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A QUANTITATIVE DESCRIPTION OF MEMBRANE
CURRENT AND ITS APPLICATION TO CONDUCTION
AND EXCITATION IN NERVE

By A. L. HODGKIN anp A. F. HUXLEY
From the Physiological Laboratory, University of Cambridge
(Recetved 10 March 1952)

This article concludes a series of papers concerned with the flow of electric
current through the surface membrane of a giant nerve fibre (Hodgkin,
Huxley & Katz, 1952; Hodgkin & Huxley, 1952 a—). Its general object i8 to
discuss the results of the preceding papers (Part I), to put them into -
mathematical form (Part II) and to show that they will account for con- -
duction and excitation in quantitative terms (Part III).

PART I. DISCUSSION OF EXPERIMENTAL RESULTS

The results described in the preceding papers suggest that the electrical -
behaviour of the membrane may be represented by the network shown in .
Fig. 1. Current can be carried through the membrane either by charging the '
membrane capacity or by movement of ions through the resistances in parallel .
with the capacity. The ionic current is divided into components carried by °
sodium and potassium ions (Iy, and Ig), and a small ‘leakage current’ (I;) °
made up by chloride and other jons. Each component of the ionic current is |
determined by a driving force which may conveniently be meéasured as an
electrical potential difference and a permeability coefficient which has the :
dimensions of a conductance. Thus the sodium current (Iy,) is equal to the :
sodium conductance (gy,) multiplied by the difference between the membrane
potential (E) and the equilibrium potential for the sodium ion (Ey,). Similar
equations apply to I and I, and are collected on p. 505. "
Our experiments suggest that gy, and gg are functions of time and?
membrane potential, but that Ey,, Ex, E;, Cy and §, may be taken as |
constant. The influence of membrane potential on permeability can be sumi
marized by stating: first, that depolarization causes a transient increase i
sodium conductance and a slower but maintained increase in potassium con-{
ductance; secondly, that these changes are graded and that they can be|
reversed by repolarizing the membrane. In order to decide whether thesei
effects are sufficient to account for complicated phenomena such as the action
potential and refractory period, it is necessary to obtain expressions relating j
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the sodium am'i pqtzf,ssium conductances to time and membrane potential.
Befo.re attempting this we shall consider briefly what types of physical system
are likely to be consistent with the observed changes in permeability.
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The nature of the permeability changes

At present the thickness and composition of the excitable membrane are
Mnow. Our experiments are therefore unlikely to give any certain informa-
tlo.n' about the nature of the molecular events underlying changes in perme-
ability. The object of this section is to show that certain types of theory are
excluded by our experiments and that others are consistent with them.

The first point which emerges is that the changes in permeability appear to
depend.on membrane potential and not on membrane current. At a fixed
depolarization the sodium current follows a time course whose form is inde-
pendent of the current through the membrane. If the sodium concentration
i8 such that Ey, <E, the sodium current is inward; if it is reduced until
Ey, > E the current changes in sign but still appears to follow the same time
course. 'Further support for the view that membrane potential is the variable
controlling permeability is provided by the observation that restoration of the
norxfxal membrane potential causes the sodium or potassium conductance to
decline to a low value at any stage of the response.

The dfa}?endence of gne 8nd gy on membrane potential suggests that the
Rermwblhty changes arise from the effect of the electric field on the distribu-
tion or orientation of molecules with a charge or dipole moment. By this we
do' not mean to exclude chemical reactions, for the rate at which these occur
fmght depend on the position of a charged substrate or catalyst. All that is
intended is that small changes in membrane potential would be most unlikely
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The next question to consider is how changes in the distribution of a charged
particle might affect the ease with which sodium ions cross the membrane.
Here we can do little more than reject a suggestion which formed the original
basis of our experiments (Hodgkin, Huxley & Katz, 1949). According to this
view, sodium ions do not cross the membrane in ionic form but in combination
with a lipoid soluble carrier which bears a large negative charge and which can
combine with one sodium ion but no more. Since both combined and un-
combined carrier molecules bear a negative charge they are attracted to the
outside of the membrane in the resting state. Depolarization allows the carrier
molecules to move, 8o that sodium current increases as the membrane potential
is reduced. The steady state relation between sodium current and voltage
could be calculated for this system and was found to agree reasonably with the *
observed curve at 0-2 msec after the onset of a sudden depolarization. This
was encouraging, but the analogy breaks down if it is pursued further. In the
model the first effect of depolarization is 8 movement of negatively charged
molecules from the outside to the inside of the membrane. This gives an initial
outward current, and an inward current does not occur untii combined carriers
lose sodium to the internal solution and return to the outside of the membrane. :
In our original treatment the initial outward current was reduced to vanishingly
small proportions by assuming a low density of carriers and a high rate of j
movement and combination. Since we now know that the sodium current
takes an appreciable time to reach its maximum, it is necessary to suppose :
that there are more carriers and that they react or move more slowly. This :
means that any inward current should be preceded by a large outward current.
Our experiments show no sign of a component large enough to be consistent -
with the model. This invalidates the detailed mechanism assumed for the :
permeability change but it does not exclude the more general possibility that
sodium ions cross the membrane in combination with a lipoid soluble carrier.

A different form of hypothesis is to suppose that sodium movement depends -
on the distribution of charged particles which do not act as carriers in the
usual sense, but which allow sodium to pass through the membrane when they,
occupy particular sites in the membrane. On this view the rate of movement
of the activating particles determines the rate at which the sodium con-
ductance approaches its maximum but has little effect on the magnitude of
the conductance. It is therefore reasonable to find that temperature has
a large effect on the rate of rise of sodium conductance but a relatively small
effect on its maximum value. In terms of this hypothesis one might explain -
the transient nature of the rise in sodium conductance by supposing that the *
activating particles undergo a chemical change after moving from the position
which they occupy when the membrane potential is high. An alternative is to J.

j
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attribute the decline of sodium conducta;
of another particle which blocks the flo
ce;}ainhpo;ition in the membrane.
uch of what has been said about the ch es in sodi lity |
:gﬁ?tes e?ual;).' to the mech:?nism underlying tl::ihange in ;:m:::ﬁe;:rdﬁi “
s Zl R hx;c; (1;} i;.:arse f::e might suppose that there is a completely separate \‘
yotem ] ers from the sodmn.l system in the following respects: (1) the |
O ng molecules have an affinity for potassium but not for sodium: |
@ ¢ n:z: m;ve n;lore: §lowly; (3) they are not blocked or inactivated. An |
h Ve hypothesis is that only one system is present but that its selectivity |
changes soon after the membrane is depolarized. A situation of this kind woulg \‘
rticles selective for sodium converted them into !
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nce to the relatively slow movement \‘

W of sodium ions when it reaches a |
\

permeability.

One of the most striking properties of the membrane is the extreme steepness |

of the relation between ionic conducta;

_ nce and membrane potential. |
;inay b; mcrea.sed e-fold by a reduction of only 4 mV, whﬂ:):he corre;l::xsd!i’ ng “
figure for gy is 5-§ mV (Hc?dgkin &_Hux.ley, 19524, figs. 9, 10). In orderntg‘

is independent of the number on the outside.

‘ e. From Boltzmann’s principl t
proportfon F; of the molecules on the inside of the membrane is rflat:épte tll:e 'l
proportion on the outside, P,, by o

Y 4o

5 |
B =expl(w-+2E)kT),

;t:grfni: :ll,n? I:Etentiall{ difference between the outside and the inside of the |
» 1018 the work required to move the molecule from the ing; |

outside of the membrane when E 0,ei alue of the b0 the

; =0, e 1s the absolute value of the el i
charge, z is the valency of the molecule (j itive ect:roec‘:romc ‘
s | e (1.e. the number of positive el ic |
charges on it), & is Boltzmann’s consta i ute ter o
: , nt and T is the absolute te

Since we have assumed that F;+F,=1 the expression for Fis porstute. ;

o[- (245]) ’

For negative values of z and with £ sufficiently large and positive this gives

F,=constant x exp(zeE/kT).
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; . kT ;
In order to explain our results z must be about —6 since —~ (: }—,) is 26 mV

at room temperature and gy, oc exp—E/4 for E large. This suggests that the
particle whose distribution changes must bear six negative electronic charges,
or, if a similar theory is developed in terms of the orientation of a long
molecule with a dipole moment, it must have at least three negative charges
on one end and three positive charges on the other. A different but related
approach is to suppose that sodium movement depends on the presence of six
singly charged molecules at a particular site near the inside of the membrane.
The proportion of the time that each of the charged molecules spends at the
inside is determined by exp — E/25 so that the proportion of sites at which all
six are at the inside is exp — E/4-17. This suggestion may be given plausibility
but not mathematical simplicity by imagining that a number of charges form
a bridge or chain which allows sodium ions to flow through the membrane
when it is depolarized. Details of the mechanism will probably not be settled
for some time, but it seems difficult to escape the conclusion that the changes
in ionic permeability depend on the movement of some component of the
membrane which behaves as though it had a large charge or dipole moment.
If such components exist it is necessary to suppose that their density is
relatively low and that a number of sodium ions cross the membrane at a single
active patch. Unless this were true one would expect the increase in sodium
permeability to be accompanied by an outward current comparable in
magnitude to the current carried by sodium ions. For movement of any
charged particle in the membrane should contribute to the total current and
the effect would be particularly marked with a molecule, or aggregate, bearing
a large charge. As was mentioned earlier, there is no evidence from our
experiments of any current associated with the change in sodium perme-
ability, apart from the contribution of the sodium ion itself. We cannot set
a definite upper limit to this hypothetical current, but it could hardly have
been more than a few per cent of the maximum sodium current without pro-
ducing a conspicuous effect at the sodium potential.

PART II. MATHEMATICAL DESCRIPTION OF MEMBRANE
CURRENT DURING A VOLTAGE CLAMP

Total membrane current

The first step in our analysis is to divide the total membrane current into
a capacity current and an ionic current. Thus

dv

MEMBRANE CURRENT IN NERVE 505
where
I is the total membrane current density (inward current positive);
I, is the it.mic current density (inward current positive); ,
V  is the displacement of the membrane potential from its’ resting value
(depolarization negative); i

Cy is t!:e membrane capacity per unit area (assumed constant);
t 18 time. ’

The ]ustlf.ication for this equation is that it is the simplest which can be used
and that ft gives values for the membrane capacity which are inde emdente f
the magnitude or sign of ¥ and are little affected by the time com:s}a)of V (sec;
for exampIe,' table 1 of Hodgkin et al. 1952). Evidence that the capacit :
current and ionic current are in parallel (as suggested by eqn. (1)) is proll'ideg

h ¢ f, 0 I

d
calculated from —C,, az—, with I =0 (Hodgkin et al. 1952).

The only major reservation which must be made abo i i
tak.es Do account of dielectric loss in the membrane. Therzgselcll:: .si(;l) i: :‘::‘t’ ;;
estimating t.he error introduced by this approximation, but it is noI:; l;houy ht
to be large since the time course of the capacitative surge was reasonabl clﬁse
to that calculated for a perfect condenser (Hodgkin et al. 1952). ¢

The tonic current

A further subdivision of the membrane curr
A . ent can be made by splitting the
lonic current 1nto components carried by sodium i ium i
L and oo oms (1 e y sodium ions (Iy,), potassium ions
i=Ina+Ig+1,. (2)
The individual tonic currents
In the third paper of this series (Hodgkin & Huxley, 19525), we showed that

the ionic permeability of the membrane could be satisfactorily expressed in

terms of ionic conductances ( J indivi
. INa» 9x and §;). The ind ioni
obtained from these by the rel&:tiorl; 7 ividust ionio currents are

I, =gna (E—Ey,),
Iy =gk (E - Eg),
. I,=3,(E-E),
where E\, and Ey are the equilibrium i i
\ : \ potentials for the sodium and potassi
1(;11113. E, 1s_the potential at which the ‘leakage current’ due to chll;orid:m:nlg
other 10ns 18 zero. For practical application it i i i
eetations in the form pphication 1t 18 convenient to write these
INa =9Na (V—VNa)’ (3)
Ig=gg (V-Vg), . (4)
Ii=g,(V-W), (5)
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where V=E-E,
' VNa=ENa_Erz
VK=EK"EN
Vi=E,—E,,

and E, is the absolute value of the resting potential. ¥, I{N" Vi atndl V, can
then bre measured directly as displacements from the resting potential.

The sonic conductances _—
The discussion in Part I shows that there is little hoI;e of Z&;l(;ula!:mig ;,e se
i i ductances from first principles.
time course of the sodium and potassmm. conduct: o
j i i describe the conductances wi
bject here is to find equations Whlf:h . .
?ezo(:m]bel(:a accuracy and are sufficiently simple for th:(;ftms;l i;:lal.llsctt;l:t:.:)o: :z
i i iod. For the sake o ati
the action potential and refractor)t perio : on e
i i tions, but must emphasi
try to provide a physical basis for the equa s .
:2:;1 tlﬁ: intfrpretation given is unlikely to provide a correct picture of the

membrane.

Potassium conductance
(m.mho/cm?)

(-2 W SRVVEN NNV . WK
T 1.3 ¢ v 1 1 ¥ )

msec

Fig. 2. A, rise of potassium conductance associated with depolarizatioy of %wm:i/;l B, ctl'::ll“of

« potau,mm conductanoe associated with repola.rli;::ilon (trg ;;1; r;:gtmlgs )poTh: lut it ot
i i lotted from Hodgkin & oy , Fig. 13).

;mm l:’:::i:ft;oint in B. Axon 18, 21° C in choline sea water. The smooth curve

is drawn acoording to eqn. (11) with the following parameters:

Curve A Curve B
(V=-26mV) (V=0) \
0-09 m.mho/om? 706 m.mho/em’
:xo 7-08 m.mho/cm? 009 m.mho/cm?*
-r:m 076 msec 1-1 msec

At the outset there is the difficulty that bot¥1 sodium -an‘cii Eomu:;th =
ductances increase with a delay whe;; t:h:d azf;‘);is mi :ﬁlp:sl:rr;::d bt;  all with
appreciable inflexion when it is repolarized. ‘ e
FI:;) 2, which shows the change in potassium c?nductance :m;;::ie
a depolarization of 25 mV lasting 4-9 msec. If Ix i8 used 2::1 able the -
of the record can be fitted by a first-order e.qw.mon but a t - or e,
equation is needed to describe the beginning. A useful simp
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which obeys a first-order equation. In this case the rise of potassium con-
ductance from zeéro to a finite value is described by (1—exp (—1))%, while the
fall is given by exp (—4¢). The rise in conductance therefore shows a marked
inflexion, while the fall is a simple exponential. A similar assumption using
& cube instead of a fourth power describes the initial rise of sodium con.
ductance, but a term representing inactivation must be included to cover the
behaviour at long times.

T'he potassium conductance
The formal assumptions used to describe the potassium conductance are:

gK=gK7r1 ‘0’
dn
3 =% (1=m)=B,n, )

where §z is a constant with the dimensions of conductance/cm?, «,, and B
are rate constants which vary with voltage but not with time and have
dimensions of [time]-1, » is a dimensionless variable which can vary between
0 and 1.

These equations may be given a physical basis if we assume that potassium
ions can only cross the membrane when four similar particles occupy a certain
region of the membrane. n represents the proportion of the particlesin a certain
position (for example at the inside of the membrane) and 1—-» represents
the proportion that are somewhere else (for example at the outside of the

- membrane). «, determines the rate of transfer from outside to inside, while
» determines the transfer in the opposite direction. If the particle has a
’ negative charge a,, should increase and Bn should decrease when the membrane
- is depolarized. )
Application of these equations will be discussed in terms of the family of
. curves in Fig. 3. Here the circles are experimental observations of the rise of
. potassium conductance associated with depolarization, while the smooth
curves are theoretical solutions of eqns. (6) and (7).
In the resting state, defined by V=0, n has a resting value given by

T,

4 %ng+Bro

L If Vis changed suddenly «, and B, instantly take up values appropriate to the
new voltage. The solution of (7) which satisfies the boundary condition that
B=ny when {=0 is '

B="nqy —(ns —ny) exp (—t/r,), (8)
- where o =a,/(a, +B,), ' (9)
 and ’ | Tu=1/(a, +8,). (10)



508 A. L. HODGKIN AND A. F. HUXLEY

From eqn. (6) this may be transformed into a form suitable for comparison
with the experimental results, i.e. 1
gx={9x=) ~{(gg=)* — (9xo)*] exp (=t/ra )} (11)

where ggo is the value which the conductance finally attains and gg, is the
conductance at ¢=0. The smooth curves in Fig. 3 were calculated from

109

o —A
20 5 "
100
15 —0 —8
10 88 ——C
5
o 76
0 —D
o
-/O
63 ___
S1 o F
8, _—c
32, o—H
26, —o— |
%
19

—o—}
M//f—:l -— K

1

Potassium conductance (m.mho/cm?)

6_n_'°—'L

0

1 1 | SR
ll\ ‘ll I7. .!! : ; 2 ; 8 9 10 11 msec -

Fig. 3. Rise of potassium conductance associated with diﬂ'ere:xt. de;tolurizat.ions.. Tht? csu;c::& :::
experimental points obtained on axon 17, temperature 6-7° C, using observations :ln on water
and chboline sea water (see Hodgkin & Huxley, 1952a). The smooth ctu:ves w:;'e ¢ r?r o
eqn. (11) with gx,=0-24 m.mhofcm® and other pmmebers' a8 shown in Table ea o
scale applies to all records. The ordinate scale is the same in the upper ten curl: )

and is increased fourfold in the lower two curves (K and L). The number on each curve g

the depolarization in mV.
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eqn. (11) with a value of r, chosen to give the best fit. It will be seen that
there is reasonable agreement between theoretical and experimental curves,
except that the latter show more initial delay. Better agreement might have
been obtained with a fifth or sixth power, but the improvement was not con-
sidered to be worth the additional complication.

The rate constants o, and B,,. At large depolarizations gy, seems to approach
an asymptote about 20-509, greater than the conductance at —100 mV.

TaBLE 1. Analysis of curves in Fig. 3

|4 Ko R Tn L B
(mV) {m.mho/om?) (msec) (msec-1) msec—?)

Curve (1) (2) (3) (4) (5) (6)

— (- ) (24-31) (1-000) — — —
A -109 2070 0-961 105 0-915 0-037
B - 100 20-00 0-953 1-10 0-866 0-043
c - 88 18:60 0-935 125 0748 0-052
D - 76 1700 0915 150 0-610 0-057
E - 63 1530 0-891 170 0524 0-064
F - 51 13-27 0-859 205 0-419 0-069
e - 38 1029 0-808 260 0310 0075
H - 32 8-62 0-772 3-20 0-241 0-071 _
I - 26 6-84 0-728 3-80 0-192 0-072
J - 19 5-00 0-674 4-50 0-150 0-072
K - 10 1-47 0-496 525 0-095 0-096
L - 6 0-98 0-448 5-25 0-085 0-105

— (0) (0-24) {0-316) — — —

Col. 1 shows depolarization in mV; col. 2, final potassium conductance; col. 3, ne =(gxw/fx)t;
col. 4, time constant used to compute curve; col. 5, ,, =ng/Ta; col. 6, B, =(1 - 5)/7,. The figure

of 24:31 was chosen for §x because it made the asymptotic value of n,, 59, greater than the value
at -100 mV,

For the purpose of calculation we assume that n=1 at the asymptote which
is taken as about 209, greater than the value of gy, at ¥ = —100 mV. These
assumptions are somewhat arbitrary, but should introduce little error since
we are not concerned with the behaviour of g at depolarizations greater than
about 110 mV. In the experiment illustrated by Fig. 3, gx»=20 m.mho/cm?
at V= —100 mV. gg was therefore chosen to be near 24 m.mho/cm?. This
value was used to calculate n,, at various voltages by means of eqn. (6). «,, and
B could then be obtained from the following relations which are derived from
eqns. (9) and (10):

By = Mo T,

Bn=(l =)/ Ty
The results of analysing the curves in Fig. 3 by this method are shown in
Table 1.

An estimate of the resting values of a, and B, could be obtained from the
decline in potassium conductance associated with repolarization. The pro-
cedure was essentially the same but the results were approximate because the
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resting value of the potassium conductance was not known with any accuracy
when the membrane potential was high. Fig. 2 illustrates an experiment in
which the membrane potential was restored to its resting value after a de-
polarization of 25 mV. It will be seen that both the rise and fall of the
potassium conductance agree reasonably with theoretical curves calculated
from eqn. (11) after an appropriate choice of parameters. The rate constants
derived from these parameters were (in msec™): a, =021, B,=0-70 when
V=0 and «, =0-90, B, =0-43 when V= —25 mV.

In order to find functions connecting «,, and B, with membrane potential we
collected all our measurements and plotted them against V, as in Fig. 4.
Differences in temperature were allowed for by adopting a temperature
coefficient of 3 (Hodgkin et al. 1952) and scaling to 6° C. The effect of replacing
sodium by choline on the resting potential was taken into account by dis-
placing the origin for values in choline sea water by +4 mV. The continuous
curves, which are clearly a good fit to the experimental data, were calculated

from the following expressions:
2, =001 (V+10)/|:exp V;’olo—lj, (12)

B, =0-125 exp (V/80), (13)

where a,, and B, are given in reciprocal msec and V is the displacement of the
membrane potential from its resting value in mYV.

These expressions should also give a satisfactory formula for the steady
potassium conductance (gx) at any membrane potential (V), for this relation
is implicit in the measurement of a, and B,. This is illustrated by Fig. 5, in
which the abscissa is the membrane potential and the ordinate is (§g«/Fg)t-
The smooth curve was calculated from eqn. (9) with a, and B, substituted
from eqns. (12) and (13).

Fig. 4 shows that B, is small compared to «, over most of the range; we
therefore do not attach much weight to the curve relating B, to V and have
used the simplest expression which gave a reasonable fit. The function for «,
was chosen for two reasons. First, it is one of the gimplest which fits the
experimental results and, secondly, it bears a close resemblance to the
equation derived by Goldman (1943) for the movements of a charged particle
in a constant field. Our equations can therefore be given a qualitative physical
basis if it is supposed that the variation of « and B with membrane potential
arises from the effect of the electric field on the movement of a negatively
charged particle which rests on the outside of the membrane when V is large
and positive, and on the inside when it is large and negative. The analogy
cannot be pressed since « and B are not symmetrical about E=0, as they

chould be if Goldman’s theory held in a simple form. Better agreement might
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Ot+x b ¢ 0 q

=4
B

Rate constant (msec-!
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-110-100 —90 —80 —70 =60 —50 —40 —30 —20 —1I0 0 110 20 30 ‘;0 510
Fig. 4. Abscissa: memb: . 5 )

é.‘ﬂnatant.s de;te;-minin rafle potential minus resting potential in sea water. Ordinate: rate
o v &‘*Sum(fl l:mb{%} 0P7f3-1_1 {ren)IDf potassium conductance at 6° C. The resting
Tempcmt_ureh diffﬂen. 0, e 4 mV higher in choline sea water than in ordinary sea water
St I-net;e:‘si “ lc]are. allowed forQ Ih}’ assuming a ¢, of 3. All values for V<0 Wen;
from the declino‘of Otn Hlustrated by Fig. 3 and Table 1; those for ¥ > 0 were obtained
s ; p assium con_ductancc c{saocia.ted with an increase of membrane potential
polarization to the resting potential in choline sea water (e.g. Fig. 2). Axois 17-21

at 6-11°C e remainder at a . 8 urves were drawn from eqns. 12
]
{ } th Inde t about 20 C. The mooth cury e3 { )

10
09
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o7
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=05
04
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1 ] | 1 1 1 l 1 i :

l 1 1 1

0 +10 +20 +30+ 40 +50 760

=110-100—-90 —80 —70 —60 —50 —40 —30 —20 -—1’0

‘ V(mV)
Fig. 5. Abscissa: membrane potential minus resting potential in sea water. Ordina i
mental measurements of n,, calculated from the steady potassium uznductm:: ;;p:lrxle

relation 8, = §(gx/fx), where §y is the * i * i
e iy Gealfd, eqn,g:g)_ e ‘maximum’ potassium conductance. The smooth
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be obtained by postulating some asymmetry in the structure of the membrane,
but this assumption was regarded as too speculative for profitable considera-

tion.

The sodium conductance

There are at least two general methods of describing the transient changes
in sodium conductance. First, we might assume that the sodium conductance
is determined by a variable which obeys a second-order differential equation.
Secondly, we might suppose that it is determined by two variables, each of
which obeys a first-order equation. These two alternatives correspond roughly
to the two general types of mechanism mentioned in connexion with the
nature of inactivation (pp. 502-503). The second alternative was chosen since
it was simpler to apply to the experimental results.

The formal assumptions made are:

Ina =1"hJNa > (14)
Ot (1 =) =B, (15)
%h=a,,(l—h)—ﬁ,,h, (16)

where Jy, i8 & constant and the o’s and B's are functions of ¥ but not of ¢.
These equations may be given a physical basis if sodium conductance is
assumed to be proportional to the number of sites on the inside of the membrane
which are occupied simultaneously by three activating molecules but are not
blocked by an inactivating molecule. m then represents the proportion of
activating molecules on the inside and 1—m the proportion on the outside;
h is the proportion ofinactivating molecules on the outside and 1—4 the
proportion on the insiffe. ag or B, and B,, or a, represent the transfer rate

constants in the two directions.
Application of these equations will be discussed first in terms of the family

of curves in Fig. 6. Here the circles are experimental estimates of the rise and
fall of sodium conductance during a voltage clamp, while the smooth curves

were calculated from eqns. (14)-(16).
The solutions of eqns. (15) and (16) which satisfy the boundary conditions

m=my and A=h, at ¢=0 are
M=y — (Meo—mg) eXP (—t/Tp), (1)
h=hy—(ha—ho) €xp (—¢/T2), (18)
Moo =0+ B 30 T =1/(+Ba):
ho =o/(ay+Bp) 8nd Th=1/(er+h)).
In the resting state the sodium conductance is very small compared with the
value attained during a large depolarization. We therefore neglect my if the

where
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depolarization 1s greater than 3U mV. Kurt
complef-;e if ¥ < —30 mV so that k., ma
the sodium conductance then bacomes

her, inactivation 18 very nearly
y also be neglected. The expression for

9Ne =9Na [1 —exp (—t/7,))F exp (~t/z), (19)

Sodium conductance (m.mho/cm?)
&
o]
Lm

) f\\ H
o s
26 o &
1-0
19 ]

m F
—r" L J
K

10 o —
I N e e
" — — Jor
L 1 1 1 1 1 1 {
0 o —
1 2 3 4 5 6 7 8 9 10 11msec

Fig. 6. Changes of sodi i ]
g anges o sodmm conductance associated with different depolarizations. The circles are

» 17, 18 with §iy, =70-7 m.mho/cm?. The ordina.te'
The numbers on the left show the depolarization

AtoH drawn.fmm eqn. 19, I to L from 14
mles‘ on the Pght are given in m.mho/cm?,
in mV. The time scale applies to all curves,

where gy, =Fy,m% Ay and is the i
Te gNa ko oz value which the sodi
:::::‘:lli .3 ren;ameid at its resting level (k). Eqn. ( 19) :v!:scf(i);::imtt: :zee:;eul'd
urve by plotting the latter on double lo h
nta : g paper and co ing it wi
a similar plot of a family of theoretical curves drawp: with difi.‘:prearrxltnfaltti: t};
o

T t07,. Curves 4 to H in Fi . .
il n ¥ig. 6 were obtained by this method and gave the
33
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values of gy,, 7,, and 7, shown in Table 2. Curves I to L were obtained from
eqns. (17) and (18) assuming that 4., and +, had values calculated from experi-
ments described in a previous paper (Hodgkin & Huxley, 1952 c).

The rate constants o, and B,,. Having fitted theoretical curves to the experi-

mental points, «,, and B,, were found by a procedure similar to that used with
a, and 8,, ie.

am=m°0/7m’ Bm= (1 _mw)/'rm’

the value of m,, being obtained from /gy, on the basis that m, approaches
unity at large depolarizations.

T T T T~

o, 8. Axon

AAAAA 10 o= 17
DD [- o X ] |
AA$$§88 of Y& ¢ o e 2
< 'cezssssgedecs [ A a 2
8k (5]
=~ } oy v v 21
L 71 a a
. A | v o M
<% 355333588852 Eq owm
g 10000 Ommmnawe < % o A
g 5__ v .
© v o4l A ™
- o
g s 20 :
g s' 3§§222%%.“1%am| < 3r oY
o L5 133223288823% i 8
E g A 2t ﬁ-.—.
g - [ &
ua —_ . P A
- N D 163 G €3 €3 €D 1D =t %D = 1 ] . i 1 1 —
B osg 12370B288858% ~110-100-90 —80 ~70 —60 ~50—40 —30 —20 —10 0 +10
2 E v (mV)
<' §. Fig. 7. Abecissa: membrane potential minus resting potential in sea water. Ordinate: rate
2 14 constants (a,, and g,,) determining initial changes in sodium conductance at 6° C. All values
o Eg|§§§§§§§§ §§§| for V <0 were obtained by the method illustrated by Fig. 6 and Table 2; the value at ¥ = 0
B 'l 038360086608

was obtained from the decline in sodium conductance associated with repolarization to the
resting potential. The temperature varied between 3 and 11°C and was allowed for by
assuming a Q,, of 3. The smooth curves were drawn from eqns. (20) and (21).

i independent
Values enclosed in brackets were not plotted in Figs. 7-10 either because they were too small to be reliable or because they were not indepen

~ 28
s 388 § S EREEEREE g Values of a,, and B,, were collected from different experiments, reduced to
§ T38id860088888 & 8 temperature of 6° C by adopting a Q,, of 3 and plotted in the manner shown
,\ _ 8 in Fig. 7. The point for ¥ =0 was obtained from what we regard as the most
-g B8 k| reliable estimate of the rate constant determining the decline of sodium con-
28 Fooroarell E =3 § £ ductance when the membrane is repolarized (Hodgkin & Huxley, 19525,
°§ AR e E table 1, axon 41). The smooth curves in Fig. 7 were drawn according to the
= ,g equations: V425
. gEgssaaaag=2g £ 5n=01 (¥ +25) [ (exp T2 1), (20)
1) N A rE
UL ' £ Bn=4exp(V/18), (21) -
B | vmoQmioReamia | 3 where «,, and B,, are expressed in msec-! and ¥ is in mV.
5 H] %y m p
o

33—2
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L—‘is. 6 iuuuumwa vae reiuuuu pELWeel e, dUU V. F Qi symuum arc expen-

mental estimates and the smooth curve was calculated from the equation
(42)

Moy = Ep/\ Ty T P>
where a,, and B, have the values given by eqns. (20) and (21).

The rate constants o, and B;,. The ra
were calculated from the expressions

ap=heo/Tr
Br=(1—hg)[Ta-

te constants for the inactivation process

Me
10}

09
08
07
06
05
04
03
02
01

- T T T Tt

0ll!l].lll]lllll]lllllllll
~110-100-90 —80 —70 —60 —50 —40 —30 —-20-10 0 +10
V(mV)
Fig. 8. Abecissa: membrane potential minus resting potential in sea water. Ordinate: Mmoo
obtained by fitting curves to observed changes in sodium conductance at different depolariza-
tions (e.g. Fig. 6 and Table 2). The smooth curve is drawn according to eqn. (22). The

experimental points are proportional to the cube root of the sodium conductance which

would have been obtained if there were no inactivation.

Values obtained by these equations are plotted against membrane potential
in Fig. 9. The points for ¥ < —30 mV were derived from the analysis described

in this paper (e.g. Table 2), while those for V> —30 mV were obtained from

the results given in a previous paper (Hodgkin & Huxley, 1952 ¢). A tem-
perature coefficient of 3 was assumed and differences in resting potential were

allowed for by taking the origin at a potential corresponding to h,=06.
The smooth curves in this figure were calculated from the expressions

a, =0-07 exp (V/20), (23)

sad Bi= 1/(exp 4 -1*-030 + 1) . (24)
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The steady state relation between i i
. wand ¥V i
curve is calculated from the relation o shownin Fig.10. The smooth

h°° = ah/(“h +Bh)n (25)
15030 o o -
1‘4_
13k | Axen g R
| a7 413
12} | @20 |Bn
o o | & 21 (method A 412
11 I v
=~ 10] Iy 37 G
¥ | e 38 ﬂfn 10
£ 09 ax v v o : = 39 (method B
"c:oa a ; A 39 409
g%p  atgeg | v 37
= —08
§ 07} A | 038
o b4 : 39 [ method B 407
= 061 39
o I Jos
05 |
————————— 05
04
o4
03 a,
403
02} o
402
01
—01
L 1 1 1 ;

ol 1
—110 -100-90 —80 —70 —60 -50 —40 -30.-20 10 0 10 20 I?G

V(mV)
Fig. 9. Rate constants of i ivati
R ] inactivation (o, and f,) as functions of m
: 3 embrane potential :
;I:::;(tt:grv;ﬂfwere calculated from eqns. (23) and (24). The experimental falu:a ;af nf Vi dT S
) .an (; ; ame.\. r?mr t:lata. such as those in Table 2 of this paper (method A) or from the :a.h?es ﬁ;
“:cre i :; E:iv;n u; lablell of l'lodgkm & Huxley (1952¢) (method B). Temperature differences
d for by scaling with a @,, of 3. Axon 39 was at 19°C; all others at 3 Q°C Tk
s —x . e

values for axons 37 and 39* i
ey were displaced by —1-5 and - 12mV in order to give hos =0-6 at

:"Ith %, and B, given t.)y eqns. (23) and (24). If V> —30 mV this expression
pproximates to the simple expression used in a previous paper (Hodgkin &

Huxley, 1952 ¢), i.e.
h,,:l/(l+expv;’;v),

where V, is about —2 and is the potential at which %, =0-5. This equation is

th L
e same as that giving the effect of a potential difference on the proportion

of negatively charg.cd particles on the outside of a membrane to the total
t1.1umher o.fsuc.h pa'rtlcles on both sides of the membrane (see p. 503). It is there
ore consistent with the suggestion that inactivation might be -due to the
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movement of a negatively charged particle which']})li?:lfs the g;);vgifg so;ll::xlx;
i insi brane. is enco g
ions when it reaches the inside of the mem 'his 1 v
i i f this kind does not lead to
must be mentioned that a physxcal.theory o :
satisfactory functions for «, and B without further ad hoc assumptions.

h,,

i by
10}
o9k Axon 09
o 38 &
081 o 39
07 a 39% 07
06
06
05
051 1
04
04t
03
03
02
02F
01
01
1 i 1 Il & 1 1 ] i 1 L 1 1 0

—100 -90 —80 —70 —60 -50 —40 =30 2010 0 10 20 30 40 50

V(mV)

is drawn acoording to eqn. (25).
i lation between A and V. The smooth curve is
e 'll(‘)l;emmmpoinm are those given in Table 1 of Hodgkin & Huxley (1952¢). Axon38

(6° C) as measured. Axon 39 (19° C) displaced -1'5 mV. Axon 39* (3° G, fibre in derelict

state) displaced —12 mV. The curve gives the fraction of the sodium-carrying system which
is readily available, as a function of membrane potential, in the steady state. -

PART III. RECONSTRUCTION OF NERVE BEHAVIOUR

The remainder of this paper will be devoted to calculations of the electx"ical
behaviour of a model nerve whose properties are defined by thc? equfmzhns
which were fitted in Part II to the voltage clamp records described in the

earlier papers of this series.

éummary of equations and parameters
We may first collect the equations which give the total membrane current I

i i d voltage. These are:
aaa functnong&%%n ¥ to%n:c

1= 0o Y +gicn® (V= Vi) + i (F =V +0,(V =T (26)

where dn/dt=a, (1 —n)—B,n, (N
dm/dt =a,,(1 —m)—Bm, (15)

dh/dt=ay(1—h)—Bxh, (16)
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and o, =0-01 (V+10)/(exp V;)lo—l), (12)
B, =0125 exp (V/80), (13)

%, =01 (V+25)/(expy+025—1). (20)

Bm=4exp (V/[18), (21)

o, =007 exp (V/20), (23)

Ba= 1/(exp L 1). (24)

Equation (26) is derived simply from eqns. (1)-(6) and (14) in Parxt II. The
four terms on the right-hand side give respectively the capacity current, the
current carried by K ions, the current carried by Na ions and the leak current,
for 1 cm? of membrane. These four components are in parallel and add up to
give the total current density through the membrane I. The conductances to
K and Na are given by the constants gk and §y,, together with the dimension-
less quantities », m and h, whose variation with time after a change of
membrane potential is determined by the three subsidiary equations (7), (15)
and (16). The «’s and 8s in these equations depend only on the instantaneous
value of the membrane potential, and are given by the remaining six equations.

Potentials are given in mV, current density in pA/cm?, conductances in
m.mho/em?, capacity in uF/cm?, and time in msec, The expressions for the
«’s and §’s are appropriate to a temperature of 6-3° C; for other temperatures
they must be scaled with a Qo of 3.

The constants in eqn. (26) are taken as independent of temperature. The
values chosen are given in Table 3, column 2, and may be compared with the
experimental values in columns 3 and 4.

Membrane currents during a voltage clamp

Before applying eqn. (26) to the action potential it is well to check that it
predicts correctly the total current during a voltage clamp. At constant
voltage dV/dt=0 and the coefficients o and B are constant. The solution is
then obtained directly in terms of the expressions already given for », m and A
(eqns. (8), (17) and (18)). The total ionic current was computed from these for
& number of different voltages and is compared with a series of experimental
curves in Fig. 11. The only important difference is that the theoretical current
has too little delay at the sodium potential; this reflects the inability of our
equations to account fully for the delay in the rise of g (p. 509).

‘Membrane’ and propagated action potentials
By a ‘“membrane’ action potential is meant one in which the membrane
Potential i8 uniform, at each instant, over the whole of the length of fibre
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considered. There is no current along the axis cylinder and the net membrane
current must therefore always be zero, except during the stimulus. If the
stimulus is a short shock at £=0, the form of the action potential should be
given by solving eqn. (26) with / =0 and the initial conditions that ¥ =V, and
m, n and A have their resting steady state values, when ¢=0.

The situation is more complicated in a propagated action potential. The fact
that the local circuit currents have to be provided by the net membrane
current leads to the well-known relation

o LV
1, +14 02’
where 1 is the membrane current per unit length, », and r, are the external and
internal resistances per unit length, and z is distance along the fibre. For an
axon surrounded by a large volume of conducting fluid, r, is negligible com-

(27)

pared with r,. Hence 1w
1_1', oz?’
4
or I=3%, 3 @

where I is the membrane current density, a is the radius of the fibre and R, is
the specific resistance of the axoplasm. Inserting this relation in eqn. (26),
we have
a 02V
2R, 02
the subsidiary equations being unchanged.

Equation (29) is a partial differential equation, and it is not practicable to
solve it as it stands. During steady propagation, however, the curve of V
against time at any one position is similar in shape to that of ¥V against distance
at any one time, and it follows that

ov

= O+ (V= Vi) +Gnam®h (V= Vo) +3: (V=Fi),  (29)

2y _10
ot G o’
where 8 is the velocity of conduction. Hence
d*v dv  _ ~ _
s g = O g+ (7 =V +wamh (V =V 43, (V=) (30)

This is an ordinary differential equation and can be solved numerically, but
the procedure is still complicated by the fact that @ is not known in advance.
It is necessary to guess a value of 0, insert it in eqn. (30) and carry out the
numerical solution starting from the resting state at the foot of the action
potential. It is then found that V goes off towards either + co or— o,
according as the guessed § was too small or too large. A new value of 8 is

MEMBRANE CURRENT IN NERVE
then chosen and the Procedure repeated, and so o

(261) n:;g)ra(tltg;c ::;::;e( TI: equations to be solved are the
26), (7), » anc P- 518). After alight rearrangemen

ot’sl step !)y hand {4 (=1,+58) the Procedure for each s
(2) Eat.umw ¥, from V, and ite backward differences
({3)) (l;::::::hate ", from #, and its backward differences. '

o) o te (dn/dt), from eqn. 7 using the estimated and
& i b n, the values of ay and B, appropriate
(4) Calculate n, from the equation

(@), -5
&/, 712

& ((d
o), 8) AL (8]
7 (&), @) (3) )
has to be estimated.
repeat (3) and (4) using the new »,. If
same.

(7) CO]OI.I]D“ f"l{ and 3,

gﬂnml"l‘
(8) C;lcula.te (d’ dt, from e n. 26 usin, he va ues found in (7) and the
: , )l qgn. gt 1 i ( ) t

69) Calculate rrected roced ety “ﬁmlbd‘
cula

differed enough ;rooz: th Juby p ooedures analogous to steps (4) and (5). This

fro e 0 estimated value to necessita i y roeult never
m step (3) onwards, te repeating the whole procedure

was too large. It varied between abo

.. ut 0-01 mseo at th, beginm'ng
th? rising phase of the action potential, and 1 duri o of . run or 0-02 msec duri
spike. and 1 msec during the small oscillations which follow the

) Accuracy. The last digit retained in ¥ oorresponded

in tl::o other variables for the resulting errors in the change of

as large as 1uV. It is difficuls to estimate the t: vh.i'::‘t.:‘ y
degree e

acoumulate, but we are confid
illustrations of this Ppaper. ont that the overallerrors

7 emper Glure d'ﬂ erences. In c‘lcul‘t he action tential it was convenient to use t'.bl“
b° to mn]th" all a'sand ﬁ' b’ Bﬁoto! " 3
of an. 26 Bho ws th‘t the same tuult 18 ‘chle ved b’ osleuhtmg the action Po'rcntld at 6-3 c w lth

& membrane capacity of ¢C, :
Lo 2 » #F/cms?, the uni i i
since it saved roaloulating o 1L bL. © unit of time being 1/¢ msec. This method was adopted
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Propagated action potential “
Egquations. The main equation for a propagated action potential is eqn. (30). Introducing |
a quantity K =2R,0°Cy/a, this becomes |
aw - *late,
The subsidiary equations (7), (15) and (16), and the «’s and £’s, are the same as for the membrane
equation.
Integration procedure. Steps (1)—(7) were the same as for the membrane action potential. After
that the procedure was as follows:
(8) Estimate (dV/d?), from (dV/ds), and its backward differences,
(9) Caloulate (d'V/ds*), from eqn. (31), using the values found in (7) and the estimated values
of V, and (dV/df),.
_(10) Calculate a corrected (dV/dt), by procedures analogous to stepe (4) and (5).
(11) Caloulate a corrected V, by a procedure analogous to step (4), using the corrected (dV/d¢),.
(12) If necessary, repeat (9)—(11) using the new ¥, and (d¥/ds),, until successive values of ¥V,
*IW-
Starting conditions. In practice it is neceesary to start with ¥V deviating from zero by a finite
amount (0-1 mV was used). The first few values of ¥, and hence the differences, were obtained as
follows. Negleoting the changes in gx and gy,, eqn. (31) is

aV_p[dV %
an "K[d:*o,"}'

. .
Ign* (¥ — V) +gnaM°BY — VR) +GY = 'xu,- 1)

where g, is the resting conductance of the membrane. The solution of this equation is V = Vyext,
where u is a solution of

pt = Kp - Kgy|Cu =0. ‘ (32)
When K has been chosen, u can thus be found and hence V,, V,, etc. (Voeut, Veents, etc.).

After several runs had been calculated, so that X was known within fairly narrow limits, time
was saved by starting new runs not from near ¥ =0 but from a set of values interpolated between
corresponding points on a run which had gone towards +oco and another which had gone
towards - co. . )

Choice of K. The value of K chosen for the first run makes no difference to the final result, but
the nearer it is to the correct value the fewer runs will need to be evaluated. The starting value
was found by inserting in eqn. (32) a value of i found by measuring the foot of an observed action
potential.

Calculation of falling phase. The procedure outlined above is satisfactory for the rising phase
and peak of the action potential but becomes excessively tedious in the falling phase and the
oscillations which follow the spike. A different method, which for other reasons is not applicable
in the earlier phases, was therefore employed. The solution was continued as a membrane action
potential, and the value of d*V/ds? calculated at each step from the differences of dV/df. From
these it was possible to derive an estimate of the values (denoted by z) that d*V/ds* would have
taken in a propagated action potential. The membrane solution was then re-calculated using the
Fallnei, 4. inataad nf ann 21\

& e G- G (V =V + G (V = Vo) +G (V= Vi + £ (33)
4

d

This was repeated until the z's assumed for a particular run agreed with the d*V/di"’s derived
from the same run. When this is the case, eqn. (33) is identical with eqn. (31), the main equation
for the propagated action potential.
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RESULTS
Membrane action potentials
.Forrfz of action potential at 6° C. Three calculated membrane action potentials
with different strengths of stimulus, are shown in the upper part of Fig 12’
iny one, in which the initial displacement of membrane potential was 15 .mV.
1s complete; in the other two the calculation was not carried beyond the middlt;
of the falling phase because of the labour involved and because the solution

~V(mV)
0083885833838

. msec
Fig. li[ Upper familz: solutions of eqn. (26) for initial depolarizations of 90, 15, 7 and 6 mV
:; A culated for 6°C). Lower family: tracings of membrane action potentials recorded at ..
C from axon 17. The numbers attached to the curves give the shock strength i
mpw}xlomb/cm’. The vertical and horizontal scales are the same in both families (apart fro:
the slight ourv‘ltm:e indicated by the 110 mV calibration line). In this and all subsequent
figures depolarizations (or negative displacements of V) are plotted upwards.

h'ad become almost identical with the 156 mV action potential, apart from the
gllllsplacement in time. One solution for a stimulus just below threshold is also
own.

The lower half of Fig. 12 shows a corresponding seri i
membrane action potentials. It will be seenp:hat tie :::r(:l‘ ig):::li::t:
good, as regards amplitude, form and time-scale. The calculated action
potentials do, however, differ from the experimental in the following respects:
(1) The drop during the first 0-1 msec is smaller. (2) The peaks are shsrper:
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(3) There is a small hump in the lower part of the falling phase. (4) The ending
of the falling phase is too sharp. The extent to which these differences are the
result of known shortcomings in our formulation will be discussed on pp. 542-3.

The positive phase of the calculated action potential has approximately the
correct form and duration, as may be seen from Fig. 13 in which a pair of

curves are plotted on a slower time scale.

-

T BN PO e sy [ T

15 20 msec
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| P e v
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o- — 'l L 1 1 1 I A ' S ' .
N, ___5_,___——-’-*_"10'—__/4—_ 15 msec

0

Fig. 13. Upper curve: solution of eqn. (26) for initial depolarization of 15 mV, calculated for
6° C. Lower curve: tracing of membrane action potentisl recorded at 9-1° C (axon 14). The
vertical scales are the same in both curves (apart from curvature in the lower record).
The horizontal scales differ by & factor appropriate to the temperature difference.

Certain measurements of these and other calculated CTION POTENUIALS sre
collected in Table 4.

Form of action potential at 18-5° C. Fig. 14 shows a comparison between
a calculated membrane action potential at 18:5° C and an experimental one
at 20-5° C. The same differences can be seen as at the low temperature, but,
except for the initial drop, they are less marked. In both the calculated and the

experimental case, the rise of temperature has greatly reduced the duration of

the spike, the difference being more marked in the falling than in the rising
phase (Table 4), as was shown in propagated action potentials by Hodgkin &

Katz (1949).

The durations of both falling phase and positive phase are reduced at the
higher temperature by factors which are not far short of that (3-84) by which
the rate constants of the permeability changes are raised (Q,o=30). This is the
justification for the differences in time scale between the upper and lower parts

in Figs. 13 and 14.
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potential recorded at 20-5° C (axon 11). Vertical scales are

eimilar. Horizontal scales differ by a factor appropriate to the temperature difference

Lower curve: tracing of membrane action

Fig. 14. Upper curve: solution of e
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Propagated action potential Fted
] . i the calculated pro-
ated action potential. Fig. 15 compares
f:tz(; ‘;{:gi,:)?;’;tential, at 18-5° C, with expenmenta! records on both f:;;t
f:d slow time bases. Asin the case of the membrane af:tlon potential, the only
i in certain details of the form of the spike.
dlﬁ;elocuren?;s :_; itmdudion. The value of the constant K that. was found to be
needed in the equation for the propagated action pot,e}mal (eqn. 3lb) :::s
10-47 msec-1. This constant, which depends only on properties of the membrane,

528

100
100 A % E .
; o -
E 50 g o
by 1 °F
| $ ] %msec 0.,:_ e 19 g gl
ot-d ’ e —— 0 \_.---"'"g-_ 10 msec
" 100 -
z £ oF
< 50 I :
2 msec o
| 0 1 5 1 fi]= g o
o o — 10
mser
9 7 g & ) \“'J (-.".
Fig. 16. A, solution of eqn. (31) calculated for K of 10-47 msec™ and temperature of 18-5

il T W H i a i ial on
R, same solution plotted on slower time scale. C, tracing of propagated f{ctll)nfp()t{)]l: E
1 [, ¥ " - %
aame vertical and horizontal scales as 4. Temperature 18-5° C. D, tracing of propag

. - the artic. izontal scales
artion potential from another axon on approximately the same v..rtu,ul.and }}mrlz' initinlly
.“ f]_‘po t 10:27 (1 Thia avan had hean naad far gaveral houre: ita gpike waa i v
as B. Temperatura 10.9° (1
10 mV

determines the conduction velocity in conjunction. with the constants of :l}?
nerve fibre considered as a cable. The relation is given by the definition o

(P- 524), from which 0=J(KGI2R30M)’ (34)

where ¢=conduction velocity, a=radius of s.\:is cy(l:fn:;rl,nb:t:;specmc

i f axoplasm, and C,,=capacity per unit area -
r“;;:;iz:agsteg action pote::,ial was calcult?ted for the temperatulz:% at,F wh;:’l;
the record C of Fig. 15 was obtained, and with the value of C), ( Sf; /ca )
that was measured on the fibre from which t}.mt record was made. m(:;l (;u- |
and R, were also measured on that fibre, a direct comparison betwe;;m8 o
lated and observed velocities is possible. The values of a z.md R, were 238y
35-4 Q. cm respectively. Hence the calculated conduction velocity is

(10470 x 0-0238/2 x 35-4 x 10-%)} cm/sec = 18:8 m/sec.

The velocity found experimentally in this fibre was 21-2 m/sec.

|
i

e g
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Impedance changes

Time course of conductance change. Cole & Curtis (1939) showed that the
impedance of the membrane fell during a spike, and that the fall was due to
8 great increase in the conductance which is in parallel with the membrane
capacity. An effect of this kind is to be expected on our formulation, since the
entry of Nat which causes the rising phase, and the loss of K+ which causes
the falling phase, are consequent on increases in the conductance of the
membrane to currents carried by these ions. These component conductances

529

are evaluated during the calculation, and the total conductance is obtained by
adding them and the constant ‘leak conductance’, a;-
mv A m.mho/em? 8
40
100 30
50 20
10
0 Call - A —
| I L Lt L ¢ ¢ 0213
0 1 2 3 45678910 msec

0 1 2 3 456 7 8 910 msec
Fig. 16. 4, solution of eqn. (26) for initial depolarization of 15 mV at a temperature of 6° C. The
broken curve shows the membrane action Ppotential in mV; the continuous curve shows the
total membrane conductance (9wa +9x +§;) a8 & function of time, B, records of propagated

action potential (dotted curve) and conductance change reproduced from Cole & Curtis (1939),
The time scales are the same in 4 and B.

Fig. 16 4 shows the membrane

Potential and conductance in a calculated
membrane action

potential. For comparison, Fig. 16 B shows superposed
records of potential and impedance bridge output (proportional to conductance
change), taken from Cole & Curtis’s paper. The time scale is the sameinBasin 4,
and the curves have been drawn with the same peak height. It will be seen that
the main features of Cole & Curtis’s record are reproduced in the calculated

the peaks depends on the conditions, as can be seen from Table 4.

We chose a membrane action potential for the comparison in Fig. 16 because
the spike duration shows that the experimental records were obtained at about
6°C, and our Propagated action potential was calculated for 18-5° C. The
conductance during the latter is plotted together with the potential in Fig. 17.

The same features are seen as In the membrane action potential, the delay
PH. CXVIL, 3¢
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between the rise of potential and the rise of conductance being even more
marked.

Absolute value of peak conductance. The agreement between the height of the
conductance peak in Fig. 16 4 and the half-amplitude of the bridge output in
Fig. 16 B is due simply to the choice of scale. Nevertheless, our calculated
action potentials agree well with Cole & Curtis’s results in this respect.
These authors found that the average membrane resistance at the peak of
the impedance change was 25 Q.cm?, corresponding to a conductance of
40 m.mho/cm?. The peak conductances in our calculated action potentials
ranged from 31 to 53 m.mho/cm? according to the conditions, as shown in
Table 4.

mV  m.mhofecm?
90

35F
80 F
30
70 -
60-15;_
50— 20F
40‘15:_-
o f
10F
0+ F
10} SF
il & ‘ X . : I
0 05 1 1. 2 25 3 35 —

msec
Fig. 17. Numerioal solution of eqn. (31) showing components of membrane conductance (g) during
propagated action potential ( - ¥). Details of the analysis are as in Fig. 15.

Components of conductance change. The manner in which the conductances
to Na+ and K+ contribute to the change in total conductance is shown in
Fig. 17 for the calculated propagated action potential. The rapid rise is due
almost entirely to sodium conductance, but after the peak the potassium con-
ductance takes a progressively larger share until, by the beginning of the

positive phase, the sodium conductance has become negligible. The tail of :

raised conductance that falls away gradually during the positive phase is due

solely to potassium conductance, the small constant leak conductance being of -

course present throughout. -
Ionic movements

Time course of ionic currents. The time course of the components of membrane §
current carried by sodium and potassium ions during the calculated pro- §
pagated spike is shown in Fig. 18 C. The total ionic current contains also

a small contribution from ‘leak current’ which is not plotted separately.

Two courses are open to current which is carried into the axis cylinder by 8
ions crossing the membrane: it may leave the axis cylinder again by altering

: be obtained by int

MEMBRANE CURRENT IN NERVE
th!? charge on the membrane capacity,
axis cylinder making a net contributio
magnitudes of these two terms d
(Cy/K) A2V [ds2 respectively,
divided between them at the d

531
or it may turn either way along the
ution, 1, to the local circuit current. The
uring steady propagation are — CyrdV/dt and
.ﬂf;ld the manner in which the ionic current is
‘ ifterent sta, f ike i n in Fi

el e ges of the spike is shown in Fig. 18B.

' current is very small until the ial i
’i beyond the threshold level, which is shown by Fig. 124 to Ezt:,igi Iﬁs;lv%u

Fig. 18, Numeri i W e
: m nti:a.l solut.lorf of eqn. (31) sho ing components of membrane current during pro
Pagated action potential. 4, membrane potential (- V). B, ionic current (1) ca.pacity-
i/

dv
current ( - Oy -a) and total membrane current (I =C.ar Qv

% 7|+ C,ionic cu i
g) 8 rrent (1), sodium
current (Iy,) and potassium current (Ig) . ‘

of the analysis are as in Fig. 15.

. The time scale applies to all the curves. Details

Tot ) !
al movements of ions. The total entry of sodium and loss of potassium can

egrating the corresponding ionic currents over the whole

34-2
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1mpulse. This has been done for the tour complete action potentials that we
calculated, and the results are given in Table 5. It will be seen that the results 288
at 18:5° C are in good agreement with the values found experimentally by g g «5
Keynes (1951) and Keynes & Lewis (1951), which were obtained at com- S s g i’ 3 o ere
parable temperatures. , w0 =% f * § 3o s 3 3
Ionic fluzes. The flux in either direction of an ion can be obtained from the e g e z -
net current and the equilibrium potential for that jon, if the independence 8BS ‘
principle (Hodgkin & Huxley, 19524) is assumed to hold. Thus the outward E :E 8 EJ e
flux of sodium ions is Iy,/(exp (V —Vy,) F/RT —1), and the inward flux of o & T g ! g 2;5‘9 5
potassium ions is —Ig/(exp (Vx— V) F/RT —1). These two quantities were f ; £ 2 |8 ]
evaluated at each step of the calculated action potentials, and integrated over 535 ’
the whole impulse. The integrated flux in the opposite direction is given in 328 M v
each case by adding the total net movement. The results are given in Table 5, - | s IE ;g § [
where they can be compared with the results obtained with radioactive tracers 223 T
by Keynes (1951) on Sepia axons. It will be seen that our theory predicts too 2l (.
little exchange of Na and too much exchange of K during an impulse. This g3 § | £ 2g3ge
discrepancy will be discussed later. EER | S owezs a a3
EE" =
Refractory period «; E ;i [l
Time course of inactivation and delayed rectification. According to our theory, s£: § | 5 gu3e
there are two changes resulting from the depolarization during a spike which 5§35 2] g IX&e b4
make the membrane unable to respond to another stimulus until a certain sa e jits
time has elapsed. These are ‘inactivation’, which reduces the level to which o =
my E I 5 $38% =
E ) ¢ @ " RS
50 is5g
ER-- 3~ ©
T FET B Im=ER 00
m.mho/cm? 06 = TE 3 K 8
0 {os" § 52 .
10 404 R - -
0 i T 4 w8 S8
0 : S 10 15 20 msec y e T =
Fig. 19. Numerical solution of eqn. (26) for initial depolarization of 15 mV and temperature of TEEE 2o E © oo
6° C. Upper ourve: membrane potential, as in Fig. 13. Lower curves show time course of *:5 & E = Eg = & E E s g‘gg_—sg*
gx snd A during action potential and refractory period. :5- *;';. ﬁ S éig‘ éz_g_g_é §3 g. g‘
the sodium conductance can be raised by a depolarization, and the delayed % é‘ g E & '§ Blalas Tg £T& &
rise in potassium conductance, which tends to hold the membrane potential €3 B2 3 é’
near to the equilibrium value for potassium ions. These two effects are shown sSS¢8 $ mnme &
in Fig. 19 for the calculated membrane action potential at 6° C. Both curves RCE-R 3 ge o°

reach their normal levels again near the end of the positive phase, and finally
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settle down after a heavily damped oscillation of small amplitude which is not
een in the figure. ) o
) Responses f;o stimuli during positive phase. We calculated the reﬁpont:.s 23
the membrane when it was suddenly depolzu‘iz.ed by 90 1.11V at: o\’él‘l%l}lﬂ ;n;m
during the positive phase of the membrane action potential .at 6° C. ;cs e
shown by the upper curves in Fig. 20. After the earliest stimulus

=¥ (mV) —V(mV)
100} A . J100
i B ¢ DJ\ -
sol- V\ Is0
L 1 L1 A [T T T T - L 40

L W oy Yo 5 200 1
msec msec
=V (mV) —V(mV)
100f ' —100
sof 50
i 6\7\8 9 10\11 12msec _'0
Or_ 6 i iI&M‘_ﬁ%ﬁ;% ) 7 msec

i : i i f eqn. (26) for

7 od. Upper curves: numerical solutions of eq :
e i to 15 mpcoulomb/em?® applied instan-
cm? again applied in the

Fig. 20. Theoretical basis of refr .
temperature of 6°C. Curve A gives the response sy
: i gi e to 90 mucoulom
sly at t=0. Curve E gives the response t ) i A
t:;;.(;::ll s:x;t,c Curves B to D show effect of applying 90 mpcoulomb/em? at various tm:eg e
runegzi L(-)wcr curves: a similar experiment with an actual nerve, lemperat-ure‘l}t t i
4 3 ; . . . ot
f ltage scales are the same throughout. The time scales differ by a factor appropriate
ol ;

temperature difference.

membrane potential falls again with hardly a sign of actrvfg:,y, rlfa,];::dlat‘-ii
membrane can be said to be in the ‘absnlu.te refmctjory pc}nc; tﬂl rlsem
stimuli produce action potentials of il%crcasmg amplltu.dezl,‘ JUC s s

than the control; these are in the ‘relative refractory‘perlo ri‘h orresg:nent ii
experimental curves are shown in the lower part of Fig. 20. The agree

&

)

good, as regards both the duration of the absolute refractory period and the -

changes in shape of the spike as recovery progresses.
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Ezcitation

Our calculations of excitation processes were all made for the case where the
membrane potential is uniform over the whole area considered, and not for the
case of local stimulation of a whole nerve. There were two reasons for this:
first, that such data from the squid giant fibre as we had for comparison were
obtained by uniform stimulation of the membrane with the long electrode;
and, secondly, that calculations for the whole nerve case would have been
extremely laborious since the main equation is then a partial differential
equation.

Threshold. The curves in Figs. 12 and 21 show that the theoretical
‘membrane’ has a definite threshold when stimulated by a sudden displace-
ment of membrane potential. Since the initial fall after the stimulus is much
less marked in these than in the experimental curves, it is relevant to compare
the lowest point reached in a just threshold curve, rather than the magnitude
of the original displacement. In the calculated series this is about 6 mV and in
the experimental about 8 mV. This agreement is satisfactory, especially as the
value for the calculated series must depend critically on such things as the
leak conductance, whose value was not very well determined experimentally.

The agreement might have been somewhat less good if the comparison had
been made at a higher temperature. The calculated value would have been
much the same, but the experimental value in the series at 23° C shown in
Fig. 8 of Hodgkin et al. (1952) is about 15 mV. However, this fibre had been
stored for § hr before use and was therefore not in exactly the same state as
those on which our measurements were based.

Subthreshold responses. When the displacement of membrane potential was
less than the threshold for setting up a spike, characteristic subthreshold
responses were seen. One such response is shown in Fig. 12, while several
are plotted on a larger scale in Fig. 21B. Fig. 214 shows for comparison
the corresponding calculated responses of our model. The only appreciable
differences, in the size of the initial fall and in the threshold level, have been
mentioned already in other connexions.

During the positive phase which follows each calculated subthreshold
response, the potassium conductance is raised and there is a higher degree of
‘inactivation’ than in the resting state. The threshold must therefore be
raised in the same way as it is during the relative refractory period following
a spike. This agrees with the experimental findings of Pumphrey, Schmitt &
Young (1940).

Anode break excitation. Our axons with the long electrode in place often
gave anode break responses at the end of a period during which current was
made to flow inward through the membrane. The corresponding response of
out theoretical model was calculated for the case'in which a current sufficient
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to bring the membrane potential to 30 mV above the resting potential was,
suddenly stopped after passing for a time long compared with all the time-
constants of the membrane. To do this, eqn. (26) was golved with I =0 and the.
initial conditions that ¥ = +30 mV, and m, n and h have their steady state
values for V = +30 mV, when ¢ =0. The calculation was made for a temperature|

TIr o rprrrrprorrrrrrrprerryi

[]IIi]llll]llllllllllllll[l

1 1 1 1 i 1 1 1 ) S |

1 2 3 4 5 6 7 8 9 10
msec

O p—

Fig. 21. A, numerical solutions of eqn. (26) for 6° C. The numbers attached to the curves give the
initial depolarization in mV (also the quantity of charge applied in mpcoulombfcm?).
B, response of nerve membrane at 6°C to short shocks; the numbers show the charge applied
in mpooulombj/om?. The curves have been replotted from records taken at low amplification

and a relatively high time-base speed.

of 6:3° C. A spike resulted, and the time course of membrane potential is
plotted in Fig. 224. A tracing of an experimental anode break response is
shown in Fig. 22 B; the temperature is 18-5° C, no record near 6° being avail-
able. It will be seen that there is good general agreement. (The oscillations
after the positive phase in Fig. 22B are exceptionally large; the response of

X
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Fig. 22. i i
g boun'g::;r:zlnc;:ﬁ::m_ l:,f—&node break excitation.| A, numerical solution of eqn. (268) for
following mader , =-30mV for ¢<0; temperature 6° C. B, anode break excitation
265wy mdder oena. ion of external current which had raised the membrane tential b |
oo uf xon v;nth long electrode at 18:5° C. Time scales differ by a fac . nto
perature difference. y & factor appropriste

=V(mV)

y .
makt;a:;mwdatwn. Nl? measuremfmts of accommodation were made nor did we
ma Odyloor-respondu}g calculations for our model. It is clear, however, that
the wxz inet will show _accomn'lodation’ in appropriate cases., This m;y be
theoust th:; :v:l{s. Fu'tsll:, during the passage of a constant cathodal current
: . rane, the potassium conductance and the de. i i

' ot ee of -
tion will rise, both factors raising the threshold. Secondly, t!l;lte ste;g;c:;:ze
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ionic current at all strengths of depolarization is outward (Fig. 11), so that an
applied cathodal current which rises sufficiently slowly will never evoke a
regenerative response from the membrane, and excitation will not occur.

Oscillations

In all the calculated action potentials and subthreshold responses the
membrane potential finally returns to its resting value with a heavily damped
oscillation. This is well seen after subthreshold stimuli in Figs. 214 and 24,
but the action potentials are not plotted on a slow enough time base or with
a large enough vertical scale to show the oscillations which f ollow the positive
phase.

The corresponding oscillatory behaviour of the real nerve could be seen after
a spike or a subthreshold short shock, but was best studied by passing a small
constant current through the membrane and recording the changes of
membrane potential that resulted. The current was supplied by the long
internal electrode so that the whole area of membrane was subjected to
a uniform current density. It was found that when the current was very weak
the potential changes resulting from inward current (anodal) were almost
exactly similar to those resulting from an equal outward current, but with
opposite sign. This is shown in Fig. 23 B and C, where the potential changes
are about +1 mV. This symmetry with weak currents is to be expected from
our equations, since they can be reduced to a linear form when the displace-
ments of all the variables from their resting values are small. Thus, neglecting
products, squares and higher powers of 8V, 3m, on and 8k, the deviations of ¥V,
m, n and h from their resting values (0, m,, n, and h, respectively), eqn. (26)
(p. 518) becomes

LA G m3 7 a3
81 =Cp —3,~+ 78V — 47 Ve 3 + JeamohodV
— 3 namMY hoViyadm — Fnamg Vaiadh +§18V.  (35)

Similarly, eqn. (7) (p. 518) becomes

Bon_ay, Doy +B)
dt—aVSV (ot +By) On—my FY% v,

or aan a (an + B n)

(p+ac,,+/3,;)8n={a—17 _nOT}sv, (36)

where p represents d/df, the operation of differentiating with respect to
time.

The quantity 3n can be eliminated between eqns. (35) and (36). This process
is repeated for 3m and 54, yielding a fourth-order linear differential equation
with constant coefficients for 8V. This can be solved by standard methods for
any particular time course of the applied current density 3.
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Fig. 23 A.shows the response of the membrane to a constant current pulse
calculat?d in this way. The constants in the equations are chosen tI:) be
appropriate to a temperature of 18-5° C 80 as to make the result comparabl
with the tracings of experimental records shown in B and C. It will IP; seen
that 'the calculated curve agrees well with the records in B ‘;vhile thoseei;ezn
obtained from another axon, are much less heavily damped ’and show a highel"

IllIlllllllllllllllllllllllllﬁ

0 5 10 15 20 25 msec

11 kf).cm?

10 S 10 15 20
0-5

-OE _/\/\Cl—_\/_\&_ I1 kfl.cm?
0 TNl B
e E [1xa.cm

=14

25 msec

~V(mv)

Fig. 23. A,.aolution of eqn. (35) for small constant current pulse; temperature 18-5°
f].ppmmmatiun. The curve shows §7/8I (plotted upwards) as a.’flmction of 1:l'a 5B h
111 membrane potential associated with application of weak constant cu.rr;;ni: f ,dc o5
é 5 mf:echand strength :'|:11<49 pAfem?®. B, eathodic current; B,, anodic current. ODe ;Ir:r!;:.(:f
ton 13 shown upward. Temperature 19° C. €, similar records from another fibre eull:.rged to

have same time scale. Current strengths ar 55 ulfe Tem at
8 are 0- A L
\ £ + i+ Ilr m*=, perature 18°C. The response

C; linear

frequcncy_ of oscillation. A fair degree of variability is to be expected in th
respects since both frequency and damping depend on the values of th .
ponents. of the resting conductance. Of these, 9xna and gy depend eri ticzﬂcom-
the resting potential, while 7, is very variable from one fibre to anoth T
Bo?h theory and experiment indicate a greater degree of oscillator be;: i
thafrl is usually seen in a cephalopod nerve in a medium of norma.lyioni s
position. We believe that this is largely a direct result of using the long i;t:z‘;i



540 4. L. HODGKIN AND A. F. HUXLEY

electrode. If current is applied to a whole nerve through a point electro_d;,,
neighbouring points on the membrane will have d}ﬂ’cfrent membrane p({tentm 8
and the resulting currents in the axis cylinder will increase the damping. .
The linear solution for the behaviour of the theoretical membrane at sn‘laal
displacements provided a convenient check on our step-by-step numlc{snc
procedure. The response of the membrane at 6-3° C to a small short :iihocf was
calculated by this means and compared with the step-by-step solution :(1; an
initial depolarization of the membrane by 2 mV. The res.ults are IflOtif y 1l,n
Fig. 24. The agreement is very close, the sbep-by-steg solutxop devmtmg m21 e
direction that would be expected to result from its finite amplitude (cf. Fig. 21).

| T (T S S SO OO RO WO oo it oo e v S DO |

5 10 15 20
msec

pariso! i i imation. Eqn. (26), temperature

ig. 24. Com n of step-by-step solution and linear approxima ! - °

re ? C; initial displacement. of — V=2 mV. Continuous line: step-by-step solution. Circles:
linear approximation with same initial displacement. :

i out by Cole (1941), the process underlying o§ciﬂations in
mé:lbf:rl:t;itential fnust be(closely connected w.ith the inductl.ve reactamfe
observed with alternating currents. In our theoretical model the {nductan(-:e is
due partly to the inactivation process and par.tly to the change in poi';as.;mm
conductance, the latter being somewhat more 1mporta'nt. For sma..ll disp azce;‘
mentas of the resting potential the variations in pota.;s.?mm cmjrent in 1 em? o
membrane are identical with those in a circuit conta.xmng a resistance of 820 Q
in series with an inductance which is shunted !)y a resistance of 1900 Q. The
value of the inductance is 0-39H at 25° C, which is of tye same ordfar as the
0-2H found by Cole & Baker (1941). The calculated.mductance increases
3-fold for a 10° C fall in temperature and decreases rapldly.as the fnembrane
potential is increased ; it disappears at the potassium potential and is replaced

by a capacity for E> Ex.

DISCUSSION '
The results presented here show that the equationsf derived in'Part IT of th};
paper predict with fair accuracy many of th'e electrical properties ‘of the squi ,
giant axon: the form, duration and amplitude of spike, both ‘membrane
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and propagated; the conduction velocity; the impedance changes during the
spike; the refractory period; ionic exchanges; subthreshold responses; and
oscillations. In addition, they account at least qualitatively for many of the
phenomena of excitation, including anode break excitation and accommoda-
tion. This is a satisfactory degree of agreement, since the equations and
constants were derived entirely from “voltage clamp’ records, without any
adjustment to make them fit the phenomena to which they were subsequently
applied. Indeed any such adjustment would be extremely difficult, because
In most cases it is impossible to tell in advance what effect a given change in
one of the equations will have on the final solution.

The agreement must not be taken as evidence that our equations are any-
thing more than an empirical description of the time-course of the changes in
permeability to sodium and potassium. An equally satisfactory description of
the voltage clamp data could no doubt have been achieved with equations of
very different form, which would probably have been equally successful in
predicting the electrical behaviour of the membrane. It was pointed out in
Part II of this paper that certain features of our equations were capable of
a physical interpretation, but the success of the equations is no evidence in
favour of the mechanism of permeability change that we tentatively had in
mind when formulating them.

The point that we do consider to be established is that fairly simple perme-
ability changes in response to alterations in membrane potential, of the kind
deduced from the voltage clamp results, are a sufficient explanation of the
wide range of phenomena that have been fitted by solutions of the equations.

Range of applicability of the equations

The range of phenomena to which our equations are relevant is limited in
two respects: in the first place, they cover only the short-term responses of the
membrane, and in the second, they apply in their present form only to the
isolated squid giant axon.

Slow changes. A nerve fibre whose membrane was described by our equations
would run down gradually, since even in the resting state potassium leaves and
sodium enters the axis cylinder, and both processes are accelerated by activity.
This is no defect in describing the isolated squid giant axon, which does in fact
run down in this way, but some additional process must take place in a nerve
in the living animal to maintain the ionic gradients which are the immediate
source of the energy used in impulse conduction.

After-potentials. Our equations give no account of after-potentials, apart
from the positive phase and subsequent oscillations.

Conditions of isolated giant azon. There are many reasons for supposing that
the resting potential of the squid giant axon is considerably lower after isola-
tion than when it is intact in the living animal. Further evidence for this view
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is provided by the observation (Hodgkin & Huxley, 195:‘3 c) t‘;hat. tl?e maxngu;n
inward current that the membrane can pass on depolarization is mcreasoed 11y
previously raising the resting potential by 10-20 xpV by means of an : y
directed current. Our equations could easily be modified to increase the res mg
potential (e.g. by reducing the leak conductanccf anq adding a small outltwa;e
current representing metabolic extrusion of' sodmm lOI‘lS). We have no I.I:la X
any calculations for such a case, but certain qualitative rfasults are 'e‘;l en
from inspection of other solutions. If, for ins.tance, the r.egtmg potentmd we}r)e
raised (by 12 mV) to the potassium potentl'al, the positive pha:e.an fs:h;
sequent oscillations after the spike would d.lsappesr, the rate ol ns:aﬁ o e
spike would be increased, the exchange of internal and exter.na 80 11;1111

a spike would be increased, the membrane would not be ?scﬂlatory . x
depolarized, and accommodation and the tendency to give anode ll;
responses would be greatly reduced. Several of the'se p%lenomena have f{?
observed when the resting potential of frog nerve is raised (Lorent.?, de. 1,;
1947), but no corresponding information exists about the squid gian
ale;plicability to other tissues. The similarity of th? effects of .changmg -t,hlz
concentrations of sodium and potassium on the resting and a.ctx.on potl;fnt}a
of many excitable tissues (Hodgkin, 1951) suggests that tlfe basic melc1 amsn;
of conduction may be the same as implied by our equatnons,. but t e grea,f
differences in the shape of action potentials show that even if equatxo?s 111)
the same form as ours are applicable in other cases, some at least of the
parameters must have very different values.

Drfferences between calculated and observed beham'om:

In the Results section, a number of points were noted on which the calcu-
lated behaviour of our model did not agree with the elfpenmental re§u]ts. We
shall now discuss the extent to which these discrepancies can be attnbut'ed to
known shortcomings in our equations. Two such shortcomings were Pomt}o;d
out in Part II of this paper, and were accepted for the.sake of keepmgd t t:
equations simple. One was that the membra?e capacity was assu]xln
behave as a ‘perfect’ condenser (phase t.mgle 90°; p. 505), and th'e other wa]:
that the equations governing the potassn.lm gonductance do noif give as m;-xcl)
delay in the conductance rise on de(pol;zx;;;tlon (e.g. to the sodium potentia.

in voltage clamps (p. .
“’;'1: :sb::lrn;)egon of a I?erfect cI;pacity probably accounts for t:he fact tlhat
the initial fall in potential after application of a short shocfk is much less
marked in the calculated than in the experimental curves (Figs. 12 and 23).
Some of the initial drop in the experimental curves may also be due to ex; -
effects, the guard system being designed for the voltage clamp procedure but
not for stimulation by short shocks.
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The inadeauacv of the delay in the rise of potassium conductance has several
effects. In the first place the falling phase of the spike develops too early,
reducing the spike amplitude slightly and making the peak too pointed in
shape (p. 525). In the membrane action potentials these effects become more
marked the smaller the stimulus, since the potassium conductance begins to
rise during the latent period. This causes the spike amplitude to decrease
more in the calculated than in the experimental curves (Fig. 12).

The low calculated value for the exchange of internal and external sodium
ions is probably due to this cause. Most of the sodium exchange occurs near
the peak of the spike, when the potential is close to the sodium potential. The
early rise of potassium conductance prevents the potential from getting as close
to the sodium potential, and from staying there for as long a time, as it should,

A check on these points is provided by the ‘anode break’ action potential.
Until the break of the applied current, the quantity n has the steady state
value appropriate to V= +30 mV, i.e. it is much smaller than in the usual
resting condition. This greatly increases the delay in the rise of potassium
conductance when the membrane is depolarized. It was found that the spike
height was greater (Table 4), the peak was more rounded, and the exchange
of internal and external sodium was greater (Table 5), than in an action
Potential which followed a cathodal short shock.

The other important respect in which the model results disagreed with the
experimental was that the calculated exchange of internal and external
Potassium ions per impulse was too large. This exchange took place largely
during the positive phase, when the Potentialis close to the potassium potential

and the potassium conductance is still fairly high. We have no satisfactory
explanation for this discrepancy, but it is probably connected with the fact
that the value of the potassium potential was less strongly affected by changes
in external potassium concentration than is required by the Nernst equation.

SUMMARY

L. The voltage clamp data obtained previously are used to find equations
which describe the changes in sodium and potassium conductance associated
with an alteration of membrane potential. The parameters in these equations
were determined by fitting solutions to the experimental curves relating
sodium or potassium conductance to time at various membrane potentials,

2. The equations, given on pp. 518-19, were used to predict the quantitative
behaviour of a model nerve under a variety of conditions which corresponded
to those in actual experiments. Good agreement was obtained in the following
cases:

(a) The form, amplitude and threshold of an action potential under zero
membrane current at two temperatures. :

(b) The form, amplitude and velocity of a propagated action potential.
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(c) The form and amplitude of the impedance changes associated with an
action potential.

(d) The total inward movement of sodium ions and the total outward
movement of potassium ions associated with an impulse.

(¢) The threshold and response during the refractory period.

(f) The existence and form of subthreshold responses.

(9) The existence and form of an anode break response.

(h) The properties of the subthreshold oscillations seen in cephalopod axons.

3. The theory-also predicts that a direct current will not excite if it rises
sufficiently slowly.

4. Of the minor defects the only one for which there is no fairly simple
explanation is that the calculated exchange of potassium ions is higher than
that found in Sepia axons. :

5. It is concluded that the responses of an isolated giant axon of Loligo to
electrical stimuli are due to reversible alterations in sodium and potassium
permeability arising from changes in membrane potential.
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A method of investigating the effects of close arterial injections
on spinal cord activity. By W. FELDBERG, J. A. B. Gray and

yVV.WL.”M. PERRY. National Institute Jor Medical Research, Mill Hill,

This technique was developed in order to investigate the effects of acetylcholine
and (.)the'r t?ubstances on the activity of the spinal cord, when given by close
arterial m.]ection. This enables relatively high local concentrations to be
reached without using doses which produce pronounced systemic effects.

Ventral roottets of 1, ¢ Vertebral artery
Anterior ~ (

Cannula

7

Vertebral artery

Fig. 1. Diagram of exposed cervical cord: @, screw forcep tipe;
b, branches tied; ¢, edge of cord.

Ventral
rootlets of C1

The. arterial supply of the spinal cord lies on its ventral surface and is easily
accessible only in the high cervical region, where it can be approached through
the s-mterior atlanto-occipital membrane and the thin bodies of the atlas and
cram:?l part of the axis. This approach exposes the vertebral, basilar and
anterior spinal arteries. The disadvantage of using this region is that the ventral
roots of C1 are short and small and that there are few afferents to the segment

The head and neck of the cat are clamped rigidly. The upper parts of th(;
trachea and oesophagus are extirpated, a tracheal cannula being inserted low
The exposed prevertebral muscles are removed after the nerve branches of Ci
sup.plying them have been dissected out. Lengths of C2 are prepared and cut
peripherally; C3 is divided to prevent neck movements during stimulation.

a



