.

Turkle, S. 1995. Life ont the Screen: Identity in the Age of the Internet. New York:
Simon & Schuster,

_ Turkle, 8., and S. Papert 1991. “Epistemological Pluralism and the Re-valuation
of the Concrete.” In Constructivism: Research Reports and Essays 1985- 1990,
edited by 1. Harel and S. Papert, 161-91. Norwood, N.J.: Ablex.

Wilensky, U. 1991. *Abstract Meditations on the Concrete and Concrete Implica-
tions for Mathematics Education.” In Constructivism: Research Reports and
Essays 19851990, edited by 1. Harel and S. Papert, 193-203, Norwood, N.J.;
Ablex.

Winograd, T., and F. Flores 1987. Understanding Computers and Cognition: A
New Foundauon Jor Design. Reading, Mass.: Addison-Wesley,

Woolley, B. 1992. Virtual Worids: A Journey in Hype and Hyperreality. Oxford:
Blackweil. )

Zabusky, N. 1981. “Computational Synergetics and Mathematical Innovation.”
Journal of Computational Physics 43:195-249.

Department of History and Philosophy of Science
University of Melbourne

r~ -

L 16,9 Co5C3Z 194



