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Abstract: “ 1 discuss the difference between models, simulations, and experiments from an
epistemological and an ontological perspective. I first distinguish between
“static” models (like a map) and “dynamic” models endowed with the capacity
to generate processes. Only the latter can be used to simulate. I then criticise
the view according to which the difference between models/simulations and
experiments is fundamentally epistemic in character. Following Herbert
Simon, I argue that the difference is ontological. Simulations merely require
the existence of an abstract correspondence between the simulating and the
simulated system. In experiments, in contrast, the causal relations governing
the experimental and the target systems are grounded in the same material.
Simulations can produce new knowledge just as experiments do, but the prior
knowledge needed to run a good simulation is not the same as that needed to
run a good experiment. I conclude by discussing “hybrid” cases of “experi-
mental simulations™ or “simulating experiments”.

1. INTRODUCTION|

Empiricist philosophies of science draw a sharp distinction between de-
scriptive or representational devices (scientific theories) and what is de-
scribed or represented (the natural or social world). Models and simulations
are customarily placed among the representational tools, whereas experi-
ments are considered parts of the natural or social world that have been care-
fully designed in order to answer some specific question. There are, how-
ever, bits of science that do not fit neatly, and for which a different scheme
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of classification may be more appropriate. In this paper I shall try to show
that it is sometimes useful to think of models, experiments and simulations
as tokens of the same kind, somehow located between our statements about
the world (call them scientific laws, principles, theories, axioms), and the
world itself (see also Guala, 1998). Borrowing from Margaret Morrison and

Mary Morgan (1999), we may say that such entities “mediate” between the- :

ory and reality.
First, let us notice that everyday scientific talk often does treat experi-
ments, models and simulations as tokens of the same kind. In one of the ear-

liest papers in the field of experimental economics, for example, the term

“stmulation” appears three times only in the first page (Smith, 1991, p.8),
alongside other expressions such as “experiment” and “experimental game”.
Or take medicine. Experimental physiologists make extensive use of animals
in their investigations, for well known (although controversial) ethical rea-
sons. Most often, these activities fall under the label of “animal experimen-
tation”, But it is not uncommon to hear or read the expression “animal mod-
els”, especially when experimenters fear that the findings will not be easily
transferable from animal subjects to human beings. ‘

Why do scientists slip from “experiment” talk, to “model” and to “simula-
tion” talk? A plausible answer is that the difference is purely epistemic in
character: “experiment” and “theory” being the pillars upon which all proper
science should stand, scientists signal their epistemic doubts using a special
terminology. An incomplete or less than certain theory becomes a “model”:
a dubious experiment becomes a “simulation”, and so on. However, perhaps
there is something deeper to be said, and the rest of the paper is devoted to
explore this possibility.

2. MODELS AND SIMULATIONS

Models have been at the forefront of research in the philosophy of sci-
ence for at least two decades now. Indeed, the latest orthodox “theories of
scientific theories”, the so-called “Semantic View” of theories, identifies
theories with sets of models. The Semantic View is more a family of doc-
trines than a single, unified philosophical theory, but all its versions share a
distaste for the older “syntactic” approach, according to which theories are
basically sets of statements or laws. In the semantic approach the funda-
mental component of a theory, the model, is in contrast a structure - a set of
aobjects with properties and relations among them and/or their parts - that
satisfies the linguistic components of the theory. The ltter are secondary, in
the sense that they can be formulated in various equivalent ways, as long as
they are satisfied by the models. The axioms, laws, etc., may change de-

Simulati

pending on the language and system of axioms scientists choose, but the
models won't. The models must be put at work by means of a “theoretical
hypothesis”, stating that they stand in a certain relation (of similarity, %so-
morphism, analogy, etc., depending on which version of the Semantic View
one subscribes to) with real-world entities or systems. Since the Semantic
View is presently the received explication of the concept and role of scien-
tific models, I shall take it as my point of departure here. The next question
is: what is a simulation? _

Mario Bunge (1969) defines simulation as a relation between two enti-
ties, x and y, where x simulates y if (1) there exists a correspondence relation
between the parts or the properties of x and y; and (2) the analogy is valuable
to x, or to another entity (z) that controls x (p. 20). The first siriking feature
of this definition is its anthropocentrism. It makes no sense to say that a
natural geyser “simulates™ a volcano, as no one controls the simulating proc-
ess and the process itself is not useful to any one in particular. I shall assume
for the sake of this paper that the second part of Bunge’s definition captures
some important connotations of the term simulation. But the first part is un-
satisfactory, because it leads o include things that we would not intuitively
cali “simulations™ at all. Consider a map: if it has been drawn adequately,
there must exist some correspondence relation between its parts and parts of
the territory it is aimed at representing.! Since the map is alsc somehow
“controlled” by someone (its user or its creator), and is certainly valuable to
her, it does fulfil all of Bunge’s criteria. Yet, it would be odd to say that a
map “simulates” the territory.

Now consider a map together with a set of flags and miniaturized soldiers
and tanks, of the sort you find in milifary head-quarters or in games such as
“Risk”. If the toy-flags, muni-soldiers and mini-tanks are moved on the map
~according to the appropriate rules, we can properly claim that a battle or a
“military campaign is being simulated. Why? Whereas the map alone is
somehow “inert”, the same map, plus the miniatures, plus the players or offi-
cials moving the miniatures according to the rules, make a “dynamic” sys-
tem. I shall here follow Stephan Hartmann (1996) and distinguish static from
dynamic models. A static model can only represent a system at rest. A dy-
namic model can also represent the time-evolution of the system (p. 82).> A
dynamic model, then, can be in different states at different times, and usually
each state will correspond to a specific combination of values taken by the
variables in the model. Such a model will be able to be in as many different

'T am here referri ng standard maps on paper only. Giere (1999, pp. 44-47) provides a detailed
discussion of the function of maps as models,

?lam paraphrasing Hartmann here, for he speaks of models as if they were linguislic entitics

(made of “assumptions”, for example), whereas in this paper I follow the Semantic ap-

proach and take them (o he obiects. .



states as all logically or physically possible permutations of the values its

variables can take. Only “dynamic” systems of this sort can properly speak-

g simulate. “A simulation imitates one process by another process” (Hart- -
mann, 1996, p. 83), where a “process” is a time-ordered sequence of states a

system takes in a given time period.?
This characterization opens some interesting questions. Consider my pre
vious example: in order for the map-plus-miniatures to be a simulating de-

vice, the system must be capable of taking different states (the miniatures :

must change their position on the map, for instance). This means that there

must be an agent prompting the changes in the system itself. Such a role may
be played for instance by the officials in the army’s head-quarters. Thus, :
counter-intuitively perhaps, the officials must belong to the simulating dé- -
vice itsell. If “simulation” is an anthropomorphic or more in general agent- ~

dependent notion, as Bunge seems to suggest, we should not be troubled by
this. It is just natural that what is to be included and what to be excluded in a
simulating system is partly arbitrary and/or dependent on one’s interest.

Simulations are not in nature, it is us who “see” them and often build them .

according to our purposes. Similarly, a checkerboard and some pawns can-

not by themselves simulate anything - although they can represent some- -
thing: for example the state of a given battle at time 1. A checkerboard, some :
pawns, and two players can simulate a battle or a war (albeit at a very high
level of abstraction) by representing a sequence of states of that battle or

war. Most often, a simulating device will have some mechanism built into it,
which once triggered will make the system go through a series of states
automatically. The agent’s role, then, will be merely that of setting the initial
State and starting the process, which will keep running until it is exogenously
interrupted or runs out of steam.

3. SIMULATIONS VS. EXPERIMENTS: THE
EPISTEMIC ACCOUNT

The distinction between simulations and experiments is more tricky than
the one between models and simulations. In everyday scientific talk, such a
distinction is certainly loaded with epistemic connotations: simulations are
supposed to be somehow fess fertile than genuine experiments for the pro-
duction of scientific knowledge. Their results are often qualified as “mere”
simulations not to be mistaken for tlie “real thing” (i.e. the real-world system
whose behaviour is being simulated, or an experiment on the real-world
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system). The interesting question, however, is whether the epistemic dgfef-
ence is fundamental, or whether it is just a by-product of some more basic
difference between experiments and simu latlon§. o

I should make clear that I am not interested in conceptual das.tmctxons per
se. My primary aim is to make sense of some tools that are widely used in

_science. And this is no mere philosophical quibble: scientists worry about

the same issues - probably even more than philosophers do. Take the sort of

laboratory work done by psychologists and economists interested in behav-

ioral decision making. The psychologist Baruch Fischhoff represents practi-
tioners’ worries by means of a graphic example. In the psychology lab,

choices look like this:

Choice A. In this task, yon will be asked to choose between a certain loss
and a gamble that exposes you to some chance of loss. Specifically, yog
must choose either: Situation A. One chance in 4 to .lose $200 (and
chances in 4 to lose nothing). OR Situation B. A certain }oss 'of $50. O]E
course, you’d probably prefer not to be in either of thesg situations, but., 1h
forced to either play the gamble (A) or accept the certain Joss (B), whic
would you prefer to do? (Fischhoff, 1996, p. 232).

Rut in the rea! world, choices ook like this:

Choice B. My cousins [...] ordinarily, I'm Iike: re?lly close‘wnh my
cousins and everything. My cousin was having this big grz}duatzon party,
but my friend - she used to live here and we went to [...] like startegi pre-
school together, you know. And then in 7th grade‘ht-sr stepdad got a job in |
Ohio, so she had to move there. So she was in Ohio and s!'le invited me
up for a weekend. And I've always had so much fun \&fllen I'd go up there
for a weekend. But, it was like my cousin’s graduation party was thfan,
too — like on the same weekend. And I was just like I wanted to go to like
both things so bad, you know. I think I wanted to go more to like up
Ohio, you know, to have this great time and everything, but'I knfzw my
cousin — I mean, it would be kind of rude to say, “W_cll, my friend invited
me up, you know for the weekend.” And my cousins from cut of tO{\;/t;
were coming in and everything. So I didn’t know what to do. An ’
wanted mom to say, “Well, you have to stay home”,‘ so then I wouldn’t
have to make the decision. But she said “I'm not going to tell you, you
have to stay home. You decide what to do”. And 1 hate when she does
that because it’s just so much easier if she just tells you what you have to
do. So I decided to stay home basically because I would feel really stup?d
and rude telling my cousin, well, I'm not going to be ther<_3. And I’dll{d
have a really good time at her graduation party, but I was kind of think-
ing I could be in Ohio right now (Fischhoff, 1996, p. 232).



What do choices in environments like the first one tell us about behavior
in environments like the latter? And what are environments like the former .
anyway? Are they simulations of real-life situations, or are they experiments .

on human decision-making? One possible answer is that experiments like

“Choice A” test subjects’ “pure” cognitive capacities. But this would be un-

satisfactory: decision processes may be completely different in the two cir-

cumstances, and “purity” is a poor consolation if it is unlike anything we are
ultimatety interested in explaining and understanding. A more reascnable
answer is that in situations like “Choice B” there is just too much going on, -

and simplified settings like “Choice A” are just intermediacy steps on the
way towards the understanding of complicated “real-world” decision mak

ing. Indeed, it is always useful to think of experimental work as involving (at -

least) three different systems and two distinct hypotheses (see Figure 1).

Theoretical
Hypothesis

Model Experimental Target
— System ——p  System
Internal External
Validity Validity
Hypothesis Hypothesis

Figure I. From models to target systems.

As semantic theorists point out, models must be put in correspondence
with their “real-world” target by means of a theoretical hypothesis specify-
ing what sort of relation (isomorphism, analogy, similarity, etc.) is supposed
to hold between them. But the path between a model and the real world can
be split into a number of sub-steps. Most often, the relation between a model
and an appropriately designed experimental system is tested first (in the fab).
Then it is further hypothesized that the experimental system stands in some
specific relation with the target. This is typical of sciences, like medicine or
economics, which are ultimately aimed at explaining phenomena in the un-
constrained world outside the lab. Since the quality of field data is usually
too poor to answer specific questions concerning causal mechanisms and
-processes, physiologists and social scientists find it useful to try and answer
them first in the laboratory. Then, they show (or argue, or assume) that the
laboratory was a correct replica of the real-world systems they were inter-

ested in the first place.
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What kind of correspondence relation is specified by the external validity
hypothesis? Given the amount of controversy concerning the nature of theo-
retical hypotheses in the semantic approach, one may be pessimistic about
the prospects of finding a general answer to this question. But, minimally, an
external validity hypothesis should map elements of the experimental system
onto elements of the target system. These elements should be entities, prop-
erties, and relations between these entities and properties. (Causal relations
should be prominent, one would think.) Experimental psychologists like
Fischhoff are worried because the fact that X causes Y in system A (the lab),
does not imply- that the corresponding entity/property X* is a cause of Y* in
system B (the target). An external validity hypothesis or assumption bears
the weight of any inference from the social science laboratory to the real so-
cial world.

“Model” and “simulation” talk is more common in the experimental
branches of sciences, like economics or medicine, in which external validity
worries are widespread and taken seriously. Indeed, you do not find in
physics the sort of g priori skepticism towards experiments that you find, for
‘instance, among economists. But the question is: should the distinction be-
tween experiments and other mediating devices like simulations be based on
such epistemic differences? At least two arguments can be leveled against
‘this solution. Firstly, epistemic degrees of confidence in a particular scien-
ific tool or device change in time. Thus, Galileo’s experiments were not
immediately greeted with enthusiasm, but it would seem odd to claim that
for this reason they should have been labeled as “simulations™ until they
were accepted by the scientific community. What a scientific device is
should not depend on whether we are confident in the reliability of its re-
rsults,

Secondly, simulations require an external validity hypothesis too, which
may or may not be true depending on the circumstances. If I simulate the
battle of Waterloo using toy soldiers and horses, 1 work on the hypothetical
assumption that, for example, the speed of horse miniatures stands approxi-
mately in the same relation with the speed of little soldiers on my map as the
speed of infantry units stood with the speed of cavalry units in 1815. Only
urder this hypothesis can I use the simulating model to investigate, for in-
stance, what would have happened if Napoleon had chosen a different strat-
egy. The difference then must lie elsewhere. Perhaps in the fact that psy-
chologists and economists use human beings (students, for example) as sub-
jects in their experiments. The intuition is that, unlike pawns and armies,
toys and troops, human beings are the same in and out of the lab. But how
‘exactly?




4. SIMULATIONS VS. EXPERIMENTS: THE
- ONTOLOGICAL ACCOUNT

A material model of the propagation of light, according to the wave the-

ory, can be built with the aid of water in a ripple tank. At a general level of
analysis any kind of wave can be modeled as a perturbation in a medium
determined by two forces: the external force producing the perturbation, and
the reacting force working to restore the medium at rest. General relation-
ships such as Hooke’s law or D’Alembert’s equation may hold for @il kind-
of waves. More fundamental relationships, such as Maxwell’s equations, de- .
scribe the properties of the electric and the magnetic field only. The
D’Alembert wave equation belongs to electromagnetic theory because elec--
tricity behaves like a wave, although the fundamental forces at work are dif- -
ferent from those at work in case of, e.g., water waves. The terms appeating .

in the equation describing the target and the model-systems are to be inter

preted differently in the two cases: the forces are different in nature, and so-
are the two media in which waves travel. The similarity between the theo- :}
retical model of light waves and the ripple-tank model holds at a very ab-
stract level only. The two systems are made of different “stuff’: water waves
are not light waves. Because of the formal similarity, though, the behavior of
fight waves can be simulated in a ripple tank. Both light waves and water ,

waves obey the same non-structural law, despite their being made of differ-
ent “stuff”. This is due to different reasons in each case: different underlying
processes produce similar behavior at an abstract level of analysis.* Simi-

larly, human behavior can to a certain extent be simulated by means of com- -
puterized modets, but arises from “machines” made of flesh, blood, neurons, -.

etc. rather than silicion chips.

Herbert Simon (1969, pp. 15-18) puts it as follows: simulations rely on a
process of abstraction from the fundamental principles governing the be-
haviour of the simulating and the target systems. If similar “organizational
properties’ arise at a given non-fundamental level from different substrata, it

is possible to abstract from the substrata and simulate the behavior of a Sys-
tem A by observing the behavior of another system B which happens to (or -

which is purposely built so as te) display those non-fundamental properties

Waorking on this idea, we can devise a criterion to demarcate genuine ex-

periments from “mere” simulations. The difference lies in the kind of rela-

*Of course, il one believes in the reductionist story according to which everything physical is

made of the same fundamental sub-atomic particles, then both light and water waves are -

“made of the same stuff”. But the reductionist story is controyersial (photons seem to have
different properties from other particles), and at any rate the fact that everything is made of

the same stuff docs not play any relevant role in cxplaining why both systers display cer-

tain non-lfundamental relations.

. tionship existing between, on the one hand, an experimental and its target
system, and, on the other, a simularing and its target system. In the f:?rmer
“case, the correspondence holds at a “deep”, “material” level, whereas in the

latter the similarity is admittedly only “abstract” and “forma_l”. Itis tempting
to claim that in a simulating device the simulated properties, relations, or
processes are generated by different (kinds of) causes altogether. Such a
claim is problematic if you endorse a formalistic view of (type-level) causa-
tion - for example a view that defines causation in terms of pure.]y probabil-
istic relations. If, in contrast, one takes causation to be a substantive property
of specific kinds of systems (& la Wesley Salmon, for inst:anfe).s the problem
may disappear. In a genuine experiment the same “material” causes as those

- in the target system are at work; in a simulation they are not, and the corérc—
. spondence relation (of similarity or analogy) is purely formal in character.

5. THE METHODOLOGY OF “PURE”
SIMULATIONS

Because of the different nature of the correspondence relation, simula-
tions and experiments are appropriate research tools in differ,eqt contexts.
Typically, simulations are used in one of two different ways: elther. (1) to
bootstrap from the fact that a given effect (which we have observed in sys-
tem A) can be produced by means of simulation B, to th; fact that the rela-
tions governing the behavior of B also govern t'he behawor qf A Or(2)to
argue that a certain effect observed by simulating with B 'w1¥1 also b§ ob;
served in the case of A because the two are governed by similar relatlons'.
‘Both procedures are knowledge-producing ones. The point to be stregsed is
that in both cases the relationships have to be fully specified for the smm}a—
tions to be carried on. Systems of this kind are “transparent boxes”, to Whl(?h
the old dicrum applies: “a simulation is no better than the assumptions built
into it” (Simon, 1969, p. 18).®

Geologists working on stratigraphy, for instance, stazldy the structure of
rock layers below the earth’s surface. They also investigate the process of
strata formation, but have to face very serious obstacles, such as the smpos-

. % The latest versions of Salmon’s theory of causation, however, are of little help outside the
realm of physics, ' y .

§ See also Ernst Nagel's (1961, p. 110) distinction between “substantial” and formal”, or
Mary Hesse’s (1963, p. 63) “material” and “formal” analogies. . ‘

One may be unable to experiment with A, or the equations describing A may be so compli-
cated that they can be solved only by means of some “brute-force” solution in B ‘

% Which does not mean that they are just as good as that: to run a “good” simulation involves
the use of approximations, computer implementation, etc. and thus requires more knowl-
edge and skills than simply specifying the correct basic equations.
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sibility of doing controlled experiments (processes of sedimentation last for
millennia, and of course the target systems are too large to be manageable in.
a lab), the difficulty to gather data even about the present geography of the

strata, the strong theory ladeness of the interpreted data, the complex inter-

dependencies within geological systems, and so on. In order to solve at least
some of these problems, geologists have devised simulation techniques like ;

STRATAGEM, a computer-based modeling package nsed by large compa

nies such as Shell Oil.? This simulation device works on the basis of a num-

ber of structural equations taken from the theory of “sequence stratigraphy”,

The equations model the system’s outcome (the actual sedimentation) as a_
function of a number of variables including the hydrodynamics of sediment -

deposition, the subsidence patterns, the global sea level, the amount of sedi-
ment supplied to the basin, etc. The outcome of the simulation is dependent

on the approximate validity of the theory of sequence stratigraphy, and also

on the correct specification of the initial conditions and of the values as-
signed to the free parameters in the equations (incidentally, these are all
problematic assumptions to be made in the specific case). Geologists try 1o

simulate systems A (real-world geological structures) by means of a com- -
puter-model B, and all the fundamental relations in B must be known to be .

approximately correct and specified in advance.
In Figure 2, and in the diagrams that follow, I represent the presently un-

known features of a target system by means of dotted lines.® The question |

mark denotes an aspect of a system whose nature or functioning the scien
tists is investigating in a given case.

Global sea level Global sea level

?

Sedimentation Sedimentation

Figure 2. Pure simutations in geology.

* I have learned about simulation techniques in geology from Francis Longworth and his up-
published paper on the methodology of STRATAGEM.

%10 fact, a more precise representation would involve at least fwo systems {say, A and B}
cach one made of entities/properties and relations (say, Xa—>¥a, Xp—Yp), plus some
“external validity’ hypothesis slating that the two systems stand in a certain relation to
cach other, The dotled Fines in my figures are shorthands for cases in which such a hy-

BT - I |
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Notice that some features of simulating systems like STRATAGEM is

exactly opposite from that envisaged in the epistemic account. In order for
- these simulations to be successful, geologists must be very confident that the
. (formal) correspondence between relations in the simulatir.ag device jand re-
. lations in the target holds to a certain degree of approximation. Expertments,
a5 we shalls see in the next section, do not require as much.

THE METHODOLOGY OF “PURE”
EXPERIMENTS

The crucial presumption behind experiments is that relevant components
- of the laboratory system are made of the same material as those of the Farget
- system. {We shall see in a2 moment what “relevant” means.) The experiment
should feature the same causal processes that are at work in the real world,
 rather than just display some formal relation by means of a device made of
different “stuff”. Experiments are useful when one has an imperfect under-
- standing of some basic cansal mechanism of the system under study. .They
are useful in these contexts precisely becanse the laboratory “stuff” is the
" same as the non-laboratory “stuff”. ' _
What is unknown is often (but not always) what is under test. An experi-
" ment can give us more confidence in a theoretical model, if the theory makes
some contestable assumption about some component of the target system,
and if the experiment includes the réal component (for example real. human
hehaviour, as in experimental psychology and experimental economics). An
experiment that merely reproduces all the assumptions of‘the model, for ex-
- ‘ample by paying subjects to act according to the behavioral tl}eory of the
- model, does not test anything at all (except perhaps the incentive system).
" But notice that not all that is imperfectly understood needs to be under test.
For instance, one can test the efficacy of a drug without a detailed under-
. standing of the mechanism of propagation of a disease. The efficacy of the
drug rather than, say, the process of infection, is what is under test. Or you
" can do experiments on market behavior even without a proper underst.and'mg
of the mechanisms of individual choice and belief formation. Market insttu-
tions, instead of individual behavior, are under test in these eXperime.nts.
- Subjects may trade at a certain equilibrium price because tl}ey are acting in a
fully rational way, or perhaps because they are following some rule of
~ thamb, or even by sheer imitation. Whatever the real causal process, we can
use laboratory tests to study selected aspects of specific rcal—wor]cl_econo—
mies as Jong as we are confident that the same (unknown) basic principles of
behaviour apply in both cases. ’
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mentalists to defend their methodology. The economist Verncn Smith

(1991), for example, argues that “the laboratory becomes a place where real
people earn real money for making real decisions about abstract claims that
are just as “real” as a share of General Motors”. For this reason, “Laboratory
experience suggests that all the characteristics of “real world” behavior that
we consider to be of primitive importance [...] arise naturally, indeed inevi-
tably, in experimental settings” (pp. 100-1). This reasoning supports experi-
menters” confidence in their results. To them, the “real” character of ex-
perimental markets helps to bridge the gap between a theory and its intended
target of application. “Laberatory microeconomies are real live economic
systems, which are certainly richer, behaviorally, than the systems parame-
trized in our theories” (pp. 254-5). Experimental economies are indeed sup-
posed to work according to the same principles as the target systems in the
intended domain of economic theory, because the relevan: components of
the laboratory system are made of the same “stuff”.

“Thus, both experiments and simulations are knowledge-producing de-
vices. But the knowledge needed to run a good simulation is not quite the
same as the one needed to run a good experiment. When reproducing a real-
world system in the laboratory, the relationships describing the behavior of
both systems may not be known in advance. But one does not have to spec-
ify the full set of structural equations governing the target system. The trick
is to make sure that the target and the experimental system are similar in
most relevant respects, so as to be able to generalize the observed results
from the laboratory to the target. Experimenters make sure that this is the
case by using materials that resemble as closely as possible those of which
the parts of the target system are made. They also make sure that the compe-
nents of the mediating device are put together just like those of the target,
and that nothing else is interfering. Of course, quite a lot of knowledge is re-
quired in order to do so, but no fundamental theory of how the target system
works is required. Parts of the laboratory system can be put between brackets
and used as “black boxes”. Experimental systems are reliable if they are
made of the same “stuff” as real world economies. No process of abstraction
from the material forces at work is needed in order to draw the correspon-
dence from the laboratory to the outside world. One may abstract from
“negligible” causal factors, but not from the basic processes at work. The
similarity is not merely formal, but holds at the material level as well.

EXPERIMENTAL SIMULATIONS

The distinction between simulations and experiments taken from Simon
seemns to be of the “black-or-white” sort. Either the “stuff” is the same as that
of the target system, or it is not. But as a matter of fact there are intermediate
cases between the two extremes. Mary Morgan (in this volume) discusses
“hybrid” entities that are neither entirely simulations nor entirely experi-
ments, but a little bit of both. She focuses on cases in which some “material-
\ ity” is transferred from the target system to the mediating entity, and repro-

duced therein, only to a certain extent. These hybrids are “guasi-material”
entities, or a mixture of “modeling and experiment”, as she puts it. The sec-
ond case, which I would like to explore in this paper, is that of hybrids which
clombine purely experimentai and purely simulating components. In fact, if
simulations and experiments produce novel scientific knowledge in different
ways, they must be partly complementary, and we should be able to combine
them in the same project to exploit the potential of both.

My example comes once again from the social sciences. Experimental
psychologists and economists are often concerned with designing experi-
ments that reproduce in all relevant respect real-world decision situations.
Subjects, for example, are invited to trade goods in an environment governed
by the rules of a real-world institution (say, a certain auction system). Even
where realism is sought, however, experimenters may have to make use of
artificial devices. Take, for example, experiments on so-called “common
yaluc” goods - items whose value is the same, but unknown, to all traders. In
experiments of this kind uncertainty is customarily implemented by means
of a random draw. The subjects trade lottery tickets, in other words, which
will be played out at the end of the experiment. Here uncertainty is simulated
by means of a random draw. Uncertainty arises from the interaction of ex-
perimen‘al subjects with a lottery device, rather than with a “real” good of
pnknown value (say, a concession for an oil tract or a license for mobile
‘phone frequencies). Before you use such a device, you need to be confident
that such a way of modeling that particular aspect of the target system is Je-
gitimate. One has to be reasonably sure, in other words, that that part of the
theory is right. Here more “paradigmatic” sciences like economics are
‘seemingly {(but misleadingly, perhaps) better off: economists are confident to
make such a move because anction theory prescribes to model agents’ us-
certainty as a probability distribution of this sort. If challenged, they reply
that ‘the two phenomena (uncertainty faced by oil companies bidding for real
icfs, and uncertainty faced by subjects in a laboratory auction) are particu-
r instances of the same phenomenon - uncertainty, full stop. To ask
hether uncertainty has been produced correctly in the laboratory would be



like usking whether in an experiment to investigate the properties of s;can?
the boiler has been heated by burning coil rather than by 2 Bunsen b et
heat is heat however it is produced, and obeys the laws of thermodynar MCs.
Psychologists, in contrast, tend to be suspicious of assumptions of thi § sort
and argue that human behavior (people’s reactions to the same stimuli l
widely from context to context. Of course there may be mechanisms g 272
enough to support inferences to a wide range of circumstances, but thait 5 a0
empirical matter to be settled after, not before experimentation takes pl ace.

) vary
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stand in the right relation both with what we say, and with the part of the
world we are interested in. This is quite different from standard empiricist
accounts, according to which models and simulations stand on the theory’s
side al one end of the spectrum, and experiments stand on the world's side al
the other end. It is also different from the standard view of testing, according

to which scientists ask very general questions about the world, design very

tight and controlled experiments to answer such questions, and the data will

hit the theory no matter what. For the data to hit the target, the experiment,
simulation, or “simulating experiment” must mirror the target in the right
way. Whether the mirroring should be purely formal or material in character,
depends on the kind of question we are asking, and on the amount and qual-
ity of background knowledge we have accumulated about the target system
itself."” Take Fischhoff’s “Choice A”: is it an experiment or a simulation? In
the abstract, there is no answer to such a question. It depends what the sci-
entists were aiming at in the first place, what sort of target systems they had
in mind, which aspects of the target they were investigating, and crucially
what they already knew about the relationship between their targets and “ex-
periments” (or “simulations”™) like “Choice A”.

Institution

¢

Uncertainty

Preferences

Behaviour

Endowments

N

Figure 3, Experimental simulations,
The structure of such “experimental simulations” may be representted a8
in Figure 3. The hypothesis under test here is signaled by the question mark.
Other causal factors are part of the target system, but do not necessarily’ have
to be reproduced identically in the experimental design. For the cxperf‘mzm
to work, the effect of the environment may be simulated by a devic® that
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bstract: The assessment of models in an experiment depends on their material nature
” and their function in the experiment. Models that are used to make the phe-
nomencn under investigation visible - sensors - are assessed by calibration.
However, calibration strategies assume material intervention. The experiment
discussed in this paper s an experiment in economics to measure the influence
of technology shocks on business cycles, It nses immaterial, mathematical in-
struments. It appears that calibration did not work for these kinds of models, it
did not provide relizble evidence for the facts of the business cycle.

INTRODUCTION

The way in which models used in experiments can be assessed depends
o at least two characteristics: their material nature and their function in the
xperiment. The kind of materiality not only determines the nature of control
nd inference in the experiment, but also the confidence one can have in the
experiment's outcomes (Boumans and Morgan, 2001; Morgan, 2000). Tra-
itionally, models are defined in terms of their logical and semantic connec-
ions with theories. So, usually no methodological distinction is made be-
een the assessment of models and theories. However, by answering the
uestion “What role do models play?” Morrison and Morgan (1999) showed
that models function as antonomous agents, that is they are partially inde-
dent of both theories and the world, and therefore can be vused as instrn-
ients of investigation in both domains. Hence, models should be assessed as

idel-Based Reasoning: Science, -Tecfmology, Vaiues, edited by
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