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ABSTRACT ORGANIZATION

In systems/mechanisms in the real world
Entities have distinctive properties
Relations between entities have distinctive properties
Network representations abstract from these properties
Entities are represented as nodes
Relations as edges
undirected or directed

NETWORK MEASURES

Path length measures

Shortest path length between two nodes is the minimum
number of links that need to be followed to traverse from one
to the other

Efficiency: Inversely related to shortest path length
Diameter: longest shortest path length
Average or characteristic path length




NETWORK MEASURES

Clustering measures
Clustering coefficient of a node: proportion of the possible
linkages between nearest neighbors that are realized
Clustering coefficient of a graph: average of clustering
coefficients of nodes
Clusters or communities: subgraphs whose nodes are highly
interconnected

NETWORK MEASURES

Connectivity Measures:
Degree or connectivity of a node k: the number of links between the
node and other nodes
Degree distribution P(k): probability that a randomly chosen node has
degree k
Assortativity: correlation between degrees of connected nodes.
Positive value indicates high-degree nodes tend to connect with each
other

Betweenness Measures

Centrality: Percentage of shortest paths going through a node (or link)

CLASSICAL FOCI: LATTICES AND RANDOM GRAPHS

The 20th century pioneers of graph theory
focused primarily on totally connected
networks, random networks or regular lattices

Characteristic path length (L): mean of the
shortest paths (d) between all pairs of nodes

In a totally connected graph L=1

Regular lattice: L is very large

Random graph: L can be very small
Clustering Coefficient (C)

For regular lattice: C is very high

For random graph: C is very low

Apparent tradeoff between keeping path
length short and maintaining high clustering

SMALL-WORLDS: BETWEEN LATTICES AND RANDOM GRAPHS

Watts and Strogatz (1998) start with a regular lattice and gradually
replace a local connection with a longer-distance one

Very quickly the characteristic path length drops to close to that
for a random graph

The clustering coefficient remains high
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SMALL WORLDS

Watts and Strogatz called these networks in the middle range
small-worlds
Showed that they occur widely in real world networks

Table 1 Empirical examples of small-world networks

L actual L random Cacn_al Cranc-::m
Film actors 3.65 2.99 0.79 0.00027
Power grid 18.7 124 0.080 0.005
C. elegans 2.65 2.25 0.28 0.05

E. ELEGANS NEURAL NETWORK

Based on serial electron micrographs,
White et al. (1986) reconstructed the
entire neural network of the
hermaphrodite nematode worm C.
elegans

302 neurons

approx. 5000 chemical synapses

approx. 600 gap junctions Chemoreception cirrcuit

approx. 2000 neuromuscular
junctions
Watts and Strogatz showed that the C.
elegans network constitute a small-
world

Other sensory neurons

THE FUNCTIONALITY OF SMALL-WORLDS

“Models of dynamical systems with small-world coupling display
enhanced signal-propagation speed, computational power, and
synchronizability. In particular, infectious diseases spread more
easily in small-world networks than in regular lattices.” (Watts and
Strogatz)

NODE DEGREE: FROM GAUSSIAN TO POWER LAW DISTRIBUTIONS

Plausible assumption: node degree is distributed in a Gaussian
fashion
Exponential because “the probability that a node is connected
to k other sites decreases exponentially for large k.”
Surveying webpages at U. of Notre Dame, Barabasi and his
colleagues were surprise to find a few nodes that had far higher
degree than expected
Rather than exponential, they fit a power law: probability of the

degree of a node was 1/k"

No peak to the distribution 4

When plotted on log-log
coordinates it forms a
straight line

Number of Nodes




ROBUSTNESS AND VULNERABILITY

* Nodes with few connections can often be lost without compromising

the integrity of the network

+ "as many as 80 percent of randomly selected Internet routers can fail
and the remaining ones will still form a compact cluster in which there
will still be a path between any two nodes. It is equally difficult to
disrupt a cell's protein-interaction network: our measurements
indicate that even after a high level of random mutations are
introduced, the

Scale-Free Network, Accidental Node Failure

unaffected proteins will
continue to work
together.”

+ But loss of just a few highly-

connected nodes (hubs)

Scale-Free Network, Attack on Hubs

can be catastrophic

* Networks fractionate

PROTEIN NETWORKS

* In yeast protein networks (edges represent interactions),
knocking out nodes shown in red results in death, those in
orange in serious loss of function.

» Others result in far less harm
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H. Jeong, et al., Nature, Vol 411, p41 (2001)

THE ORIGINS OF SCALE-FREE NETWORKS

* The rich get richer scheme—growth plus preferential attachment

* As new nodes join a network, they are more likely to connect to
those nodes that are already highly connected

BIRTH OF A SCALE-FREE NETWORK

A SCALE-FREE NETWORK grows incrementally from two to 11 nodes in this example. When deciding where to establish a link, a new node
(green) prefers to attach to an existing node (red) that already has many other connections. These two basic mechanisms—growth
and preferential attachment—will eventually lead to the system’s being dominated by hubs, nodes having an enormous number of links.
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MODULAR HIERARCHICAL NETWORKS:
HIGH CLUSTERING AND SCALE-FREE

+ Seeing a tension between high clustering and being scale-free,
Ravasz et al. (2002) explored how to construct networks that
exhibit both features
+ Strategy of duplicating modules but linking them to a common

node
- Nodes at the center of modules have high degree

- Especially true of the ;

¢ o 2

node at the center ® . . AN
of the whole network N7 L= S
* Nodes in the periphery J s s
exhibit high clustering N A A




MODULAR HIERARCHICAL NETWORKS:
HIGH CLUSTERING AND SCALE-FREE

+ To identify modules in the metabolic network of E. coli, Ravasz et al.
develop an overlap matrix
¢ Indicating the percentage of additional nodes to which two
connected nodes share connections
* Modules correspond to known metabolic grouping

* e.g., pyrimidine in dark oval

HUBS

* Nodes with particularly high degree are labeled hubs
+ Some hubs form the core of clusters or modules: provincial hubs
* These hubs have most connections to other nodes in the
module
* Some hubs connect the larger network but are not members of a
common cluster: connector hubs

@ Provincial hub
@ Connector hub

FROM BRAIN PATHWAYS TO NETWORKS:
CONNECTOMES

 The investigation of brain processes involved in tasks like visual
perception began by identifying early processing areas and what
stimuli they responded to
* Retina and LGN: center-surround contrast
* V1: edges

+ Then proceedsed forward in the brain to identify specialized
processing areas

* Characterized as lying on one of
two pathways

FROM BRAIN PATHWAYS TO NETWORKS:
CONNECTOMES

« Already in 1991 Felleman and van Essen had advanced a more
complex picture by identifying for over 30 brain regions involved
in visual processing and multiple ways they were connected
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THE CONNECTOME PROJECT

+ Sporns, Tononi, and Kétter (2005)
introduced the term connectome for
the connection matrix of the human
brain

* Subsequently extended to many
other species (C. elegans, fruit fly,
etc.)

T19383¢1311
T

+ Goal is not just to identify the network |-
but determine its properties

Linking Structural and Functional Networks

» The connectome was originally based solely on structure: neurons or brain
regions and the connections between them
* Although functional neural imaging initially focused on identifying specific
brain regions, more recently it has emphasized networks involved in
particular types of tasks
« With the discovery of low-
frequency oscillations (< .1 Hz)
detectable in fMRI, researchers
have identified networks of
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brain regions B
* One composed of areas more Tt

active in the resting state

* Others composed of regions
more active in types of tasks

+ Functional and structural networks
resemble one another crph theoretiatanars

Bullmore and Sporns, 2009

RICH HUBS

* van den Heuvel and Sporns (2011) determined that twelve of the
most important hubs in the human brain are also highly
interconnected with each other d f?>7
 superior parietal area, precuneus, .

superior frontal cortex, putamen,
hippocampus, and thalamus in both
hemispheres

> In computational models, van den LN
Heuvel and Sporns showed that W
disruption of nodes in the rich hub

severely impaired global communication teeeersmear™ 8= grmpeerpnces
‘connection metrics
1 non-rich club = = network densi
* proposed that damage to rich hub e o
nodes may explain generalized . path metrcs
oy . . . . feeder ) 4 = comm cost
cognitive deficits in diseases such post 3

= example

as Alzheimer’s and schizophrenia ch

* Major claims for motifs:

DISCOVERY OF MOTIFS

« Uri Alon and collaborators identified subgraphs (consisting of a
small number of nodes) that occur repeatedly within networks such
as the transcription regulation networks in E. coli
+ They dubbed those subgraphs that occur far more frequently

than would be expected by chance motifs
- Raises important O
question about what s
counts as chance

+ They are building blocks
of larger networks

* They carry out specific
information processing
functions




SIMPLE REGULATION FEED-FORWARD LOOPS

a b 3 a
Alon begins his analysis with single directed | =« DD Three node subgraphs containing a Cohernt AL . .
— . . . oherent oherent oherent oherent
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PERSISTENCE DETECTOR OTHER FEED-FORWARD LOOPS

When the AND-gate is replaced by an OR-gate in a coherent feedforward
loop, transcription of Z starts immediately when X is activated, but
continues in the face of short disruptions due to Y

Sign-sensitive delay element: input X must persist long enough for
Y to be expressed in a sufficient amount before transcription of Z

begins Multiple outputs with time delays enables sequential synthesis (e.g., of a
Prevents transcribing Z in response to random perturbations flagellum in bacteria)
Also stops transcribing Z promptly when X is inactivated With an incoherent loop, X will initially cause transcription of Z, but as Y

builds up, transcription will stop, resulting in a pulse
enables rapid generation of Z without the risk of generating too much
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BI-STABLE SWITCH

With appropriate parameters, a double negative feedback loop

generates an especially useful property
With increased input to one unit, it will switch off the other unit

But the input to that unit must drop to a much lower value for
the that unit to become active again turn it off
The switch will remain stable in either position, not easily

reverted to the other
Useful in context in which it is important to maintain the

sequential order of processes Canlw

Response

Signal

COMBINING MOTIFS

Network that governs spore development in Bacillus subtiles
A process that bacteria undertake only in desperate circumstances
The outputs Z;, Z,, and Z3 each represent large numbers of genes
The network combines two incoherent FFLs that each produce
pulses and two coherent FFLs that generates a steady output
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DIFFERENT MOTIFS IN DIFFERENT NETWORKS

In E. coli transcription network only variants of the feedforward
loop qualify as motifs (>10 SD above freq. in random networks)

In other networks, other subgraphs meet the condition for being a
motif

Alon is inclined to see motifs as adaptations—specifically
selected for the roles they play in specific networks

This has elicited considerable controversy

One can, however, analyze the information processing role
motifs play independently of the question of their origin

electronic primate

food web N .
circuits brains nervous system

MORE COMPLEX DYNAMICS

Negative feedback often generates oscillations, especially when it

is coupled with positive feedback
These can be useful—here used to generate circadian rhythms

Melanopsin
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