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ABSTRACT ORGANIZATION

• In systems/mechanisms in the real world 
• Entities have distinctive properties 
• Relations between entities have distinctive properties 

• Network representations abstract from these properties 
• Entities are represented as nodes 
• Relations as edges 

• undirected or directed

NETWORK MEASURES

• Path length measures 
• Shortest path length between two nodes is the minimum 

number of links that need to be followed to traverse from one 
to the other 

• Efficiency: Inversely related to shortest path length 
• Diameter: longest shortest path length 
• Average or characteristic path length



NETWORK MEASURES

• Clustering measures 
• Clustering coefficient of a node: proportion of the possible 

linkages between nearest neighbors that are realized 
• Clustering coefficient of a graph: average of clustering 

coefficients of nodes 
• Clusters or communities: subgraphs whose nodes are highly 

interconnected

NETWORK MEASURES
• Connectivity Measures:  

• Degree or connectivity of a node k: the number of links between the 
node and other nodes 

• Degree distribution P(k): probability that a randomly chosen node has 
degree k 

• Assortativity: correlation between degrees of connected nodes. 
Positive value indicates high-degree nodes tend to connect with each 
other 

• Betweenness Measures 
• Centrality: Percentage of shortest paths going through a node (or link) 

CLASSICAL FOCI: LATTICES AND RANDOM GRAPHS

• The 20th century pioneers of graph theory 
focused primarily on totally connected 
networks, random networks or regular lattices 

• Characteristic path length (L): mean of the 
shortest paths (d) between all pairs of nodes 
• In a totally connected graph L=1 
• Regular lattice: L is very large 
• Random graph: L can be very small 

• Clustering Coefficient (C) 
• For regular lattice: C is very high 
• For random graph: C is very low 

• Apparent tradeoff between keeping path 
length short and maintaining high clustering

SMALL-WORLDS: BETWEEN LATTICES AND RANDOM GRAPHS

• Watts and Strogatz (1998) start with a regular lattice and gradually 
replace a local connection with a longer-distance one 
• Very quickly the characteristic path length drops to close to that 

for a random graph 
• The clustering coefficient remains high 



SMALL WORLDS

• Watts and Strogatz called these networks in the middle range 
small-worlds  
• Showed that they occur widely in real world networks

E. ELEGANS NEURAL NETWORK

• Based on serial electron micrographs, 
White et al. (1986) reconstructed the 
entire neural network of the 
hermaphrodite nematode worm C. 
elegans 
• 302 neurons 
• approx. 5000 chemical synapses 
• approx. 600 gap junctions 
• approx. 2000 neuromuscular 

junctions 
• Watts and Strogatz showed that the C. 

elegans network constitute a small-
world

Other sensory neurons

• Chemoreception circuit

THE FUNCTIONALITY OF SMALL-WORLDS

• “Models of dynamical systems with small-world coupling display 
enhanced signal-propagation speed, computational power, and 
synchronizability. In particular, infectious diseases spread more 
easily in small-world networks than in regular lattices.” (Watts and 
Strogatz)

NODE DEGREE: FROM GAUSSIAN TO POWER LAW DISTRIBUTIONS

• Plausible assumption: node degree is distributed in a Gaussian 
fashion 
• Exponential because “the probability that a node is connected 

to k other sites decreases exponentially for large k.” 
• Surveying webpages at U. of Notre Dame, Barabási and his 

colleagues were surprise to find a few nodes that had far higher 
degree than expected 
• Rather than exponential, they fit a power law: probability of the 

degree of a node was 1/kn  

• No peak to the distribution 
• When plotted on log-log  

coordinates it forms a  
straight line 



ROBUSTNESS AND VULNERABILITY
• Nodes with few connections can often be lost without compromising 

the integrity of the network 
• “as many as 80 percent of randomly selected Internet routers can fail 

and the remaining ones will still form a compact cluster in which there 
will still be a path between any two nodes. It is equally difficult to 
disrupt a cell's protein-interaction network: our measurements 
indicate that even after a high level of random mutations are  
introduced, the  
unaffected proteins will  
continue to work  
together.” 

• But loss of just a few highly-  
connected nodes (hubs)  
can be catastrophic 
• Networks fractionate

PROTEIN NETWORKS

• In yeast protein networks (edges represent interactions), 
knocking out nodes shown in red results in death, those in 
orange in serious loss of function.  
• Others result in far less harm

H. Jeong, et al., Nature, Vol 411, p41 (2001)

THE ORIGINS OF SCALE-FREE NETWORKS

• The rich get richer scheme—growth plus preferential attachment 
• As new nodes join a network, they are more likely to connect to 

those nodes that are already highly connected

MODULAR HIERARCHICAL NETWORKS:  
HIGH CLUSTERING AND SCALE-FREE

• Seeing a tension between high clustering and being scale-free, 
Ravasz et al. (2002) explored how to construct networks that 
exhibit both features 
• Strategy of duplicating modules but linking them to a common 

node 
• Nodes at the center of modules have high degree 

• Especially true of the  
node at the center  
of the whole network 

• Nodes in the periphery  
exhibit high clustering



MODULAR HIERARCHICAL NETWORKS:  
HIGH CLUSTERING AND SCALE-FREE

• To identify modules in the metabolic network of E. coli, Ravasz et al. 
develop an overlap matrix 
• Indicating the percentage of additional nodes to which two 

connected nodes share connections 
• Modules correspond to known metabolic grouping 

• e.g., pyrimidine in dark oval 

HUBS

• Nodes with particularly high degree are labeled hubs 
• Some hubs form the core of clusters or modules: provincial hubs 

• These hubs have most connections to other nodes in the 
module 

• Some hubs connect the larger network but are not members of a 
common cluster: connector hubs

FROM BRAIN PATHWAYS TO NETWORKS: 
CONNECTOMES

• The investigation of brain processes involved in tasks like visual 
perception began by identifying early processing areas and what 
stimuli they responded to 
• Retina and LGN: center-surround contrast 
• V1: edges 

• Then proceedsed forward in the brain to identify specialized 
processing areas 
• Characterized as lying on one of  

two pathways 

FROM BRAIN PATHWAYS TO NETWORKS: 
CONNECTOMES

• Already in 1991 Felleman and van Essen had advanced a more 
complex picture by identifying for over 30 brain regions involved 
in visual processing and multiple ways they were connected



THE CONNECTOME PROJECT

• Sporns, Tononi, and Kötter (2005) 
introduced the term connectome for 
the connection matrix of the human 
brain 
• Subsequently extended to many 

other species (C. elegans, fruit fly, 
etc.) 

• Goal is not just to identify the network 
but determine its properties   

Linking Structural and Functional Networks

• The connectome was originally based solely on structure: neurons or brain 
regions and the connections between them 

• Although functional neural imaging initially focused on identifying specific 
brain regions, more recently it has emphasized networks involved in 
particular types of tasks 
• With the discovery of low-  

frequency oscillations (< .1 Hz)  
detectable in fMRI, researchers  
have identified networks of  
brain regions 
• One composed of areas more   

active in the resting state 
• Others composed of regions  

more active in types of tasks 
• Functional and structural networks  

resemble one another

Bullmore and Sporns, 2009 

RICH HUBS

• van den Heuvel and Sporns (2011) determined that twelve of the 
most important hubs in the human brain are also highly 
interconnected with each other 
• superior parietal area, precuneus,  

superior frontal cortex, putamen,  
hippocampus, and thalamus in both  
hemispheres 

• In computational models, van den  
Heuvel and Sporns showed that  
disruption of nodes in the rich hub  
severely impaired global communication 
• proposed that damage to rich hub  

nodes may explain generalized  
cognitive deficits in diseases such  
as Alzheimer’s and schizophrenia

DISCOVERY OF MOTIFS

• Uri Alon and collaborators identified subgraphs (consisting of a 
small number of nodes) that occur repeatedly within networks such 
as the transcription regulation networks in E. coli 
• They dubbed those subgraphs that occur far more frequently 

than would be expected by chance motifs 
• Raises important  

question about what  
counts as chance 

• Major claims for motifs:  
• They are building blocks  

of larger networks 
• They carry out specific  

information processing  
functions



SIMPLE REGULATION

• Alon begins his analysis with single directed 
edges either between two nodes or from 
one node back onto itself 
• In a transcription network, a single 

directed edge between two nodes will 
allow the first to increase the transcription 
of the second until it reaches steady-state 

• Negative feedback allow for a faster raise 
in the concentration of the transcript but 
then leveling off due to the feedback. It 
can also reduce variability 

• Positive feedback can yield slower rise 
followed by an inflection (s-shaped curve) 
and greater variability

FEED-FORWARD LOOPS

• Three node subgraphs containing a 
direct route from X to Z and indirect 
route through Y 

• Either route can produce activation 
or repression 
• Coherent if both routes have the 

same sign 
• Incoherent if opposite sign 

• Treats Z as executing a Boolean 
function on its inputs 
• Either an AND or an OR gate 

• In E. coli and yeast transcription 
networks two of these appear more 
frequently than by chance

PERSISTENCE DETECTOR
• Sign-sensitive delay element: input X must persist long enough for 

Y to be expressed in a sufficient amount before transcription of Z 
begins 
• Prevents transcribing Z in response to random perturbations 
• Also stops transcribing Z promptly when X is inactivated

X"="
CRP"

Y"="
AraC"

Sx"="
cAMP"

Z"=""
araBAD"

OTHER FEED-FORWARD LOOPS
• When the AND-gate is replaced by an OR-gate in a coherent feedforward 

loop, transcription of Z starts immediately when X is activated, but 
continues in the face of short disruptions due to Y  
• Multiple outputs with time delays enables sequential synthesis (e.g., of a  

flagellum in bacteria) 
• With an incoherent loop, X will initially cause transcription of Z, but as Y 

builds up, transcription will stop, resulting in a pulse 
• enables rapid generation of Z without the risk of generating too much



BI-STABLE SWITCH

• With appropriate parameters, a double negative feedback loop 
generates an especially useful property 
• With increased input to one unit, it will switch off the other unit 
• But the input to that unit must drop to a much lower value for 

the that unit to become active again turn it off 
• The switch will remain stable in either position, not easily 

reverted to the other 
• Useful in context in which it is important to maintain the 

sequential order of processes

COMBINING MOTIFS

• Network that governs spore development in Bacillus subtiles  
• A process that bacteria undertake only in desperate circumstances  
• The outputs Z1, Z2, and Z3 each represent large numbers of genes 

• The network combines two incoherent FFLs that each produce 
pulses and two coherent FFLs that generates a steady output

DIFFERENT MOTIFS IN DIFFERENT NETWORKS

• In E. coli transcription network only variants of the feedforward 
loop qualify as motifs (>10 SD above freq. in random networks) 

• In other networks, other subgraphs meet the condition for being a 
motif 
• Alon is inclined to see motifs as adaptations—specifically 

selected for the roles they play in specific networks 
• This has elicited considerable controversy 
• One can, however, analyze the information processing role 

motifs play independently of the question of their origin

food web
electronic  

circuits
primate 
brains

C. elegans 
nervous system

MORE COMPLEX DYNAMICS
• Negative feedback often generates oscillations, especially when it 

is coupled with positive feedback 
• These can be useful—here used to generate circadian rhythms


