Distributions and Samples # Clicker Question The major difference between an observational study and an experiment is that - A. An experiment manipulates features of the situation - B. An experiment does not employ observation - C. An observational study records what happens - D. An observational study employs a coding system # Review - Observational research involves careful recording and analysis of what is observed - Without an attempt to manipulate what happens - In naturalistic observation the observer seeks to remain unobtrusive whereas - In participant observation the observer becomes part of the situation - · Risks that must be minimized: - Observer bias - Reactivity - Anthropomorphizing ## Review - · Recording observations - Must extract that which is to be analyzed: coding systems, etc. - · Distinguish continuous observation from - Time sampling - Event sampling - Situation sampling - Analyze observations in terms of variables—a characteristic or feature that varies and takes on different values # Clicker Question To determine how many vehicles travel a given road, a researcher installs a camera that takes a picture of traffic every 15 minutes. This researcher is using - A. Continuous observation - B. Time sampling - C. Event sampling - D. Situation sampling # Types of Variables Categorical or nominal variables: major Ordinal or rank variables: patient condition Interval variables: temperature in degrees Fahrenheit Ratio variables: age The variable MINUTES OF COMERICALS PER HOUR is - A. A categorical or nominal variable - B. An ordinal or rank variable - C. An interval variable - D. A ratio variable # Clicker Question The variable PARTY AFFILIATION (Libertarian, Green, Republican, Democrat, other) is - A. A categorical or nominal variable - B. An ordinal or rank variable - C. An interval variable - D. A ratio variable # Distributions of values Since the values of a variable vary, they will be distributed A major part of understanding a domain of objects is to describe how they are distributed on a given variable One of the best ways to present a distribution is to graph it # Nominal variables and bar graphs Example: Profile of pet ownership in San Diego County Value of graphs: provide an intuitive appreciation of the data Bar graphs and pie charts work well with nominal and ordinal variables 10 mg 75 APT 750 APT 750 APT The distribution below is | < 70 | 70-74 | 75-79 | 80-84 | 85-89 | 90-94 | 95+ | |------|-------|-------|-------|-------|-------|-----| | 21 | 12 | 9 | 23 | 21 | 8 | 13 | - A. Normal since it has one peak - Normal since scores are equally distributed around the peak - Not normal since the scores are not equally distributed around the peak - Not normal since there are not fewer scores further from the peak # Describing distributions Two principal measures: - Central tendency Two comparable distributions differing in central tendency - Variability Two distributions with same central tendency but differing in variability # Three measures of central tendency - Consider this distribution of values 2, 6, 9, 7, 9, 9, 10, 8, 6, 7 - Mean: the arithmetic average 73 / 10 = 7.3 - Median: the score of which half are higher and half are lower = 7.5 - · Mode: the most frequent score = 9 ### Which measure to use? - If the distribution is normal, all three measures of central tendency give the same result - The mean is the easiest to calculate and the most frequently reported - If there are extreme outliers in one direction, the mean may be distorted - Exam scores: 21, 72, 76, 79, 82, 84, 87, 88, 90, 91, 95 - Mean: 78.6Median: 84 - In such a case, the median gives a better picture of the central tendency of the class # Measures of variability - · How much do the scores vary? - Range: the lowest value to the highest value Variance: Σ(X-mean)² N Standard Deviation (SD): Variance - · Intuitive interpretation (with normal distributions): - One standard deviation: the part of the range in which 68% of the scores fall - Two standard deviations: the part of the range in which 95% of the scores fall - Three standard deviations: the part of the range in which 99% of the scores fall. ### Variance Consider a distribution ``` 4 5 5 6 6 6 7 7 8 Mean = 6 -2 -1 -1 0 0 0 1 1 2 X - Mean 4 1 1 0 0 0 1 1 4 (X-mean)² ∑(X-mean)² = 12 = 1.33 Variance N 9 √1.33 = 1.15 SD ``` Range of 1 SD = $6 \pm 1.15 = 4.85$ to 7.15 Range of 2 SD = $6 \pm 2.30 = 3.70$ to 8.30 # **Clicker Question** On the exam on which scores were distributed normally and the mean was 86 and the SD was 3.5, - A. 68% of the scores were between 82.5 and 89.5 - B. 95% of the scores were between 82.5 and 89.5 - C. 99% of the scores were between 79 and 93 - D. 68% of the scores were between 79 and 93 # **Populations** - The group about which we seek to draw conclusions in a study are known as the population. - Sometimes one can study each member of the population of interest - · But if the population is large - It may be impossible to study the whole population - There may be no need to study the whole population 22 # Samples - A sample is a subset of the population chosen for study. - From studying the distribution of a variable in a sample one makes an estimate of the distribution in the actual population - Sometimes the estimate from a sample may be more accurate than trying to study the population itself - U.S. Census 23 ### Does the sample reflect the population? - Does the mean of the sample reflect the mean of the actual population? - Very unlikely that the mean of the same will exactly equal the mean of the population - Given the mean of a sample, what is the range within which the mean of the actual population lies? - Bottom line—with larger samples this range becomes smaller and smaller - And this effect depends only on the size of the sample, not the size of the population sampled! # Is the sample biased? - If information about the sample is to be informative about the actual population, the sample must be representative - Randomization: attempt to insure that the sample is representative by avoiding bias in selecting the sample - Risk: inadvertently developing a misrepresentative sample - E.g., using telephone numbers in the phonebook to sample electorate 2 # Distribution on nominal variables - Take the special case of a variable with two values (exhaustive and exclusive) - Heads/Tails - True/False - Born in January/not-born in January - Male/Female where the value for each item is independent of that for other items Consider the likely distributions 26 # Clicker Question Consider these to be orders of births of babies in a hospital. Which is more likely? - 1. MFMFFMFMFF - 2. M M M M M M M M M M - 3. FFFFFMMMMM - 4. Each pattern is equally likely # A very different question Consider these to be totals of births in a hospital on a given day. Which of these outcomes is more likely? 5 males / 5 females 7 males / 3 females 10 males / 0 females # From populations to samples Start from the situation in which we know the distribution in the actual population: p (M) = .5 We draw a sample of a given size, say 10. Is it possible that we could get a sample of all males? Yes, the probability is about .001 What is the probability that we could get a sample of 7 males and 3 females? It is about .117 What is the probability that we could get a sample of 5 males and 5 females? It is about .246 # What happens as sample size gets larger? With larger sample sizes, the probability of a distribution in the sample closely approximating the distribution in the actual population increases The important question is how much the mean of the samples will vary from the mean of the actual population To determine this, we need to know the standard deviation (SD). ### Standard deviation and mean In ≈68% of samples, the mean of the population will fall within 1 standard deviation of the mean of the sample In ≈ 95% of samples, the mean of the population will fall within 2 standard deviations from the mean of the sample # SD and larger sample size As sample size grows, the SD of the sample shrinks. So with larger samples, the range of 2 standard deviations shrinks Assume mean in the sample is .50 | Sample size | Percentage Range
of 2 SD | Percentage Range
of 3 SD | | | | |-------------|-----------------------------|-----------------------------|--|--|--| | 10 | 34.5-66.5 | 29.5-70.5 | | | | | 20 | 39-61 | 35.6-64.4 | | | | | 50 | 43-57 | 40.9-59.1 | | | | | 100 | 45-55 | 43.5-56.5 | | | | | 500 | 47.8-52.2 | 47.1-52.9 | | | | | 1000 | 48.4-51.6 | 48-52 | | | | # Clicker Question Why do most election polls study approx. 500 people even if the population is many million? - It gets hard to analyze data when too much is collected - B. It costs too much to survey more than about 500 people - C. With 500 people the SD is already small enough to make a good estimate of the actual population - D. With 500 people the SD is already large enough to make a good estimate of the actual population ### Generalize to Score Variables Score variables: Interval and ratio variables With score variables, it is the scores that are distributed (not the items in a given category) Example: age of person eating at the Food Court Draw a sample to make inference of average age of person eating at the Food Court | <17 | 17 | 8 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | >25 | |-----|----|----|----|----|----|----|----|----|----|-----| | 6 | 18 | 23 | 34 | 32 | 18 | 26 | 29 | 14 | 10 | 10 | | | 2 | 1 | 3 | 1 | 2 | | 1 | | | | # Estimating real distribution | ı | <17 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | >25 | |---|-----|----|----|----|----|----|----|----|----|----|-----| | ı | 6 | 18 | 23 | 34 | 32 | 18 | 26 | 29 | 14 | 10 | 10 | | ı | | 2 | 1 | 3 | 1 | 2 | | 1 | | | | | | | 1 | 2 | 4 | 6 | 3 | 2 | 2 | | | | Mean of the actual population: 20.63 Want to predict Mean of the sample: 19.4 20.1 more accurately? SD of the sample: 1.9 1.6 Range of 1 SD = 17.5-22.3 18.5-21.7 Use a larger sample size Range of 2 SD = 15.9-24.2 16.9-23.3 ### Review ratio - Four types of variables: Nominal ordinal interval - · Values of variables are distributed - Important goal: characterizing the distribution - · Graphs - Bar graphs for nominal variables - Histograms for score variables - Normal versus non-normal distributions - Skewed, bimodal, etc. Which of the following is NOT true of a normal distribution? - A. It has one peak - Scores diminish as one moves further from the mean - C. The median is a better indicator of central tendency than the mean - D. Scores are equally distributed around the mean ### Review - 2 - · Two principal measures of distributions - Central tendency - · Mean, median, mode - Variability - · Range, variance, SD - -1 SD includes approx. 68% of scores - -2 SD includes approx. 95% of scores - -3 SD includes approx. 99% of scores ### Review - 3 - Population and samples - From studying the distribution in sample, estimate the distribution in the actual population - Mean of actual population will - Fall within one SD of mean of sample 68% - . Fall within two SD of mean of sample 95% - Fall within three SD of mean of sample 99% - Larger sample yields smaller SD and hence more precise estimate - Hence, to improve the precision of an estimate, use a larger sample Your laboratory has chosen a sample of 1000 individuals to study. A new assistant suggests you should sample at least 10% of the actual population of 25 million (2.5 million). You should - Point out to the assistant that accuracy depends on sample size, not percentage sampled - B. Promote the assistant for improving the laboratory's research - Point out to the assistant that sample size only affects the median, not the mean - Point out to the assistant that the SD will increase if you sample a larger population