JOURNAL OF MATHEMATICAL PSYCHOLOGY 41, 319-344 (1997)
ARTICLE NO. MP971177

Stability and Intermittency in Large-Scale Coupled
Oscillator Models for Perceptual Segmentation

Cees van Leeuwen, Mark Steyvers, and Maarten Nooter
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The coupled map lattice, a system of locally coupled nonlinear maps,
is proposed as a model for perceptual segmentation. Patterns of syn-
chronized activity are obtained in the model from high-dimensional,
deterministic chaos. These patterns correspond to segmented topo-
graphical mappings of the visual field. The chaotic dynamic has a dual
role of contributing to pattern creation in unsynchronized states and of
noise revolting against stabilization in synchronized states. The dynamic
allows rapid transitions between unsynchronized and synchronized
states. Their stability characteristics are explored using analytical tools
and numerical simulations. Stability or instability are shown to be deter-
mined by network coupling strength, in proportion to the rate of chaotic
divergence. The introduction of adaptive connections, in combination
with stimulus-controlled oscillation, enables stable or meta-stable
patterns of synchronized activity to occur, depending on the perceptual
structure in the visual field. For a perceptually ambiguous pattern, the
system switches between alternative meta-stable segmentations. The
switching-time distribution obtained from the model was found in
agreement with those observed in the experimental literature.  © 1997

Academic Press

INTRODUCTION

Perceptual segmentation is a function of the visual system
which facilitates the identification and localization of objects
and events. In principle, there are many different ways to
segment a given pattern of sensory activity but only some of
them will be perceptually relevant. For finding these segmen-
tations, computational heuristics have been proposed which
operate according to principles of, among others, maximum
curvature (Hoffman & Richards, 1984), uniform connected-
ness (Palmer & Rock, 1994), or the Gestalt principles of
proximity and good continuation. A familiar problem with
this approach is that these principles are not uniformly
applicable. It depends on the situation, for instance, which
of them has priority over the others. An alternative approach
would involve segmentation determined by intrinsic, self-
organizing properties of the system. Characteristically in
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such an approach, the optimal segmentation will be the one
which is maximally stable (Kanizsa & Luccio, 1990).

Dynamic systems theory provides a framework for specify-
ing the notion of stability. Dynamic systems are charac-
terized by a vector x of state variables in a state space. The
state variables evolve in continuous or discrete time along a
trajectory through the state space, specified by equations.
For systems operating in continuous time, these are coupled
differential equations or a function F:o0x/0t= F(x, M),
where x is the vector of state variables and M is a matrix of
parameter values. For given parameter values a vector field
is defined, which specifies the evolution of the system from
each point in state space.

In a discrete-time dynamic system, the differential equations
are replaced by equations of the form x,,, = F(x,, M).
What the vector field is for a continous-time dynamic system,
is the return map for a discrete-time system. The return map
describes for all points in state space and for a given set of
parameter values the evolution of the system from the current
state to the next. All the systems described in the present
article are discrete-time systems. For this reason we will
abbreviate for simplicity and call the units of x at time 7: x,,
X3, X, and use x!" for x; ,, ;. We shall write x for x, and
x® for x, , . Similarly for the other time-dependent variables
used in this article, we shall write s for s, and s* for s, ,
and d for d, and d* for d, , ,.

The stability of a discrete-time dynamic system can be
characterized in terms of the properties of the return map. In
some conditions, the system behavior will converge to a
limit set. A limit set is a collection of one or more system
states which have zero divergence in the map. Stable limit
sets, or attractors, ave those limit sets for which all nearby
states converge. Dynamic systems theory distinguishes static
or point attractors, periodic, quasiperiodic, and strange
attractors. The open set of states that converge to an attrac-
tor is called the basin of attraction. Instable limit sets, 1.€.,
those for which all nearby states diverge, are called repellors.
For some limit sets (for instance, a saddle point) convergence
on one subspace of the model goes together with divergence
on another. These limit sets are of particular interest for the
subtle interplay between stability and instability observed in
chaotic behavior.
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The concern with stability has led to extensive use of
attractor dynamics (Amit, 1989) for the purpose of con-
structing models of perceptual systems (e.g., Grossberg &
Mingolla, 1985). Exclusive concern with stability, however,
may lead to a distorted view on perception. The inability
to disengage attention from a stably established pattern,
reflects a pathology of perception. It is likely from experience
that our perception is governed by a dynamics which
destabilizes perceptual patterns, which are becoming estab-
lished. Even for a simple line drawing, for instance, prolonged
viewing will lead to the predominant interpretation giving
way to alternative ones, and this sometimes leads to the
discovery of new and unanticipated forms (Martindale,
1995). For these reasons, besides stability, also flexibility
must be a required of perceptual models.

A related phenomenon is consisting in the switchings that
are observed between alternative interpretations of ambigu-
ous figures like the Necker cube, the Schroder stairs, and
certain regularly aligned dot patterns. These functional
aspects once more illustrate the importance of instability in
the human perceptual system (Attneave, 1971). These obser-
vations suggest that perceptual systems have an internal
homeostasis, which embodies a subtle interplay between
those forces which approach and those which diverge from
stably established perceptual patterns (cf. Skarda & Freeman,
1987). Ambiguous figures therefore provide an important
tool for the study of human perceptual organization.

Whereas most models of perception have restricted them-
selves to settling on stable organizations (as in classical
connectionism, for instance, Hinton, 1981), others have
attempted to capture the interplay between perceptual
stability and instability. Most of these approaches are based
on the observation that switches between alternative organi-
zations occur without conscious control. The neurally based
satiation hypothesis originally proposed by Kohler (1940)
is still today the most widely accepted explanation for
perceptual ambiguity. Satiation can be conceived of as a
process of gradual self-inhibition of a perceptual pattern. In
this approach, negative feedback from its own state of
activation causes the pattern to lose its attractiveness,
ultimately leading to a transition to an alternative pattern.

The assumption of satiation is insufficient to explain the
timing of the switching behavior. On the basis of neural
satiation alone, perceptual states would alternate in regular
cycles (Kawamoto & Anderson, 1985). Yet, the reversal
times observed in experiments show considerable dispersion
(De Marco, Penengo, Trabucco, et al., 1977). To accomodate
for this phenomenon, fluctuations have been imposed on
the rate of satiation (Ditzinger & Haken, 1990a, 1990b).
Fluctuations imply that satiation is a noisy process, but not
that the destabilization is caused by the noise.

The assumption of an internal noise source has gained
wide acceptance in the study of perceptual processes due
to signal detection theory (Green & Swets, 1966). In this
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approach, the noise distribution is considered a stable
property of the system. Noise in this view is caused by
stochastic processes in the sensory channels which impose
a random distribution onto a pure signal. Noise, in other
words, attenuates the signal. The conceptual distinction
between pure signal and stochastic noise of attenuating the
signal is useful for applying information theory (Shannon &
Weaver, 1949), but it has no basis in the physics of the
signal, nor in experience. The commitment to the informa-
tion processing approach, implied in using this distinction,
in our view involves unnecessary restrictions on the use of
dynamic systems theory for modelling perception.

In principle, noise could have a more productive role. To
begin with, noise itself can be made responsible for escaping
from a perceptual state. Noise can induce divergence from a
stationary state, or from the trajectory that leads to an
attractor. When noise is applied in this manner, it still is
extrinsic to the system’s attractor topology and has no other
function than to attenuate information. This principle is
familiar from the Boltzmann machine, in which it is used for
avoiding that the system ends up in a spurious attractor,
for instance a local minimum. The principle of using noise
for escape has been used to model switching behavior
(Hock, Kelso, & Schoner, 1993; Taylor & Aldridge, 1974).

According to these models, noise distribution is not a
fixed channel property. The signal to noiseratio is manipulated
in order to model a certain behavior. Control manipulations
are necessary, because signal and noise still play opposite
roles. The dynamics of the signal creates order and noise
destroys it. Hence increasing the signal-to-noise ratio auto-
matically implies less flexibility and vice versa; stability and
flexibility are opposites. For instance, raising the level of
noise in a Boltzmann machine architecture will facilitate
escape when the system is caught in the basin of an attractor,
but at the same time it involves a degeneration of the entire
attractor landscape.

In these models, stability or instability is caused by the
direct intervention of an external, strategic control process.
A control schedule is needed to manage the proportion of
signal and noise, for optimizing the behavior of the system
in order to obtain stable and instable modes, whenever they
are required. This solution violates both experiential and
experimental constraints. In phenomenal experience, the
switches occur spontaneously. In experiments, it has been
shown that strategic control can influence switching behavior
only in a nonspecific manner. It is possible to induce bias, in
such a manner that one interpretation occurs more frequently
than another, but the instruction to hold one interpretation
cannot prevent the perceiver from switching to the other
(Peterson & Hochberg, 1983).

Such facts are hard to accommodate for models which
require direct control, as is ultimately the consequence
of using the pure signal/stochastic noise distinction. Since
these approaches are forced to make unrealistic assumptions
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with respect to strategic control, it may be considered use-
ful to explore alternatives. In the recent history of psycho-
physics, such alternatives have not often been considered,
because prevalence was given to linear models. In linear
models, stochastic assumptions are the only way to generate
unpredictability. Alternative approaches to psychophysics
have been proposed, however. These have advocated the use
of nonlinear models and have proposed to ban stochastic
noise from the psychological model to the outside world
(Gregson, 1988), or even to abandon it completely (Gilden,
Schmuckler, & Clayton, 1993). Alternatively with nonlinear
models, deterministic chaos inside the system could be
considered as a noise source (Gu, Tung, Yuan, Feng, &
Narducci, 1984; Hogg & Huberman, 1984; Kaneko, 1983,
1984, 1989, 1990; Schult, Creamer, Henyey & Wright, 1987,
Tsuda, 1992, 1993; Waller & Kapral, 1984; Yamada &
Fujisaka, 1983).

The present article will present a model of perceptual
destabilization and switching, based entirely on the notion
of deterministic chaos. By proposing a chaos-based model,
we wish to challenge the status of the conceptual distinction
between pure signal and channel noise. An experience-based
approach of perceptual organization which choses to remain
agnostic with respect to information processing (as was
proposed in van Leeuwen, 1989; in press; van Leeuwen &
Bakker, 1995) might be served by not relying on this distinc-
tion. Chaos can be used as a noise source in patterns of
activity, without having to treat their internal representa-
tions as information in the stochastic sense of the word.

The important advantage of chaos as a noise source will
be, that extensive control schedules are no longer needed
to acquire flexibility in a dynamic system. In traditional
models, as a result of giving opposite functions to signal and
noise, external control operations will always be needed
for flexibility and so these models fall short of realizing
the potentials of self-organization. In chaos-driven models,
stability and flexibility are two sides of the same coin. Stable
and unstable states can be found, arbitrarily close in the
control space of the system, with the result that the problem
of extrinsic noise management could be minimized. Chaotic
dynamics therefore introduce a new perspective on noise,
which may facilitate the effort to model the interplay of
stability and instability of perception.

The heart of this new perspective is a property of non-
linear dynamics which Kelso ( 1995) brought to bear on the
issue of perceptual switching between alternative interpreta-
tions. This property is called intermittency. Intermittency is
an unstable state of activation. However, a model in the
intermittent state will show apparently stable behavior for a
certain time interval. In Kelso’s (1995, p. 99) words: “In the
intermittent regime, there is attractiveness, but, strictly
spoken, no attractors.” The attractiveness results in meta-
stable states. A system in the intermittent regime appears to
be caught in one of these states, but will always manage
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to free itself after a certain period. Kelso (1995) used inter-
mittency to model the time course of switching behavior for
ambiguous visual patterns. The model has two alternative
meta-stable states, corresponding to alternative experiences.
The system will get caught in one of these states, frees itself
only to get caught in the other one. In this manner, the
system continues to swing back and forth between alter-
native perceptual states.

In Kelso’s (1995) approach, the dynamics of the percep-
tual system is described at the macroscopic level. The
model has only a few degrees of freedom and a perceptual
experience is represented by the value of a single variable.
This level of description is insufficient, however, if we
require a model to explain how a perceptual state could give
rise to the experience of a complex, segmented pattern. For
doing this, a microscopic level of description will be needed.
A microscopic model may be less parsimonous for a
particular case study and should therefore have significance
for a wider range of phenomena. The proposed model
should be able to produce switching behavior for ambiguous
patterns as well as stable segmentation for a number of
perceptually nonambiguous patterns.

The microscopic approach may follow Kelso (1995) in
using intermittency to account for the switching behavior.
Intermittency at macroscopic level can be obtained as the
result of self-organization in distributed activity patterns.
These patterns are to be understood as sensory activity.
Noise in these patterns will have both a constructive and
destructive role with respect to the emerging order. The
noisy processes which help create the pattern will revolt
against it, once it becomes established. The present article
will investigate whether the stable and near-stable behaviors
of simple systems can emerge in the complex system, by
using both analytic techniques and numerical simulations.
The simulations will provide a first approximation to a
variety of segmentation behaviors of perceptual systems.
Perceptually ambiguous and nonambiguous patterns are
presented to the model. It will show stable behavior in the
presence of nonambiguous patterns and intermittency in the
presence of ambiguous ones.

The numerical simulations are intended as an approach
to model brain functioning. Segmentation processes are
assumed to take place in the primary visual cortex and
beyond; they will operate as self-organization within a
topographical image of the visual field (Hoffman, 1989).
For simplicity, in the present research the visual cortex is
modelled as a locally connected neural network in which
there is a topographical mapping of the visual image. The
problem of how to maintain coherence in such a distributed
representation has become known as the binding problem.
Given that the presently proposed model is such a distributed
representation system, the self-organizing capacities of the
system must solve the binding problem. Von der Malsburg
and Schneider (1986) suggested that the synchronization of
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neuron firing solves the binding problem. Such a solution
also is adopted in the presently proposed model.

Evidence for synchronization of oscillatory activity in
the visual cortex has been reported from animal studies.
Initiated by Freeman’s research (1975) on stimulus-induced
oscillations in the olfactory bulb, studies in cat visual cortex
by Eckhorn, Reitboeck, Arndt, and Dicke (1990), Engel,
Konig, Gray, and Singer (1990), Gray, Engel, Konig, and
Singer (1990) and Gray and Singer (1989) showed that
neurons exhibit synchronous oscillations over relatively
large areas and even between cortical areas. These neurons
are topographically related to the retina. The frequency and
amplitude characteristics of these synchronous oscillations
in the visual cortex depend on feature attributes such as
orientation, velocity, length, and coherence. For example,
neurons with separate receptive fields oscillate in synchrony
in response to two moving bars only if these bars have the
same orientation. These results are in accordance with the
suggestion that binding in the visual field is achieved by
synchronization of oscillatory activity patterns.

Typically, models of synchronizing oscillatory activity use
phase locking of periodic signals as a principle to acquire
synchrony (Eckhorn et al, 1990; Grossberg & Somers,
1991; Sompolinsky & Golomb, 1991; Sompolinsky, Golomb,
& Kleinfeld, 1990; Sporns, Gally, Reeke, & Edelman, 1989;
Sporns, Tononi, & Edelman, 1991). Brain signals, however,
do not show pure, harmonic oscillations. Rather, the activity
is distributed across broad bands of the power spectrum and
this could be interpreted as the effect of a high-dimensional
chaotic system. Plausibility with respect to the spatio-
temporal characteristics of neural activation patterns could
therefore be claimed for a high-dimensional chaos-based
model. In our view, oscillation is an intrinsic property of
individual neurons, but regular, periodic oscillation is not.
Regular 40-70 Hz oscillations may emerge as a combined
effect of irregular ones as a result of feedback.
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In sum, synchronization of oscillatory activity could be a
collective variable in a model that shows stable and instable
behavior, depending on whether the perceptual pattern is
unambiguous or ambiguous. In the latter case, there will be
intermittency, as in Kelso (1995). But other than in Kelso’s
work, it will be shown how these patterns of behavior could
occur as the result of a self-organization in microscopic
patterns of chaotic activity. The result will be a model which
organizes perceptual patterns in a manner that is consistent
with experience and is more realistic as a model of brain
function than traditional stationary-attractor models or even
the more recent oscillatory models which rely on stable
phase coupling.

The introduction of the model requires two parts. In the
first part, the stability characteristics of the model will be
discussed. For the first part we rely strongly on the seminal
work of Kaneko (1989, 1990). In the second part of the
description, we will introduce adaptive coupling and oscilla-
tion functions which are applied to simulate perceptual
segmentation behavior in nonambiguous and ambiguous
conditions.

A first test of the model requires it to yield synchronized
activity in accordance with principles of Gestalt organiza-
tion, such as proximity and good continuation. In Fig. 1a,
the pattern of dots is usually seen as two intersecting,
continuing lines, to which a law of good continuation
applies. In order to separate these two lines, at least one
extra dimension is needed in the map. The dimension of
orientation of the receptive fields in the model will serve for
this purpose. Figure 1b will then be a testcase for this
architecture since the circle is perceived as a continuing
whole across different orientations and not as separate
collections of oriented lines.

A model that can reach a stable segmentation for these
perceptually unambiguous patterns, will show intermittent
behavior in cases of ambiguous stimulation. In Fig. 2a, the

FIG. 1.
The circle in (b) has good continuation as a whole.

Perceptual grouping by good continuation. The cross in (a) will be segmented as two intersecting lines on the principle of good continuation.
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FIG. 2. According to proximity, the array of dark squares in (a) will be grouped vertically and the ones in (c) horizontally. The ones in (b) will be

ambiguous with respect to either grouping.

small rectangles are perceptually grouped along the vertical
direction; in Fig. 2¢ along the horizontal direction, accord-
ing to the law of proximity. Figure 2b is an ambiguous
figure. It has multiple interpretations such as a horizontal,
vertical, or diagonal groupings of the rectangles (Attneave,
1971) and one interpretation can rapidly switch to another.
When these alternative percepts are possible, the system will
switch between them on the basis of intermittency.

STABILITY AND INTERMITTENCY IN
COUPLED LOGISTIC MAPS

The combination of divergence on some dimension of
system behavior and convergence on another is a necessary
condition of chaos in continuous systems. In combination

with this requirement, some form of periodic behavior is
needed which folds the divergent system back to the neigh-
bourhood of the saddle point. Divergence, convergence, and
folding behavior must be realized in different subspaces of
the system, which implies that for continuous systems, chaos
requires at least three dimensions in an Euclidean space.
This is not the case for discrete-time systems. A discrete-time
system can be obtained from a continuous-time system, for
instance by taking a Poincaré section (Norton, 1995), yield-
ing the return map of a discrete system. Such a procedure
involves a reduction of dimensions, so the resulting discrete-
time system may show chaotic behavior on a single dimension,
which exhibits divergence, convergence, and folding.

The logistic map g (Eq. (1) with0<x<land 0< 4 <4)
is an example of a discrete-time dynamic system meeting

T
4
>

Xt

FIG. 3. Progression to a point attractor represented graphically by means of a return map.
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this requirement. The logistic map is chosen for our model
as a representative family of homeomorphic nonlinear maps
(Feigenbaum, 1979). All these maps show a familiar pattern
of stability behavior called the period-doubling route to chaos.
The system has stationary, periodic, and chaotic attractors,
depending on one control parameter (A4). Because this
behavior is generic, the choice of this particular map within
the family is not essential. By using the logistic map, we are,
therefore, not implying commitment to the view that neuron
firing is the result of a population dynamics, although the
present approach does not exclude this either:

xD = g(x)=Ax(1 —x). (1)

If A <1 then Ax(1 — x) < x and the system will approach
zero; if A>1 and 4 <3, g will progress to a constant size
depending only on 4 for all initial conditions x, (except for
xo=0 or x,=1). This is shown in the return map of g,
where x'" of g with 4 =2.9 is plotted as a function of x
(Fig. 3). The 45° axis is a useful graphic tool. The cross
section with g yields the static point of g, where x'" = x.
Iteration of g can be visualized as going from x vertically to
the parabola, then horizontally to the 45° axis and from
there vertically to the point of interception with the para-
bola. Repeatedly doing so brings the new values successively
closer to the point of interception with the parabola. The
static point is therefore an attractor.

A higher value of 4 will increase the slope of the parabola
in Fig. 3. As a result, at 4 =3, the static point is no longer
an attractor. Whereas the static point looses its stability,
two stable points are found in the second-order return map
of g, which plots g(g(x)) as a function of x. This plot yields
a two-peaked, fourth-order polynomial, crossing the 45°
axis in three points. Two of the static points of g(g(x)) are
stable and accordingly, g(x) will now approach a stable
state in which it oscillates with period 2 between these
points. This change in the stability of g(x) as a function of
A is called a period-doubling bifurcation. It can be observed
in the well-known bifurcation diagram of g(x) (Fig. 4). Still
higher values of 4 will result in further period-doubling
bifurcations, until chaos arises.

The Lyapunov exponent, /. of the logistic map is given in
Eq. (2). A positive Lyapunov indicates divergence of two
signals that start out with infinitesimally small differences.
A positive Lyapunov exponent is therefore a necessary condi-
tion to call the behavior of a system chaotic. The Lyapunov
exponent is a measure for the stability of the attractor:

1k .
ho=lim Y In|AQx" 1))

k— o

(2)

i=1,

In the lower half of Fig. 4, the Lyapunov exponent is
plotted against the parameter 4. According to this criterion,
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for values of 4 higher than 3.7, the logistic map yields
chaotic activity most of the time, except in small bands of
periodic activity. These are shown as negative peaks in the
Lyapunov function. These negative peaks are known as
Arnol’d tongues. In one of the higher Arnol’d tongues, as
can be shown in Fig. 4, a cycle of period 3 occurs appears at
A =3.8282. The period 3 could be understood from the
third-order return map of g, which plots x® = g(g(g(x)))
against x. This plot has three stable points, one of which
does not intersect but touches the 45° line.

Just below the value of 4, where the function almost
touches the 45° line, the dynamic is completely different.
The transition is called a tangent bifurcation. For values of
A just below the tangent bifurcation, intermittency occurs.
In Fig. 5, the situation is shown which occurs just before the
xV'=x axis is touched. The trajectory of the dynamic
system squeezes through a narrow tunnel between the map
and the 45° line. The closer the function is to the x'" =x
axis, the longer on average the trajectory remains in the
tunnel. To restrict the operation of our models to a range of
A-values within which intermittency could occur, in all
simulations A-values will be used between a lower bound,
A nin = 3.7 and an upper bound 4,,,, =4.

In the presently proposed model, the logistic map (Eq. (1))
is used as local activation function in a neural network of
coupled units, because it assures richer dynamics than those
of standard connectionist models. It is to be expected that a
network of coupled logistic maps will also be capable of
stably stationary or periodic activity, as well as chaotic and
intermittent behavior. A system of two coupled logistic
maps is introduced in Egs. (3)—(8). The parameter C repre-
sents coupling strength; the parameter A4, like before,
controls the slope of the function; the state variables are x
and y, the activities of the two nodes at time z. The variables
netx and nety in Egs. (3)—(6) are intermediate variables
reminiscent of connectionist models. The variables netx and
nety represent net-inputs for the two nodes. Equations (7)
and (8) provide alternative coordinates for describing the
behavior of the system. Description along the difference (d)
and sum (s) coordinate is helpful for characterizing the
behavior of the system. For instance, since chaotic activa-
tion functions have no stable phase spectrum, synchrony is
described in terms of the difference d being reduced to zero.
In that case the system will evolve according to the logistic
map in the s coordinate:

netx=Cy+(1—-C) x (3)
nety=Cx+(1—-C) y (4)
x = A netx(1 — netx) (5)
Yy = A nety(1 — nety) (6)
d=x—y (7)
s=12(x+ y). (8)
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A

FIG. 4. Bifurcation diagram of the logistic equation (a). Limit values of x are plotted on against the 4 parameter in the 2.6-4 range. Period-doubling
leads to chaos. 4., and A4,,, denote the lower and upper bounds of 4 parameter values used in numerical simulations. In (b), the Lyapunov exponent
is shown for the 4-values ranging from 2.6 to 4.
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A\

FIG. 5.

Weights were chosen to be symmetric. This is not an
essential feature of the model. However, asymmetric weights
can be another source of chaotic oscillation than the one
presently under study (Hopfield, 1982). The investigation
was therefore restricted to symmetrical weights.

Whereas models to be used in the simulations of per-
ceptual segmentation will be of larger size, the model of
Eqgs. (3)—(8) consists of only two nodes. A two-node model
is the highest level of abstraction for which stable and
unstable couplings can be studied. The time characteristics
of perceptual stability and state oscillations can already be
found in this 2-node deterministic model. If only the timing
of the behavior is considered relevant, as in Kelso (1995),
this simple version of the model could be considered sufficient.
The two-node version is therefore introduced before
proceeding to arbitrary-sized coupled nets which are used
for simulating perceptual segmentation.

The subsequently proposed segmentation model will
operate according to adaptive binding of local input fields.
In order to use coupled maps of the type described in Egs.
(3)—(8) in a perceptual segmentation model, two requirements

X

Intermittency. See text for explanation.

have to be fulfilled: a mechanism for input and one for
adaptative coupling between units have to be defined. The
coupled logistic maps will provide a convenient way to
meet these two requirements. As will be discussed in later
sections, the value of control parameter of local oscillation
A will come to depend on the local input field. Local input
will reduce the rate of chaotic divergence in the model, with
the result that the local field is more likely to couple its
activity with each neighbour. Hence the function of input is
to induce coupling behavior, rather than the propagation of
an isolated signal, or feature.

In order to have the system selectively respond to the
occurrence of such local coupling tendencies, coupling
strength is made adaptive to the coherence in the signal.
To fulfil this function, the value of connectivity local
parameters C will be used as adaptive weights. The require-
ments for adaptive binding being fulfilled, the model will be
applied to the elementary problems of perceptual segmenta-
tion and perceptual switching.

Several studies provide the essential mathematical back-
ground for our present adaptive coupling study. The dynamics
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of the system as described in Egs. (3)—(8) is closely related
to coupled maps studies found in the literature (Gu et al.,
1984; Hogg & Huberman, 1984; Kaneko, 1983, 1984; Schult
et al., 1987; Waller & Kapral, 1984; Yamada & Fujisaka,
1983). In these studies, however, the coupling term is linear.
The nonlinear coupling term chosen for the present model
has been pioneered by Kaneko (1989, 1990) who, through
numerical studies, explored the stability characteristics of
systems with a range of fixed and uniform A4 and C values
for a variety of network structures and sizes. Numerical
solutions in general were shown to be structurally stable. In
the following sections, analytic and numerical methods are
presented for studying convergence to synchrony. Monotonic
and long-run convergence are distinguished.

MONOTONIC CONVERGENCE

For certain critical C_;, values of C, |d| decreases at every
time step. Finding monotonic convergence is straightforward.
Inserting Eqs. (3) and (4) into (5) and (6) we get:

xXV=A[1-=CO)x+Cy][1=((1=C)x+Cy)]

YV =A[(1-C) y+Cx][1—=((1-C) y+ Cx)].

)
(10)
It is helpful to express x and y in terms of difference and

sum coordinates. Subtracting Eq. (10) from (9) we get, after
some algebra:
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xV—yMW=»g(1 =2C)(x+y—1)(x—y), or

dV=A4(1-2C)2s—1)d. (11)
As x and y are bound between 0 and 1, the value of |(2s — 1)|
will always be smaller than 1. Therefore, d‘" will always be
smaller than d under the condition that |A(1 —2C)| < 1. In
other words, for 1/2(1 —1/4) < C<1/2(1+1/A4), the dif-
ference between the nodes will show a monotonic decrease
to zero. This suggests that the proportion of 4 and C could
be used to control stabilization. By choosing an appropriate
value of C, large enough to compensate for any chaos tenden-
cies induced by the value of A, stability could be attained in
the difference coordinate, even when A prescribes a chaotic
regime to x and y.

LONG-RUN CONVERGENCE

In Fig. 6, values C,,, of C that lead to convergence in
numerical simulations are plotted against 4 for different
initial conditions. The relation between C and 4 is no longer
strictly monotonic. In addition, the value for which synchro-
nicity is observed depends on initial conditions. A correla-
tion between C and A4 is still preserved. For instance for
A=31, C,;,=0.15, for A=4, C_; =0.25. Similar results
were reported by Kaneko (1989, 1990).

Values of A4 and C for which long-run convergence can be
obtained are ones for which the coupled state is an attractor.
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FIG. 6. Plot of C;, (value of C required for synchronization) versus 4 for random initial conditions in numerical simulations.
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FIG. 7. The effect of the coupling parameter on the synchrony of two nodes when 4 = 4,;,. The upper graph shows the measure for synchrony diff,
the lower one activity x, both versus coupling strength C. For values of C above the critical value C_, there is perfect synchrony indicated by diff =0
and chaotic activity in x. Below C.;, periodic and quasiperiodic behavior, and crises can be observed in diff as well as in x.

This implies that if behavior is restricted to the d coordinate,
d=0 must be a fixed point. We observe from Eq. (11) that
the difference d after two time steps is as in Eq. (12a) and in
general for k time steps as in Eq. (12b).

d® = A(1-2C)(2s" —1)d™"
= A1 -2C)* (25— 1)(2sV — 1) d,

k—1
d® = A1 =2C)F T] (25" —1)d.

i=0

(12a)

(12b)

From Egs. (12a) and (12b) it is obvious that if d takes on
the value zero, d© will be zero for any value of k. So d=0
is a fixed point of the system along the d coordinate. The
stability of the system for d =0 (whether or not d=0 is an
attractor of the system) also depends on the values assumed
by the s coordinate. By combining Egs. (9) and (10) we get
Eq. (13) for s.

In order to calculate the stability of the d, s-system at
d=0, the Jacobian J of the system has to be determined. The
Jacobian is defined as the matrix of derivatives in Eq. (14a),

where dp/dg denotes the partial derivative of p with respect
to ¢. The Jacobian for the d, s-system is given in Eq. (14b).
To find out whether d =0 is an attractor, the eigenvalues of
the Jacobian have to be calculated. The eigenvalues repre-
sent the rates of expansion or contraction along orthogonal
dimensions. Stability requires contraction, i.e., an eigenvalue
less than 1. For d =0, J becomes diagonal. The eigenvalues
then equal the multipliers of s and d, which can be obtained
directly from the diagonals. The multiplier of s is given in
Eq. (14c) and that of d in Eq. (14d):

s = A(s — s> — 1/4d*(1 — 2C)?) (13)
dsV  dsD)
ds  dd
= aa .
ds  dd
_< A(1—2s) 1/2Ad(1—2c)2> (14b)
T \24(1-2C)d  A(1—-2C)(1—2s)
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uo= lim [] [A(1—2s"D)|"%

k— oo
=1

— lim el(V/A) T In 1420 =111 _ pis

k— oo

(14c)

k

1, = lim H(l—zcy’ TT A(1—25%)
k— oo

i=t,

}1/1(

=|(1—2C)| lim el(VOZiyn 140111

k— oo

=[(1-20)]| e*. (14d)

The A, in Eq. (14c¢) is identical to the Lyapunov exponent
for the single logistic map as defined by Eq. (2). In general,
there is a simple relation between multipliers and Lyapunov
exponents: u = e*; a multiplier smaller than one corresponds
to a negative Lyapunov exponent; both divergence and
Lyapunov exponent indicate whether a fixed point is an
attractor. The value of 4, is well known. For 4 =4, 1, =1n 2,
SO iy =2.

The multiplier for d in Eq. (14d) yields convergence
for 4=4 and A,=1n2if 0.5 > C > 0.25. This accords to our
numerical simulations. Note that stable synchronization
is possible, despite the fact that the behavior in the s coor-
dinate can be stationary, periodic, or chaotic, depending
on u,.

Figures 7 and 9 show two x and d activity graphs; the
corresponding Lyapunov exponents are given in Figs. 8
and 10. These Lyapunov exponents were calculated by a
procedure adapted from Hogg and Huberman (1984). This
procedure is an alternative to the one described above. The
Lyapunov exponent, 4, , with initial conditions x and y is
obtained numerically according to Eq. (15),

Ay y=lim {In(|D®(x, y)[)/k},

k— o

(15)
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where |[D®(x, y)| is the norm of the derivative matrix
D™ (x, y) which can be iteratively calculated by

D®(x, y)=D(x* =P, p=V)...D(x", yV) D(x, y) (16)

and the derivative matrix of the system described by
Egs. (3)-(8) is

D, yy [ ACT=26C= 204 200)
T A= C—2xC 4 2yC? = 2x + 4xC — 2xC?)
A(1 —C—2xC+2xC?* -2y +4yC—2yC?)]
AC(1 —2yC—2x+2xC) |~

(17)

This procedure can easily be generalized to N-sized net-
works. The norm of an N x N matrix D is defined as |D| =
maxg,, {|Dv|/|v|}, where vector v ranges over all nonzero
N-vectors.

Figures 7 and 9 compare the effect of increasing the coupling
strength C on synchrony for two different values of 4. With
increasing C, both the chaotic behavior of x and d is reduced
to quasiperiodicity. The quasiperiodicity is indicated in
Figs. 8 and 10 by the Lyapunov exponents taking zero values.
For some initial conditions, these phenomena arise for lower
values of C than for others. Quasiperiodicity is not the rule
before transition to stability; the behavior before transition
can also take the form of (inversed) period doubling bifur-
cations or crises. At a critical value C,,;, of C a sudden trans-
ition to synchrony occurs.

When synchronized, the individual nodes resume chaotic
behavior as can be observed from the x activity graphs and
their Lyapunov exponents; when x and y are synchronized,
these are positive and both signals x and y are chaotic.

fr -

0.3

C

FIG. 8. The Lyapunov exponent versus C for the 4 = 4,;,. For all C-values greater than C_;, the exponent is positive, indicating chaotic activity.
There are windows of stability for values below C,,;,, which may form obstacles to further synchronization when C is adaptively increased.
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C

FIG. 9. The effect of the coupling strength on the synchrony of two nodes when 4 = 4. The upper graph shows synchrony measure diff, the lower
activity x, both versus coupling strength C. Full synchronization is reached for a higher value of C.

08 1

04+

0.3

C

FIG. 10. The Lyapunov exponent vs C for 4 =A4,,,,. For all C-values greater than C;, the exponent is positive, indicating chaotic activity. The
window of stability for values below C;, are more pronounced than in Fig. 8. Adaptive coupling will be less efficient.
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N-SIZED FULLY CONNECTED NETWORK

The results on stability in the difference coordinates from
the previous section can be generalized to a fully connected
network of n nodes. If uniform weights are imposed on the
network, like before, the critical value C,, for which full
coherence of the network is reached can be calculated from
the Jacobian of the system. In analogy to the system of
Eqgs. (3)—(8) we consider the system of Egs. (18)—(19):

x\V = Anet,(1 —net,) (18)
C n
net;=(1-C)x;+—— ) x;. (19)
N— AP

Note that for larger systems the connections between the
nodes become weaker. This is necessary to keep the values
of the x; between 0 and 1. Sum and difference coordinates
are defined in analogy to Egs. (7) and (8)ass=1/n > x,and
d;=x;—x,;,, for i <n, respectively. In terms of these coor-
dinates it can be shown that the Jacobian matrix becomes
diagonal when all differences are zero. The Jacobian can be
written as

J=A(1 —2s) (20)

= =

with y=1—NC/(1 — C). All difference coordinates have
eigenvalues A(1—2s)y, and s has eigenvalue A(1—2s).
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Like in the two-dimensional case, the synchronization
behavior of the system depends on the proportion of A4
and C. The completely synchronized state is an attractor if
ye* < 1. Dependent on the value of /,, the attractor can be
a fixed point, periodic or chaotic.

Kaneko (1990) explored the system using a range of
uniform values of 4 and C at or below the level of full
synchronization. Below the values of 4 and C, where full
synchronization is reached (coherent phase), the overall
organization breaks down into several clusters of synchro-
nized activation. The number of clusters depends on the
values of 4 and C, as well as on the initial values of the
nodes. Clusterings are stable under the parametrizations in
the ordered phase; yet there are also some parametrization
in which glassy, intermittent and turbulent dynamics are
encountered as shown in Fig. 11.

The glassy phase is characterized by a degenerate attrac-
tor landscape; approach of a stable clustering is frustrated.
An intermittent phase is situated between the ordered and
the turbulent phase. In this phase, different-sized clusters
appear which, however, break down after some interval. In
both glassy and intermittent phase, small cluster, or many
cluster, solutions are possible, depending on initial conditions.

Also in the ordered phase, the number of clusters in the
stable solutions depends on initial values. There is, however,
a predominance of few-cluster solutions in case the 4 and C
parameters are chosen near the coherent phase. Near the
turbulent phase, many-cluster solutions tend to be more
frequent. Yet, few-cluster solutions keep appearing, too.

Kaneko (1990) further observed a correlation between
the regularity of the activity within the clusters and two

2
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FIG. 11. Exploration of the system dynamics for a fully coupled net (adapted from Kaneko, 1990).
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factors, viz. the equality of cluster size and the number of
clusters. Regarding the first factor, equality or inequality of
cluster size, assume that, for a given combination of C and 4,
the attractor is a two-cluster solution. With equally sized
clusters, two-cluster solutions have a 2-period (or are quasi-
periodic in the 2-band). The two clusters oscillate out of
phase with each other; the oscillations are symmetrical. If
the clusters are unequal in size symmetry is lost. With still
larger cluster size inequality, periods double, and with still
larger cluster size differences, chaotic activity within the
clusters is obtained (quasiperiodic solutions change into
chaos directly).

There is only limited tolerance for inequality of cluster size.
If the size inequality reaches a critical value, no more stable
2-cluster solutions are possible. The critical value depends
on the C and A4 parameters. The same behavior as with two
clusters (stronger suppression of chaos with equal flusters
and limited tolerance of cluster size inequality are also
obtained with more than two clusters). Altogether, chaos is
more effectively suppressed if clusters are large and of equal
size.

Controlling the system by adjusting the proportion of C
and A4, shows a general effect beyond the situation where full
synchronization is reached. Increases in C relative to 4 will
lead to fewer clusters, which are more uniform in size, and
increased stability. This shows that increasing C in propor-
tion to A can be used to make the system approach a more
global state of organization (few large clusters) and reduc-
ing C relative to 4 will produce more local solutions (many
small clusters). Thus, nonspecific control on the type of
organization (local or global) is possible. This type of
control is in accordance experimental observations on
strategic control on switching behavior by Peterson and
Hochberg (1983), with the theory of attentional processes
operating on perceptually segmented regions (van Oeffelen
& Vos, 1982) and with the theory of perceptual organization
that was proposed by the first author of this article.

When the attractor of the system consists of more than
two clusters, there will be larger periods, even if the size of
the clusters is (approximately) equal. In general, chaos is
less effectively suppressed if the number of clusters is larger;
periods are longer and chaos more rapidly emerges. In other
words, global organization is more stable, as is in general
the case in perceptual organization.

Other aspects of Kaneko’s simulations are at least
suggestive of psychological applications in the domain of
perception. With the 3-cluster attractors, for instance, the
system consists of two super-clusters which oscillate out of
phase with each other, just as in the 2-cluster case. One of
these superclusters is split into two clusters, which oscillate
in-phase in the period 2 band, but out of phase in the
period-4 band. This illustrates that different clusters of
synchronized activity form super-clusters of macroscopi-
cally synchronized activity. Kaneko (1990) provides a
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detailed exposition of these phenomena. Four-cluster and
many-cluster attractors are composed in a similarly hierarchi-
cal way. This leads to a hierarchical composition of the
activity patterns; with many clusters a recursive tree structure
of higher order superclusters can be found. Thus, the system
is capable of expressing hierarchical patterns. This feature of
the network is convenient for representations of (perceptual)
part-whole hierarchies. The higher order superclusters
could be said to be implicit representations of a whole
structure.

The considerations about hierarchical composition,
combined with those about cluster size as local or global
representation, suggest that local solutions (small clusters
representing parts of a structure) already contain an implicit
representation about the whole. This is why a model using
the present one could be said to reach a global structure
through self-organization. Synchronization begins from local
components; as soon as the local representation is reached,
the global one is already implicit. Allowing further synchro-
nization through increases in C or reduction of 4 values will
allow the global representation to become explicit. Thus,
the global representation is obtained from the local one in
this model through a process of self-organization, or
hologenesis (van Leecuwen, in press; van Leeuwen & Bakker,
1995).

LOCAL CONNECTIVITY MODEL

Kaneko (1990) compared the results of numerical simula-
tion for fully connected networks, summarized in Fig. 11, to
those of locally connected ones and concluded these to be
similar. As before, in the upper-left quadrant of Fig. 11 (low
A in combination with high C), coherent states are observed;
these are the states where the system tends to synchronize in
one single cluster for almost all initial conditions. Ordered
states, in which the field develops into clusters of synchro-
nized activity, are possible. Again, chaotic activity is more
effectively inhibited with equal-sized and larger clusters.
Intermittent and glassy phases also occur in the locally
connected,networks.

Kaneko’s (1989, 1990) exploration of the rich dynamics
of coupled oscillators suggests the possible utility of various
possible system states for modelling perceptual segmenta-
tion. In particular, the ordered and intermittent states could
be used to model stable and ambiguous perceptual segmen-
tations, respectively. In addition, the model meets general
theoretical requirements, such as the possibility of nonspecific,
strategic control on the growth of synchronized states (van
Leeuwen, in press; van Leeuwen & Bakker, 1995). The
combination of practical and theoretic utility constitutes
sufficient motivation for exploring the potentials of a
coupled net of logistic maps as a model of perceptual segmen-
tation. As mentioned, such an application requires an adaptive
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algorithm for the coupling parameter C and an input
mechanism for the parameter A.

ADAPTIVE COUPLING USING THE C PARAMETER

In the presently proposed model, the uniform fixed
coupling parameter is replaced by a set of locally adaptive
couplings. In order to do so, Eq. (18) like before specifies x;
as a function of its net input. Equation (19) is replaced
by (19') and Egs. (21)—(23) are added to the system. As a
result, the coupling becomes adaptive to local synchronies
in the network. Through adaptation of the ¢ values, a trans-
ient synchrony can lead to a stable and lasting one. Two
uncoupled chaotic signals are bound to have strong fluc-
tuating differences between them. For some successive time
steps, there can be overlap in the activation pattern of the
two nodes. resulting in a decreasing difference measure. Then,
the weight increases and the coupling increases by which the
nodes synchronize more fully and keep synchronized:

net;= Yy,

l—c. . o
< cl,./>x[+ CLJ xj (191)
jes \ M1 n—1

diff ") =G diff, ;+(1-G)d, | (21)
1

Wf..z:l_l+e—H1(2(diﬁ;_,-/H2>—1) (22)

Ci,j:WI} ijax' (23)

In Eq. (19'), n—1 is the connectivity of the network in the
connectivity matrix. In a fully connected network, n—1
equals the total number of nodes N —1. A function B(i)
provides the set of nodes connected to the ith node. As a
result of applying Egs. (21)—(23), the value c; ; of the
connection between the ith and the jth node becomes
dependent on d; ;, the difference in activation value x,
between the ith and the jth node at time 7. The intermediate
variable diff in Eq. (21) is a moving average or leaky
integrator of the difference measure d of the two nodes. The
parameter G controls the integration rate and has a value
between 0 and 1; a low G value results in rapid adjustments
to the momentary difference value, a high G to smooth
adjustments.

Smoothing was performed because of a particular property
of the d values. For instance, in the two-node system of
Egs. (3)—(8), d may reach a fixed point when the two nodes
are oscillating in counterphase. Such periodic activity is an
obstacle to further synchronization. Counterphase attractors,
however, have relatively small basins of attraction and so
there are, in principle, two solutions to this problem. One is
raising the level of noise in order to drive the system out of
the spurious counterphase attractor. The other is attenuation
of the spurious attractor state by smoothing. Smoothing is
chosen here, because it models one aspect of the behavior of
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larger locally coupled nets, viz. the delay with which activation
from remote nodes arrives. The importance of smoothing,
therefore, is expected to decrease for a larger network, more
strongly so, since activity from additional neighbours also
has a noise function. For locally coupled nets of realistic
sizes, smoothing could be omitted fully.

The second intermediate variable, w; ;in Eq. (22), makes
the strength of the connection between i and j a sigmoid
function between 0 and 1 of this time-integrated difference.
The sigmoid is often used without further motivation in
connectionism for purposes of producing a step function.
Here, it is of importance to notice that this function is 1—
a cumulative logistic function. This function is not to be
confused with the logistic map which is used as activation
function in the present model. By using this sigmoid function,
we could be accused of smuggling stochastic assumptions
into our model. After all, the logistic function is usually
introduced as a probability distribution. However, as we
will illustrate with our next simulation, distributions can be
obtained with a completely deterministic system, so there is
no need to suspect hidden stochastic assumptions in the
model. The H, and H, parameters control the mapping
from d to w, where H, determines the steepness of the
sigmoid and H, represents its threshold. H, has a function
similar to G and H,’s function is similar to that of C; H, and
H, could, therefore, be thought of as redundant. However,
we would like to keep the parameters H, and H,, with
which semilinear adjustments could be made for tuning
purposes, separate from those which have nonlinear influences
on system behavior.

Equation (23) scales the connection strengths c; ; to a
global parameter C,,,. In Fig. 12, a value of C,,, was
chosen for the models so that there can be stable synchrony
for A,,;, and instable and intermittency for 4,,,,. A typical
time course of diff for A = A .,;, and for 4 = A, is illustrated
in Fig. 12. This figure consists of two parts. In the upper
part, it is shown how stable synchronization is reached after
a few iterations for 4 = A4,,;,,. In the lower part of the figure,
it is shown that with 4 = 4,,,,, a meta-stable synchrony is
reached after a few iterations. After the synchrony has been
apparently stable for a certain period of time, the synchroni-
zation rapidly breaks down and the two nodes resume their
independent chaotic behavior.

We may consider the behavior of the two-node system
under 4 = A4,,,, as switching between two alternative states,
synchronized versus unsynchronized. If the model is run for
an extended period of time, it will go through a sequence of
such switches. The interval between two subsequent
switches varies considerably in duration. This variation is
shown in Fig. 13, which plots the frequency distribution of
these periods as a function of their period lengths. The
distribution shows a considerable skewness, characteristic
of those which are the outcome of a stochastic diffusion
process (gamma or ex-gaussian distributions). The present
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FIG. 12. Effect of A-value on the stability of synchrony in a two-node network with adaptive coupling strength. In (a), 4 = A,,;,; in (b), 4 = A .x-
For both (a) and (b), H, =5, H,=0.3, G=0.8, and C,,, =0.24 and both nodes are started with random initial values. Adaptive coupling yields stable
synchronization in (a) and meta-stable synchronization in (b).
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FIG. 13. Frequency distribution of interswitch periods as a function of period length. A switch was defined as the transition from synchrony to no
synchrony or vice versa in the two-node model of Fig. 12b with 4 =4. To calculate a an interswitch period, threshold values on the weight w were
assumed. Lower threshold = 0.02, upper threshold = 0.98. The length of the period is calculated as the number of time-steps, w remains above the upper
or below the lower threshold. The distribution is drawn for 2,000,000 time-steps sampled with intervals of 10 time-steps.

simulation shows that such distributions can be obtained
deterministically.

The parameter C,,,, determines whether or not the
system can reach maximal coherence for random values of
X, in a stable synchrony. If a value of C,,,, is chosen below
the one for which full synchrony is reached, a sufficient
degree of coherence between local input fields (see below)
will synchronize the system nevertheless. As a result, the
parameter C,,. can be interpreted as a bias to reach an
orderly regime, given the input structure. The comparison
between the stability synchrony reached for 4 =4, and
instability reached for 4 =4, suggests that the input
function should operate on the 4 parameter.

AN INPUT FUNCTION OPERATING
ON THE 4 PARAMETER

The next step toward application of the model consists in
the specification of its input function. Equation (18’) for x!!)
replaces Eq. (18). The only difference is that A4 is replaced
by a locally determined 4,, dependent on the input. The
present study will concentrate on values of A; which are
independent of time but could easily be extended to the
study of time-dependent input patterns A4<:

x\V'= A,net;(1 — net,). (18")

In this section, a system is described which can analyze
external input for local spatial frequency features and
organize these into a globally coherent topographical map
of a pattern. The features of the stimuli are extracted by
local oriented spatial frequency analysis using Gabor filters
(Daugman, 1985).

Gabor filters can give a complete representation of the
input-image, so they do not only have the function of
“detecting” oriented features. The filters are operating on
overlapping circular receptive fields, each having an
origin and a radius that determine the area and the range
to which the filter is effective. The receptive fields are
equally distributed over the image. The image is
expressed as in Eq. (24), which gives the pixel value at
the coordinate Xx,, y, relative to the origin of a receptive
field.

The filters are sinusoidal plane waves within two-
dimensional Gaussian envelopes. The sinusoidal plane wave
correlated with the figure is described by Eq. (25), where 2
is the spatial frequency, 0 the angle of orientation, and ¢ the
phase of the plane wave. The Gaussian is described by
Eq. (26), where ¢ is the standard deviation of the Gaussian
that determines the spatial sensitivity of the filter. The
complete two-dimensional, phase insensitive Gabor filter is
then given in Eq. (27), where |, | denotes the Euclidian
distance:
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Sx,, ) (24)
w(,0,x,,y,,¢)=sin(Q(cos(0) x,
—sin(0) y,)+¢) f(x,, y,) (25)
g(x,, y,)=exp(—(x; + y;)/(267)) (26)
hR,0)=| > (w0 x,y,0) gx, ),
(x5 ¥,)
<Y (@0, %y 120) gl )| 2T)
(x5 )

Daugman demonstrated that 2D Gabor filters have optimal
joint resolution in that they minimize the product of effec-
tive areas occupied in the 2D space and 2D frequency domains.
Reducing the standard deviation of the Gaussian, for
example, increases the resolution in the spatial domain but
decreases its spatial frequency and orientation selectivity.

The function % represents the salience of the orientation
feature for a receptive field and is normalized between the
rang 0 to 1, where 1 is the maximum value of /4 for all the
filters that are applied. With each receptive field a node i is
associated that codes for the feature. The idea is that the
salience of a feature determines the control parameter 4 of
the node i, according to Eq. (28), where 4., and 4

max min

Qm

VAN LEEUWEN, STEYVERS, AND NOOTER

determine the range of 4-values to which the filter values
are mapped. Recall that these A-values are such that the
activity in the x; coordinates would be chaotic in the
unsynchronized state:
AizAmaX_h(Qa 0)(Amax_Amin)' (28)
The more salient the input is to a given receptive field of
a node, the lower the 4 value within the range 4,,;, — 4 nax-
Reducing the local A4 parameter conditionally upon input is
in accordance with the proposed control function for this
type of model; its effect is a strengthened tendency towards
coupling. By an adequate tuning of the parameter space,
synchronization near A4,,, representing the figure, could
become stable and near 4,,,,, representing the background,
would synchronize only temporarily (if at all).

NUMERICAL SIMULATIONS

A locally coupled net was used for the simulations, allow-
ing for a three-dimensional layer-wise representation of a
two-dimensional image: the two dimensions of the image in
a single layer plus the orientation dimension across layers.
Each orientation is associated with a single layer of nodes. If,
for instance, the image is analyzed for the four orientations of
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FIG. 14. Typical connectivity pattern within and between layers for a network with four layers for four orientations. Number of nodes within a layer,
as well as the number of layers themselves, may vary across simulations. Each node is connected to four neighbours in the same layer and with two
neighbours across layers. Nodes at the extremes of each layer are connected to each other and the 0° and 135° orientations are also connected, which

implies a hypertorus connectivity structure for the model.



PERCEPTUAL GROUPING

0°, 45°, 90°, and 135°, the model has four layers. Each layer
has locally connected nodes which are topographically
related to input from the visual field. The nodes are arranged
in a grid with N, and N, number of nodes with a local con-
nectivity as depicted in Fig. 14. The extremes of the grid are
connected to each other, yielding a torus structure for each
layer. Eckhorn ez al. (1990) and Engel er al. (1990) have
found synchronization between orientation-sensitive layers in
visual cortex. The model, therefore, has local connectivity
pattern between layers, although there are fewer connections
between than within layers. Local connectivity implies that,
for instance, the 45° layer is connected to the 0° and 90° layer.
The 135° layer is also connected to the 0° layer, sons the
whole network has a hypertorus structure. As a result of
choosing this structure, boundary problems are avoided.
Numerical simulations were performed on the pattern of
two intersecting lines (Fig. 1a) and the circle (Fig. 1b). In all
simulations, the weights were initially set to zero. The
presence of a signal in the visual field results in a reduction
of the A-value of the corresponding nodes, according to
Eq. (28). For these nodes, A values were reduced to A4,,;,;
the others had 4 near 4,,,,. The simulation resulted in the
grouping of the intersecting lines as shown in Fig. 15. A con-
nection is shown when its weight w > 0.7. The connected
nodes in the 45° and 135° layers correspond to line segments
of the cross. The grouping obtained by the model is in
accordance with the principle of good continuation.
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It can be observed that the two diagonal lines are grouped
by the layers with diagonal orientation sensitivity (45° and
135°). There are no spurious groupings between the nodes
in Fig. 15. These do occur at times, but are transient. Also,
the value of w for some of the connections shown in Fig. 15
at times sinks below the criterion level. This is a transient
phenomenon as well; the connection is rapidly restored.
These fluctuations in the pattern illustrate the effect of chaos
revolting against the synchronized pattern. The effect, how-
ever, in this case is not strong enough to destroy the pattern
and so this pattern is stable.

That only neighboring layers are connected in the model
makes, so that whatever changes abruptly in the orientation
is likely to be kept separate. Bindings are possible between
structures that shift smoothly in orientation across locations
the visual field. The circle (Fig. 1b) has gradual orientation
differences and should be synchronized by the model as a
whole. The result of simulation on the circle pattern is
shown in Fig. 16. Connections are shown for w>0.7. As
before, any transient groupings are not shown. Since the
Gabor filters yield coarse coding of the input, orientation-
specific layers will respond to a range of orientations. Group-
ing is obtained for these nodes, even though for some of
them A4 > A4, as a consequence of coarse coding.

While the grouping develops with time, the pattern under-
goes several reorganizations. The synchronization develops
from local to global in time. This tendency corresponds to

SQQ 1350

FIG. 15. Grouping obtained from numerical simulation, using the cross (Fig. 1a) as input. The model represents the figure as two intersecting lines.
Both lines are desynchronized from each other. The pattern of synchrony is in accordance with the principle of good continuation.
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FIG. 16. Grouping obtained from numerical simulation, using the circle (Fig. 1b) as input. The components of the circle are synchronized as a whole.
The pattern of synchrony is in accordance with the principle of good continuation.

the principle observed in the growth of perceptually complex
structures, called hologenesis (van Leeuwen, in press).
Initially there its no grouping. In the next stage there are
transient couplings that seem to move along the trajectory
of the circle. This phenomenon illustrates that the growth of
the percept is nonmonotonic. Then suddenly these transient
couplings seem to meet, and stable coupling becomes pre-
dominant. Yet there are still gaps: transient, nonsynchronized
parts of the circle. Finally the whole circle is completed.

The nonmononicity in the circle example illustrates that,
during the self-organizing process of the pattern, perceptual
structures could appear which later disappear. This pheno-
menon is familiar from masking studies. For instance, early
during the segmentation process of two occluding squares,
a mosaic interpretation is seen (Sekuler & Palmer, 1992).
Such nonmonotonicities, which are easy to explain in terms
of the present model, are difficult to explain in terms of
other approaches, of constructivististic or dynamic breed,
to the growth of a percept in the microgenetic time frame
tapped by masking studies.

The self-organizing capacity is sufficient to synchronize
the circle as a whole. With weaker coupling strength, the
circle would have remained a collection of loose segments.
With larger values for the coupling strength, or less chaotic
divergence, as observed in Fig. 11, there would be uniform
synchronization which would have absorbed the circle into

its background. The optimal synchronization behavior is
found across a range of parameter values, without requiring
much fine tuning. With larger and more complex patterns,
it will be more difficult to tune the parameters of the system
to optimal behavior. In such situations completion of a
global structure cannot always be guaranteed, as is shown by
the variability in ordered states in Fig. 11. Such constraint
on synchronization may lead to a new explanation of spatial
attention mechanisms. In this view, restrictions in spatial
attention are needed, not in order to reduce computational
complexity, but because the resulting patterns will show a
great deal of spurious segmentations. This would imply,
among others, that the span of spatial attention and the
level of perceptual segmentation mutually determine each
other and are jointly under strategic control (Hogeboom &
van Leeuwen, 1997). This point has been argued indepen-
dently by others (van Oeffelen & Vos, 1982). The issue of
whether these strategic processes could be understood as
adaptive self-control is left to later stages of development of
the model.

Although the strategic restrictions on synchronization
imply that perceptual organization will often be piecemeal
(Peterson & Hochberg, 1983), these restrictions should not
obstruct the formation of global structure. Usually in neural
networks, such structures are the result of automatic gene-
ralization, due to the pattern recognition capacities of the
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adaptive weights. Although the weights in the present model
are adaptive, for segmentation purposes the weights adapt
at such a fast rate that they hardly have a memory function.
As a result, the nodes in the model have no inherent bias for
certain connections, e.g., for local symmetries or parallelism
of line elements. In later developments of the model, we
intend to introduce these biases as an effect of the way the
segmentation system interacts with layers of units whose
weights adapt at a much slower rate. For the present model
we have chosen a provisional solution which models selective
facilitation by means of an algorithm.

ALGoriTHM 1. (1) for all nodes i at time ¢, determine
the neighbor node k, to which i has the smallest difference
d; ; from the set of neighbouring nodes B,.

(2) label the direction of this connection between node
k and i as horizontal, vertical, or as one of the two possible
diagonal directions.

(3) for all weights of the nodes n of B,, alter the weights
w; ; by:

wii=w; ;% S+(1-=S5)

if direction m —nis the same as k — i

Js

W, i =w; ;%S

if direction m — n is not the same as k — i.

This algorithm gradually increases the weights that lie on
the axis of symmetry k —i in the neighborhood of a node
(using a moving average with parameter S) and decreases
the other, incompatible weights. The algorithm operates on
the local neighborhood of every node. Its global effect is
to cause the gradual spread of the area of nodes that are
synchronized to become biased toward axis-symmetry.

This algorithm was added to the system of Egs. (18")—
(19") and applied to the stimuli in Fig. 1. There were two
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layers, one for the 0° and one for the 90° orientation, each
with 7 x 7 of nodes. For Figs. 2a and c, the system reached
a stable synchronization in the appropriate layers after
approximately 20 iterations. The interesting case is the
ambiguous Fig. 2b. For Fig. 2b, there is switching between
the horizontal and vertical interpretation, respectively
(Fig. 17). Also diagonal interpretations occasionally occur
for brief periods. Figure 18 shows a time series for the two
major alternative groupings. The switching-time distribu-
tion is shown in Fig. 19. A criterion value for horizontal and
vertical orientation was calculated by summing for all
the horizontal connections and substracting the vertical
ones. This criterion was rescaled between 0 and 1. A lower
threshold of 0.02 and an upper threshold of 0.98 were set on
the criterion. The length of the period is calculated as the
number of time-steps, w remains above the upper or below
the lower threshold. The resulting distribution is skewed
similarly to Fig. 13, which shows a distribution of inter-
switch intervals with two coupled nodes. Such distributions
are generally thought to be based on stochastic processes in
dynamic systems. Here, as in Fig. 13, no stochastic processes
whatsoever were involved. The distributions obtained from
the model are similar to ones obtained in experimental
studies with ambiguous figures (e.g., Borsellino, Carlini,
Riani, Tuccio, De Marco, Penengo, & Trabucco, 1982).

In order to obtain Figs. 17 and 18, an external criterion
for horizontal or vertical grouping was imposed. The skew-
ness of the distribution in Fig. 19 depends on the upper and
lower bounds chosen for this criterion. In other words,
the precise fit of experimental data would depend on an
arbitrary assumptions. For this reason and because the
distribution is irregular, we have to satisfy ourselves with
qualitative similarity and no further attempt of calculating
an optimal fit to experimental data was made. That the
qualitative similarity of this distribution with experimental
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FIG. 18. Switching between vertical and horizontal grouping of the ambiguous pattern in Fig. 2b.
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FIG. 19. Frequency distribution of interswitch periods as a function of period length for the ambiguous pattern in Fig. 2b.

data was obtained with only one free parameter (C,,.),
however, is telling.

DISCUSSION AND CONCLUSION

Stable and meta-stable patterns of synchronized activa-
tion evolve from high-dimensional, chaotic noise. This
principle was used to obtain segmentation of perceptual
patterns in a lattice of locally coupled oscillators. The
segmentation shown by our model is in accordance with
Gestalt principles of proximity and good continuation. For
perceptually ambiguous patterns, the system switches back
and forth between alternative meta-stable states. The spatio-
temporal characteristics of deterministic chaos in activity
patterns could thus be brought to bear on the issue of holistic
pattern structure.

The growth of pattern structure will begin from the
sensory activity of individual receptive fields. Organization
occurs through dynamic linking of activity in local popula-
tions of neurons. The area of nodes interacting towards
segmentation has been called a linking field. According to
Eckhorn et al. (1990): “These fields were generally found to
be much broader than the receptive fields of the nodes.”
In the model, meaningful synchronization can appear over
much broader areas than the size of the receptive field or the
area of local connectivity of the node. The model introduces
a novel mechanism for modelling the way by which local
cortical interactions can induce global activity.

In traditional approaches to neural activity organization,
the formation of a meaningful global pattern from the local

dynamics requires and relies on the fine-tuning of the units
participating in the dynamics. Moreover, each individual
unit is conceived to have a precisely defined or at least
predictable dynamics. This attitude toward modelling
originates in the classical information processing paradigm.
For perception, this approach induces an impoverished
view on the growth of global structure from the local
dynamics of the system. In particular it uses a set of stable,
elementary features to build global pattern structure. By
contrast, units in the present model are no longer restricted
to the sharply defined stability constraints which classical
computation would prescribe. Our approach proceeds to a
framework which allows all units to have a rich dynamics
which is capable of producing a variety of behaviors,
including meta-stable and unstable ones. This framework is
of particular significance for the construction of perceptual
process models from a holistic point of view, since there is
no longer a restriction to fixed elementary features.

The enhanced framework allows more realistic modelling
of a range of microgenetic phenomena in perception. These
phenomena include the self-organization of components
organized into a recognizable pattern (Biederman, 1987),
the grouping phenomena observed by Sekuler and Palmer
(1992), and the time course of eye movements in the visual
processing of natural scenes (Henderson, 1992). These
phenomena have come within the scope of modelling,
because it is now possible to interpret the trajectory towards
stability as a perceptual process. Up until now, models
emphasized stability and this restricted the significance of
trajectories to their final states.
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By alleviating the restrictions on the units, the load of
explaining the growth of coherence is transferred from
control on the units to self-organization. Coherence in the
activity of a system is still obtained by modelling the evolu-
tion of coupling strengths. However, whereas in classical
models the coherence is prefigured by functional require-
ments on the input representation, in the present model the
coherence is conceived as emerging from neural dynamics.
Whereas in the classical approach the dynamics subserves
an information-processing role, often side-stepping the
actual nature of the neural system, in the present approach
the self-organization is intrinsic to the system and behaves
as if it has information processing significance.

The definition of evolution equations for coupling strength,
sufficient to handle chaotic divergence and establish stable
segmentation proved relatively simple and straightforward.
A restricted set of qualitatively different types of behaviors
was observed below the level of coupling strength where full,
stable synchronization is reached. In this range of parameter
values, spatial and temporal restrictions on synchronization
are observed which can be given a straightforward psycho-
logical interpretation. Perceptual switching behaviour was
obtained in our model for a range of coupling strength
values which confined the dynamics of network activity to
the intermittent regime.

Different regimes of coupling strength lead to differen-
ces in synchronization. Starting from chaotic, irregular
behaviour, local linking develops and interacts to form
more global structures. When coupling strength is reduced
for a given rate of chaotic divergence, linking fields are
observed to be relatively small. A range of variation in their
size is observed, to the effect that more global organization
still is possible with reduced coupling strengths. But on
average, larger synchronized are as will be less frequent with
smaller values of the coupling parameter. For perceptual
patterns, this implies that the pattern cannot be represented
as a whole and will remain a collection of separate local
components.

Nonspecific control of coupling strength, therefore, has
significance for the issue of strategic control in perception.
Strategic control on the binding between features and
regions, resulting in the processing separate or configural
properties (Pomerantz & Garner, 1973; Pomerantz &
Pristach, 1989) could now be understood from the spatio-
temporal limitations on coherence, of which the control
parameter can be adjusted functionally to the task.
Individual differences in perceptual style (holistic vs
analytic) could be based on the same control dimension.

The present approach implies a view on the relation
between controlled and automatic processes that is similar
to, but different from, that of Treisman and Gelade (1980).
In their view, automatic processing of features is essentially
local. Only functionally simple features are processed with-
out attentional effort. Attentional processes integrate these
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features into a coherent perceptual structure. In the presently
proposed approach, automatic processes can yield local
features as well as global structure. They do so within the
range of an attentional parameter which relates to the level
of functional complexity that these global structures can
maximally reach, i.e., the number of units that can become
synchronized. Strategic control, in other words, is non-
specific. This is in accordance with the view outlined from
the onset of this article that the role of strategic control from
outside of the system should be minimized.

The basic assumptions of this model with respect to the
time course of synchronization and with respect to control
may possess significance beyond the time scale of perceptual
segmentation. Perceptual comparison experiments reveal a
similar time course for classification (Goldstone & Medin,
1994) and perceptual pattern learning (van Leeuwen,
Buffart, & van der Vegt, 1988). An interesting development
could therefore be to construct a perceptual classification
system as a lattice of coupled oscillators, similar to the seg-
mentation system, except for the adaptation rate of the
weights, which is much slower for classification than for
segmentation.

In further development, two perceptual modules could be
assumed to operate in interaction: a perceptual segmenta-
tion system and a classification system. The classification
system learns from the segmentation system and the seg-
mentation system is corrected by the classification system.
A model based on these principles would develop a bias for
more stable perceptual organizations in the long run and
combine this with flexibility on the short run. The classifica-
tion system will adapt with preference to the most stable
segmentations and, hence, will emphasize regularity in the
representation. Such a potentially promising way of imple-
menting a perceptual classification system, with preferences
resulting entirely from self-organization, is the long-term
goal to which the present model is a first contribution.

REFERENCES

Amit, D. J. (1989). Modeling brain function: The world of attractor neutral
networks. Cambridge, UK: Cambridge Univ. Press.

Attneave, F. (1971). Multistability in perception. Scientific American, 225,
63-71.

Borsellino, A., Carlini, F., Riani, M., Tuccio, M. T., De Marco, A., Penengo, P.,
& Trabucco, A. (1982). Effects of visual angle on perspective reversal for
ambiguous patterns. Perception, 11, 263-273.

Daugman, J. G. (1985). Uncertainty relation for resolution in space, spatial
frequency, and orientation optimized by two-dimensional visual cortical
filters. Journal of the Optical Society of America A, 2, 1160-1169.

De Marco, A., Penengo, P., Trabucco, A., Borsellino, A., Carlini, F., Riani, M.,
& Tuccio, M. T. (1977). Stochastic models and fluctuations in reversal
time of ambiguous figures. Perception, 6, 645-656.

Ditzinger, T., & Haken, H. (1990a). Oscillations in the perception of
ambiguous patterns. Biological Cybernetics, 63, 279-287.

Ditzinger, T., & Haken, H. (1990b). The impact of fluctuations on the
recognition of ambiguous patterns. Biological Cybernetics, 63, 453-456.



PERCEPTUAL GROUPING

Eckhorn, R., Reitboeck, H. J., Arndt, M., & Dicke, P. (1990). Feature
linking via synchronization among distributed assemblies: Simulations
of results from cat visual cortex. Neural Computation, 2, 293-307.

Engel, A. K., Konig, P., Gray, C. M., & Singer, W. (1990). Stimulus-
dependent neuronal oscillations in cat visual cortex: Inter-columnar
interaction as determined by cross-correlation analysis. European
Journal of Neuroscience, 2, 588-606.

Feigenbaum, M. J. (1979). The universal metric properties of nonlinear
transformations. Journal of Statistical Physics, 22, 186-223.

Freeman, W. J. (1975). Mass action in the nervous system. New York:
Academic Press.

Freeman, W.J. (1987). Simulation of chaotic EEG patterns with a dynamic
model of the olfactory system. Biological Cybernetics, 56, 139-150.

Freeman, W. J. (1990). On the problem of anomalous dispersion in chaoto-
chaotic phase transitions of neural masses, and its significance for
perceptual information in the brain. In H. Haken & M. Stadler (Eds.),
Synergetics of Cognition, pp. 126-143. Berlin: Springer-Verlag.

Freeman, W. J. (1993). Deconstruction of neural data yields biologically
implausible periodic oscillations. Behavioral and Brain Sciences, 16,
458-459.

Gilden, D. L., Schmuckler, M. A., & Clayton, K. (1993). The perception of
natural contour. Psychological Review, 100, 460-478.

Goldstone, R. L., & Medin, D. L. (1994). Time course of comparison.
Journal of Experimental Psychology: Learning, Memory and Cognition,
20, 29-50.

Gray, C. M., & Singer, W. (1989). Stimulus specific neuronal oscillations
in orientation columns of cat visual cortex. Proceedings of the National
Academy of Sciences USA, 86, 1698—1702.

Gray, C. M., Engel, A. K., Konig, P., & Singer, W. (1990). Stimulus-dependent
neuronal oscillations in cat visual cortex: receptive field properties and
feature dependence. European Journal of Neuroscience, 2, 607-619.

Green, D. M., & Swets, J. A. (1966). Signal Detection Theory and
Psychophysics. New York: Wiley.

Gregson, R. A. M. (1988). Nonlinear psychophysical dynamics. Hillsdale,
NJ: Lawrence Erlbaum Associates.

Grossberg, S., & Mingolla, E. (1985). Neural dynamics of form perception:
Boundary completion, illusory figures and neon color spreading.
Psychological Review, 92, 173-211.

Grossberg, S., & Somers, D. (1991). Synchronized oscillations during
cooperative feature linking in a cortical model of visual perception.
Neural Networks, 4, 453-466.

Gu, Y., Tung, M., Yuan, J. M., Feng, D. H., & Narducci, L. M. (1984).
Crises and hysteresis in coupled logistic maps. Physical Review Letters,
52, 701-704.

Haken, H., & Stadler, M.
Springer-Verlag.

Henderson, J. M. (1992). Object identification in context: The visual
processing of natural scenes. Canadian Journal of Psychology, 46,
319-341.

Hinton, G. E. (1981). Shape representation in parallel systems. In Proceedings
of the Tth International Joint conference on Artificial Intelligence,
Vancouver, BC, Canada, pp. 1088-1096.

Hock, H. S., Kelso, J. A. S., & Schéner, G. (1993). Bistability and hysteresis
in the organization of apparent motion patterns. Journal of Experimen-
tal Psychology: Human Perception and Performance, 19, 63-80.

Hoffman, D. D., & Richards, W. A. (1984). Parts of recognition. Special
issue: Visual cognition. Cognition, 18, 65-96.

Hoffman, W. C. (1989). The visual cortex is a contact bundle. Applied
Mathematics and Computation, 32, 137-167.

Hogeboom, M., & van Leeuwen, C. (1997). Visual search strategy and
perceptual organization covary with individual preference and
structural complexity. Acta Psychologica, 95, 141-164.

Hogg, T., & Huberman, B. A. (1984). Generic behavior of coupled
oscillators. Physical Review A, 29, 275-281.

(1990). Synergetics of Cognition. Berlin:

343

Hopfield, J. J. (1982). Neural networks and physical systems with emergent
collective computational abilities. Proceedings of the National Academy
of Sciences, 79, 2554-2558.

Kaneko, K. (1983). Transition from torus to chaos accompanied by
frequency lockings with symmetry breaking. Progress of Theoretical
Physics, 69, 1427-1442.

Kaneko, K. (1984). Period-doubling of kink—antikink patterns, quasi-
periodicity in antiferro-like structures and spatial intermittency in
coupled logistic lattice. Progress of Theoretical Physics, 72, 480-486.

Kaneko, K. (1989). Chaotic but regular posi-nega switch among coded
attractor by cluster-size variation. Physical Review Letters, 63, 219-223.

Kaneko, K. (1990). Clustering, coding, switching, hierarchical ordering,
and control in a network of chaotic elements. Physica D, 41, 137-172.

Kanizsa, G., & Luccio, R. (1990). The phenomenology of autonomous
order formation in perception. In H. Haken & M. Stadler (Eds.),
Synergetics of Cognition, pp. 186-200. Berlin: Springer-Verlag.

Kawamoto, A. H., & Anderson, J. A. (1985). A neural network model of
multistable perception. Acta Psychologica, 59, 35-65.

Kelso, J. A. S. (1995). Dynamic Patters. The Self-Organization of Brain and
Behavior. Cambridge, MA: MIT Press.

Kohler, (1940). Dynamics in Psychology. Vital Applications of Gestalt
Psychology. New York: Liveright.

May, R. M. (1974). Biological populations with nonoverlapping genera-
tions: Stable points, stable cycles, and chaos. Science, 186, 645-647.

Martindale, C. (1995). Creativity and connectionism. In S. M. Smith,
Th. B. Ward, & R. Finke (Eds.), The Creative Cognition Approach,
pp. 249-268. Cambridge, MA: MIT Press.

Norton, A. (1995). Dynamics: An introduction. In R. F. Port & T. Van
Gelder (Eds.), Mind as Motion. Exploration in the Dynamics of
Cognition, pp. 45-68. Boston, MA: MIT Press.

Palmer, S., & Rock, 1. (1994). Rethinking perceptual organization: The
role of uniform connectedness. Psychonomic Bulletin & Review, 1, 29-55.

Pecora, L. M., & Carroll, T. L. (1990). Synchronization in chaotic systems.
Physical Review Letters, 64, 821-824.

Peterson, M. A., & Hochberg, J. (1983). Opposed-set measurement
procedure: A quantitative analysis of the role of local cues and
intention in form perception. Journal of Experimental Psychology:
Human Perception and Performance, 9, 183-193.

Pomerantz, J. R., & Garner, W. R. (1973). Stimulus configuration in
selective attention tasks. Perception & Psychophysics, 14, 565-569.

Pomerantz, J. R., & Pristach, E. A. (1989). Emergent features, attention
and perceptual glue in visual form perception. Journal of Experimental
Psychology: Human Perception and Performance, 15, 635-649.

Schult, R. L., Creamer, D. B., Henyey, F. S., & Wright, J. A., (1987).
Symmetric and non-symmetric coupled logistic maps. Physical Review A,
35, 3115-3118.

Sekuler, A. B., & Palmer, S. E. (1992). Perception of partly occluded
objects: A microgenetic analysis. Journal of Experimental Psychology:
General, 121, 95-111.

Shannon, C. E., & Weaver, W. (1949). The Mathematical Theory of
Communication. Urbana, IL: University of Illinois Press.

Skarda, C. A., & Freeman, W. J. (1987). How brains make chaos to make
sense of the world. Behavioral and Brain Sciences, 10, 161-195.

Sompolinsky, H., & Golomb, D. (1991). Cooperative dynamics in visual
processing. Physical Review A, 43, 6990-7011.

Sompolinsky, H., Golomb, D., & Kleinfeld, D. (1990). Global processing
of visual stimuli in a neural network of coupled oscillators. Proceedings
of the National Academy of Sciences USA, 87, 7200-7204.

Sprons, O., Gally, J. A., Reeke, G. N., Jr., & Edelman, G. M. (1989).
Reentrant signaling among simulated neuronal groups leads to
coherency in their oscillatory activity. Proceedings of the National
Academy of Sciences USA, 86, 7265-7269.

Sporns, O., Tononi, G., & Edelman, G. M. (1991). Modeling perceptual
grouping and figure-ground segregation by means of active reentrant



344

connections. Proceedings of the National Academy of Sciences USA, 88,
129-133.

Taylor, M. M., & Aldridge, K. D. (1974). Stochastic processes in reversing
figure perception. Perception & Psychophysics, 16, 9-217.

Tsuda, 1. (1992). Dynamic link of memory-chaotic memory map to
nonequilibrium neural networks. Neural Networks, 5, 313-326.

Tsuda, 1. (1993). Dynamic-binding theory is not plausible without chaotic
oscillation. Behavioral and Brain Sciences, 16, 475-476.

van Leeuwen, C. (1989). PDP and Gestalt, an Integration? Psychological
Research, 50, 199-201.

van Leeuwen, C. (in press). Visual perception on the edge of chaos. In
S. Jordan (Ed.), Systems Theory and Apriori aspects of Perception.
Amsterdam: Elsevier Science.

van Leeuwen, C., & Bakker, L. (1995). Stroop can occur without Garner
interference: Strategic and mandatory influences in multidimensional
stimuli. Perception & Psychophysics, 57, 379-392.

VAN LEEUWEN, STEYVERS, AND NOOTER

van Leeuwen, C., Buffart, H., & van der Vegt, J. (1988). Sequence influence
on the organization of meaningless serial stimuli: Economy after all.
Journal of Experimental Psychology: Human Perception and Performance,
14, 481-502.

van Oeffelen, M. P., & Vos, P. G. (1982). Configurational effects on the
enumeration of dots: Counting by groups. Memory & Cognition, 10,
396-404.

Von der Malsburg, C., & Schneider, W. (1986). A neural cocktail-party
processor. Biological Cybernetics, 54, 29-40.

Waller, 1., & Kapral, R. (1984). Spatial and temporal structure in systems
of coupled nonlinear oscillators. Physical Review A, 30, 2049-2055.
Yamada, T., & Fujisaka, H. (1983). Stability theory of synchronized
motion in coupled-oscillator systems. Progress of Theoretical Physics,

70, 1240-1248.

Received: January 25, 1995



